Analytic and Gevrey Hypoellipticity for Perturbed Sums of Squares Operators

The Perturbation Problem

Let us consider N vector fields with real-valued real analytic (C^{ω}) coefficients

$$
X_{j}(x ; D), \quad j=1, \ldots, N, \quad x \in U \subset \mathbb{R}^{n} .
$$

Let P denote the corresponding 'sum of squares') operator

$$
\begin{equation*}
P(x, D)=\sum_{j=1}^{N} X_{j}(x, D)^{2} \tag{1}
\end{equation*}
$$

Assumption:
(H) The fields X_{j} satisfy the Hörmander condition, i.e. the Lie algebra generated by the X_{j} as well as by their commutators of length up to r has dimension n.

The Perturbation Problem

Let $s \geq 1$. We denote by $G^{s}(\Omega), \Omega \subset \mathbb{R}^{n}$, the space of Gevrey functions of order s. $u \in G^{s}(\Omega)$ if and only if $u \in C^{\infty}(\Omega)$ and for every compact subset K of Ω there is a constant $C_{K}>0$ such that

$$
\left\|D^{\alpha} u\right\|_{L^{2}(K)} \leq C_{K}^{|\alpha|+1}(\alpha!)^{s}, \quad \forall \alpha \in \mathbb{Z}_{+}^{N}
$$

We say that P is $G^{s}\left(C^{\infty}\right)$-hypoelliptic in $U, s \geq 1$, if for every $u \in \mathscr{D}^{\prime}(U)$ and every open set $\Omega \subset U$, the following holds:

$$
P(x, D) u \in G^{s}(\Omega)\left(C^{\infty}(\Omega)\right) \Longrightarrow u \in G^{s}(\Omega)\left(C^{\infty}(\Omega)\right) .
$$

When $s=1$ we shell say that $P(x, D)$ is analytic hypoelliptic.

The Perturbation Problem

Let $s \geq 1$. We denote by $G^{s}(\Omega), \Omega \subset \mathbb{R}^{n}$, the space of Gevrey functions of order s. $u \in G^{s}(\Omega)$ if and only if $u \in C^{\infty}(\Omega)$ and for every compact subset K of Ω there is a constant $C_{K}>0$ such that

$$
\left\|D^{\alpha} u\right\|_{L^{2}(K)} \leq C_{K}^{|\alpha|+1}(\alpha!)^{s}, \quad \forall \alpha \in \mathbb{Z}_{+}^{N}
$$

Definition

We say that P is $G^{s}\left(C^{\infty}\right)$-hypoelliptic in $U, s \geq 1$, if for every $u \in \mathscr{D}^{\prime}(U)$ and every open set $\Omega \subset U$, the following holds:

$$
P(x, D) u \in G^{s}(\Omega)\left(C^{\infty}(\Omega)\right) \Longrightarrow u \in G^{s}(\Omega)\left(C^{\infty}(\Omega)\right)
$$

When $s=1$ we shell say that $P(x, D)$ is analytic hypoelliptic.

The Perturbation Problem

Hörmander's therem (1967)

Theorem [H$] *$ [RS]

Let $P(x, D)$ be a 'sum of squares') operator as above, assume that the fields $X_{j}(x, D)$ satisfy Hörmander condition at the step r.
Then $P(x, D)$ is hypoelliptic.
Furthermore the following a priori estimate holds:

$$
\|u\|_{1 / r}^{2}+\sum_{j=1}^{N}\left\|X_{j} u\right\|_{0}^{2} \leq C\left(|\langle P u, u\rangle|+\|u\|_{0}^{2}\right)
$$

(Subelliptic estimate)

The Perturbation Problem

Derridj and Zuily therem (1973)

Theorem [07]

Assume that $P(x, D)$ is defined as above and that the Hörmander condition is satisfied at the step r. Assume that $P u \in C^{\omega}(\Omega)$ then $u \in G^{r}(\Omega)$, i.e. P is G^{r}-hypoelliptic.

The Perturbation Problem

''When are the hypoellipticity properties of the operator $P(x, D)$ preserved if we are willing to perturb it with an analytic pseudifferential operator ?',

Problem

'" It is true that the hypoellipticity properties of the operator $P(x, D)$ are preserved if we perturb it with an analytic pseudifferential operator of order strictly less than the subelliptic index of $P(x, D)$?' '

Some Positive Results

- C. Parenti and A. Parmeggiani, (IPPJ), have studied the perturbation problem in the local setting for the C^{∞}-hypoelliptic case. They study the stability of the C^{∞}-hypoellipticity of a linear partial differential operator, which loses finitely many derivatives, after perturbation by a lower order linear partial differential operator.
- In the global setting, i.e. on the Torus, for the C^{ω}-hypoelliptic case the perturbation problem was studied for some classes of operators, by C. and Cordaro, ([CC]*), and by Braun Rodrigues, C., Cordaro and Jahnke, ([BCC]*)

Statements of the results

Write $\left\{X_{i}, X_{j}\right\}$ for the Poisson bracket of the symbols of the vector fields X_{i}, X_{j} :

$$
\left\{X_{i}, X_{j}\right\}(x, \xi)=\sum_{\ell=1}^{n}\left(\frac{\partial X_{i}}{\partial \xi_{\ell}} \frac{\partial X_{j}}{\partial x_{\ell}}-\frac{\partial X_{j}}{\partial \xi_{\ell}} \frac{\partial X_{i}}{\partial x_{\ell}}\right)(x, \xi)
$$

Definition

Fix a point
$\left(x_{0}, \xi_{0}\right) \in \operatorname{Char}(P) \doteq\left\{(x, \xi) \in T^{*} \mathbb{R}^{n} \backslash\{0\}: X_{j}(x, \xi)=0 j=1, \ldots, N\right\}$.
Consider all the iterated Poisson brackets $\left\{X_{i}, X_{j}\right\}, \quad\left\{\left\{X_{i}, X_{j}\right\}, X_{k}\right\}$ etcetera.
We define $\nu\left(x_{0}, \xi_{0}\right)$ as the length of the shortest iterated Poisson bracket of the symbols of the vector fields which is non zero at $\left(x_{0}, \xi_{0}\right)$.

