Problem 0000000 A Couple of results

Background

Sketch of the proofs

endix 000 Reference

Analytic and Gevrey Hypoellipticity for Perturbed Sums of Squares Operators

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
000000	000000	0000000000000	0000	00000	
Perturbation Problem					

Let us consider N vector fields with real-valued real analytic (C^{ω}) coefficients

$$X_j(x; D), \qquad j = 1, \ldots, N, \qquad x \in U \subset \mathbb{R}^n.$$

Let P denote the corresponding "sum of squares" operator

$$P(x,D) = \sum_{j=1}^{N} X_j(x,D)^2.$$
 (1)

Assumption:

(H) The fields X_j satisfy the Hörmander condition, i.e. the Lie algebra generated by the X_j as well as by their commutators of length up to r has dimension n.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
000000	000000	0000000000000	0000	00000	
Perturbation Problem					

Let $s \geq 1$. We denote by $G^{s}(\Omega)$, $\Omega \subset \mathbb{R}^{n}$, the space of Gevrey functions of order s. $u \in G^{s}(\Omega)$ if and only if $u \in C^{\infty}(\Omega)$ and for every compact subset K of Ω there is a constant $C_{K} > 0$ such that

$$\|D^{\alpha}u\|_{L^{2}(K)} \leq C_{K}^{|\alpha|+1}(\alpha!)^{s}, \qquad \forall \, \alpha \in \mathbb{Z}_{+}^{N}.$$

Definition

We say that P is $G^s(C^{\infty})$ -hypoelliptic in U, $s \ge 1$, if for every $u \in \mathscr{D}'(U)$ and every open set $\Omega \subset U$, the following holds:

 $P(x,D)u \in G^{s}(\Omega)(C^{\infty}(\Omega)) \Longrightarrow u \in G^{s}(\Omega)(C^{\infty}(\Omega)).$

When s = 1 we shell say that P(x, D) is analytic hypoelliptic.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
000000	000000	000000000000	0000	00000	
Perturbation Problem					

Let $s \geq 1$. We denote by $G^{s}(\Omega)$, $\Omega \subset \mathbb{R}^{n}$, the space of Gevrey functions of order s. $u \in G^{s}(\Omega)$ if and only if $u \in C^{\infty}(\Omega)$ and for every compact subset K of Ω there is a constant $C_{K} > 0$ such that

$$\|D^{\alpha}u\|_{L^{2}(K)} \leq C_{K}^{|\alpha|+1}(\alpha!)^{s}, \qquad \forall \, \alpha \in \mathbb{Z}_{+}^{N}.$$

Definition

We say that P is $G^{s}(C^{\infty})$ -hypoelliptic in U, $s \ge 1$, if for every $u \in \mathscr{D}'(U)$ and every open set $\Omega \subset U$, the following holds:

$$P(x, D)u \in G^{s}(\Omega)(C^{\infty}(\Omega)) \Longrightarrow u \in G^{s}(\Omega)(C^{\infty}(\Omega)).$$

When s = 1 we shell say that P(x, D) is analytic hypoelliptic.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
000000	000000	0000000000000	0000	00000	
Perturbation Problem					

Hörmander's therem (1967)

Theorem (H) (RS) Let P(x, D) be a ''sum of squares'' operator as above, assume that the fields $X_j(x,D)$ satisfy Hörmander condition at the step r. Then P(x, D) is hypoelliptic. Furthermore the following a priori estimate holds:

$$\|u\|_{1/r}^{2} + \sum_{j=1}^{N} \|X_{j}u\|_{0}^{2} \leq C \left(|\langle Pu, u \rangle| + \|u\|_{0}^{2}\right)$$

(Subelliptic estimate)

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	000000	0000000000000	0000	00000	
Perturbation Problem					

Derridj and Zuily therem (1973)

Theorem [D2] Assume that P(x, D) is defined as above and that the Hörmander condition is satisfied at the step r. Assume that $Pu \in C^{\omega}(\Omega)$ then $u \in G^{r}(\Omega)$, i.e. P is G^{r} -hypoelliptic.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	000000	00000000000000000	0000	00000	
Perturbation Problem	1				

analytic pseudifferential operator ?''

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000000	0000	00000	
Perturbation Problem					

Problem

'' It is true that the hypoellipticity properties of the operator P(x, D) are preserved if we perturb it with an analytic pseudifferential operator of order strictly less than the subelliptic index of P(x, D)?''

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
000000	0000000	0000000000000	0000	00000	
Perturbation Proble	m				
Some Posi	tive Results				

- C. Parenti and A. Parmeggiani, ([PP]•), have studied the perturbation problem in the local setting for the C^{∞} -hypoelliptic case. They study the stability of the C^{∞} -hypoellipticity of a linear partial differential operator, which loses finitely many derivatives, after perturbation by a lower order linear partial differential operator.
- In the global setting, i.e. on the Torus, for the C^{ω} -hypoelliptic case the perturbation problem was studied for some classes of operators, by C. and Cordaro, ([CC]•), and by Braun Rodrigues, C., Cordaro and Jahnke, ([BCCJ]•).

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	•000000	0000000000000	0000	00000	
Statements of the Resi	ults				

Statements of the results

Write $\{X_i, X_j\}$ for the Poisson bracket of the symbols of the vector fields X_i, X_i :

$$\{X_i, X_j\}(x, \xi) = \sum_{\ell=1}^n \left(\frac{\partial X_i}{\partial \xi_\ell} \frac{\partial X_j}{\partial x_\ell} - \frac{\partial X_j}{\partial \xi_\ell} \frac{\partial X_i}{\partial x_\ell}\right)(x, \xi).$$

Definition

Fix a point

$$(x_0,\xi_0) \in \operatorname{Char}(P) \doteq \{(x,\xi) \in T^* \mathbb{R}^n \setminus \{0\} : X_j(x,\xi) = 0 \ j = 1, \ldots, N\}.$$

Consider all the *iterated Poisson brackets* $\{X_i, X_j\}, \{\{X_i, X_j\}, X_k\}$ etcetera.

We define $\nu(x_0, \xi_0)$ as the *length* of the *shortest* iterated Poisson bracket of the symbols of the vector fields which is *non* zero at (x_0, ξ_0) .

