

The problem of multisummability in higher dimensions

18th June 2018

Sergio A. Carrillo. sergio.carrillo@univie.ac.at

Universität Wien, Vienna, Austria.^a

^aSupported by the Austrian Science Fund (FWF), project P 26735-N25: Differential Analysis: Perturbation and Quasianaliticity.

Asymptotic Analysis and Borel summability in one variable

We have at our disposal a powerful summability theory useful in the study of formal solutions of analytic problems, e.g. ODEs at irregular singular points, families of PDEs, difference equations, conjugacy of diffeomorphisms of $(\mathbb{C}, 0)$, normal forms for vector fields, singular perturbation problems, normal forms of real-analytic hypersurfaces...

- Asymptotic expansions, Gevrey asymptotic expansions, k-summability.
- ▶ Borel and Laplace transformations. Tauberian theorems.
- ► Ecalle's accelerator operators, Multisummability.

Asymptotics in several variables

For several variables there are different approaches. In this framework we can mention:

- Strong Asymptotic Expansions, (Majima, 1984).
- Composite Asymptotic Expansions (Fruchard-Schäfke, 2013).
- Asymptotic Expansions in a monomial or in an analytic function (Mozo-Schäfke, 2007, 2017).

We will focus in the item and pose the problem of multisummability for those methods.

The scope of applications

► (1990 Ramis, Sibuya, Braaskma) Multisummability of non-linear equations

$$x^{p+1}\frac{d\boldsymbol{y}}{dx} = \boldsymbol{F}(x, \boldsymbol{y}).$$

When $\frac{\partial F}{\partial y}(0,\mathbf{0})$ is invertible the unique formal power series solution is p-summable.

▶ (2003 Luo, Chen, Zhang) Summability in the variable *x* of solutions of PDEs of the form

$$t\partial_t u = F(t, x, u, \partial_x u), \quad u(0, x) = 0,$$

under certain conditions on F.

 (2007 Costin, Tanveer) Existence, uniqueness and asymptotic in several variables of solutions of PDEs of the form

$$\boldsymbol{u}_t + \mathcal{P}(\partial_{\boldsymbol{x}}^j)\boldsymbol{u} + \boldsymbol{g}(\boldsymbol{x}, t, \{\partial_{\boldsymbol{x}}^j\boldsymbol{u}\}) = 0, \quad \boldsymbol{u}(\boldsymbol{x}, 0) = u_{\boldsymbol{I}}(\boldsymbol{x}),$$

where the principal part of the constant coefficient n-th order differential operator \mathcal{P} is subject to a cone condition.

► (2007 Canalis-Duran, Mozo, Schäfke) $1 - x^p \varepsilon^q$ -summability of the unique formal power series solution of the doubly singular equation

$$\varepsilon^q x^{p+1} \frac{\partial \boldsymbol{y}}{\partial x} = \boldsymbol{F}(x,\varepsilon,\boldsymbol{y}),$$

when $\frac{\partial F}{\partial y}(0,0,0)$ is invertible.

• (2018 -) $1 - x^{\alpha} \varepsilon^{\alpha'}$ -summability of the unique formal power series solution of the singularly perturbed PDE

$$x^{\alpha} \varepsilon^{\alpha'} \left(\lambda_1 x_1 \frac{\partial y}{\partial x_1} + \dots + \lambda_n x_n \frac{\partial y}{\partial x_n} \right) = F(x, \varepsilon, y),$$

where $\boldsymbol{x} \in \mathbb{C}^n, \boldsymbol{\varepsilon} \in \mathbb{C}^m$, $\boldsymbol{\alpha} \in (\mathbb{N}^+)^n$, $\boldsymbol{\alpha'} \in (\mathbb{N}^+)^m$, $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_n) \in (\mathbb{R}^+)^n$ and \boldsymbol{F} analytic at the origin and $\frac{\partial \boldsymbol{F}}{\partial y}(0, 0, \mathbf{0})$ is invertible.

The theory in one variable

Example: Euler's equation

Consider Euler's equation:

$$x^2y' + y = x.$$

We can solve it for x > 0 to get

$$y(x) = ce^{1/x} + \int_0^{+\infty} \frac{e^{-\xi/x}}{1+\xi} d\xi.$$

But it also has the formal power series solution

$$\hat{y}(x) = \sum_{n=0}^{\infty} (-1)^n n! x^{n+1}.$$

The notion of asymptotic expansion

Let us fix a complex Banach space $(E, \|\cdot\|)$.

We work in sectors at the origin

$$S = S(a, b; r) = \{ x \in \mathbb{C} \mid 0 < |x| < r, a < \arg(x) < b \}.$$

Definition

We say $f \in \mathcal{O}(S, E)$ has $\hat{f} = \sum_{n=0}^{\infty} a_n x^n \in E[[x]]$ as asymptotic expansion on S $(f \sim \hat{f} \text{ on } S.)$ if for every subsector $S' \subset S$ and $N \in \mathbb{N}$ we can find $C_N(S') > 0$ such that

$$\left\| f(x) - \sum_{n=0}^{N-1} a_n x^n \right\| \le C_N(S') |x|^N, \quad x \in S'.$$

Basic properties

Assume
$$f \sim \hat{f} = \sum_{n=0}^{\infty} a_n x^n$$
 and $g \sim \hat{g}$ on S . The following properties hold:
1. $a_n = \lim_{\substack{x \to 0 \\ x \in S'}} \frac{f^{(n)}(x)}{n!}$ for any subsector S' .
2. $f + g \sim \hat{f} + \hat{g}$, $fg \sim \hat{f}\hat{g}$, $\frac{df}{dx} \sim \frac{d\hat{f}}{dx}$ on S .