Statements of the results

Definition (Microlocal Gevrey Hypoellipticity)

We say that an operator P is G^{s}-hypoelliptic at $\left(x_{0}, \xi_{0}\right)$ if $\left(x_{0}, \xi_{0}\right) \notin W F_{s}(u)$ provided $\left(x_{0}, \xi_{0}\right) \notin W F_{s}(P u)$.

Albano, Bove and C. theorem (2009)

Theorem [ABC]

Let P be defined as above. Let $\left(x_{0}, \xi_{0}\right) \in \operatorname{Char}(P)$ and $\nu\left(x_{0}, \xi_{0}\right)$
its length. Then P is $G^{\nu\left(x_{0}, \xi_{0}\right)}$ - hypoelliptic at $\left(x_{0}, \xi_{0}\right)$,
i.e. if $\left(x_{0}, \xi_{0}\right) \notin W F_{\nu\left(x_{0}, \xi_{0}\right)}(P u)$ then $\left(x_{0}, \xi_{0}\right) \notin W F_{\nu\left(x_{0}, \xi_{0}\right)}(u)$.

Statement of the Result-1

Theorem (A. Bove, G.C.)
Let $P(x, D)$ be as in (1) and denote by $Q(x, D)$ an analytic pseudodifferential operator defined in a conical neighborhood of the point $\left(x_{0}, \xi_{0}\right) \in \operatorname{Char}(P)$. If

$$
\operatorname{ord}(Q)<2 / \nu\left(x_{0}, \xi_{0}\right)
$$

then $P+Q$ is $G^{\nu\left(x_{0}, \xi_{0}\right)}$-hypoelliptic at $\left(x_{0}, \xi_{0}\right)$.

Statement of the Result-1

Corollary (Local statement)

Let V denote a neighborhood of the point x_{0} and

$$
r=\sup _{\sup ^{2}} \nu(x, \xi)
$$

Let moreover P be as above with G^{r} coefficients defined in V and $Q \in O P S_{r}^{m}(V)$ be a G^{r}-pseudodifferential operator of order $m<2 / r$.
Then $P+Q$ is G^{r}-hypoelliptic at x_{0}.

Statement of the Result-2 (Analytic Case)

Assumptions:
(A1) Let $U \times \Gamma$ be a conic neighborhood of $\left(x_{0}, \xi_{0}\right)$. There exists a real analytic function, $h(x, \xi), h: U \times \Gamma \rightarrow[0,+\infty[$ such that $h\left(x_{0}, \xi_{0}\right)=0$ and $h(x, \xi)>0$ in $U \times \Gamma \backslash\left\{\left(x_{0}, \xi_{0}\right)\right\}$.
(A2) There exist real analytic functions $\alpha_{j k}(x, \xi)$ defined in $U \times \Gamma$, such that

$$
\begin{equation*}
\left\{h(x, \xi), X_{j}(x, \xi)\right\}=\sum_{\ell=1}^{N} \alpha_{j \ell}(x, \xi) X_{\ell}(x, \xi), \quad j=1, \ldots, N . \tag{2}
\end{equation*}
$$

Albano, Bove theorem (2013)

If P, defined as in (1), satisfies (A1) and (A2) then P is analytic hypoelliptic at $\left(x_{0}, \xi_{0}\right)$

Statement of the Result-2 (Analytic Case)

Assumptions:
Def \quad
(A1) Let $U \times \Gamma$ be a conic neighborhood of $\left(x_{0}, \xi_{0}\right)$. There exists a real analytic function, $h(x, \xi), h: U \times \Gamma \rightarrow[0,+\infty[$ such that $h\left(x_{0}, \xi_{0}\right)=0$ and $h(x, \xi)>0$ in $U \times \Gamma \backslash\left\{\left(x_{0}, \xi_{0}\right)\right\}$.
(A2) There exist real analytic functions $\alpha_{j k}(x, \xi)$ defined in $U \times \Gamma$, such that

$$
\begin{equation*}
\left\{h(x, \xi), X_{j}(x, \xi)\right\}=\sum_{\ell=1}^{N} \alpha_{j \ell}(x, \xi) X_{\ell}(x, \xi), \quad j=1, \ldots, N . \tag{2}
\end{equation*}
$$

Albano, Bove theorem (2013)

Theorem [AB]

If P, defined as in (1), satisfies (A1) and (A2) then P is analytic hypoelliptic at $\left(x_{0}, \xi_{0}\right)$.

Statement of the Result-2 (Analytic Case)

Theorem (A. Bove, G.C.)
Let P be as in (1) and assume that (A1) and (A2) above are satisfied. Let Q be a real analytic pseudodifferential operator of order strictly less than $2 / \nu\left(x_{0}, \xi_{0}\right)$, then $P+Q$ is analytic hypoelliptic at $\left(x_{0}, \xi_{0}\right)$.