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	000000	0000000000000	0000	00000	
Statements of the Res	ults				

Statements of the results

Definition (Microlocal Gevrey Hypoellipticity)

We say that an operator P is G^s -hypoelliptic at (x_0, ξ_0) if $(x_0, \xi_0) \notin WF_s(u)$ provided $(x_0, \xi_0) \notin WF_s(Pu)$.

Albano, Bove and C. theorem (2009)

Theorem [ABC]

Let P be defined as above. Let $(x_0, \xi_0) \in Char(P)$ and $\nu(x_0, \xi_0)$ its length. Then P is $G^{\nu(x_0, \xi_0)}$ - hypoelliptic at (x_0, ξ_0) , i.e. if $(x_0, \xi_0) \notin WF_{\nu(x_0, \xi_0)}(Pu)$ then $(x_0, \xi_0) \notin WF_{\nu(x_0, \xi_0)}(u)$.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	000000	0000000000000	0000	00000	
Statements of the Res	ults				

Statement of the Result-1

Theorem (A. Bove, G.C.)

Let P(x, D) be as in (1) and denote by Q(x, D) an *analytic* pseudodifferential operator defined in a conical neighborhood of the point $(x_0, \xi_0) \in Char(P)$. If

 $\operatorname{ord}(Q) < 2/\nu(x_0,\xi_0)$

then P + Q is $G^{\nu(x_0,\xi_0)}$ -hypoelliptic at (x_0,ξ_0) .

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000	0000	00000	
Statements of the Res	ults				

Statement of the Result-1

Corollary (Local statement)

Let V denote a neighborhood of the point x_0 and

$$r = \sup_{x \in V, |\xi|=1} \nu(x,\xi).$$

Let moreover P be as above with G^r coefficients defined in V and $Q \in OPS_r^m(V)$ be a G^r -pseudodifferential operator of order m < 2/r. Then P + Q is G^r -hypoelliptic at x_0 .

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference	
0000000	0000000	00000000000000	0000	00000		
Statements of the Results						

Statement of the Result-2 (Analytic Case)

Assumptions: Def *

- (A1) Let $U \times \Gamma$ be a conic neighborhood of (x_0, ξ_0) . There exists a real analytic function, $h(x, \xi)$, $h: U \times \Gamma \to [0, +\infty[$ such that $h(x_0, \xi_0) = 0$ and $h(x, \xi) > 0$ in $U \times \Gamma \setminus \{(x_0, \xi_0)\}$.
- (A2) There exist real analytic functions $\alpha_{jk}(x,\xi)$ defined in $U \times \Gamma$, such that

$$\{h(x,\xi), X_j(x,\xi)\} = \sum_{\ell=1}^{N} \alpha_{j\ell}(x,\xi) X_\ell(x,\xi), \quad j = 1, \dots, N.$$
 (2)

Albano, Bove theorem (2013)

If P, defined as in (1), satisfies (A1) and (A2) then P is analytic hypoelliptic at (x_0, ξ_0) .

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference	
0000000	0000000	00000000000000	0000	00000		
Statements of the Results						

Statement of the Result-2 (Analytic Case)

Assumptions: Def *

Theorem [AB]

- (A1) Let $U \times \Gamma$ be a conic neighborhood of (x_0, ξ_0) . There exists a real analytic function, $h(x, \xi)$, $h: U \times \Gamma \to [0, +\infty[$ such that $h(x_0, \xi_0) = 0$ and $h(x, \xi) > 0$ in $U \times \Gamma \setminus \{(x_0, \xi_0)\}$.
- (A2) There exist real analytic functions $\alpha_{jk}(x,\xi)$ defined in $U \times \Gamma$, such that

$$\{h(x,\xi), X_j(x,\xi)\} = \sum_{\ell=1}^{N} \alpha_{j\ell}(x,\xi) X_\ell(x,\xi), \quad j = 1, \dots, N.$$
 (2)

Albano, Bove theorem (2013)

If P, defined as in (1), satisfies (A1) and (A2) then P is analytic hypoelliptic at (x_0, ξ_0) .

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	00000000000000000	0000	00000	
Statements of the l	Populto				

Statement of the Result-2 (Analytic Case)

Theorem (A. Bove, G.C.)

Let *P* be as in (1) and assume that (A1) and (A2) above are satisfied. Let *Q* be a real analytic pseudodifferential operator of order *strictly less* than $2/\nu(x_0, \xi_0)$, then P + Q is *analytic hypoelliptic* at (x_0, ξ_0) .

Problem

A Couple of results

Background

Sketch of the proofs

ppendix 0000 Reference

Statements of the Results

Open Problem

Open Problem

Let us assume that P is analytic hypoelliptic and Q is a pseudodifferential operator of order less than the subelliptic index of P, is P + Q then also analytic hypoelliptic?

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	000000000000	0000	00000	
Background on Four	rier-Bros-lagolnitzer (FBI) Tra	ansform			

We define the FBI-Transform of a temperate distribution u as

$$T_{\varphi}u(z,\lambda) = \int_{\mathbb{R}^n} e^{i\lambda\varphi(z,y)} u(y) \, dy, \quad z \in \mathbb{C}^n,$$

where $\lambda \gg 1$, arphi(z,w) is an *holomorphic* function such that

• Im $\partial_w^2 \varphi > 0$.

The classical phase function is $\varphi_0(z, x) = \frac{i}{2}(z - x)^2$. The wight function, ϕ , associated to the phase function φ

$$\phi(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi(z, x), \qquad z \in \mathbb{C}^n.$$

$$\phi_0(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi_0(z, x) = \frac{(\operatorname{Im} z)^2}{2}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000	0000	00000	
Background on Fourier	-Bros-lagolnitzer (FBI) Transfo	rm			

We define the FBI-Transform of a temperate distribution u as

$$T_{\varphi}u(z,\lambda) = \int_{\mathbb{R}^n} e^{i\lambda\varphi(z,y)} u(y) \, dy, \quad z \in \mathbb{C}^n,$$

where $\lambda \gg 1$, $\varphi(z, w)$ is an *holomorphic* function such that • det $\partial_z \partial_w \varphi \neq 0$

• Im $\partial_w^2 \varphi > 0$.