3. (Borel-Ritt) Given any $\hat{f} \in E[[t]]$ and S there is $f \in \mathcal{O}(S, E)$ such that $f \sim \hat{f}$ on S.

Gevrey type asymptotic expansions

If $f \sim \hat{f}$ on S and we can choose $C_N(S') = CA^N N!^{1/k}$, then we say that the asymptotic expansion is of type 1/k-Gevrey ($f \sim_{1/k} \hat{f}$ on S). Then

 $\hat{f} \in E[[x]]_{1/k}, \quad \text{i.e.} \quad ||a_n|| \le CA^n n!^{1/k},$

the space of 1/k-Gevrey series in x.

▶ $f \sim_{1/k} 0$ on S if and only if for every $S' \subset S$, we can find K, M > 0

 $||f(x)|| \le K \exp(-M/|x|^k).$

- ► (Borel-Ritt-Gevrey) If $b a < \pi/k$ given any $\hat{f} \in E[[x]]_{1/k}$ and S(a, b, r) there is $f \in \mathcal{O}(S, E)$ such that $f \sim_{1/k} \hat{f}$ on S.
- ► (Watson's Lemma) If $b a > \pi/k$ and $f \sim_{1/k} 0$ on S(a, b, r) then $f \equiv 0$.

11

Definition

Let $\hat{f} \in E[[x]]_{1/k}$ and $\theta \in \mathbb{R}$ a direction.

- \hat{f} is k-summable in a direction θ if we can find $f \in \mathcal{O}(S, E)$, $S = S(\theta - \frac{\pi}{2k} - \varepsilon, \theta + \frac{\pi}{2k} + \varepsilon, r)$ such that $f \sim_{1/k} \hat{f}$.
- f̂ is k−summable if it is k−summable in all directions, up to a finite number of them, mod. 2π.

We will use the notation $E\{x\}_{1/k,\theta}$ and $E\{x\}_{1/k}$ for the corresponding sets.

Borel-Laplace method

The series $\hat{f} = \sum_{n=0}^{\infty} a_n x^n \in E[[x]]_{1/k}$ is called k-Borel-summable in direction θ if $\widehat{\mathcal{B}}_k(\hat{f} - \sum_{n \leq k} a_n x_n) := \sum_{n > k} \frac{a_n}{\Gamma(n/k)} \xi^{n-k},$

can be analytically continued, say as $\varphi,$ and

$$\|\varphi(\xi)\| \le C \exp(M|\xi|^k), \quad \text{ for some } C, M > 0.$$

Its Borel sum is defined by

$$f(x) = \sum_{n \le k} a_n x^n + \mathcal{L}_k(\varphi)(x)$$
$$= \sum_{n \le k} a_n x^n + \int_0^{e^{i\theta}\infty} \varphi(\xi) e^{-(\xi/x)^k} d(\xi^k).$$

The Borel-Laplace analysis exploits the isomorphism between the following structures

$$\left(E[[x]]_{1/k}, +, \times, x^{k+1}\frac{d}{dx}\right) \xrightarrow{\widehat{\mathcal{B}}_k} \left(\xi^{-k}E\{\xi\}, +, *_k, k\xi^k(\cdot)\right),$$

where imes denotes the usual product and $*_k$ stand for the convolution product

$$(f *_k g)(\xi) = \xi^k \int_0^1 f(\xi \tau^{1/k}) g(\xi (1-\tau)^{1/k}) d\tau.$$

Euler's equation II

Applying the 1-Borel transformation to Euler's example:

$$\hat{y}(x) = \sum_{n=0}^{\infty} (-1)^n n! x^{n+1} \xrightarrow{\hat{\mathcal{B}}_1} Y(\xi) = \sum_{n=0}^{\infty} (-1)^n \xi^n = \frac{1}{1+\xi},$$
$$x^2 y' + y = x \xrightarrow{\hat{\mathcal{B}}_1} \xi Y + Y = 1.$$

Using the Laplace transform we get the solution

$$y(x) = \int_0^{+\infty} \frac{e^{-\xi/x}}{1+\xi} d\xi, \ \text{Re}(x) > 0.$$

Example of non-linear ODEs

Consider the differential equation

$$x^{p+1}\frac{d\boldsymbol{y}}{dx} = \boldsymbol{F}(x,\boldsymbol{y}) = b(x) + A(x)\boldsymbol{y} + \sum_{|I|\geq 2} A_I(x)\boldsymbol{y}^I,$$

where $p \in \mathbb{N}^+$, $\boldsymbol{y} \in \mathbb{C}^N$, \boldsymbol{F} is analytic in a neighborhood of $(0, 0) \in \mathbb{C} \times \mathbb{C}^N$ and $\boldsymbol{F}(0, 0) = \boldsymbol{0}$. Using $\hat{\boldsymbol{\mathcal{B}}} = \hat{\boldsymbol{\mathcal{B}}}_p$, $* = *_p$ we obtain the convolution equation $(p\xi^p I_N - A_0)\boldsymbol{Y} = \boldsymbol{\mathcal{B}}(b) + \boldsymbol{\mathcal{B}}(A - A_0) * \boldsymbol{Y} + \sum \boldsymbol{\mathcal{B}}(A_I - A_I(0)) * \boldsymbol{Y}^{*I}$

$$+ \sum_{|I| \ge 2} A_{I}(0) Y^{*I}.$$

We ask for $p\xi^p I_N - A_0$ to be invertible, therefore we work on domains inside

$$\Omega := \{ \xi \in \mathbb{C} \mid p\xi^p \neq \lambda_j \text{ for all } j = 1, \dots, N \},\$$

where λ_j are the eigenvalues of A_0 .