Open Problem

Fourier-Bros-lagolnitzer (FBI) Transform

We define the FBI-Transform of a temperate distribution u as

$$
T_{\varphi} u(z, \lambda)=\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(z, y)} u(y) d y, \quad z \in \mathbb{C}^{n}
$$

where $\lambda \gg 1, \varphi(z, w)$ is an holomorphic function such that

The classical phase function is $\varphi_{0}(z, x)=\frac{i}{2}(z-x)^{2}$
The wight function, ϕ, associated to the phase function φ is defined by

$$
\phi(z)=\sup -\operatorname{Im} \varphi(z, x)
$$

In the classical case we have

Fourier-Bros-lagolnitzer (FBI) Transform

We define the FBI-Transform of a temperate distribution u as

$$
T_{\varphi} u(z, \lambda)=\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(z, y)} u(y) d y, \quad z \in \mathbb{C}^{n}
$$

where $\lambda \gg 1, \varphi(z, w)$ is an holomorphic function such that

- $\operatorname{det} \partial_{z} \partial_{w} \varphi \neq 0$

The classical phase function is $\varphi_{0}(z, x)=\frac{i}{2}(z-x)^{2}$
The wight function, ϕ, associated to the phase function φ is defined by

$$
\phi(z)=\sup _{x \in \mathbb{R}^{n}}-\operatorname{Im} \varphi(z, x),
$$

In the classical case we have

Fourier-Bros-lagolnitzer (FBI) Transform

We define the FBI-Transform of a temperate distribution u as

$$
T_{\varphi} u(z, \lambda)=\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(z, y)} u(y) d y, \quad z \in \mathbb{C}^{n}
$$

where $\lambda \gg 1, \varphi(z, w)$ is an holomorphic function such that

- $\operatorname{det} \partial_{z} \partial_{w} \varphi \neq 0$
- $\operatorname{lm} \partial_{w}^{2} \varphi>0$.

The classical phase function is $\varphi_{0}(z, x)=\frac{i}{2}(z-x)^{2}$
The wight function, ϕ, associated to the phase function φ is defined by

$$
\phi(z)=\sup _{x \in \mathbb{R}^{n}}-\operatorname{Im} \varphi(z, x),
$$

In the classical case we have

Fourier-Bros-lagolnitzer (FBI) Transform

We define the FBI-Transform of a temperate distribution u as

$$
T_{\varphi} u(z, \lambda)=\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(z, y)} u(y) d y, \quad z \in \mathbb{C}^{n}
$$

where $\lambda \gg 1, \varphi(z, w)$ is an holomorphic function such that

- $\operatorname{det} \partial_{z} \partial_{w} \varphi \neq 0$
- $\operatorname{lm} \partial_{w}^{2} \varphi>0$.

The classical phase function is $\varphi_{0}(z, x)=\frac{i}{2}(z-x)^{2}$
The wight function, ϕ, associated to the phase function φ is defined by

$$
\phi(z)=\sup _{x \in \mathbb{R}^{n}}-\operatorname{Im} \varphi(z, x),
$$

In the classical case we have

Fourier-Bros-lagolnitzer (FBI) Transform

We define the FBI-Transform of a temperate distribution u as

$$
T_{\varphi} u(z, \lambda)=\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(z, y)} u(y) d y, \quad z \in \mathbb{C}^{n}
$$

where $\lambda \gg 1, \varphi(z, w)$ is an holomorphic function such that

- $\operatorname{det} \partial_{z} \partial_{w} \varphi \neq 0$
- $\operatorname{lm} \partial_{w}^{2} \varphi>0$.

The classical phase function is $\varphi_{0}(z, x)=\frac{i}{2}(z-x)^{2}$.
Ihe wight function, ϕ, assoclated to the phase function φ ls defined by

$$
\phi(z)=\sup _{x \in \mathbb{R}^{n}}-\operatorname{lm} \varphi(z, x)
$$

In the classical case we have

Fourier-Bros-lagolnitzer (FBI) Transform

We define the FBI-Transform of a temperate distribution u as

$$
T_{\varphi} u(z, \lambda)=\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(z, y)} u(y) d y, \quad z \in \mathbb{C}^{n}
$$

where $\lambda \gg 1, \varphi(z, w)$ is an holomorphic function such that

- $\operatorname{det} \partial_{z} \partial_{w} \varphi \neq 0$
- $\operatorname{lm} \partial_{w}^{2} \varphi>0$.

The classical phase function is $\varphi_{0}(z, x)=\frac{i}{2}(z-x)^{2}$.
The wight function, ϕ, associated to the phase function φ is defined by

$$
\phi(z)=\sup _{x \in \mathbb{R}^{n}}-\operatorname{lm} \varphi(z, x), \quad z \in \mathbb{C}^{n}
$$

In the classical case we have

$$
\phi_{0}(z)=\sup _{x \in \mathbb{R}^{n}}-\operatorname{Im} \varphi_{0}(z, x)=\frac{(\operatorname{Im} z)^{2}}{2}
$$

FBI-Transform

T_{φ} is associated to the canonical transform

$$
\begin{aligned}
\mathscr{H}_{T_{\varphi}}: \mathbb{C}_{w, \theta}^{2 n} & \longrightarrow \mathbb{C}_{z, \zeta}^{2 n} \\
\left(w,-\partial_{w} \varphi(z, w)\right) & \longmapsto\left(z, \partial_{z} \varphi(z, w)\right) .
\end{aligned}
$$

We have

$$
\mathscr{H}_{T_{\varphi}}\left(\mathbb{R}_{x, \xi}^{2 n}\right) \doteq \Lambda_{\phi}=\left\{\left(z,-2 i \frac{\partial \phi}{\partial z}(z)\right)\right\}, \quad z=x-i \xi
$$

In the case of classical phase function we have

$$
\mathscr{H}_{T_{\varphi_{0}}}\left(\mathbb{R}_{x, \xi}^{2 n}\right)=\{(x-i \xi, \xi)\} \doteq \Lambda_{\phi_{0}} .
$$

$\Lambda_{\phi_{0}}$ is a $/$-Lagrangian, \mathbb{R}-Symplectic (Totally Real) sub-manifold of $\mathbb{C}^{2 n}$. We have that

