Little Hankel operators on a class of vector-valued Fock spaces.

22.11.2016 13:15 - 14:45

Hélène Bommier-Hato (Aix-Marseille Université)

Abstract. For a separable Hilbert space $\mathcal H$, we consider the vector valued Fock space $F^2_{m,\alpha}( \mathcal H)$ of those holomorphic functions $f:\mathbb C^d \rightarrow \mathcal H$ which are square integrable with respect to the measure $e^{-\alpha|z|^{2m}}$, $m \geq 1$, $\alpha >0$.
I will present some properties of the space $F^2_{\alpha}( \mathcal H)$ and some spectral properties of the little Hankel operator $h_b$, of symbol $b: \mathbb C^d \rightarrow \mathcal L( \mathcal H)$, defined on $F^2_{\alpha}( \mathcal H)$.

Location:
Seminar room 10, 2nd floor, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria