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Conventions - Notation

E denotes the class of smooth functions

Cω denotes the class of real analytic functions

H denotes the class of holomorphic functions

write R>0 := {x ∈ R : x > 0}

write N>0 = {1, 2, . . . } and N = N>0 ∪ {0}

f (k) denotes the k-th order Fréchet derivative of f

write ‖f (k)(x)‖Lk (Rr ,Rs) := sup{‖f (k)(x)(v1, . . . , vk)‖Rs : ‖vi‖Rr ≤
1 ∀ 1 ≤ i ≤ k}

we write [·] if either {·} or (·) is considered but not mixing the cases
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Ultradi�erentiable classes

Ultradi�erentiable classes E[?], ? ∈ {M, ω,M} - certain subclasses
of smooth functions satisfying growth conditions on all their
derivatives

Classically de�ned by using weight sequences M or weight functions
ω

Historically �rst the classes E[M] were considered

Classes E[ω]: First the decay property of the Fourier transform f̂
was measured w.r.t. to ω (Beurling)

Using a weight matrixM = {Mx : x ∈ I} uni�es/generalizes both
approaches

In each setting one can distinguish between the Roumieu case E{?}
and the Beurling case E(?)
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(Non)-Quasianalyticity of E[?]

Each case can be divided into quasianalytic and non-quasianalytic
classes

Non-quasianalyticity: Existence of functions with compact support
of the particular case (�E[?]-test functions�)

É. Borel (ca. 1900) - Discovery of quasianalytic functions:

Explicit construction of smooth functions on the real line which are
not real-analytic but nevertheless f (j)(0) for all j ∈ N implies f = 0.
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Weight sequences M

M = (Mp)p ∈ RN
>0, put mp :=

Mp

p! and get m := (mp)p.
M is called normalized, if 1 = M0 ≤ M1 (w.l.o.g.).
Write M ≤ N if Mp ≤ Np for all p ∈ N.
(1) M is called log-convex if

∀ j ∈ N>0 : M2
j ≤ Mj+1Mj−1.

If M is normalized and log-convex, then k 7→ Mk and k 7→ (Mk)1/k

are increasing.
(2) M has moderate growth (write (mg)) if

∃ C ≥ 1 ∀ j , k ∈ N : Mj+k ≤ C j+kMjMk .

(3) M is called non-quasianalytic (write (nq)) if
∞∑
p=1

Mp−1
Mp

< +∞
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(4) For M, N we de�ne

M � N :⇔ sup
p∈N>0

(
Mp

Np

)1/p

< +∞,

i.e. ∃ C , h > 0 ∀ p ∈ N : Mp ≤ ChpNp.

M C N :⇔ lim
p→∞

(
Mp

Np

)1/p

= 0,

i.e. ∀ h > 0 (small) ∃ Ch > 0 ∀ p ∈ N : Mp ≤ Chh
pNp.

We call two sequences equivalent, if

M ≈ N :⇔ M � N and N � M
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Example

The Gevrey-sequences G s = (p!s)p∈N, s > 1, are normalized and
satisfy all properties (1)− (3). If s < t, then G s C G t .

For convenience we put

LC := {M ∈ RN
>0 : normalized, log-convex, lim

k→∞
(Mk)1/k = +∞}
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Classes E[M] (H. Cartan, S. Mandelbrojt, W. Rudin, H.
Komatsu)

Let r , s ∈ N>0, U ⊆ Rr be non-empty open, then de�ne the
Roumieu class

E{M}(U,Rs) :=

{f ∈ E(U,Rs) : ∀ K ⊆ U compact ∃ h > 0 : ‖f ‖M,K ,h < +∞}

and the Beurling class

E(M)(U,Rs) :=

{f ∈ E(U,Rs) : ∀ K ⊆ U compact ∀ h > 0 : ‖f ‖M,K ,h < +∞},

where

‖f ‖M,K ,h := sup
k∈N,x∈K

‖f (k)(x)‖Lk (Rr ,Rs)

hkMk
.
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Topology on E[M]

For compact sets K with smooth boundary

EM,h(K ,Rs) := {f ∈ E(K ,Rs) : ‖f ‖M,K ,h < +∞}

is a Banach space and we have the topological vector space
representations

E{M}(U,Rs) = lim←−
K⊆U

lim−→
h>0

EM,h(K ,Rs) = lim←−
K⊆U

E{M}(K ,Rs) (1)

resp.