FBI-Transform

T_{φ} is associated to the canonical transform

$$
\begin{aligned}
\mathscr{H}_{T_{\varphi}}: \quad \mathbb{C}_{w, \theta}^{2 n} & \longrightarrow \mathbb{C}_{z, \zeta}^{2 n} \\
\left(w,-\partial_{w} \varphi(z, w)\right) & \longmapsto\left(z, \partial_{z} \varphi(z, w)\right)
\end{aligned}
$$

We have

$$
\mathscr{H}_{T_{\varphi}}\left(\mathbb{R}_{x, \xi}^{2 n}\right) \doteq \Lambda_{\phi}=\left\{\left(z,-2 i \frac{\partial \phi}{\partial z}(z)\right)\right\}, \quad z=x-i \xi
$$

In the case of classical phase function we have

$$
\mathscr{H}_{T_{\varphi_{0}}}\left(\mathbb{R}_{x, \xi}^{2 n}\right)=\{(x-i \xi, \xi)\} \doteq \Lambda_{\phi_{0}}
$$

$\Lambda_{\phi_{0}}$ is a $/$-Lagrangian, \mathbb{R}-Symplectic (Totally Real) sub-manifold of $\mathbb{C}^{2 n}$. We have that

$$
u \in L^{2}\left(\mathbb{R}^{n}\right) \Rightarrow T_{\varphi} u \in L^{2}\left(\mathbb{C}^{n}, e^{-2 \lambda \phi(z)} L(d z)\right)
$$

Wave Front Set from FBI Point of View

Definition ET2 *

Let u a compactly supported distribution on \mathbb{R}^{n}. We say that the point $\left(x_{0}, \xi_{0}\right) \in T^{*} \mathbb{R}^{n} \backslash\{0\}$ is not in the $s-G e v r e y$ wave front set of $u,\left(x_{0}, \xi_{0}\right) \notin W F_{s}(u)$, where $s \geq 1$, if there exist a neighborhood Ω of $x_{0}-i \xi_{0}$ in \mathbb{C}^{n} and constants $\epsilon>0$ and $C(<+\infty)$ such that

$$
\left|T_{\varphi_{0}} u(z, \lambda)\right| e^{-\frac{\lambda}{2} \phi_{0}(z)} \leq C e^{-\epsilon \lambda^{1 / s}}, \quad \forall z \in \Omega
$$

We say that $\left(x_{0}, \xi_{0}\right) \notin W F(u)\left(C^{\infty}-\right.$ wave front set $)$ if there exist Ω neighborhood of $x_{0}-i \xi_{0}$ in \mathbb{C}^{n} such that $\forall N \in \mathbb{N}$ there is a constant $C_{N}(>0)$ for which

Wave Front Set from FBI Point of View

Definition

ET2
Let u a compactly supported distribution on \mathbb{R}^{n}. We say that the point $\left(x_{0}, \xi_{0}\right) \in T^{*} \mathbb{R}^{n} \backslash\{0\}$ is not in the s-Gevrey wave front set of $u,\left(x_{0}, \xi_{0}\right) \notin W F_{s}(u)$, where $s \geq 1$, if there exist a neighborhood Ω of $x_{0}-i \xi_{0}$ in \mathbb{C}^{n} and constants $\epsilon>0$ and $C(<+\infty)$ such that

$$
\left|T_{\varphi_{0}} u(z, \lambda)\right| e^{-\frac{\lambda}{2} \phi_{0}(z)} \leq C e^{-\epsilon \lambda^{1 / s}}, \quad \forall z \in \Omega
$$

We say that $\left(x_{0}, \xi_{0}\right) \notin W F(u)\left(C^{\infty}\right.$ - wave front set) if there exist Ω neighborhood of $x_{0}-i \xi_{0}$ in \mathbb{C}^{n} such that $\forall N \in \mathbb{N}$ there is a constant $C_{N}(>0)$ for which

$$
\left|T_{\varphi_{0}} u(z, \lambda)\right| e^{-\frac{\lambda}{2} \phi_{0}(z)} \leq C_{N} \lambda^{-N}, \quad \forall N \in \mathbb{N}
$$

Pseudodifferential Operators (Ω-realization)

Let $\left(z_{0}, \zeta_{0}\right) \in \mathbb{C}^{2 n}$ and $\phi(z)$ a real valued real analytic function defined near z_{0} such that

- ϕ is strictly plurisubharmonic;
- $\frac{2}{i} \frac{\partial \phi}{\partial z}\left(z_{0}\right)=\zeta_{0}$.

Denote $\psi(z, w)$ the holomorphic function defined near $\left(z_{0}, \bar{z}_{0}\right)$ by

$$
\psi(z, \bar{z})=\phi(z)
$$

The plurisubharmonicity of ϕ implies that

$$
\operatorname{det} \partial_{z} \partial_{w} \psi \neq 0
$$

and

$$
\operatorname{Re} \psi(z, \bar{w})-\frac{1}{2}[\varphi(z)+\varphi(w)] \sim-|z-w|^{2} .
$$

Pseudodifferential Operators (Ω-realization)

Denote by $q(z, \zeta, \lambda)$ an analytic classical symbol and by $Q(z, \tilde{D}, \lambda)$, $\tilde{D}=(\lambda i)^{-1} \partial$, the formal classical pseudodifferential operator associated to q. Using "Kuranishi's trick" one may represent $Q(z, \tilde{D}, \lambda)$ as

$$
\begin{equation*}
Q u(z, \lambda)=\left(\frac{\lambda}{2 i \pi}\right)^{n} \int e^{2 \lambda(\psi(z, \theta)-\psi(w, \theta))} \tilde{q}(z, \theta, \lambda) u(w) d w d \theta . \tag{3}
\end{equation*}
$$

\tilde{q} is the symbol of Q in the actual representation. To realize the above operator we need a prescription for the int. path. Ω-realization. This is accomplished by transforming the classical integration path (Kuranishi change of variables/Stokes theorem):

$$
\begin{equation*}
Q^{\Omega} u(z, \lambda)=\left(\frac{\lambda}{\pi}\right)^{n} \int_{\Omega} e^{2 \lambda \psi(z, \bar{w})} \tilde{q}(z, \bar{w}, \lambda) u(w) e^{-2 \lambda \Phi(w)} L(d w), \tag{4}
\end{equation*}
$$

where $L(d w)=(2 i)^{-n} d w \wedge d \bar{w}$, the integration path is $\theta=\bar{w}$ and Ω is a small nbhd of $\left(z_{0}, \bar{z}_{0}\right)$.

