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Introduction

Real submanifolds M ⊂ CN.
D := TM ∩ iTM complex tangent space, I complex structure on D
induced by i
If D is a distribution, then M is called CR–submanifold of complex
dimension dimCD.
(M,D, I) ... a CR–structure on a smooth manifold M

CR–automorphisms on CN... holomorphic maps preserving
M ⊂ CN

Infinitesimal CR–automorphism on CN ... holomorphic vector fields
such that their flows preserve M
CR–automorphisms of (M,D, I) ... diffeomorphisms on M
preserving D and I
Infinitesimal CR–automorphism of (M,D, I) ... vector fields such
that their flows preserve D and I
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Introduction – Example

Hypersurface Q in Cn+1 given by Im(w) = h(z, z̄) for a
(non–degenerate) Hermitian form h on Cn.

Q is homogeneous w.r.t. the action of CR–automorphisms.
Lie algebra of infinitesimal CR–automorphisms of Q is
su(p + 1, q + 1) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2:

g−2 = {2Re(c
∂

∂w
)}, c ∈ R

g−1 = {2Re(d
∂

∂z
+ 2ih(z, d̄)

∂

∂w
)}, d ∈ Cn

g0 = {2Re(λz
∂

∂z
+ ρw

∂

∂w
)}, 2Re(h(λz, z̄)) = ρh(z, z̄)

g1 = {2Re((aw + 2ih(z, ā)z)
∂

∂z
+ 2ih(z, ā)w

∂

∂w
)}, a ∈ Cn

g2 = {2Re(rwz
∂

∂z
+ rw2 ∂

∂w
)}, r ∈ R
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Introduction – Quadrics of higher codimension

Submanifolds in Cn+k given by Im(wi) = hi(z, z̄), i = 1 . . . k for a
(non–degenerate) linearly independent Hermitian forms hi on Cn.

homogeneous w.r.t. the action of CR–automorphisms.
Lie algebras of infinitesimal CR–automorphisms are finite
dimensional, consist of polynomial vector fields of weighted degree
≤ 2

g−2 = {2Re(q
∂

∂w
)}, q ∈ Rk

g−1 = {2Re(p
∂

∂z
+ 2ih(z, p̄)

∂

∂w
)}, p ∈ Cn

Generically g2 = g1 = 0. The cases (as the hyperquadric Q) with
g1 , 0 are exceptional.
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Introduction – Higher order polynomials

It is not simple to generalize this for higher order polynomials than
quadrics.
The polynomials giving the CR–submanifolds can be characterized
(Beloshapka), but an arbitrary choice is not homogeneous, in
general.

Beloshapka’s models ... take all possible polynomials in the lower
degrees and arbitrary possible polynomials in the highest degree
k .
They are homogeneous w.r.t. the action of CR–automorphisms.
Lie algebra of infinitesimal CR–automorphisms are finite
dimensional, consist of polynomial vector fields of weighted degree
≤ k
It is conjectured that gk = · · · = g1 = 0, when k > 2 . (Proved in
specific cases)
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Aim of the talk

Problem: Find (polynomial, homogeneous) models with
infinitesimal CR–automorphisms that are polynomial vector fields
of weighted degree at least 3.

I will talk about standard models of CR–submanifolds that are
homogeneous w.r.t to the action of CR–automorphisms and have a
large space of infinitesimal CR–automorphism that can be
computed algebraically. The main target of the talk is to present an
explicit construction of standard models that solve the above
problem.

1 Fundamental CR–algebras
2 Standard models of CR–submanifolds – abstract setting
3 Infinitesimal CR–automorphisms of standard models
4 Standard models of CR–submanifolds – embedding
5 Explicit example
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Fundamental CR–algebras

I will always assume that ε2 = −1. There is analogous para–CR
case with ε2 = 1.

Definition
We say that a Lie algebra m = g−k ⊕ · · · ⊕ g−1 satisfying that

1 m is generated by g−1, [fundamental Lie algebra]
2 [ga , gb ] = ga+b (gl = 0 if l < −k ), [graded Lie algebra]
3 there is complex structure I (i.e. I2 = ε2id) on g−1 such that for

all X ,Y ∈ g−1

[I(X), I(Y)] = −ε2[X ,Y ]

is a fundamental CR–algebra.

Lemma
If m is a complex Lie algebra, then m is a fundamental CR–algebra
if and only if m is a fundamental para CR–algebra.
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Standard models of CR–submanifolds – abstract setting

Definition

An almost CR–structure on smooth manifold M is a tuple (D, I) of
a distribution D on M and complex structure I on D (i.e.
I2 = ε2idD) such that the tensorial map

L : D⊗D → D2 := [D,D] mod D

provided by the bracket of vector fields satisfy for all x ∈ M and
X ,Y ∈ Dx

Lx(I(X), I(Y)) = −ε2Lx(X ,Y)

Definition

Standard model of a fundamental CR–algebra (m, I) is an (almost)
CR–structure on the Lie group M = exp(m) provided by the
left–invariant distribution D given by g−1 and the complex structure
on D given by I.
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Symbol algebras

Inductively, we can extend the tensorial map L using the bracket of
vector fields

L : D⊗Di−1 → Di := [D,Di−1] mod (D+ · · ·+Di−1).

For each x, the map Lx is a Lie bracket on
m(x) = g−k (x) ⊕ · · · ⊕ g−1(x), g−1(x) := D(x), g−i(x) := Di(x).
The Lie algebra m(x) is usually called a symbol algebra.
Easy to check, that (m(x), Ix) is a fundamental CR–algebra.

The standard model of (m, I) satisfies (m(x), Ix) � (m, I) at all x.

Theorem (Bloom, Graham)

Dimension of the Lie algebra of infinitesimal CR–automorphisms at
x is bounded by the dimension of the Lie algebra of infinitesimal
CR–automorphisms of standard model M = exp(m(x)) of the
symbol (m(x), Ix).

Jan Gregorovič



Symbol algebras

Inductively, we can extend the tensorial map L using the bracket of
vector fields

L : D⊗Di−1 → Di := [D,Di−1] mod (D+ · · ·+Di−1).

For each x, the map Lx is a Lie bracket on
m(x) = g−k (x) ⊕ · · · ⊕ g−1(x), g−1(x) := D(x), g−i(x) := Di(x).
The Lie algebra m(x) is usually called a symbol algebra.
Easy to check, that (m(x), Ix) is a fundamental CR–algebra.

The standard model of (m, I) satisfies (m(x), Ix) � (m, I) at all x.

Theorem (Bloom, Graham)

Dimension of the Lie algebra of infinitesimal CR–automorphisms at
x is bounded by the dimension of the Lie algebra of infinitesimal
CR–automorphisms of standard model M = exp(m(x)) of the
symbol (m(x), Ix).

Jan Gregorovič
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Infinitesimal CR–automorphisms of the standard model

Definition
Tanaka prolongation of the fundamental CR–algebra
(m = g−k ⊕ · · · ⊕ g−1, I) is the maximal graded Lie algebra
g = m ⊕ ⊕i≥0gi such that

1 g0 consists of grading preserving derivations of m commuting
with I,

2 for all X ∈ ⊕i≥0gi the condition [X , g−1] = 0 implies X = 0.

The ith prolongation gi can be algebraically computed as

gi := {f ∈ ⊕j<0g
∗
j ⊗gj+i : f([X ,Y ]) = [f(X),Y ]+[X , f(Y)], X ,Y ∈ m}.

Theorem (Tanaka)

Suppose for all X ∈ g−1 the condition [X , g−1] = 0 implies X = 0.
Then gl = 0 for all l large enough and g is finite dimensional Lie
algebra.
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Parabolic geometries

g ...complex simple Lie algebra
Each |k |–grading g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk of g is equivalent (up
to conjugation) to a subset Σ of the set of positive simple roots.
Root spaces of g belong to gi according to sum of coefficients by
roots in Σ.
m = g−k ⊕ · · · ⊕ g−1 ... fundamental graded nilpotent Lie algebra
p = g0 ⊕ · · · ⊕ gk ... parabolic subalgebra of g

Theorem
There is I on g−1 ⊂ m such that g is a Tanaka prolongation of the
fundamental CR–algebra (m, I) in the following cases

1 g = sl(n + 1,C), k = |Σ| > 1
2 g = so(2n + 1,C), Σ = {αi1 , . . . , αil−1 , αil−1+1}, k ≥ 2|Σ| − 1
3 g = sp(2n,C), Σ = {αi1 , . . . , αil−1 , αin }, k = 2|Σ| − 1
4 ...
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Standard models of CR–submanifolds – embedding

We want to embed M = exp(m) into CN in a way that D, becomes
the maximal complex subspace of TM ⊂ TCN and I the restriction
of the complex structure on TCN to D.