The classical phase function is $arphi_0(z,x)=rac{i}{2}(z-x)^2.$

The wight function, ϕ , associated to the phase function φ is defined by

$$\phi(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi(z, x), \qquad z \in \mathbb{C}^n.$$

$$\phi_0(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi_0(z, x) = \frac{(\operatorname{Im} z)^2}{2}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000	0000	00000	
Background on Fourier	-Bros-lagolnitzer (FBI) Transfo	rm			

We define the FBI-Transform of a temperate distribution u as

$$T_{\varphi}u(z,\lambda) = \int_{\mathbb{R}^n} e^{i\lambda\varphi(z,y)} u(y) \, dy, \quad z \in \mathbb{C}^n,$$

where $\lambda \gg 1$, $\varphi(z, w)$ is an *holomorphic* function such that

- det $\partial_z \partial_w \varphi \neq 0$
- Im $\partial_w^2 \varphi > 0$.

The classical phase function is $\varphi_0(z,x) = rac{i}{2}(z-x)^2.$

The wight function, $\phi,$ associated to the phase function φ is defined by

$$\phi(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi(z, x), \qquad z \in \mathbb{C}^n.$$

$$\phi_0(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi_0(z, x) = \frac{(\operatorname{Im} z)^2}{2}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000	0000	00000	
Background on Fourier	-Bros-lagolnitzer (FBI) Transfo	rm			

We define the FBI-Transform of a temperate distribution u as

$$T_{\varphi}u(z,\lambda) = \int_{\mathbb{R}^n} e^{i\lambda\varphi(z,y)} u(y) \, dy, \quad z \in \mathbb{C}^n,$$

where $\lambda \gg 1$, $\varphi(z, w)$ is an *holomorphic* function such that

- det $\partial_z \partial_w \varphi \neq 0$
- Im $\partial_w^2 \varphi > 0$.

The classical phase function is $\varphi_0(z,x) = rac{i}{2}(z-x)^2.$

The wight function, $\phi,$ associated to the phase function φ is defined by

$$\phi(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi(z, x), \qquad z \in \mathbb{C}^n.$$

$$\phi_0(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi_0(z, x) = \frac{(\operatorname{Im} z)^2}{2}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000	0000	00000	
Background on Fourier	-Bros-lagolnitzer (FBI) Transfo	rm			

We define the FBI-Transform of a temperate distribution u as

$$T_{\varphi}u(z,\lambda)=\int_{\mathbb{R}^n}e^{i\lambda\varphi(z,y)}u(y)\,dy,\quad z\in\mathbb{C}^n,$$

where $\lambda \gg 1$, arphi(z,w) is an *holomorphic* function such that

- det $\partial_z \partial_w \varphi \neq 0$
- Im $\partial_w^2 \varphi > 0$.

The classical phase function is $\varphi_0(z,x) = \frac{i}{2}(z-x)^2$.

The wight function, $\phi,$ associated to the phase function φ is defined by

$$\phi(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi(z, x), \qquad z \in \mathbb{C}^n.$$

$$\phi_0(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi_0(z, x) = \frac{(\operatorname{Im} z)^2}{2}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000	0000	00000	
Background on Fourie	r-Bros-lagolnitzer (FBI) Trans	form			

We define the FBI-Transform of a temperate distribution u as

$$T_{\varphi}u(z,\lambda)=\int_{\mathbb{R}^n}e^{i\lambda\varphi(z,y)}u(y)\,dy,\quad z\in\mathbb{C}^n,$$

where $\lambda \gg 1$, arphi(z,w) is an *holomorphic* function such that

- det $\partial_z \partial_w \varphi \neq 0$
- Im $\partial_w^2 \varphi > 0$.

The classical phase function is $\varphi_0(z,x) = \frac{i}{2}(z-x)^2$.

The wight function, $\phi,$ associated to the phase function φ is defined by

$$\phi(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi(z, x), \qquad z \in \mathbb{C}^n.$$

$$\phi_0(z) = \sup_{x \in \mathbb{R}^n} - \operatorname{Im} \varphi_0(z, x) = \frac{(\operatorname{Im} z)^2}{2}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference				
0000000	0000000	000000000000	0000	00000					
Background on Fourie	Background on Fourier-Bros-lagolnitzer (FBI) Transform								

FBI-Transform

 \mathcal{T}_{arphi} is associated to the canonical transform

$$\mathscr{H}_{\tau_{\varphi}}: \mathbb{C}^{2n}_{w,\theta} \longrightarrow \mathbb{C}^{2n}_{z,\zeta}$$

 $(w, -\partial_w \varphi(z, w)) \longmapsto (z, \partial_z \varphi(z, w)).$

We have

$$\mathscr{H}_{\tau_{\varphi}}\left(\mathbb{R}^{2n}_{x,\xi}\right)\doteq\Lambda_{\phi}=\left\{\left(z,-2i\frac{\partial\phi}{\partial z}(z)\right)\right\},\qquad z=x-i\xi.$$

In the case of classical phase function we have

$$\mathscr{H}_{\tau_{\varphi_0}}\left(\mathbb{R}^{2n}_{x,\xi}\right) = \{(x - i\xi, \xi)\} \doteq \Lambda_{\phi_0}.$$

 Λ_{ϕ_0} is a /-Lagrangian, $\mathbb{R}\text{-Symplectic}$ (Totally Real) sub-manifold of $\mathbb{C}^{2n}.$ We have that

$$u \in L^2(\mathbb{R}^n) \Rightarrow T_{\varphi} u \in L^2(\mathbb{C}^n, e^{-2\lambda\phi(z)}L(dz)).$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference				
0000000	0000000	000000000000	0000	00000					
Background on Fourie	Background on Fourier-Bros-lagolnitzer (FBI) Transform								

FBI-Transform

 \mathcal{T}_{arphi} is associated to the canonical transform

$$\mathscr{H}_{\tau_{\varphi}}: \mathbb{C}^{2n}_{w,\theta} \longrightarrow \mathbb{C}^{2n}_{z,\zeta}$$