Pseudodifferential Operators (Ω-realization)

Remarks. The advantages of such a definition are:

- If the principal symbol is real, Q^{Ω} is formally self adjoint in $L^{2}\left(\Omega, e^{-2 \lambda \phi}\right)$;
- If \tilde{q} is a classical symbol of order zero, Q^{Ω} is uniformly bounded as $\lambda \rightarrow+\infty$, from $H_{\phi}(\Omega)$ into itself.

Definition

Let Ω be an open subset of \mathbb{C}^{n}. We denote by $H_{\phi}(\Omega)$ the space of all holomorphic functions $u(z, \lambda)$ such that for every $\epsilon>0$ and for every compact $K \subset \subset \Omega$ there exists a constant $C>0$ such that

$$
|u(z, \lambda)| \leq C e^{\lambda(\phi(z)+\epsilon)}
$$

for $z \in K$ and $\lambda>1$.

Pseudodifferential Operators (Ω-realization)

Remarks. The advantages of such a definition are:

- If the principal symbol is real, Q^{Ω} is formally self adjoint in $L^{2}\left(\Omega, e^{-2 \lambda \phi}\right)$;
- If \tilde{q} is a classical symbol of order zero, Q^{Ω} is uniformly bounded as $\lambda \rightarrow+\infty$, from $H_{\phi}(\Omega)$ into itself.

for $z \in K$ and $\lambda \geq 1$.

Pseudodifferential Operators (Ω-realization)

Remarks. The advantages of such a definition are:

- If the principal symbol is real, Q^{Ω} is formally self adjoint in $L^{2}\left(\Omega, e^{-2 \lambda \phi}\right)$;
- If \tilde{q} is a classical symbol of order zero, Q^{Ω} is uniformly bounded as $\lambda \rightarrow+\infty$, from $H_{\phi}(\Omega)$ into itself.

Definition

Let Ω be an open subset of \mathbb{C}^{n}. We denote by $H_{\phi}(\Omega)$ the space of all holomorphic functions $u(z, \lambda)$ such that for every $\epsilon>0$ and for every compact $K \subset \subset \Omega$ there exists a constant $C>0$ such that

$$
|u(z, \lambda)| \leq C e^{\lambda(\phi(z)+\epsilon)},
$$

for $z \in K$ and $\lambda \geq 1$.

Pseudodifferential Operators (Ω-realization)

Remark: The definition (3) of a pseudodifferential operator on Ω is not the classical one. Via the Kuranishi trick it can be reduced to the classical definition. The function ψ allows us to use a weight function not explicitly related to an FBI phase.

Grigis and Sjöstrand (1985):

Proposition [Gs]*

Let Q_{1} and Q_{2} be two pseudodifferential operator of order zero. Then they can be composed and

$$
Q_{1}^{\Omega} \circ Q_{2}^{\Omega}=\left(Q_{1} \circ Q_{2}\right)^{\Omega}+R^{\Omega} .
$$

R^{Ω} is an error term whose norm is $\mathscr{O}(1)$ as an operator from $H_{\phi+(1 / C) d^{2}}$ to $H_{\phi-(1 / C) d^{2}}, d(z)=\operatorname{dist}(z, C \Omega)$

A Priori Estimate

Ω-realization of P

Arguing as Grigis and Sjöstrand, 1985, the Ω-realization of P can be written as

$$
\begin{equation*}
P^{\Omega}=\sum_{j=1}^{N}\left(X_{j}^{\Omega}\right)^{2}+\mathscr{O}\left(\lambda^{2}\right) \tag{5}
\end{equation*}
$$

$\mathscr{O}\left(\lambda^{2}\right)$ is continuous from $H_{\tilde{\phi}}$ to $H_{\phi-(1 / C) d^{2}}$ with norm bounded by $C^{\prime} \lambda^{2}, \tilde{\phi}$ given by $\phi(z)+\frac{1}{C} d^{2}(z), d(z)=\operatorname{dist}(z, C \Omega)$.

A Priori Estimate

Using the theory of Fourier Integral Operators (FIO) via FBI, developed by A. Grigis, J. Sjöstrand, ([GS|*), allows us, following the ideas of P. Bolley, J. Camus, J. Nourrigat, (${ }^{(B C N \mid}$), to obtain

Theorem (Sub-elliptic Micro-local Estimate) [ABC]

Let P^{Ω} be the Ω-realization of $P(x, D)$, (1). Let $\Omega_{1} \subset \subset$. Then

$$
\begin{equation*}
\lambda^{\frac{2}{r}}\|u\|_{\phi}^{2}+\sum_{j=1}^{N}\left\|X_{j}^{\Omega} u\right\|_{\phi}^{2} \leq C\left(\left\langle P^{\Omega} u, u\right\rangle_{\phi}+\lambda^{\alpha}\|u\|_{\phi, \Omega \backslash \Omega_{1}}^{2}\right) \tag{6}
\end{equation*}
$$

α is a positive integer, $u \in L^{2}\left(\Omega, e^{-2 \phi} L(d z)\right)$ and $r=\nu\left(x_{0}, \xi_{0}\right)$
Albano, Bove and C. 2009

A Priori estimate

Corollary
With the same notation of the above Theorem we have

$$
\begin{equation*}
\lambda^{\frac{2}{r}}\|u\|_{\phi}^{2} \leq C\left(\left\|P^{\Omega} u\right\|_{\phi}^{2}+\lambda^{\alpha}\|u\|_{\phi, \Omega \backslash \Omega_{1}}^{2}\right) . \tag{7}
\end{equation*}
$$

Here we denote by

$$
\|u\|_{\phi}^{2}=\int_{\Omega} e^{-2 \lambda \phi(z)}|u(z)|^{2} L(d z) .
$$

The "Deformation" Argument ($\Lambda_{\phi_{0}}$ deformation)

We use a ''deformation', argument (due to Sjöstrand) to obtain a canonical deformation of ϕ_{0}.