E(M)(U,Rs) = lim←−
K⊆U

lim←−
h>0

EM,h(K ,Rs) = lim←−
K⊆U

E(M)(K ,Rs). (2)

E(M) is a Fréchet space, E{M}(K ,Rs) is a Silva space.
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We get E{(p!)p} = Cω and E((p!)p)(U) = H(Cn) (restrictions of
entire functions on open connected U)

If M ∈ LC and N arbitrary, then M � N ⇔ E[M] ⊆ E[N] and
M C N ⇔ E{M} ⊆ E(N).

lim infp→∞(mp)1/p > 0⇐⇒ Cω ⊆ E{M} ⇐⇒ H(Cn) ⊆ E(M)(U)

limp→∞(mp)1/p =∞⇐⇒ Cω ⊆ E(M)

Gerhard Schindl University of Vienna

Quasianalyticity of classes of ultradi�erentiable functions



Notation Weight sequences Weight functions Weight matrices Non-quasianalyticity The Borel mapping Literature

Weight functions ω

A function ω : [0,∞)→ [0,∞) is called a weight function if:

(i) ω is continuous,

(ii) ω is increasing,

(iii) ω(x) = 0 for x ∈ [0, 1] (normalization - w.l.o.g.),

(iv) limx→∞ ω(x) = +∞.

(i)− (iv) are denoted by (ω0)

Sometimes ω is extended to Cn by ω(z) := ω(|z |) - connection to
complex analysis
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Moreover we consider:

(ω1) ω(2t) = O(ω(t)) as t →∞
(ω2) ω(t) = O(t) as t →∞
(ω3) log(t) = o(ω(t)) as t →∞
(ω4) ϕω : t 7→ ω(et) is convex

(ω5) ω(t) = o(t) as t → +∞
(ω6) ∃ H ≥ 1 ∀ t ≥ 0 : 2ω(t) ≤ ω(Ht) + H

(ω7) ∃ H > 0 ∃ C > 0 ∀ t ≥ 0 : ω(t2) ≤ Cω(Ht) + C (new!)

(ωnq)
∫∞
1

ω(t)
t2

dt <∞.
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Example

ωs(t) := max{0, (log(t))s}, s > 1, satis�es all properties except
(ω6).
The weight ωs(t) := t1/s , s > 1, yields the Gevrey class G s . It
satis�es all properties except (ω7).
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Put

W0 := {ω : [0,∞)→ [0,∞) : ω has (ω0), (ω3), (ω4)},

W := {ω ∈ W0 : ω has (ω1)}.

For ω ∈ W0 de�ne the Legendre-Fenchel-Young conjugate

ϕ∗ω(x) := sup
y≥0

(xy − ϕω(y)),

which is convex, increasing, ϕ∗ω(0) = 0, ϕ∗∗ω = ϕω,
limx→∞

x
ϕ∗
ω(x) = 0 and �nally x 7→ ϕω(x)

x and x 7→ ϕ∗
ω(x)
x are

increasing.
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Classes E[ω] - Braun,Meise,Taylor (1990)

Let r , s ∈ N>0, U ⊆ Rr non-empty open, for ω ∈ W0 de�ne the
Roumieu class

E{ω}(U,Rs) :=

{f ∈ E(U,Rs) : ∀ K ⊆ U compact ∃ l > 0 : ‖f ‖ω,K ,l < +∞}

and the Beurling class

E(ω)(U,Rs) :=

{f ∈ E(U,Rs) : ∀ K ⊆ U compact ∀ l > 0 : ‖f ‖ω,K ,l < +∞},

where

‖f ‖ω,K ,l := sup
k∈N,x∈K

‖f (k)(x)‖Lk (Rr ,Rs)

exp(1l ϕ
∗
ω(lk))

.
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Relations of weight functions

For σ, τ ∈ W0 write

σ � τ :⇔ τ(t) = O(σ(t)), as t → +∞

σ ∼ τ :⇔ σ � τ and τ � σ

σ C τ :⇔ τ(t) = o(σ(t)), as t → +∞

If σ, τ ∈ W, then σ � τ ⇔ E[σ] ⊆ E[τ ] and σ C τ ⇔ E{σ} ⊆ E(τ).
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Associated function ωM - S. Mandelbrojt, H. Cartan, H.
Komatsu

For M := (Mp)p ∈ RN
>0 we de�ne the associated function

ωM : R≥0 → R ∪ {+∞} by

ωM(t) := sup
p∈N

log

(
tpM0

Mp

)
for t > 0, ωM(0) := 0.