Theorem

If $A_0 = \frac{\partial F}{\partial y}(0, \mathbf{0})$ is invertible then the previous ODE has a unique formal power series solution $\hat{y} \in \mathbb{C}[[x]]^N$. Furthermore \hat{y} is p-summable.

For $\mu > 0$ consider

$$\begin{aligned} \mathcal{A}^{N}_{\mu}(S) &:= \{ \boldsymbol{f} \in \mathcal{O}(S, \mathbb{C}^{N}) \mid \boldsymbol{f}(0) = \boldsymbol{0}, \ \|\boldsymbol{f}\|_{N,\mu} := \max_{1 \le j \le N} \|f_{j}\|_{\mu} < +\infty \}, \\ \|f\|_{\mu} &:= M_{0} \sup_{\xi \in S} |f(\xi)| (1 + |\xi|^{2p}) e^{-\mu |\xi|^{p}}, \quad f \in \mathcal{O}(S). \\ S &:= S_{R} = S(\theta, 2\epsilon) \cup D_{R} \subset \Omega, \\ M_{0} &= \sup_{s > 0} s(1 + s^{2}) I(s) \approx 3.76, \quad I(s) := \int_{0}^{1} \frac{d\tau}{(1 + s^{2}\tau^{2})(1 + s^{2}(1 - \tau)^{2})}. \end{aligned}$$

$$x\frac{d\boldsymbol{y}}{dx} = b(x) + A(x)\boldsymbol{y},$$

$$A(x) = \bigoplus_{h=0}^{r} x^{-k_h} A_h + \left(\bigoplus_{h=0}^{r} x^{1-k_h} I_h\right) A_+(x),$$

where $0 = k_0 < k_1 < \cdots < k_r$, $k_h \in \mathbb{N}^+$, $N = n_0 + \cdots + n_r$, A_h is a $n_h \times n_h$ invertible matrix, I_h is the identity matrix of size n_h , A_+ and g analytic at the origin.

Theorem (Braaksma-Balser-Ramis-Sibuya)

If the system posses a formal solution \hat{y} then it is k-multisummable, where $k = (k_1, \ldots, k_n)$.

Tauberian properties in one variable

Theorem (Martinet-Ramis)

The followings statements are true for 0 < k < k' and $0 < k_0, k_1, \ldots, k_n$:

- 1. If $\hat{f} \in E\{t\}_{1/k}$ has no singular directions then it is convergent.
- **2.** $E[[x]]_{1/k'} \cap E\{t\}_{1/k} = E\{t\}_{1/k'} \cap E\{t\}_{1/k} = E\{t\}.$
- 3. Consider $\hat{f}_j \in E\{t\}_{1/k_j} \setminus E\{t\}$ for j = 1, ..., n. Then $\hat{f}_0 = \hat{f}_1 + \dots + \hat{f}_n \in E\{t\}_{1/k_0}$ if and only if $k_0 = k_j$ for all j = 1, ..., n.

Multisummability

For two levels $0 < k_2 < k_1$ we can compose both k_j -summability methods:

$$\mathcal{L}_{k_1} \circ (\mathcal{B}_{k_1} \circ \mathcal{L}_{k_2}) \circ \hat{\mathcal{B}}_{k_2}.$$

We can work with the central term

$$\mathcal{B}_{k_1} \circ \mathcal{L}_{k_2}(\varphi)(x) = \frac{1}{x^{k_1}} \int_0^{e^{i\theta}\infty} \varphi(\xi) C_\alpha((\xi/x)^{k_2}) d\xi^{k_2} := \mathfrak{A}_{k_1,k_2}(\varphi)(x),$$

Here $\alpha=k_1/k_2>1$ and

$$C_{\alpha}(t) = \frac{1}{2\pi i} \int_{\gamma} \exp(u - tu^{1/\alpha}) du = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma\left(\frac{-n}{\alpha}\right)} t^n,$$

it is called a *Ecalle's acceleration kernel*. It is entire and $|C_{\alpha}(t)| \leq c_1 \exp(-c_2 |t|^{\beta}), 1/\alpha + 1/\beta = 1$, $|\arg(t)| \leq \pi/2\beta - \epsilon$.

Definition

Consider $k = (k_1, k_2, ..., k_q)$ with $0 < k_q < \cdots < k_2 < k_1$. A (multi-)direction $\theta = (\theta_1, ..., \theta_q)$ is k-admissible if

$$|\theta_j - \theta_{j-1}| \leq \frac{\pi}{2\kappa_j}, \quad \text{ with } \frac{1}{\kappa_j} = \frac{1}{k_j} - \frac{1}{k_{j-1}}, \quad 2 \leq j \leq q.$$

This is equivalent to say that the intervals $I_j = \left[\theta_j - \frac{\pi}{2k_j}, \theta_j + \frac{\pi}{2k_j}\right]$ satisfy

$$I_1 \subset I_2 \subset \cdots \subset I_q.$$

Definition

A formal power series $\hat{f} \in E[[x]]_{1/k_q}$ is k-multisumable in direction θ if:

- 1. $f_q = \hat{\mathcal{B}}_{k_q}(\hat{f})$ can be analitically extended to a sector of infinite radius bisected by θ_d and with exponential growing at most κ_q . We can then calculate $\mathfrak{A}_{k_{q-1},k_q}(f_q)$.
- 2. For every $1 \le j \le q-1$, consider $f_j = \mathfrak{A}_{k_j,k_{j+1}}(f_{j+1})$. We ask f_j to be analitically extended to a sector of infinite radius bisected by θ_j and with exponential growing at most κ_j (k_1 for j = 1).