We consider a real analytic function $h(z, \zeta, \lambda)$ defined near the point $\left(x_{0}-i \xi_{0}, \xi_{0}\right)=\mathscr{H}_{T_{\varphi_{0}}}\left(x_{0}, \xi_{0}\right) \in \Lambda_{\phi_{0}}$. We solve, for small positive t, the Hamilton-Jacobi problem

$$
\left\{\begin{aligned}
\frac{\partial \phi}{\partial t}(t, z, \lambda) & =h\left(z, \frac{2}{i} \frac{\partial \phi}{\partial z}(t, z, \lambda), \lambda\right) \\
\phi(0, z, \lambda) & =\phi_{0}(z)
\end{aligned}\right.
$$

Set

$$
\phi_{t}(z, \lambda)=\phi(t, z, \lambda)
$$

We have

$$
\Lambda_{\phi_{t}}=\exp \left(i t H_{h}\right) \Lambda_{\phi_{0}} .
$$

The "Deformation" Argument

General Case. We choose the function h as

$$
h(z, \zeta, \lambda)=\lambda^{-\frac{r-1}{r}}\left|z-\left(x_{0}-i \xi_{0}\right)\right|^{2} \quad \text { on } \quad \Lambda_{\Phi_{0}}
$$

Here $r=\nu\left(x_{0}, \xi_{0}\right)$.
The function ϕ_{t} can be expanded as a power series in the variable t :

$$
\begin{aligned}
\phi_{t}(z, \lambda) & =\phi_{0}(z)+\left.\frac{t}{2} h(\cdot, \cdot, \lambda)\right|_{\wedge_{\phi_{0}}}+\mathscr{O}\left(\lambda^{-1}\right) \\
& =\phi_{0}(z)+\frac{t}{2} \lambda^{\frac{r-1}{r}}\left|z-\left(x_{0}-i \xi_{0}\right)\right|^{2}+\mathscr{O}\left(\lambda^{-1}\right)
\end{aligned}
$$

A Priori Estimate

Albano, Bove, C. theorem

Theorem [ABC]

There exist a neighborhood Ω_{0} of $x_{0}-i \xi_{0}$, a positive number
$\delta>0$, and a positive integer α such that, for every
$\Omega_{1} \subset \subset \Omega_{2} \subset \subset \Omega \subset \Omega_{0}$, there exists a constant $C>0$ such that, for $0<t<\delta$, we have

$$
\begin{equation*}
\lambda^{\frac{2}{r}}\|u\|_{\phi_{t}, \Omega_{1}} \leq C\left(\left\|P^{t \Omega} u\right\|_{\phi_{t}, \Omega_{2}}+\lambda^{\alpha}\|u\|_{\phi_{t}, \Omega \backslash \Omega_{1}}\right), \quad r=\nu\left(x_{0}, \xi_{0}\right) . \tag{8}
\end{equation*}
$$

$P^{t^{\Omega}}$ is the Ω-realization of P^{t}, the symbol of P restricted to $\Lambda_{\phi_{t}}$.

$$
\begin{aligned}
& \text { Let } P u \text { be analytic at }\left(x_{0}, \xi_{0}\right) \text {, then the point }\left(x_{0}, \xi_{0}\right) \text { does not } \\
& \text { belong to } W F_{\nu\left(x_{0}, \xi_{0}\right)}(u) \text {. }
\end{aligned}
$$

A Priori Estimate

Albano, Bove, C. theorem

Theorem [ABC]

There exist a neighborhood Ω_{0} of $x_{0}-i \xi_{0}$, a positive number $\delta>0$, and a positive integer α such that, for every $\Omega_{1} \subset \subset \Omega_{2} \subset \subset \subset \Omega_{0}$, there exists a constant $C>0$ such that, for $0<t<\delta$, we have

$$
\begin{equation*}
\lambda^{\frac{2}{r}}\|u\|_{\phi_{t}, \Omega_{1}} \leq C\left(\left\|P^{\Omega^{\Omega}} u\right\|_{\phi_{t}, \Omega_{2}}+\lambda^{\alpha}\|u\|_{\phi_{t}, \Omega \backslash \Omega_{1}}\right), \quad r=\nu\left(x_{0}, \xi_{0}\right) . \tag{8}
\end{equation*}
$$

$P^{t^{\Omega}}$ is the Ω-realization of P^{t}, the symbol of P restricted to $\Lambda_{\phi_{t}}$.

Corollary

Let $P u$ be analytic at $\left(x_{0}, \xi_{0}\right)$, then the point $\left(x_{0}, \xi_{0}\right)$ does not belong to $W F_{\nu\left(x_{0}, \xi_{0}\right)}(u)$.