Lemma

If M ∈ LC, then ωM ∈ W0.
lim inf(mp)1/p > 0 implies (ω2), i.e. ωM(t) = O(t) as t →∞,
lim(mp)1/p = +∞ implies (ω5), i.e. ωM(t) = o(t) as t →∞.
M has (nq) if and only if ωM has (ωnq).
M has (mg) if and only if ωM has (ω6).
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Associating a weight matrix

A central new idea: To each ω ∈ W0 we consider the associated
weight matrix Ω := {Ωl = (Ωl

j)j∈N : l > 0} de�ned by

Ωl
j := exp

(
1
l
ϕ∗ω(lj)

)
Motivation for this: Compare the expressions in the denominators of
the de�ning seminorms

Lemma

Let ω ∈ W0, then Ωl ∈ LC and ω ∼ ωΩl for each l > 0.
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Important new representations

Theorem

Let ω ∈ W, then we have for each compact K ⊆ Rr and
non-empty open U ⊆ Rr :

E(ω)(U) = lim←−
l>0

E(Ωl )(U) and E{ω}(K ) = lim−→
l>0

E{Ωl}(K ).

If in addition (ω7), i.e. ∃ H,C > 0 ∀ t ≥ 0 : ω(t2) ≤ Cω(Ht) + C ,
then

E(ω)(U) = lim←−
l>0

E{Ωl}(U) and E{ω}(K ) = lim−→
l>0

E(Ωl )(K ).
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Characterizing condition (ω6)

Proposition

Let ω ∈ W0, TFAE:

(1) ω has (ω6), i.e. ∃ H ≥ 1 ∀ t ≥ 0 : 2ω(t) ≤ ω(Ht) + H,

(2) each/some ωΩl has (ω6)

(3) E[Ωx ] = E[Ωy ] for all x , y > 0

(4) Ωx ≈ Ωy for all x , y > 0

(5) Ωx has (mg) for some/for each x > 0

ω has (ωnq) if and only if some/each Ωx has (nq)

Consequence: (ω7) is an obstruction for (ω6)
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De�nition of a weight matrix

The representations above motivate the following abstract
de�nition:
A weight matrixM := {Mx ∈ RN

>0 : x ∈ I = R>0} is a set of
weight sequences, s.th.

(M) :⇔ ∀ x : Mx is normalized, increasing, Mx ≤ My for x ≤ y .

We callM standard log-convex, if

(Msc) :⇔ (M) and ∀ x ∈ I : Mx ∈ LC.
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Spaces E[M]

Let r , s ∈ N>0, let U ⊆ Rr be non-empty and open, for all compact
K ⊆ U we put

E{M}(K ,Rs) :=
⋃
x∈I
E{Mx}(K ,Rs)

E{M}(U,Rs) :=
⋂
K⊆U

⋃
x∈I
E{Mx}(K ,Rs)

and
E(M)(K ,Rs) :=

⋂
x∈I
E(Mx )(K ,Rs)

E(M)(U,Rs) :=
⋂
x∈I
E(Mx )(U,Rs)

E(M) is a Fréchet space, E{M}(K ,Rs) is a Silva space.
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Some conditions forM

Roumieu type:

(M{mg}) ∀ x ∈ I ∃ C ∃ y ∈ I ∀ j , k ∈ N : Mx
j+k ≤ C j+kMy

j M
y
k

(M{L}) ∀ C ∀ x ∈ I ∃ D ∃ y ∈ I ∀ k ∈ N : C kMx
k ≤ DMy

k

(M{BR}) ∀ x ∈ I ∃ y ∈ I : Mx C My

Beurling type:

(M(mg)) ∀ x ∈ I ∃ C ∃ y ∈ I ∀ j , k ∈ N : My
j+k ≤ C j+kMx

j M
x
k

(M(L)) ∀ C ∀ x ∈ I ∃ D ∃ y ∈ I ∀ k ∈ N : C kMy
k ≤ DMx

k

(M(BR)) ∀ x ∈ I ∃ y ∈ I : My C Mx
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Relations for weight matrices