Then $f = \mathcal{L}_{k_1,\theta_1}(f_1)$ is well-defined in a small sector bisected by θ_1 and opening larger than π/k_1 . It is called the k-multisumm of \hat{f} in direction θ . The functions f_j satisfy

$$f_j \sim_{1/\tilde{k}_j} \hat{f}_j = \hat{\mathcal{B}}_{k_j}(\hat{f}), \quad 1/\tilde{k_j} = 1/k_q - 1/k_j.$$

Let $E\{x\}_{k,\theta}$ be the space of k-multisummable series in direction θ .

Decomposition theorem

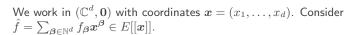
Theorem (Decomposition theorem - W. Balser)

Consider $\mathbf{k} = (k_1, ..., k_q) \in (\mathbb{R}^+)^q$ with $\frac{1}{k_j} - \frac{1}{k_{j-1}} < 2, \ 1 \le j \le q$ and a \mathbf{k} -admissible direction $\boldsymbol{\theta} = (\theta_1, ..., \theta_q)$. Then for every $\hat{f} \in E\{x\}_{\mathbf{k}, \boldsymbol{\theta}}$ we can find $\hat{f}_j \in E\{x\}_{1/k_j, \theta_j}$ such that $\hat{f} = \hat{f}_1 + \cdots + \hat{f}_q$.

and the k-sum correspond to the sum of the k_j -sums if the respective series.

Asymptotic and Summabiliy in an analytic function

The formal framework



Given $\pmb{lpha} \in \mathbb{N}^d \setminus \{ \pmb{0} \}$, we can write uniquely

$$\hat{f} = \sum_{n=0}^{\infty} \hat{f}_{\alpha,n}(\boldsymbol{x}) \boldsymbol{x}^{n\alpha}, \quad \hat{f}_{\alpha,n}(\boldsymbol{x}) = \sum_{\boldsymbol{\alpha} \not\leq \boldsymbol{\beta}} f_{n\alpha+\boldsymbol{\beta}} \boldsymbol{x}^{\boldsymbol{\beta}}.$$

Given $P = \sum_{\beta \in \mathbb{N}^d} P_{\beta} x^{\beta} \in \mathbb{C}\{x\}$, P(0) = 0 and an injective linear form $\ell : \mathbb{N}^d \to \mathbb{R}^+$, $\ell(\alpha) = \ell_1 \alpha_1 + \cdots + \ell_d \alpha_d$, we can also write uniquely

$$\hat{f} = \sum_{n=0}^{\infty} \hat{f}_{\boldsymbol{P},\ell,n}(\boldsymbol{x}) \boldsymbol{P}^n, \quad \hat{f}_{\boldsymbol{P},\ell,n}(\boldsymbol{x}) \in \Delta_{\ell}(\boldsymbol{P}, E).$$

The domains for asymptotic

$$\Pi_{\boldsymbol{P}}(a,b;\boldsymbol{R}) = \left\{ \boldsymbol{x} \in \mathbb{C}^d \mid \boldsymbol{P}(\boldsymbol{x}) \neq 0, a < \arg(\boldsymbol{P}(\boldsymbol{x})) < b, \ 0 < |x_j| < R_j \right\},$$

If $\boldsymbol{x} \in \Pi_{\boldsymbol{P}}(a,b;\boldsymbol{r})$ then $t = \boldsymbol{P}(\boldsymbol{x}) \in \{z \in \mathbb{C} \mid 0 < |z| < r, \ a < \arg(z) < b\},$ for some $r > 0$.

Definition

Let $f \in \mathcal{O}(\Pi_{\mathbf{P}}, E)$, $\Pi_{\mathbf{P}} = \Pi_{\mathbf{P}}(a, b; \mathbf{R})$ and $\hat{f} \in E[[\mathbf{x}]]$. We will say that f has \hat{f} as \mathbf{P} -asymptotic expansion on $\Pi_{\mathbf{P}}$ if for some r > 0 we have:

- 1. There is $\{f_n\}_{n \in \mathbb{N}} \subset \mathcal{O}_b(D_r^d, E)$ is a P-asymptotic sequence for \hat{f} , i.e. $f_n \to f$ in the m-topology and $f_n \equiv \hat{f} \pmod{P^n E[[x]]}$.
- 2. For every $N \in \mathbb{N}$ and $\Pi'_P \subset \Pi_P$ there exists $C_N(\Pi'_P) > 0$ such that

$$\|f(\boldsymbol{x}) - f_N(\boldsymbol{x})\| \le C_N(\Pi'_{\boldsymbol{P}})|\boldsymbol{P}(\boldsymbol{x})|^N, \quad \text{ on } \Pi'_{\boldsymbol{P}} \cap D^d_r.$$