Obstruction for (local) embedability of real analytic almost
CR–structure (D, I) on M is the Nijenhuis tensor N : ∧2D → D

defined for all X ,Y ∈ Dx

Nx(X ,Y) := [X ,Y ] + ε2[I(X), I(Y)] − ε2I([X , I(Y)] + [I(X),Y ])

N ≡ 0 on standard model M = exp(m) of fundamental CR–algebra
(m, I) and the embedding exists globally.
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Explicit construction of emending φ of M = exp(m) into
CN

m ⊕ im... complexification of m
g±
−1 := {X ± iε2I(X) : X ∈ g−1} are the ±i–eigenspaces of I

Decompose m ⊕ im = (g−
−1) ⊕ (g+

−1 ⊕ g−2 ⊕ ig−2 . . . ) to complex
abelian subalgebra g−

−1 and complex ideal n = (g+
−1 ⊕ g−2 ⊕ ig−2 . . . )

For X ∈ m, we can uniquely decompose exp(X) to exp(n) exp(g−
−1)

Thus exp(X) = exp(φ(X)) exp( 1
2 (X−1 − iε2I(X−1))) for

φ : m→ n = CN and X = X−k + · · ·+ X−1 ∈ g−k ⊕ · · · ⊕ g−1

Theorem (Naruki)

The exp−1 : M → m is a global chart and in this chart the map
φ : m→ n defined as
φ(X) := exp−1(exp(X) exp(−1

2 (X−1 − iε2I(X−1)))) is embeding of
M into CN.
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Explicit construction of emending φ of M = exp(m) into
CN

m ⊕ im... complexification of m
g±
−1 := {X ± iε2I(X) : X ∈ g−1} are the ±i–eigenspaces of I

Decompose m ⊕ im = (g−
−1) ⊕ (g+

−1 ⊕ g−2 ⊕ ig−2 . . . ) to complex
abelian subalgebra g−

−1 and complex ideal n = (g+
−1 ⊕ g−2 ⊕ ig−2 . . . )

For X ∈ m, we can uniquely decompose exp(X) to exp(n) exp(g−
−1)

Thus exp(X) = exp(φ(X)) exp( 1
2 (X−1 − iε2I(X−1))) for

φ : m→ n = CN and X = X−k + · · ·+ X−1 ∈ g−k ⊕ · · · ⊕ g−1

Theorem (Naruki)

The exp−1 : M → m is a global chart and in this chart the map
φ : m→ n defined as
φ(X) := exp−1(exp(X) exp(−1

2 (X−1 − iε2I(X−1)))) is embeding of
M into CN.

Jan Gregorovič



Baker–Campbell-Hausdorff formula

exp−1(exp(X) exp(Y)) = X + Y +
∞∑

n=1

(−1)n

n + 1

∑
ri+si>0

f(r1, s1, . . . , rn, sn)

f(r1, . . . , sn) :=
ad(X)r1ad(Y)s1 . . . ad(X)rn ad(Y)sn (X)

(1 +
∑n

i=1)(ri + si)
∏n

i=1 ri!si!

exp−1(exp(X) exp(Y)) =
X + Y + 1

2 [X ,Y ] + 1
12 ([X , [X ,Y ]] + [Y , [Y ,X ]]) + . . .

The gradings of m, n provides weights for variables and the
embeding φ(X) decomposes to homogeneous weighted
polynomials given by Baker–Campbell-Hausdorff formula.
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embeding φ(X) decomposes to homogeneous weighted
polynomials given by Baker–Campbell-Hausdorff formula.
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The infinitesimal automorphisms in coordinates

For X ∈ g and Y ∈ m given by d
dt |t=0φ ◦ exp−1 ◦p(exp(tX) exp(Y))),

where p : exp(g)→ exp(m) is the projection along the stabilizer of
a point.
For X ∈ gj , j > −1,

d
dt
|t=0φ ◦ exp−1 ◦p(exp(tX) exp(Y))

=
d
dt
|t=0φ(

∞∑
n=1

(−1)n

n + 1

∑
si>0,

∑n
i=1 si>j

f(0, s1, . . . , 0, sn))

f(0, s1, . . . , 0, sn) :=
ad(Y)s1+···+sn (tX)

(1 +
∑n

i=1 si)
∏n

i=1 si!