 $(w, -\partial_w \varphi(z, w)) \longmapsto (z, \partial_z \varphi(z, w)).$

We have

$$\mathscr{H}_{\tau_{\varphi}}\left(\mathbb{R}^{2n}_{x,\xi}\right)\doteq\Lambda_{\phi}=\left\{\left(z,-2i\frac{\partial\phi}{\partial z}(z)\right)\right\},\qquad z=x-i\xi.$$

In the case of classical phase function we have

$$\mathscr{H}_{\tau_{\varphi_0}}\left(\mathbb{R}^{2n}_{x,\xi}\right) = \{(x - i\xi,\xi)\} \doteq \Lambda_{\phi_0}$$

 Λ_{ϕ_0} is a /-Lagrangian, $\mathbb R ext{-Symplectic}$ (Totally Real) sub-manifold of $\mathbb C^{2n}.$ We have that

$$u \in L^2(\mathbb{R}^n) \Rightarrow T_{\varphi} u \in L^2(\mathbb{C}^n, e^{-2\lambda\phi(z)}L(dz)).$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	00000000000000	0000	00000	
Background on Fourie	r-Bros-lagolnitzer (FBI) Transfo	rm			

Wave Front Set from FBI Point of View

Definition (ET2 *)

Let *u* a compactly supported distribution on \mathbb{R}^n . We say that the point $(x_0, \xi_0) \in T^* \mathbb{R}^n \setminus \{0\}$ is not in the *s*-Gevrey wave front set of *u*, $(x_0, \xi_0) \notin WF_s(u)$, where $s \ge 1$, if there exist a neighborhood Ω of $x_0 - i\xi_0$ in \mathbb{C}^n and constants $\epsilon > 0$ and $C(< +\infty)$ such that

$$|T_{\varphi_0}u(z,\lambda)| e^{-rac{\lambda}{2}\phi_0(z)} \leq C e^{-\epsilon\lambda^{1/s}}, \qquad \forall z\in\Omega.$$

We say that $(x_0, \xi_0) \notin WF(u)$ $(C^{\infty} - wave front set)$ if there exist Ω neighborhood of $x_0 - i\xi_0$ in \mathbb{C}^n such that $\forall N \in \mathbb{N}$ there is a constant $C_N(>0)$ for which

$$|T_{\varphi_0}u(z,\lambda)| e^{-rac{\lambda}{2}\phi_0(z)} \leq C_N\lambda^{-N}, \qquad orall N \in \mathbb{N}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	000000	000000000000000	0000	00000	
Background on Fouri	er-Bros-lagolnitzer (FBI) Transfo	orm			

Wave Front Set from FBI Point of View

Definition (ET2 *)

Let *u* a compactly supported distribution on \mathbb{R}^n . We say that the point $(x_0, \xi_0) \in T^* \mathbb{R}^n \setminus \{0\}$ is not in the *s*-Gevrey wave front set of *u*, $(x_0, \xi_0) \notin WF_s(u)$, where $s \ge 1$, if there exist a neighborhood Ω of $x_0 - i\xi_0$ in \mathbb{C}^n and constants $\epsilon > 0$ and $C(< +\infty)$ such that

$$|T_{\varphi_0}u(z,\lambda)| e^{-rac{\lambda}{2}\phi_0(z)} \leq C e^{-\epsilon\lambda^{1/s}}, \qquad \forall z\in\Omega.$$

We say that $(x_0, \xi_0) \notin WF(u)$ $(C^{\infty} - wave front set)$ if there exist Ω neighborhood of $x_0 - i\xi_0$ in \mathbb{C}^n such that $\forall N \in \mathbb{N}$ there is a constant $C_N(>0)$ for which

$$|T_{\varphi_0}u(z,\lambda)|e^{-rac{\lambda}{2}\phi_0(z)}\leq C_N\lambda^{-N},\qquad \forall N\in\mathbb{N}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference					
0000000	0000000	0000000000000000000	0000	00000						
Background on Fe	Background on Fourier-Bros-lagolnitzer (FBI) Transform									
		· · · · · · · · · · · · · · · · · · ·								

Pseudodifferential Operators (Ω -realization)

Let $(z_0,\zeta_0)\in\mathbb{C}^{2n}$ and $\phi(z)$ a real valued real analytic function defined near z_0 such that

- φ is strictly plurisubharmonic;
- $\frac{2}{i}\frac{\partial\phi}{\partial z}(z_0) = \zeta_0.$

Denote $\psi(z,w)$ the holomorphic function defined near (z_0, \bar{z}_0) by

 $\psi(z,\bar{z})=\phi(z).$

The plurisubharmonicity of ϕ implies that

 $\det \partial_z \partial_w \psi \neq 0$

and

$$\operatorname{\mathsf{Re}}\psi(z,ar w)-rac{1}{2}\left[arphi(z)+arphi(w)
ight]\sim -|z-w|^2.$$

Denote by $q(z, \zeta, \lambda)$ an analytic classical symbol and by $Q(z, \tilde{D}, \lambda)$, $\tilde{D} = (\lambda i)^{-1}\partial$, the formal classical pseudodifferential operator associated to q. Using "Kuranishi's trick" one may represent $Q(z, \tilde{D}, \lambda)$ as

$$Qu(z,\lambda) = \left(\frac{\lambda}{2i\pi}\right)^n \int e^{2\lambda(\psi(z,\theta) - \psi(w,\theta))} \tilde{q}(z,\theta,\lambda)u(w)dwd\theta.$$
 (3)

 \tilde{q} is the symbol of Q in the actual representation. To realize the above operator we need a prescription for the int. path. Ω -realization. This is accomplished by transforming the classical integration path (Kuranishi change of variables/Stokes theorem):

$$Q^{\Omega}u(z,\lambda) = \left(\frac{\lambda}{\pi}\right)^n \int_{\Omega} e^{2\lambda\psi(z,\bar{w})}\tilde{q}(z,\bar{w},\lambda)u(w)e^{-2\lambda\Phi(w)}L(dw), \quad (4)$$

where $L(dw) = (2i)^{-n} dw \wedge d\bar{w}$, the *integration path* is $\theta = \bar{w}$ and Ω is a small nbhd of (z_0, \bar{z}_0) .