Definition

Let $f \in \mathcal{O}(\Pi_{\mathbf{P}}, E)$, $\Pi_{\mathbf{P}} = \Pi_{\mathbf{P}}(a, b; \mathbf{R})$ and $\hat{f} \in E[[\mathbf{x}]]$. We will say that f has \hat{f} as \mathbf{P} -asymptotic expansion on $\Pi_{\mathbf{P}}$ if for some r > 0 we have:

- 1. There is $\{f_n\}_{n \in \mathbb{N}} \subset \mathcal{O}_b(D_r^d, E)$ is a P-asymptotic sequence for \hat{f} , i.e. $f_n \to f$ in the m-topology and $f_n \equiv \hat{f} \pmod{P^n E[[x]]}$.
- 2. For every $N \in \mathbb{N}$ and $\Pi'_{P} \subset \Pi_{P}$ there exists $C_{N}(\Pi'_{P}) > 0$ such that

$$\|f(\boldsymbol{x}) - f_N(\boldsymbol{x})\| \le C_N(\Pi'_{\boldsymbol{P}})|\boldsymbol{P}(\boldsymbol{x})|^N, \quad \text{ on } \Pi'_{\boldsymbol{P}} \cap D^d_r.$$

Fixing ℓ we can take $f_N = \sum_{n=0}^{N-1} f_{P,\ell,n} P^j$ and for every $N \in \mathbb{N}$ and $\Pi'_P \subset \Pi_P$ there exists $L_N(\Pi'_P) > 0$ such that

$$\left\|f(\boldsymbol{x}) - \sum_{n=0}^{N-1} f_{\boldsymbol{P},\ell,n}(\boldsymbol{x}) \boldsymbol{P}(\boldsymbol{x})^n\right\| \leq L_N(\Pi'_{\boldsymbol{P}}) |\boldsymbol{P}(\boldsymbol{x})|^N, \quad \text{ on } \Pi'_{\boldsymbol{P}} \cap D^d_{\rho}.$$

Basic properties

27

- ▶ *P*-asymptotic expansions are stable under addition and partial derivatives and products (if *E* is a Banach algebra).
- ► The *P*-asymptotic expansion of a function on a *P*-sector, if it exists, is unique. Indeed, if $f \sim^P \hat{f} = \sum f_\beta x^\beta$ on Π_P then

$$\lim_{\substack{\boldsymbol{x}\to\boldsymbol{0}\\\boldsymbol{o}\in\Pi_{\boldsymbol{P}}'}}\frac{1}{\beta!}\frac{\partial^{\beta}f}{\partial\boldsymbol{x}^{\beta}}(\boldsymbol{x})=f_{\beta},\quad \Pi_{\boldsymbol{P}}'\subset\Pi_{\boldsymbol{P}}.$$

• Consider $P, Q \in \mathbb{C}\{x\} \setminus \{0\}$ such that $Q = U \cdot P$ where U is a unit. If $f \sim^{P} \hat{f}$ on $\prod_{P}(a,b;R)$ then $f \sim^{Q} \hat{f}$ on $\prod_{Q}(a+\theta_{1},b+\theta_{2},R)$, if $\theta_{1} < \arg(U(x)) < \theta_{2}$ and the polyradius R is taken small enough.

a

Gevrey type asymptotic in an analytic map

If $f \sim^{P} \hat{f}$ on Π_{P} and furthermore:

- 1. The sequence $\{f_N\}_{N \in \mathbb{N}}$ satisfies $||f_N(\boldsymbol{x})|| \le KA^N N!^s$, for all $N \in \mathbb{N}$, $|\boldsymbol{x}| < r$.
- 2. There are constants C, A > 0 such that $C_N(\Pi'_{\boldsymbol{P}}) = CA^N N!^{1/k}$.

Then we say that the asymptotic expansion is of P - 1/k-Gevrey type.

Gevrey type asymptotic in an analytic map

If $f \sim^{P} \hat{f}$ on Π_{P} and furthermore:

- 1. The sequence $\{f_N\}_{N \in \mathbb{N}}$ satisfies $||f_N(\boldsymbol{x})|| \le KA^N N!^s$, for all $N \in \mathbb{N}$, $|\boldsymbol{x}| < r$.
- 2. There are constants C, A > 0 such that $C_N(\Pi'_P) = CA^N N!^{1/k}$.

Then we say that the asymptotic expansion is of ${\pmb P}-1/k-{\rm Gevrey}$ type. As in the case of one variable we have:

1. $f \sim_{1/k}^{P} \hat{0}$ on Π_{P} if and only if for every subsector $\Pi'_{P} \subset \Pi_{P}$ there are constants C, A such that

$$||f(\boldsymbol{x})|| \le C \exp(-1/A |\boldsymbol{P}(\boldsymbol{x})|^k), \quad \boldsymbol{x} \in \Pi_{\boldsymbol{P}}'.$$

2. Watson's lemma: If $f \sim_{1/k}^{P} \hat{0}$ on $\Pi_{P}(a,b;\mathbf{R})$ and $b-a > \pi/k$ then $f \equiv 0$.

P - k - summability

29

Definition

Let $\hat{f} \in E[[x]]$, k > 0 and θ be a direction.

- 1. The series \hat{f} is called P k-summable in direction θ if we can find $f \in \mathcal{O}(\Pi_{P}, E)$, $\Pi_{P}(\theta \frac{\pi}{2k} \varepsilon, \theta + \frac{\pi}{2k} + \varepsilon, r)$ such that $f \sim_{1/k}^{P} \hat{f}$ on Π_{P} .
- 2. The series \hat{f} is called P k-summable, if it is P k-summable in all directions up to a finite number of them mod. 2π .