Theorem
For X ∈ gj , the corresponding infinitesimal CR–automorphism is a
polynomial vector fields of weighted degree j.
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Expressing standard submanifolds by equations

z = φ(X)−1 = 1
2X−1

Re(φ(X)−2) = X−2, Im(φ(X)−2) = 1
4ε

2[X−1, I(X−1)]
=> Im(w−2) = ε2[z, I(z)] ... [z, I(z)] Hermitian forms

Re(φ(X)−3) = X−3 −
1
4 [X−2,X−1] + ε2 1

48 [I(X−1), [I(X−1),X−1]]
Im(φ(X)−3) = 1

4ε
2[X−2, I(X−1)] + ε2 1

24 [X−1, [X−1, I(X−1)]]
=> Im(w−3) = 1

2ε
2[Re(w−2), I(z)] + ε2 1

3 [z, [z, I(z)]]

. . .
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Explicit example – |3|–grading of sp(4,C)

m =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

x−1,1 −x−1,2 0 0 0 0 0 0
x−1,2 x−1,1 0 0 0 0 0 0
x−2,5 −x−2,6 x−1,3 −x−1,4 0 0 0 0
x−2,6 x−2,5 x−1,4 x−1,3 0 0 0 0
x−3,7 −x−3,8 x−2,5 −x−2,6 −x−1,1 x−1,2 0 0
x−3,8 x−3,7 x−2,6 x−2,5 −x−1,2 −x−1,1 0 0


,

where all xa,b ∈ ga are real.
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Explicit example – |3|–grading of sp(4,C)

n =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

y−1,1 iy−1,1 0 0 0 0 0 0
−iy−1,1 y−1,1 0 0 0 0 0 0
y−2,3 −y−2,4 −iy−1,2 −y−1,2 0 0 0 0
y−2,4 y−2,3 y−1,2 −iy−1,2 0 0 0 0
y−3,5 −y−3,6 y−2,3 −y−2,4 −y−1,1 −iy−1,1 0 0
y−3,6 y−3,5 y−2,4 y−2,3 iy−1,1 −y−1,1 0 0


,

where all ya,b ∈ ga,C are complex.
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Explicit example – |3|–grading of sp(4,C)

y−1,1 =
x−1,1 + ix−1,2

2

y−1,2 =
x−1,4 + ix−1,3

2

y−2,3 = x−2,5 +
i
2

(x−1,1x−1,4 + x−1,2x−1,3)

y−2,4 = x−2,6 +
i
2

(x−1,2x−1,4 − x−1,1x−1,3)

y−3,5 = x−3,7 +
1
12

(6(x−1,2 + ix−1,1)(ix−2,5 + x−2,6)

+ (3ix2
−1,2 − 2x−1,1x−1,2 − 3ix2

−1,1)x−1,4

+ (−x2
−1,2 − 6ix−1,1x−1,2 + x2

−1,1)x−1,3)

y−3,6 = x−3,8 +
1
12

(6(x−1,2 + ix−1,1)(−x−2,5 + ix−2,6)

+ (−3ix2
−1,2 + 2x−1,1x−1,2 + 3ix2

−1,1)x−1,3 + (−x2
−1,2 − 6ix−1,1x−1,2 + x2

−1,1)x−1,4)
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Explicit example – |3|–grading of sp(4,C)

Im(w−2,1) = z1z̄2 + z̄1z2

h1 =

(
0 1
1 0

)
Im(w−2,2) = −iz1z̄2 + iz̄1z2

h2 =

(
0 −i
i 0

)
w =

1
2

(Re(w−2,2) + iRe(w−2,1))

Im(w−3,1) = −z2
1 z̄2 − z̄1

2z2 + wz̄1 + w̄z1

Im(w−3,2) = iz2
1 z̄2 − iz̄1

2z2 + iwz̄1 − iw̄z1
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