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference					
0000000	0000000	00000000000000000	0000	00000						
Background on Fourie	Background on Fourier-Bros-lagolnitzer (FBI) Transform									

Pseudodifferential Operators (Ω-realization)

Remarks. The advantages of such a definition are:

- If the principal symbol is real, Q^{Ω} is formally self adjoint in $L^{2}(\Omega, e^{-2\lambda\phi})$;
- If \tilde{q} is a classical symbol of order zero, Q^{Ω} is uniformly bounded as $\lambda \to +\infty$, from $H_{\phi}(\Omega)$ into itself.

Definition

Let Ω be an open subset of \mathbb{C}^n . We denote by $H_{\phi}(\Omega)$ the space of all holomorphic functions $u(z, \lambda)$ such that for every $\epsilon > 0$ and for every compact $K \subset \Omega$ there exists a constant C > 0such that

$$|u(z,\lambda)| \leq Ce^{\lambda(\phi(z)+\epsilon)},$$

for $z \in K$ and $\lambda \geq 1$.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference					
0000000	0000000	000000000000000000	0000	00000						
Background on Fourie	Background on Fourier-Bros-lagolnitzer (FBI) Transform									

Pseudodifferential Operators (Ω -realization)

Remarks. The advantages of such a definition are:

- If the principal symbol is real, Q^{Ω} is formally self adjoint in $L^2(\Omega, e^{-2\lambda\phi})$;
- If \tilde{q} is a classical symbol of order zero, Q^{Ω} is uniformly bounded as $\lambda \to +\infty$, from $H_{\phi}(\Omega)$ into itself.

Definition

Let Ω be an open subset of \mathbb{C}^n . We denote by $H_{\phi}(\Omega)$ the space of all holomorphic functions $u(z, \lambda)$ such that for every $\epsilon > 0$ and for every compact $K \subset \Omega$ there exists a constant C > 0such that

$$|u(z,\lambda)| \leq Ce^{\lambda(\phi(z)+\epsilon)},$$

for $z \in K$ and $\lambda \geq 1$.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference				
0000000	0000000	0000000000000000000	0000	00000					
Background on Fe	ourier-Bros-IagoInitzer (FBI) Tr	ansform							
Pseudodifferential Operators (Ω -realization)									

Remarks. The advantages of such a definition are:

- If the principal symbol is real, Q^{Ω} is formally self adjoint in $L^2(\Omega, e^{-2\lambda\phi})$;
- If \tilde{q} is a classical symbol of order zero, Q^{Ω} is uniformly bounded as $\lambda \to +\infty$, from $H_{\phi}(\Omega)$ into itself.

Definition

Let Ω be an open subset of \mathbb{C}^n . We denote by $H_{\phi}(\Omega)$ the space of all holomorphic functions $u(z, \lambda)$ such that for every $\epsilon > 0$ and for every compact $K \subset \Omega$ there exists a constant C > 0such that

$$|u(z,\lambda)| \leq C e^{\lambda(\phi(z)+\epsilon)},$$

for $z \in K$ and $\lambda \geq 1$.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference				
0000000	0000000	00000000000000	0000	00000					
Background on Fo	Background on Fourier-Bros-lagolnitzer (FBI) Transform								
Pseudod	ifferential Oper	ators (Ω-realizatio	n)						

Remark: The definition (3) of a pseudodifferential operator on Ω is not the classical one. Via the Kuranishi trick it can be reduced to the classical definition. The function ψ allows us to use a weight function not explicitly related to an FBI phase.

Grigis and Sjöstrand (1985):

Proposition ([GS])

Let Q_1 and Q_2 be two pseudodifferential operator of order zero. Then they can be composed and

$$Q_1^\Omega\circ Q_2^\Omega=(Q_1\circ Q_2)^\Omega+R^\Omega.$$

 R^{Ω} is an error term whose norm is $\mathscr{O}(1)$ as an operator from $H_{\phi+(1/C)d^2}$ to $H_{\phi-(1/C)d^2}$, $d(z) = \operatorname{dist}(z, \complement\Omega)$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000	0000	00000	
Background on Fourie	r-Bros-lagolnitzer (FBI) Transfo	rm			

A Priori Estimate

Ω -realization of P

Arguing as Grigis and Sjöstrand, 1985, the $\Omega\text{-}realization$ of P can be written as

$$P^{\Omega} = \sum_{j=1}^{N} (X_j^{\Omega})^2 + \mathscr{O}(\lambda^2), \qquad (5)$$

 $\mathscr{O}(\lambda^2)$ is continuous from $H_{\tilde{\phi}}$ to $H_{\phi-(1/C)d^2}$ with norm bounded by $C'\lambda^2$, $\tilde{\phi}$ given by $\phi(z) + \frac{1}{C}d^2(z)$, $d(z) = \operatorname{dist}(z, \complement\Omega)$.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference		
0000000	0000000	00000000000000	0000	00000			
Background on Fo	ourier-Bros-lagolnitzer (FBI) Tr	ansform					
A Priori	Estimate						

Using the theory of Fourier Integral Operators (FIO) via FBI, developed by A. Grigis, J. Sjöstrand, ([GS]), allows us, following the ideas of P. Bolley, J. Camus, J. Nourrigat, ([BCN]), to obtain

Theorem (Sub-elliptic Micro-local Estimate) (IABC)

Let P^{Ω} be the Ω -realization of P(x, D), (1). Let $\Omega_1 \subset \subset \Omega$. Then

 $\lambda^{\frac{2}{r}} \|u\|_{\phi}^{2} + \sum_{j=1}^{N} \|X_{j}^{\Omega}u\|_{\phi}^{2} \leq C\left(\langle P^{\Omega}u, u\rangle_{\phi} + \lambda^{\alpha} \|u\|_{\phi,\Omega\setminus\Omega_{1}}^{2}\right).$ (6)

 α is a positive integer, $u \in L^2(\Omega, e^{-2\phi}L(dz))$ and $r = \nu(x_0, \xi_0)$ Albano, Bove and C. 2009