The corresponding spaces are denoted by $E\{x\}_{1/k,\theta}^{P}$ and $E\{x\}_{1/k}^{P}$. If $P(x) = x^{\alpha}$ we simply write $E\{x\}_{1/k,\theta}^{\alpha}$ and $E\{x\}_{1/k}^{\alpha}$, respectively.

Tauberian theorems for summability in analytic functions

Theorem

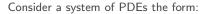
Let $P_j \in \mathbb{C}\{x\} \setminus \{0\}$, $k_j > 0$ for j = 0, 1, ..., n. For each j = 1, ..., n consider a series $\hat{f}_j \in E\{x\}_{1/k_j}^{P_j} \setminus E\{x\}$. Then

$$\hat{f}_0 = \hat{f}_1 + \dots + \hat{f}_n \in E\{x\}_{1/k_0}^{P_0}$$

if and only if there are $p_j \in \mathbb{N}^+$ and units U_j such that $\boldsymbol{P}_0^{p_0} = U_j \boldsymbol{P}_j^{p_j}$ and $p_0/k_0 = p_j/k_j$ for all $j = 1, \ldots, n$.

In particular, $E\{x\}_{1/k_0}^{P_0} = E\{x\}_{1/k_1}^{P_1}$ if and only if there are $p_0, p_1 \in \mathbb{N}^+$ and a unit U such that $p_0/k_0 = p_1/k_1$ and $P_1^{p_1} = U \cdot P_0^{p_0}$.

An example from Pfaffian systems



$$\begin{cases} x_1^{p+1} \frac{\partial \boldsymbol{y}}{\partial x_1} = \boldsymbol{F}_1(x_1, x_2, \boldsymbol{y}), \\ x_2^{q+1} \frac{\partial \boldsymbol{y}}{\partial x_2} = \boldsymbol{F}_2(x_1, x_2, \boldsymbol{y}), \end{cases}$$

Theorem (Gérard-Sibuya)

If the system is completely integrable and $\frac{\partial F_1}{\partial y}(0,0,0), \frac{\partial F_2}{\partial y}(0,0,0)$ and are invertible then it admits a unique analytic solution at the origin y such that y(0,0) = 0.

Borel-Laplace analysis for monomial summability

If
$$f \sim_{1/k}^{\boldsymbol{\alpha}} \hat{f}$$
 on $\Pi_{\boldsymbol{\alpha}}$ it follows that $\hat{f} \in E[[\boldsymbol{x}]]_{1/k}^{\boldsymbol{\alpha}}$, i.e.
$$\|a_{\boldsymbol{\beta}}\| \leq CA^{|\boldsymbol{\beta}|} \min_{1 \leq j \leq d} \beta_j !^{1/k\alpha_j}, \quad \boldsymbol{\beta} \in \mathbb{N}^d$$

The formal k-Borel transform associated to the monomial x^{α} with weight $s\in\overline{\sigma_d}$ is defined by

$$\hat{\mathcal{B}}_{\boldsymbol{\lambda}} : E[[\boldsymbol{x}]] \longrightarrow \boldsymbol{\xi}^{-k\alpha} E[[\boldsymbol{\xi}]]$$
$$\boldsymbol{x}^{\boldsymbol{\beta}} \longmapsto \frac{\boldsymbol{\xi}^{\boldsymbol{\beta}-k\alpha}}{\Gamma\left(\langle \boldsymbol{\beta}, \boldsymbol{\lambda} \rangle\right)}.$$

Here and below, $\overline{\sigma_d} := \{ s \in (\mathbb{R}_{\geq 0})^d \mid s_1 + \dots + s_d = 1 \}$ and $\lambda = \left(\frac{s_1}{\alpha_1 k}, \dots, \frac{s_d}{\alpha_n k} \right).$

Let $\hat{f} \in E[[x]]_{1/k}^{\alpha}$, $s \in \overline{\sigma_d}$ and θ a direction. We will say that \hat{f} is k - s-Borel summable in the monomial x^{α} in direction θ if:

- 1. $\hat{\mathcal{B}}_{\lambda}(\hat{f})$ can be analytically continued, say as φ_s , to an unbounded monomial sector containing θ .
- 2. The extension satisfies

$$\|\varphi(\boldsymbol{\xi})\| \leq C \exp\left(B \max\{|\xi_1|^{\frac{\alpha_1 k}{s_1}}, \dots, |\xi_n|^{\frac{\alpha_n k}{s_n}}\}\right).$$

In this case the $k-s-\textit{Borel sum of }\hat{f}$ in direction θ is defined as

$$f(\boldsymbol{x}) := \mathcal{L}_{\boldsymbol{\lambda}}(\varphi_{\boldsymbol{s}})(\boldsymbol{x})$$
$$= \boldsymbol{x}^{k\boldsymbol{\alpha}} \int_{0}^{e^{i\theta}\infty} f\left(x_{1}\xi^{\frac{s_{1}}{\alpha_{1}k}}, \dots, x_{n}\xi^{\frac{s_{n}}{\alpha_{n}k}}\right) e^{-\xi} d\xi$$

Equivalence of the methods

34

Theorem

Let \hat{f} be a 1/k-Gevrey series in the monomial x^{α} . Then it is equivalent:

- 1. $\hat{f} \in E\{x\}_{1/k,\theta}^{\alpha}$, i.e. \hat{f} is $x^{\alpha} k$ -summable in direction θ .
- 2. There is $s \in \overline{\sigma_d}$ such that \hat{f} is k s-Borel summable in the monomial x^{α} in direction θ .
- 3. For all $s \in \overline{\sigma_d}$, \hat{f} is k s-Borel summable in the monomial x^{α} in direction θ .