IfM = {Mx : x ∈ R>0}, N = {Ny : y ∈ R>0}, then

M{�}N :⇔ ∀ x ∃ y : Mx � Ny

M(�)N :⇔ ∀ x ∃ y : My � Nx

M[≈]N :⇔M[�]N ,N [�]M

Finally
M C N :⇔ ∀ x ∀ y : Mx C Ny

In this context we introduce also:

(M{Cω}) ∃ x ∈ I : lim infk→∞(mx
k)1/k > 0

(MH) ∀ x ∈ I : lim infk→∞(mx
k)1/k > 0

(M(Cω)) ∀ x ∈ I : limk→∞(mx
k)1/k = +∞
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Characterization of relations

LetM and N be (Msc), then

(i) E[M] ⊆ E[N ] ⇔M[�]N
(ii) E{M} ⊆ E(N ) ⇔M C N

(M{Cω})⇐⇒ Cω ⊆ E{M}
(MH)⇐⇒ H(Cn) ⊆ E(M)(U)
(M(Cω))⇐⇒ Cω ⊆ E(M)

We callM constant, ifM = {M} or more generally if Mx ≈ My

for all x , y ∈ I.
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Conditions for ω versus conditions for Ω

LetM = Ω for ω ∈ W0, then:

(1) Ω is (Msc)

(2) Ω has (M{mg}) and (M(mg))

(3) If ω has in addition (ω1) then (M{L}) and (M(L))

(4) M is constant if and only if (ω6) is satis�ed

(5) If ω has in addition (ω7) then (M{BR}) and (M(BR))

(6) Let σ, τ ∈ W with σ � τ thenM{�}N andM(�)N . If
σ C τ thenM C N (M is associated to σ and N to τ).

(7) If ω has (ω1) and (ω2), then (MH) and if it has (ω1) and
(ω5) then (M(Cω))
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Autonomy of E[M] - joint work with A. Rainer

Comparison of E[M] and E[ω] - in general mutually distinct
(Bonet,Meise,Melikhov - 2007)

Using weight matrices generalizes both approaches

But we can describe more classes: Set
G := {G 1+s = (p!s+1)p∈N : s > 0} - the Gevrey-matrix.

Proposition

Neither E{G} nor E(G) coincides with E{M}, E(M), E{ω} or E(ω) for
any M ∈ LC and any ω ∈ W.
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De�nition

LetM be (M), then E[M] is called non-quasianalytic if E[M]

contains non-trivial functions with compact support.

Importance of non-quasianalyticity: existence of
E[M]-testfunctions/partitions of unity

Characterization of non-quasianalyticity is given by the
�Denjoy-Carleman theorem�
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Regularizations of a weight M (Mandelbrojt, Cartan,
Komatsu, Hörmander)

Let M ∈ RN
>0 with M0 = 1.

M lc = (M lc
k )k denotes the log-convex minorant of M given by

M lc
k := sup

t>0

tk

exp(ωM(t))
.

Moreover put M I := (M I
k)k de�ned by

M I
k :=

(
inf{(Mj)

1/j : j ≥ k}
)k

for k ≥ 1, M I
0 := 1

((M I
k)1/k)k is the increasing minorant of ((Mk)1/k)k

we have M lc ≤ M I ≤ M - if M is log-convex, then M lc = M I = M.

Gerhard Schindl University of Vienna

Quasianalyticity of classes of ultradi�erentiable functions



Notation Weight sequences Weight functions Weight matrices Non-quasianalyticity The Borel mapping Literature

Importance of M lc

Theorem

Let M be arbitrary and U ⊆ Rn open.

(i) If lim infk→∞(mk)1/k > 0, then E{M}(U) = E{M lc}(U).

(ii) If limk→∞(mk)1/k = +∞, then E(M)(U) = E(M lc)(U).

Roumieu case: H. Cartan (1940)
Beurling case: Rainer, S. (2014) - reduction to the Roumieu case
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Denjoy-Carleman theorem for classes E[M] (e.g. L.
Hörmander, H. Komatsu, W. Rudin)

Theorem

Let M ∈ RN
>0 with M0 = 1. TFAE

(i) E[M] is non-quasianalytic

(ii) M lc satis�es (nq)

(iii)
∑

p≥1
1

(M I
p)1/p

< +∞.