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	000000000000000	0000	00000	
Background on Four	ier-Bros-lagolnitzer (FBI) Tr	ansform			

A Priori estimate

Corollary

With the same notation of the above Theorem we have

$$\lambda^{\frac{2}{r}} \|u\|_{\phi}^{2} \leq C \left(\|P^{\Omega}u\|_{\phi}^{2} + \lambda^{\alpha} \|u\|_{\phi,\Omega\setminus\Omega_{1}}^{2} \right).$$

$$\tag{7}$$

Here we denote by

$$\|u\|_{\phi}^2 = \int_{\Omega} e^{-2\lambda\phi(z)} |u(z)|^2 L(dz).$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	000000000000000	0000	00000	
Background on Fourie	r-Bros-lagolnitzer (FBI) Transfo	m			

The "Deformation" Argument (Λ_{ϕ_0} deformation)

We use a ''deformation'' argument (due to Sjöstrand) to obtain a canonical deformation of $\phi_0.$

We consider a real analytic function $h(z, \zeta, \lambda)$ defined near the point $(x_0 - i\xi_0, \xi_0) = \mathscr{H}_{\tau_{\varphi_0}}(x_0, \xi_0) \in \Lambda_{\phi_0}$. We solve, for small positive t, the Hamilton-Jacobi problem

$$\begin{cases} \frac{\partial \phi}{\partial t}(t, z, \lambda) &= h\left(z, \frac{2}{i} \frac{\partial \phi}{\partial z}(t, z, \lambda), \lambda\right) \\ \phi(0, z, \lambda) &= \phi_0(z) \end{cases}$$

Set

$$\phi_t(z,\lambda) = \phi(t,z,\lambda).$$

We have

$$\Lambda_{\phi_t} = \exp\left(itH_h\right)\Lambda_{\phi_0}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	000000000000000000000000000000000000000	0000	00000	
Background on Fourier	r-Bros-lagolnitzer (FBI) Transfo	rm			

The "Deformation" Argument

<u>General Case</u>. We choose the function h as

$$h(z,\zeta,\lambda)=\lambda^{-rac{r-1}{r}}|z-(x_0-i\xi_0)|^2$$
 on $\Lambda_{\Phi_0}.$

Here $r = \nu(x_0, \xi_0)$.

The function ϕ_t can be expanded as a power series in the variable t:

$$\begin{split} \phi_t(z,\lambda) &= \phi_0(z) + \frac{t}{2} h(\cdot,\cdot,\lambda) \Big|_{\Lambda_{\phi_0}} + \mathscr{O}(\lambda^{-1}) \\ &= \phi_0(z) + \frac{t}{2} \lambda^{\frac{r-1}{r}} |z - (x_0 - i\xi_0)|^2 + \mathscr{O}(\lambda^{-1}). \end{split}$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	000000000000000000000000000000000000000	0000	00000	
Background on Fourier	r-Bros-lagolnitzer (FBI) Transfo	rm			

A Priori Estimate

Albano, Bove, C. theorem

Theorem [ABC]

There exist a neighborhood Ω_0 of $x_0 - i\xi_0$, a positive number $\delta > 0$, and a positive integer α such that, for every $\Omega_1 \subset \subset \Omega_2 \subset \subset \Omega \subset \Omega_0$, there exists a constant C > 0 such that, for $0 < t < \delta$, we have

$$\lambda^{\frac{2}{r}} \|u\|_{\phi_t,\Omega_1} \leq C \left(\|P^{t\Omega}u\|_{\phi_t,\Omega_2} + \lambda^{\alpha} \|u\|_{\phi_t,\Omega\setminus\Omega_1} \right), \quad r = \nu(x_0,\xi_0).$$
(8)

 $P^{t\Omega}$ is the Ω -realization of P^t , the symbol of P restricted to Λ_{ϕ_t} .

Corollary

Let Pu be analytic at (x_0, ξ_0) , then the point (x_0, ξ_0) does not belong to $WF_{\nu(x_0,\xi_0)}(u)$.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference				
0000000	0000000	000000000000000000000000000000000000000	0000	00000					
Background on Fourier	Sackground on Fourier-Bros-lagolnitzer (FBI) Transform								

A Priori Estimate

Albano, Bove, C. theorem

Theorem [ABC]

There exist a neighborhood Ω_0 of $x_0 - i\xi_0$, a positive number $\delta > 0$, and a positive integer α such that, for every $\Omega_1 \subset \subset \Omega_2 \subset \subset \Omega \subset \Omega_0$, there exists a constant C > 0 such that, for $0 < t < \delta$, we have

$$\lambda^{\frac{2}{r}} \|u\|_{\phi_t,\Omega_1} \leq C \left(\|P^{t\Omega}u\|_{\phi_t,\Omega_2} + \lambda^{\alpha} \|u\|_{\phi_t,\Omega\setminus\Omega_1} \right), \quad r = \nu(x_0,\xi_0).$$
(8)

 $P^{t\Omega}$ is the Ω -realization of P^t , the symbol of P restricted to Λ_{ϕ_t} .

Corollary

Let Pu be analytic at (x_0, ξ_0) , then the point (x_0, ξ_0) does not belong to $WF_{\nu(x_0,\xi_0)}(u)$.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	000000000000	0000	00000	
Background on Fourier	-Bros-lagolnitzer (FBI) Transfor	m			

The "Deformation" Argument

Operators which satisfy the assumptions (A1) and (A2). Show A1/2

We choose the function h of the assumptions. h does not depend on $\lambda.$

We have

$$\phi_t(z) = \phi_0(z) + \frac{1}{2} \int_0^t h\left(z, \frac{2}{i} \partial_z \phi_s(z)\right) ds.$$

Also in this case we obtain

$$\lambda^{\frac{2}{r}} \|u\|_{\phi_t,\Omega_1} \leq C\left(\|P^{t\Omega}u\|_{\phi_t,\Omega_2} + \lambda^{\alpha}\|u\|_{\phi_t,\Omega\setminus\Omega_1}\right), \qquad r = \nu(x_0,\xi_0).$$