In all cases the corresponding sums coincide.

For each $\alpha \in \mathbb{N}^d \setminus \{0\}$, k > 0 and $s \in \overline{\sigma_d}$ we have the following monomorphism between the structures

$$\left(E[[\boldsymbol{x}]]_{1/k}^{\boldsymbol{\alpha}},+,\times,X_{\boldsymbol{\lambda}}\right) \stackrel{\widehat{\mathcal{B}}_{\boldsymbol{\lambda}}}{\longleftrightarrow} \left(\boldsymbol{\xi}^{-k\boldsymbol{\alpha}}E\{\boldsymbol{\xi}\},+,*_{\boldsymbol{\lambda}},\boldsymbol{\xi}^{k\boldsymbol{\alpha}}(\cdot)\right),$$

where

$$X_{\lambda} = \frac{\boldsymbol{x}^{k\alpha}}{k} \left(\frac{s_1}{\alpha_1} x_1 \frac{\partial}{\partial x_1} + \dots + \frac{s_d}{\alpha_d} x_d \frac{\partial}{\partial x_d} \right), \quad \boldsymbol{\lambda} = \left(\frac{s_1}{\alpha_1 k}, \dots, \frac{s_d}{\alpha_d k} \right),$$

and the convolution is given by

$$(f*_{\lambda}g)(\boldsymbol{x}) = \boldsymbol{x}^{k\alpha} \int_{0}^{1} f(x_{1}\tau^{\frac{s_{1}}{\alpha_{1}k}}, \dots, x_{d}\tau^{\frac{s_{d}}{\alpha_{d}k}}) g(x_{1}(1-\tau)^{\frac{s_{1}}{\alpha_{1}k}}, \dots, x_{d}(1-\tau)^{\frac{s_{d}}{\alpha_{d}k}}) d\tau.$$

Applications to singularly perturbed PDEs

Consider the singularly perturbed PDE

$$\boldsymbol{x}^{\boldsymbol{\alpha}}\boldsymbol{\varepsilon}^{\boldsymbol{\alpha}'}\left(\lambda_{1}x_{1}\frac{\partial \boldsymbol{y}}{\partial x_{1}}+\cdots+\lambda_{n}x_{n}\frac{\partial \boldsymbol{y}}{\partial x_{n}}\right)=\boldsymbol{F}(\boldsymbol{x},\boldsymbol{\varepsilon},\boldsymbol{y}),$$

where $x \in \mathbb{C}^n, \varepsilon \in \mathbb{C}^m$, $\alpha \in (\mathbb{N}^+)^n$, $\alpha' \in (\mathbb{N}^+)^m$, $\lambda = (\lambda_1, \ldots, \lambda_n) \in (\mathbb{R}^+)^n$ and F analytic at the origin.

Theorem

If $A = \frac{\partial F}{\partial y}(0,0,\mathbf{0})$ is an invertible matrix the above problem has a unique formal power series solution $\hat{y} \in \mathbb{C}[[x,\varepsilon]]^N$ and it is $1 - x^{\alpha} \varepsilon^{\alpha'}$ -summable. The singular directions are determined by the equation

$$\det\left(\langle \boldsymbol{\lambda}, \boldsymbol{\alpha} \rangle \boldsymbol{\xi}^{\boldsymbol{\alpha}} \boldsymbol{\eta}^{\boldsymbol{\alpha}'} I_N - A_0\right) = 0,$$

in the $(\boldsymbol{\xi}, \boldsymbol{\eta}) -$ Borel space.

For $\mu > 0$ we work in the space

$$\begin{aligned} \mathcal{A}^{N}_{\mu}(S) &:= \{ \boldsymbol{f} \in \mathcal{O}(S, \mathbb{C}^{N}) \mid \boldsymbol{f}(\boldsymbol{0}, \boldsymbol{\eta}) = \boldsymbol{0}, \ \|\boldsymbol{f}\|_{N,\mu} := \max_{1 \leq j \leq N} \|f_{j}\|_{\mu} < +\infty \}, \\ \|f\|_{\mu} &:= M_{0} \sup_{(\boldsymbol{\xi}, \boldsymbol{\eta}) \in S} |f(\boldsymbol{\xi}, \boldsymbol{\eta})| (1 + R(\boldsymbol{\xi})^{2}) e^{-\mu R(\boldsymbol{\xi})}, \qquad f \in \mathcal{O}(S), \\ R(\boldsymbol{\xi}) &= R_{\boldsymbol{\lambda}'}(\boldsymbol{\xi}) = \max_{1 \leq j \leq n} \{|\xi_{j}|^{\alpha_{j}/s_{j}}\}, \\ S \subset \{(\boldsymbol{\xi}, \boldsymbol{\eta}) \in \mathbb{C}^{n} \times \mathbb{C}^{m} \mid \boldsymbol{\xi}^{\alpha} \boldsymbol{\eta}^{\alpha'} \neq \lambda_{j} \text{ for all } j = 1, \dots, N \}. \end{aligned}$$

S. Carrillo - The problem of multisummability in higher dimensions

The problem of multisummability

How to mix the possible summability methods we have at hand?