In this case Cω ( E[M] = E[M I ] = E[M lc] holds.
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Denjoy-Carleman theorem for E[M]

Generalizing a result by J. Schmets/M. Valdivia (2008) we prove:

Theorem

LetM = {Mx : x ∈ I = R>0} be (M).

(i) E{M} is non-quasianalytic if and only if there exists x0 ∈ I
such that E[Mx0 ] is non-quasianalytic.

(ii) E(M) is non-quasianalytic if and only if each E[Mx ] is
non-quasianalytic.

Attention: �Large intersections� of non-quasianalytic classes are in
general NOT non-quasianalytic again! - The class Cω is the
intersection of all non-quasianalytic classes (T. Bang).
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Denjoy-Carleman theorem forM = Ω

Corollary

Let ω ∈ W be given. TFAE:

(i) ω has (ωnq),

(ii) E{ω} contains functions with compact support,

(iii) E(ω) contains functions with compact support,

(iv) some Ωl has (nq),

(v) each Ωl has (nq).
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General assumption

- Joint work with A. Rainer -

From now on assume for each weight M resp. Mx ∈M:

M ∈ LC and lim inf
k∈N>0

(mk)1/k > 0⇔ Cω ⊆ E{M}

This is no restriction whenever Cω ⊆ E[M]: Make a change
M 7→ M lc if necessary
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De�nitions

The space of germs at 0 ∈ Rn of E[M]-type is de�ned by

E0,n{M} := lim−→
k∈N>0

E{M}((−1/k, 1/k)n)

resp.
E0,n(M) := lim−→

k∈N>0

E(M)((−1/k, 1/k)n).

The germ of real analytic functions (corresponding to Mp = p!) is
de�ned by O0,n.

Analogously we introduce E0,n[ω] and E0,n[M].
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Moreover we de�ne

Λn
{M} := {a = (aj)j ∈ CNn

: ∃ h > 0 : |a|M,h < +∞}

resp.

Λn
(M) := {a = (aj)j ∈ CNn

: ∀ h > 0 : |a|M,h < +∞},

where

|a|M,h := sup
j∈Nn

|aj |
h|j |M|j |

.

Analogously we introduce Λn
[ω] and Λn

[M].

The Borel mapping j∞ : E0,n[M] −→ Λn
[M] is de�ned by

f 7→ (f (j)(0))j∈Nn .
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Questions concerning the Borel mapping j∞

Let E0,n[M] be quasianalytic ⇐⇒ j∞ is injective

(i) What can be said about the surjectivity of j∞?

(ii) More generally what can be said about the image
j∞(E0,n[M]) ⊆ Λn

[M]: �How large� is the image in Λn
[M]?

(iii) Let a ∈ Λn
[M] be given, does a belong to the image of j∞?
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Known results

(i) Classes E0,n{M} - T. Carleman (1920's), V. Thilliez (2008):

If E0,n{M} is quasianalytic and O0,n ( E0,n{M}, then j∞ is never
surjective.
Proof: Carleman uses variational arguments, Thilliez uses
functional analysis

(ii) Classes E0,n{ω} and E
0,n
(ω) - J. Bonet/R. Meise (2013):

If E0,n[ω] is quasianalytic and O0,n ( E0,n[ω] , then j∞ is never
surjective. Proof: very much functional analysis is involved

(iii) H. Sfouli (2014): Proves the non-surjectivity for abstract
quasianalytic local rings, but requires stability under
di�erentiation and composition - really restrictive assumptions
for the ultradi�erentiable case!
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Our results (2015)

(i) elementary proofs, no functional analysis is used

(ii) proof for classes E0,n[M] - very general setting

(iii) show not only the non-surjectivity of j∞, but a little bit more

(iv) obtain some information of sequences which are not contained
in the image of j∞
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Important theorem from T. Bang (1953)

Theorem

Let M be quasianalytic, f ∈ E([0, 1]) such that

∀ j ∈ N : sup
t∈[0,1]

|f (j)(t)| ≤ Mj .