We point out that

$$h_{ig| \Lambda_{\phi_0} \cap \Omega \setminus \Omega_1} \geq a > 0$$
 $(\phi_t(z) \geq \phi_0(z) + c't, \quad x \in \Omega \setminus \Omega_1),$

 $\phi_t \leq \phi_0 + t/(2\mathcal{C})$ in $\Omega_2, \, \Omega_2 \subset \subset \Omega_1$ neighborhood of $x_0 - i\xi_0.$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000	0000	00000	
Sketch of the proc	ofs of Theorem 1 and Theorem	2			
Theorem	Show Th1				

Denote by θ the order of the pseudodifferential operator Q. Let $Q^{t\Omega}$ is the Ω -realization of Q^t , the symbol of Q restricted to Λ_{ϕ_t} . From (8) we have

$$\lambda^{\frac{2}{r}} \|u\|_{\phi_t,\Omega_1} \leq C \left(\|(P+Q)^{t\Omega}u\|_{\phi_t,\Omega_2} + \|Q^{t\Omega}u\|_{\phi_t,\Omega_2} + \lambda^{\alpha} \|u\|_{\phi_t,\Omega\setminus\Omega_1} \right).$$

We have

$$\|Q^{t\Omega}u\|_{\phi_t,\Omega_2} \leq C_1\lambda^{\theta}\|u\|_{\phi_t,\Omega_2} \leq C_1\lambda^{\theta}\left(\|u\|_{\phi_t,\Omega_1} + \|u\|_{\phi_t,\Omega\setminus\Omega_1}\right)$$

The first term of above inequality is absorbed on the left hand side($\theta < 2/r$, λ large enough.) Hence we have

$$\lambda^{\frac{2}{r}} \|u\|_{\phi_t,\Omega_1} \leq C \left(\| (P+Q) u\|_{\phi_t,\Omega_2} + \lambda^{\alpha} \|u\|_{\phi_t,\Omega\setminus\Omega_1} \right).$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	0000000000000	0000	00000	
Sketch of the proofs of	Theorem 1 and Theorem 2				

Theorem 1

We assume that $(x_0,\xi_0) \notin W\!F_{a}((P+Q)u)$ then

$$\|(P+Q)^{t\Omega}u\|_{\phi_t,\Omega_2}\leq Ce^{-\lambda/C}.$$

 $\Lambda_{\Phi_t} \text{ is a small perturbation of } \Lambda_{\Phi_0}.$ Since

$$\phi_t(z,\lambda) = \phi_0(z) + \frac{t}{2} \underbrace{\lambda^{\frac{r-1}{r}} |z - (x_0 - i\xi_0)|^2}_{=h(\cdot,\cdot,\lambda)_{|\Lambda_{\phi_0}}} + \mathscr{O}(\lambda^{-1}),$$

we have that $\|u\|_{\phi_t,\Omega\setminus\Omega_1}\leq Ce^{-\lambda^{1/r}/\mathcal{C}}.$

Thus we obtain that

$$\|u\|_{\phi_t,\Omega_1}\leq C_1e^{-\lambda^{1/r}/C_1}.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference	
0000000	000000	0000000000000	0000	00000		
Sketch of the proofs of Theorem 1 and Theorem 2						

Theorem 2

Let $\Omega_3\subset\subset\Omega_2.$ For $z\in\Omega_3,$ for a fixed small positive value of t, we have

$$\phi_t(z)-\phi_0(z)\leq \frac{\lambda^{-1+1/r}}{C_2(t)}.$$

Therefore

$$\|u\|_{\phi_0,\Omega_3} \leq c e^{-\lambda^{1/r}/c} \quad ((x_0,\xi_0) \notin W\!F_r(u),r=
u(x_0,\xi_0)).$$
 Show DWF

An analogous strategy allows us to obtain also the second Theorem. $$^{\rm Show\,\,Th2}$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
Sketch of the proc	ofs of Theorem 1 and Theorem	2			
Carlos Martin					
and the second					
Carlor Con					1
	Cerestina 1. an				
		Alter and the second second	and the states		- determine
	nank vo	II for voi	ir hatio	acella	
Constant State	rann yo	d for you	n para		
a starting a start	17.1		C·· II	6 1	1 1111
	Viele	n Dank i	tur Ihre	Gedi	
	F THE & J	The second second			
Contraction of the second seco				Martin State	and the second second
the of the second of the					

Problem 0000000	A Couple of results	Background 000000000000000	Sketch of the proofs	Appendix ●0000	Reference
Examples					
Example	I:				

• Let k be an integer, $k \ge 2$, and consider

$$P(x,D) = D_1^2 + x_1^{2(k-1)}D_2^2, \quad x \in \mathbb{R}^2.$$

Let Q(x, D) the analytic pseudodifferential operator given by

 $\lambda |D_2|^{2/k}$.

- $\lambda\,$ is a constant that we shall choose later.
- Q is microlocally elliptic near points in

 $\mathsf{Char}(P) = \{(x_1, x_2, \xi_1, \xi_2) \in \mathcal{T}^* \mathbb{R}^2 \setminus \{0\} \ : \ x_1 = 0 = \xi_1, \ \xi_2 \neq 0\}.$

Remark: P(x, D) is analytic hypoelliptic. $\frac{2}{k}$ is the subelliptic index of P(x, D).

Problem 0000000	A Couple of results	Background 00000000000000	Sketch of the proofs	Appendix 0000	Reference
Examples					
Example I	_:				

Performing a Fourier transform w.r.t. x_2 , and the dilation

$$x_1 \to |\xi_2|^{-1/k} x_1,$$

P + Q becomes

$$D_1^2 + x_1^{2(k-1)} + \lambda.$$

(modulo a microlocally elliptic factor) Let λ be the opposite of an eigenvalue. Let $\phi_{\lambda}(x_1)$ be such that

$$-\phi_{\lambda}'' + x_1^{2(k-1)}\phi_{\lambda} + \lambda\phi_{\lambda} = 0.$$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	0000000	000000000000000	0000	00000	
Examples					

Consider

$$u(x) = \int_0^{+\infty} e^{ix_2
ho} \phi_\lambda(x_1
ho^{1/k}) (1+
ho^4)^{-1} d
ho.$$

(P+Q)u=0 and $u \notin C^{\infty}$.