Monomial acceleration operators

We formally compute the composition of a Borel and Laplace transform for different indexes. If $\alpha, \beta \in (\mathbb{N}^+)^d$, k, k' > 0, $s, s' \in \sigma_d$ and $\lambda = \left(\frac{s_1}{\alpha_1 k}, \dots, \frac{s_d}{\alpha_d k}\right)$, $\mu = \left(\frac{s'_1}{\beta_1 k'}, \dots, \frac{s'_d}{\beta_d k'}\right)$, then

$$\mathcal{B}_{\boldsymbol{\mu}} \circ \mathcal{L}_{\boldsymbol{\lambda}}(\varphi)(\boldsymbol{\xi}) = \boldsymbol{\xi}^{k\alpha - k'\beta} \int_{0}^{e^{i\theta}\infty} \varphi(\xi_{1}\tau^{\frac{s_{1}}{\alpha_{1}k}}, \dots, \xi_{d}\tau^{\frac{s_{d}}{\alpha_{d}k}}) C_{\Lambda}(\tau) d\tau,$$
$$:= \mathfrak{A}_{\boldsymbol{\mu},\boldsymbol{\lambda}}(\varphi)(\boldsymbol{\xi}).$$

1. The parameters must satisfy the relations

$$\Lambda := \frac{s_1/\alpha_1 k}{s_1'/\beta_1 k'} = \dots = \frac{s_d/\alpha_d k}{s_d'/\beta_d k'} > 1.$$

2. Given $s \in \sigma_d$ then s' is given by

$$s'_j = \frac{s_j \beta_j / \alpha_j}{s_1 \beta_1 / \alpha_1 + \dots + s_d \beta_d / \alpha_d}, \qquad j = 1, \dots, d.$$

This holds if

$$\max_{1 \le j \le d} \frac{\alpha_j}{\beta_j} < \frac{k'}{k}.$$

3. $\mathfrak{A}_{\mu,\lambda,\theta}(\varphi)$ is well-defined for functions φ with

$$\|f(\boldsymbol{\xi})\| \le C \exp\left(M \max_{1 \le j \le d} |\xi_j|^{\kappa_j}\right), \quad \frac{1}{\kappa_j} = \frac{s_j}{\alpha_j k} - \frac{s'_j}{\beta_j k'}, \quad j = 1, \dots, d.$$

- 1. Prove that a multisummable series can we decomposed as sum of summable series, each one of a different level. Prove that the set of multisummable series is an algebra stable by partial derivatives.
- 2. Apply the methods of multisummability to treat formal solutions of systems of type

$$\mathsf{diag}\{\epsilon^{q_1}x^{p_1}I^{(1)}, \epsilon^{q_2}x^{p_2}I^{(2)}\}x\frac{dy}{dx} = A_0y + xG(x;\epsilon;y),$$

where $I^{(j)}$ denotes the identity matrix of dimension $n_j \in \mathbb{N}$, $N = n_1 + n_2$, $\boldsymbol{y} \in \mathbb{C}^N$, $A_0 = \text{diag}\{\lambda_1, \dots, \lambda_n\}$, and g is analytic at $(0, 0, \mathbf{0}) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^N$.

References

- Balser W.: Summability of power series in several variables, with applications to singular perturbation problems and partial differential equations. Ann. Fac. Sci. Toulouse Math, vol. XIV, n°4 (2005) 593-608.
- Braaksma B.: Multisummability and Stokes Multipliers of Linear Meromorphic Differential Equations. J. Differential Equations 92 (1991), no. 1, 45-75
- Canalis-Durand M., Mozo-Fernández J., Schäfke R.: Monomial summability and doubly singular differential equations. J. Differential Equations, vol. 233, (2007) 485-511.,
- Carrillo, S.A. Summability in a monomial for some classes of singularly perturbed partial differential equations. Submitted to Publication. Available at https://arxiv.org/abs/1803.06719.
- Carrillo, S. A., Mozo-Fernández, J. Tauberian properties for monomial summability with appliactions to Pffafian systems. Journal of Differential Equations 261 (2016) pp. 7237-7255.

- Carrillo, S. A., Mozo-Fernández, J. An extension of Borel-Laplace methods and monomial summability. J. Math. Anal. Appl, vol. 457, Issue 1, (2018) 461–477.
- Carrillo S.A., Mozo-Fernández J., Schäfke R., Tauberian theorems for summability in analytic functions. In preparation.
- Costin O.: On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations. Duke Math. J. 93 (1998), no. 2, 289-344.
- ► Costin O., Tanveer S.: Nonlinear evolution PDEs in ℝ⁺ × ℂ^d: existence and uniqueness of solutions, asymptotic and Borel summability properties Ann. I. H. Poincaré, AN 24 (2007) 795-823.
- Mozo-Fernádez J., Schäfke R.: Asymptotic expansions and summability with respect to an analytic germ. 2017. To appear in Publications Matematicae. Available at arxiv.org/pdf/1610.01916v2.pdf

- ► Luo Z., Chen H., Zhang C.: Exponential-type Nagumo norms and summability of formal solutions of singular PDEs. Annales de l'institut Fourier, Volume 62 (2012) no. 2, p. 571-618.
- Luo Z., Chen H., Zhang C.: On the summability of the formal solutions for some PDEs with irregular singularity. C. R. Acad. Sci. Paris, Ser. I 336 (2003) 219-224.

Thanks for your attention.