If f 6= 0 and for all j ∈ N there exists xj ∈ [0, 1] with f (j)(xj) = 0,
then

∞∑
j=0

|xj − xj+1| = +∞.
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Important consequence from T. Bang (1953)

Corollary

Let M be quasianalytic and f as above. If f (j)(0) > 0 for all j ∈ N,
then f (j)(t) > 0 for all t ∈ [0, 1] and j ∈ N, i.e. f is absolutely
monotonic.

Proof: Apply the previous theorem and Rolle's theorem.
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Non-surjectivity for j∞ - Roumieu case E0,n
{M}

Theorem

Let M be quasianalytic and such that
O0,n ( E0,n{M} ⇔ supk∈N>0

(mk)1/k = +∞.

Then there exist elements in Λn
{M} which are not contained in

j∞(E0,n{N}) for any quasianalytic N.

Proof: Use the previous Corollary and Bernstein's theorem:
Absolutely monotonic functions are real analytic.
Consequence (n = 1): Each strictly positive sequence
b = (bp)p ∈ Λn

{M} (i.e. bp > 0 for all p ∈ N) is not contained in

j∞(E0,n{N}) for any quasianalytic N unless b de�nes a real-analytic
germ.
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Non-surjectivity for j∞ - Beurling case E0,n
(M)

Theorem

Let M be quasianalytic and such that
O0,n ( E0,n(M) ⇔ limk→∞(mk)1/k = +∞.

Then there exist elements in Λn
(M) which are not contained in

j∞(E0,n{N}) for any quasianalytic N (and so consequently are not

contained in any j∞(E0,n(N))).

Proof: Reduction to the Roumieu case using

Proposition

Let M be arbitrary with limk→∞(mk)1/k = +∞. Then

Λn
(M) =

⋃
{Λn
{L} : L C M, lim

k→∞
(lk)1/k = +∞}.
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Non-surjectivity for j∞ - Roumieu case E0,n
{M}

Theorem

LetM be quasianalytic and such that O0,n ( E0,n{M}, i.e. there
exists some x0 ∈ I s.th.
supk∈N>0

(mx0
k )1/k = +∞⇔ O0,n ( E0,n{Mx0}.

Then there exist elements in Λn
{M} which are not contained in

j∞(E0,n{N}) for any quasianalytic N := {Ny : y ∈ R>0}.

Proof: Reduction to the E{M} case.
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Non-surjectivity for j∞ - Roumieu case E0,n
{ω}

Corollary

Let ω ∈ W be quasianalytic, i.e.
∫∞
1

ω(t)
t2

dt =∞ (does not satisfy
(ωnq)), and such that

O0,n ( E0,n{ω} ⇔ lim inf
t→∞

ω(t)

t
= 0.

Then there exist elements in Λn
{ω} which are not contained in

j∞(E0,n{σ}) for any quasianalytic σ ∈ W.
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Non-surjectivity for j∞ - Beurling case E0,n
(M)

Theorem

LetM be quasianalytic and such that O0,n ( E0,n(M), i.e. (M(Cω)).

Then there exist elements in Λn
(M) which are not contained in

j∞(E0,n{N}) for any quasianalytic N := {Ny : y ∈ R>0} (and so

consequently not contained in any j∞(E0,n(N ))).

Proof: Reduction to the E{M} case by using

Proposition

LetM be (M) with (M(Cω)), i.e.

∀ x ∈ I : limk→∞(mx
k)1/k = +∞. Then

Λn
(M) =

⋃
{Λn
{L} : L CM, lim

k→∞
(lk)1/k = +∞}.
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Non-surjectivity for j∞ - Beurling case E0,n
(ω)

Corollary

Let ω ∈ W be quasianalytic, i.e. does not satisfy (ωnq), and such
that

O0,n ( E0,n(ω) ⇔ ω(t) = o(t) as t → +∞.

Then there exist elements in Λn
(ω) which are not contained in

j∞(E0,n{σ}) for any quasianalytic σ ∈ W (and so consequently not

contained in any j∞(E0,n(σ))).
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(i) For weight matrices, their properties and associated function
spaces (Sections 3 and 4) see [1] resp. [3, Sections 3-9],

(ii) for the characterization of the non-quasianalyticity (Section 5)
see [4, Section 4],

(iii) for Section 6 see [2].
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