We have:

If
$$\phi_{\lambda}(0) \neq 0 \Longrightarrow u(0, x_2) = \phi_{\lambda}(0) \int_{0}^{+\infty} e^{ix_2\rho} (1+\rho^4)^{-1} d\rho;$$

If
$$\phi_{\lambda}(0) = 0 (\phi_{\lambda}'(0) \neq 0!) \Rightarrow \frac{\partial u}{\partial x_1}(0, x_2) = \phi_{\lambda}'(0) \int_0^{\infty} e^{ix_2\rho} (1+\rho^4)^{-1} \rho^{1/k} d\rho.$$

In both cases we do not have a \mathcal{C}^∞ function!

Problem 0000000	A Couple of results	Background 0000000000000	Sketch of the proofs	Appendix 00000	Reference
Examples					

Taking

$$Q=\lambda |D_2|^{2/k}+\mu(x_2)|D_2|^\epsilon,$$
 with $\epsilon<2/k,$

then

P+Q can be

 $C^{\omega} - hypoelliptic,$ $G^{s} - hypoelliptic for some s,$ **not even** $C^{\infty} - hypoelliptic.$

Problem 0000000	A Couple of results	Background 0000000000000	Sketch of the proofs	Appendix 00000	Reference
Examples					

Taking

$$Q=\lambda |D_2|^{2/k}+\mu(x_2)|D_2|^\epsilon,$$
 with $\epsilon<2/k,$

then

P+Q can be $\begin{cases} C^{\omega}-hypoelliptic, \\ G^{s}-hypoelliptic \text{ for some } s, \\ \text{not even } C^{\infty}-hypoelliptic. \end{cases}$

Problem 0000000	A Couple of results	Background 0000000000000	Sketch of the proofs	Appendix 00000	Reference
Examples					

Taking

$$Q=\lambda |D_2|^{2/k}+\mu(x_2)|D_2|^\epsilon,$$
 with $\epsilon<2/k,$

then

P+Q can be $\begin{cases} C^{\omega}-hypoelliptic, \\ G^{s}-hypoelliptic \text{ for some } s, \\ \text{not even } C^{\infty}-hypoelliptic. \end{cases}$

Problem 0000000	A Couple of results	Background 0000000000000	Sketch of the proofs	Appendix 00000	Reference
Examples					

Taking

$$Q=\lambda |D_2|^{2/k}+\mu(x_2)|D_2|^\epsilon,$$
 with $\epsilon<2/k,$

then

P+Q can be $\begin{cases} C^{\omega}-hypoelliptic, \\ G^{s}-hypoelliptic \text{ for some } s, \\ \text{not even } C^{\infty}-hypoelliptic. \end{cases}$

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	000000	000000000000000	0000	00000	
Examples					

The Stein example (converse statement):

Consider Kohn's Laplacian,

$$\Box_{b} = -Z \, \bar{Z} \quad \text{where} \quad Z = \frac{\partial}{\partial z} + i \bar{z} \frac{\partial}{\partial t}, \quad (z, t) \in \mathbb{C} \times \mathbb{R},$$

which is neither C^{∞} nor C^{ω} -hypoelliptic.

```
Stein 1982, ((5)*) : 
 Perturbing it with a non zero complex number, \Box_b + \alpha, \ \alpha \in \mathbb{C} \setminus \{0\},
```

we obtain an operator being both C^{∞} and C^{ω} -hypoelliptic.

Problem	A Couple of results	Background	Sketch of the proofs	Appendix	Reference
0000000	000000	000000000000000	0000	00000	
Examples					

The Stein example (converse statement):

Consider Kohn's Laplacian,

$$\Box_{b} = -Z \, \bar{Z} \quad \text{where} \quad Z = \frac{\partial}{\partial z} + i \bar{z} \frac{\partial}{\partial t}, \quad (z, t) \in \mathbb{C} \times \mathbb{R},$$

which is neither C^{∞} nor C^{ω} -hypoelliptic.

Stein 1982, (S) : Perturbing it with a non zero complex number,

 $\Box_{\boldsymbol{b}} + \boldsymbol{\alpha}, \ \boldsymbol{\alpha} \in \mathbb{C} \setminus \{\mathbf{0}\},$

we obtain an operator being both C^{∞} and C^{ω} -hypoelliptic.

Problem 0000000	A Couple of results	Background 00000000000000	Sketch of the proofs	Appendix 00000	Reference

Reference

- P. Albano and A. Bove, Wave front set of solutions to sums of squares of vector fields, Mem. Amer. Math. Soc., 221 (2013), no. 1039.
- [ABC] P. Albano, A. Bove and G. Chinni, *Minimal Microlocal Gevrey Regularity for "Sums of Squares"*, International Mathematics Research Notices, 2009 no. 12, 2275–2302.
- *[BCN] P. Bolley, J. Camus and J. Nourrigat, La condition de Hörmander-Kohn pour les opérateurs pseudo-différentiels, Commun. Partial Diff. Eq. 7 (1982), 197–221.
- •[BCCJ] N. Braun Rodrigues, G. Chinni, P. D. Cordaro and M. R. Jahnke, Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5159–5170.
 - •[CC] G. Chinni and P. D. Cordaro, On global analytic and Gevrey hypoellipticity on the torus and the Métivier inequality, Comm. Partial Differential Equations 42 (2017), no. 1, 121–141.
 - [•][DZ] M. Derridj and C. Zuily, Régularité analytique et Gevrey d'opérateurs elliptiques dégénérés, J. Math. Pures Appl. 52 (1973), 309-336.
 - ▲[GS] A. Grigis and J. Sjöstrand, Front d'onde analytique et somme de carrés de champs de vecteurs, Duke Math. J. 52 (1985), 35–51.
 - *[H] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171.

Problem 0000000	A Couple of results	Background 00000000000000	Sketch of the proofs	Appendix 00000	Reference

Reference

- •[PP] C. Parenti and A. Parmeggiani Journal: Proc. Amer. Math. Soc. 146 (2018), 1097-1104.
- *[RS] L. Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320.
- *[5] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209–216.