The "Deformation" Argument

Operators which satisfy the assumptions (A1) and (A2).
We choose the function h of the assumptions.
h does not depend on λ.
We have

$$
\phi_{t}(z)=\phi_{0}(z)+\frac{1}{2} \int_{0}^{t} h\left(z, \frac{2}{i} \partial_{z} \phi_{s}(z)\right) d s
$$

Also in this case we obtain

$$
\lambda^{\frac{2}{r}}\|u\|_{\phi_{t}, \Omega_{1}} \leq C\left(\left\|P^{t^{\Omega}} u\right\|_{\phi_{t}, \Omega_{2}}+\lambda^{\alpha}\|u\|_{\phi_{t}, \Omega \backslash \Omega_{1}}\right), \quad r=\nu\left(x_{0}, \xi_{0}\right)
$$

We point out that

$$
\begin{aligned}
& h_{\mid \wedge_{\phi_{0}} \cap \Omega \backslash \Omega_{1}} \geq a>0 \quad\left(\phi_{t}(z) \geq \phi_{0}(z)+c^{\prime} t, \quad x \in \Omega \backslash \Omega_{1}\right) \\
& \phi_{t} \leq \phi_{0}+t /(2 C) \text { in } \Omega_{2}, \Omega_{2} \subset \subset \Omega_{1} \text { neighborhood of } x_{0}-i \xi_{0}
\end{aligned}
$$

Theorem 1 Show Th1

Denote by θ the order of the pseudodifferential operator Q. Let $Q^{t^{\Omega}}$ is the Ω-realization of Q^{t}, the symbol of Q restricted to $\Lambda_{\phi_{t}}$. From (8) we have

$$
\lambda^{\frac{2}{r}}\|u\|_{\phi_{t}, \Omega_{1}} \leq C\left(\left\|(P+Q)^{t \Omega} u\right\|_{\phi_{t}, \Omega_{2}}+\left\|Q^{t \Omega} u\right\|_{\phi_{t}, \Omega_{2}}+\lambda^{\alpha}\|u\|_{\phi_{t}, \Omega \backslash \Omega_{1}}\right)
$$

We have

$$
\left\|Q^{t^{\Omega}} u\right\|_{\phi_{t}, \Omega_{2}} \leq C_{1} \lambda^{\theta}\|u\|_{\phi_{t}, \Omega_{2}} \leq C_{1} \lambda^{\theta}\left(\|u\|_{\phi_{t}, \Omega_{1}}+\|u\|_{\phi_{t}, \Omega \backslash \Omega_{1}}\right)
$$

The first term of above inequality is absorbed on the left hand $\operatorname{side}(\theta<2 / r, \lambda$ large enough. $)$ Hence we have

$$
\lambda^{\frac{2}{r}}\|u\|_{\phi_{t}, \Omega_{1}} \leq C\left(\|(P+Q) u\|_{\phi_{t}, \Omega_{2}}+\lambda^{\alpha}\|u\|_{\phi_{t}, \Omega \backslash \Omega_{1}}\right)
$$

Theorem 1

We assume that $\left(x_{0}, \xi_{0}\right) \notin W F_{a}((P+Q) u)$ then

$$
\left\|(P+Q)^{t \Omega} u\right\|_{\phi_{t}, \Omega_{2}} \leq C e^{-\lambda / C}
$$

$\Lambda_{\Phi_{t}}$ is a small perturbation of $\Lambda_{\Phi_{0}}$.
Since

$$
\phi_{t}(z, \lambda)=\phi_{0}(z)+\frac{t}{2} \underbrace{}_{=h(\cdot, \cdot, \lambda)_{\left.\right|_{\phi_{\phi_{0}}}} \lambda^{\frac{r-1}{r}}\left|z-\left(x_{0}-i \xi_{0}\right)\right|^{2}}+\mathscr{O}\left(\lambda^{-1}\right)
$$

we have that $\|u\|_{\phi_{t}, \Omega \backslash \Omega_{1}} \leq C e^{-\lambda^{1 / r} / C}$.
Thus we obtain that

$$
\|u\|_{\phi_{t}, \Omega_{1}} \leq C_{1} e^{-\lambda^{1 / r} / C_{1}}
$$

Theorem 2

Let $\Omega_{3} \subset \subset \Omega_{2}$. For $z \in \Omega_{3}$, for a fixed small positive value of t, we have

$$
\phi_{t}(z)-\phi_{0}(z) \leq \frac{\lambda^{-1+1 / r}}{C_{2}(t)}
$$

Therefore

$$
\|u\|_{\phi_{0}, \Omega_{3}} \leq c e^{-\lambda^{1 / r} / c} \quad\left(\left(x_{0}, \xi_{0}\right) \notin W F_{r}(u), r=\nu\left(x_{0}, \xi_{0}\right)\right) . \text { Show DWF }
$$

An analogous strategy allows us to obtain also the second Theorem. Show Th2

- Let k be an integer, $k \geq 2$, and consider

$$
P(x, D)=D_{1}^{2}+x_{1}^{2(k-1)} D_{2}^{2}, \quad x \in \mathbb{R}^{2}
$$

Let $Q(x, D)$ the analytic pseudodifferential operator given by

$$
\lambda\left|D_{2}\right|^{2 / k}
$$

λ is a constant that we shall choose later.
Q is microlocally elliptic near points in

$$
\operatorname{Char}(P)=\left\{\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \in T^{*} \mathbb{R}^{2} \backslash\{0\}: x_{1}=0=\xi_{1}, \xi_{2} \neq 0\right\}
$$

Remark: $P(x, D)$ is analytic hypoelliptic. $\frac{2}{k}$ is the subelliptic index of $P(x, D)$.

Performing a Fourier transform w.r.t. x_{2}, and the dilation

$$
x_{1} \rightarrow\left|\xi_{2}\right|^{-1 / k} x_{1}
$$

$P+Q$ becomes

$$
D_{1}^{2}+x_{1}^{2(k-1)}+\lambda
$$

(modulo a microlocally elliptic factor)
Let λ be the opposite of an eigenvalue.
Let $\phi_{\lambda}\left(x_{1}\right)$ be such that

$$
-\phi_{\lambda}^{\prime \prime}+x_{1}^{2(k-1)} \phi_{\lambda}+\lambda \phi_{\lambda}=0
$$

Example I

Consider

$$
u(x)=\int_{0}^{+\infty} e^{i x_{2} \rho} \phi_{\lambda}\left(x_{1} \rho^{1 / k}\right)\left(1+\rho^{4}\right)^{-1} d \rho .
$$

$$
(P+Q) u=0 \text { and } u \notin C^{\infty} .
$$

We have:

$$
\begin{gathered}
\text { If } \phi_{\lambda}(0) \neq 0 \Longrightarrow u\left(0, x_{2}\right)=\phi_{\lambda}(0) \int_{0}^{+\infty} e^{i x_{2} \rho}\left(1+\rho^{4}\right)^{-1} d \rho \\
\text { If } \phi_{\lambda}(0)=0\left(\phi_{\lambda}^{\prime}(0) \neq 0!\right) \Rightarrow \frac{\partial u}{\partial x_{1}}\left(0, x_{2}\right)=\phi_{\lambda}^{\prime}(0) \int_{0}^{+\infty} e^{i x_{2} \rho}\left(1+\rho^{4}\right)^{-1} \rho^{1 / k} d \rho .
\end{gathered}
$$

In both cases we do not have a C^{∞} function!

Example I :

Taking

$$
Q=\lambda\left|D_{2}\right|^{2 / k}+\mu\left(x_{2}\right)\left|D_{2}\right|^{\epsilon}, \text { with } \epsilon<2 / k,
$$

then

Example I :

Taking

$$
Q=\lambda\left|D_{2}\right|^{2 / k}+\mu\left(x_{2}\right)\left|D_{2}\right|^{\epsilon}, \text { with } \epsilon<2 / k,
$$

then

$$
P+Q \quad \text { can be }\left\{\begin{array}{l}
C^{\omega}-\text { hypoelliptic, } \\
G^{s}-\text { hypoelliptic for some } s, \\
\text { not even } C^{\infty}-\text { hypoelliptic. }
\end{array}\right.
$$

Taking

$$
Q=\lambda\left|D_{2}\right|^{2 / k}+\mu\left(x_{2}\right)\left|D_{2}\right|^{\epsilon}, \text { with } \epsilon<2 / k,
$$

then

$$
P+Q \quad \text { can be } \quad\left\{\begin{array}{l}
C^{\omega}-\text { hypoelliptic, } \\
G^{s} \text {-hypoelliptic for some } s, \\
\text { not even } C^{\infty} \text {-hypoelliptic. }
\end{array}\right.
$$

Taking

$$
Q=\lambda\left|D_{2}\right|^{2 / k}+\mu\left(x_{2}\right)\left|D_{2}\right|^{\epsilon}, \text { with } \epsilon<2 / k,
$$

then

$$
P+Q \quad \text { can be } \quad\left\{\begin{array}{l}
C^{\omega}-\text { hypoelliptic, } \\
G^{s}-\text { hypoelliptic for some } s, \\
\text { not even } C^{\infty} \text {-hypoelliptic. }
\end{array}\right.
$$

Consider Kohn's Laplacian,

$$
\square_{b}=-Z \bar{Z} \quad \text { where } Z=\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}, \quad(z, t) \in \mathbb{C} \times \mathbb{R}
$$

which is neither C^{∞} nor C^{ω}-hypoelliptic.

Stein 1982,
Perturbing it with a non zero complex number,
we obtain an operator being both C^{∞} and C^{ω}-hypoelliptic.

Consider Kohn's Laplacian,

$$
\square_{b}=-Z \bar{Z} \text { where } Z=\frac{\partial}{\partial z}+i \bar{z} \frac{\partial}{\partial t}, \quad(z, t) \in \mathbb{C} \times \mathbb{R}
$$

which is neither C^{∞} nor C^{ω}-hypoelliptic.
Stein 1982, ($\mathrm{S} \mid$) :
Perturbing it with a non zero complex number,

$$
\square_{b}+\alpha, \quad \alpha \in \mathbb{C} \backslash\{0\}
$$

we obtain an operator being both C^{∞} and C^{ω}-hypoelliptic.

Reference

${ }^{-}[\mathrm{AB}]$ P. Albano and A. Bove, Wave front set of solutions to sums of squares of vector fields, Mem. Amer. Math. Soc., 221 (2013), no. 1039.
${ }^{-}[\mathrm{ABC}]$ P. Albano, A. Bove and G. Chinni, Minimal Microlocal Gevrey Regularity for "Sums of Squares", International Mathematics Research Notices, 2009 no. 12, 2275-2302.

- [BCN] P. Bolley, J. Camus and J. Nourrigat, La condition de Hörmander-Kohn pour les opérateurs pseudo-différentiels, Commun. Partial Diff. Eq. 7 (1982), 197-221.
- [BCCJ] N. Braun Rodrigues, G. Chinni, P. D. Cordaro and M. R. Jahnke, Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5159-5170.
-[CC] G. Chinni and P. D. Cordaro, On global analytic and Gevrey hypoellipticity on the torus and the Métivier inequality, Comm. Partial Differential Equations 42 (2017), no. 1, 121-141.
-[DZ] M. Derridj and C. Zuily, Régularité analytique et Gevrey d'opérateurs elliptiques dégénérés, J. Math. Pures Appl. 52 (1973), 309-336.
-[GS] A. Grigis and J. Sjöstrand, Front d'onde analytique et somme de carrés de champs de vecteurs, Duke Math. J. 52 (1985), 35-51.
-[H] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.

Reference

- [PP] C. Parenti and A. Parmeggiani Journal: Proc. Amer. Math. Soc. 146 (2018), 1097-1104.
-[RS] L. Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320.
-[S] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209-216.

