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Asymptotic Analysis and Borel summability in one variable

We have at our disposal a powerful summability theory useful in the study of
formal solutions of analytic problems, e.g. ODEs at irregular singular points,
families of PDEs, difference equations, conjugacy of diffeomorphisms of (C,0),
normal forms for vector fields, singular perturbation problems, normal forms of
real-analytic hypersurfaces...

» Asymptotic expansions, Gevrey asymptotic expansions, k—summability.
» Borel and Laplace transformations. Tauberian theorems.

» Ecalle's accelerator operators, Multisummability.
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Asymptotics in several variables

For several variables there are different approaches. In this framework we can
mention:

» Strong Asymptotic Expansions, (Majima, 1984).

» Composite Asymptotic Expansions (Fruchard-Schifke, 2013).

» Asymptotic Expansions in a monomial or in an analytic function
(Mozo-Schéfke, 2007, 2017).

We will focus in the item and pose the problem of multisummability for those
methods.
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The scope of applications

> (1990 Ramis, Sibuya, Braaskma) Multisummability of non-linear equations

d
pod—?; = F(z,y).

When é5—11'5(07 0) is invertible the unique formal power series solution is

p—summable.

» (2003 Luo, Chen, Zhang) Summability in the variable z of solutions of
PDEs of the form

towu = F(t,z,u,0pu), u(0,z)=0,

under certain conditions on F.

» (2007 Costin, Tanveer) Existence, uniqueness and asymptotic in several
variables of solutions of PDEs of the form

uy + P(@i)u +g(z, t, {6;311,}) =0, wu(x,0)=ur(z),

where the principal part of the constant coefficient n—th order differential
operator P is subject to a cone condition.
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» (2007 Canalis-Duran, Mozo, Schifke) 1 — zPe?—summability of the unique

formal power series solution of the doubly singular equation

qu‘Fl?iy = F

da: (1:7 E’ y)7

€
when %—5(0,0,0) is invertible.

(2018 -) 1 — 2% —summability of the unique formal power series
solution of the singularly perturbed PDE

a_a’ dy oy
e ndn =F )&y )
z%e ()\1901 e + A 8xn> (z,e,y)

where x € C*,e € C™, a € (NT)", o’ € (NT)™,

A= (A1,...,An) € (RT)" and F analytic at the origin and 2£(0,0,0) is

. . y
invertible.
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The theory in one variable
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Example: Euler’s equation

Consider Euler’s equation:
2 7
'y +y==wx.

We can solve it for z > 0 to get
oo =&/

But it also has the formal power series solution

glz) =D (—1)"nlz" ",

n=0

de.
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The notion of asymptotic expansion

Let us fix a complex Banach space (E, || - ||).

We work in sectors at the origin

S=S8(a,br)={xcC|0< |z| <71 a<arg(xz) < b}.

Definition

We say f € O(S, E) has f = > panx™ € El[z]] as asymptotic expansion on
S(f~ f on S.) if for every subsector S C S and N € N we can find

COn(S") > 0 such that

N-1
Hf(rr) =D anz”| <Cn(Sa|Y, zeS.
n=0
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Basic properties 9

Assume f ~ f =3 sanz” and g ~ § on S. The following properties hold:

. (n)
1. a, = lim 250 jT@ for any subsector S’
xzeS -

2. f+g~f+a fog~fa L~%ons.
3. (Borel-Ritt) Given any f € E[[t]] and S there is f € O(S, E) such that
f~fonS.
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Gevrey type asymptotic expansions

If f ~ f on S and we can choose Cn(S’') = CANN!1<k, then we say that the
asymptotic expansion is of type 1/k—Gevrey (f ~1,i f on S). Then

feElz]lik, e |an] <CA™IYE

the space of 1/k— Gevrey series in x.

> f ~1/5 0on S if and only if for every S’ C S, we can find K, M > 0

I (@) < K exp(=M/|z|").

» (Borel-Ritt-Gevrey) If b — a < 7/k given any f € E[z]]1/) and S(a,b,7)
there is f € O(S, E) such that f ~y fonsS.
> (Watson's Lemma) If b —a > w/k and f ~y,;, 0 on S(a,b,r) then f = 0.
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k—Sumability

Definition
Let f € E[[z]]1/, and 6 € R a direction.

> fis k—summable in a direction 6 if we can find f € O(S, E),
S=8(0—g5; —¢,0+ 5z +¢,7) such that f ~q/; f.

> f is k—summable if it is k—summable in all directions, up to a finite
number of them, mod. 27.

We will use the notation E{x},,4 9 and E{x},; for the corresponding sets.
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Borel-Laplace method

The series f = Yoo ganx” € El[z]]y ) is called k—Borel-summable in

direction 6 if o a k
Bi(f — Zanmn) = Z F(n/k)eﬁ )

n<k n>k

can be analytically continued, say as ¢, and

()] < Cexp(ME[*),  for some C, M > 0.

Its Borel sum is defined by

F@) = 3 ana” + Li(p)(@)

n<k

:Zanwn+/

C'i@
ek 0

T p(©)e 0" a(eh),
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The Borel-Laplace analysis exploits the isomorphism between the following
structures

(Bl x5t ) 20 (6Bt 4 1e'0),

where x denotes the usual product and xj stand for the convolution product

(f ¢ g)(€) = £" / FlEr®)g(e(1 — 1)/ )ar.
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Euler's equation Il

Applying the 1—Borel transformation to Euler's example:

[e'S] [e'S]

§@) = S (1) e Bl y(e) = S (—1ynen =

n=0 n=0

—
—+ | =
S

m2y/+y:m6—l>§Y+Y:1.

Using the Laplace transform we get the solution

“+oo e—g/z
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Example of non-linear ODEs

Consider the differential equation

d
2 = Fa,y) = b(e) + Ay + Y Ar@)y’,
' |T]>2

where p € NT, y € CV, F is analytic in a neighborhood of (0,0) € C x CV
and F(0,0) = 0.

Using B = B,, * = %, we obtain the convolution equation

(PE" Iy — A0)Y =B(b) + B(A— Ao) * Y + ) B(Ar — Ar(0) » Y™

[T]>2

+ > A0y

11>2
We ask for p&€P Iy — Ap to be invertible, therefore we work on domains inside
Q:={£eC|pf#N\ forallj=1,... N},

where \; are the eigenvalues of Ag.
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Theorem
If Ag = g—g(o, 0) is invertible then the previous ODE has a unique formal
power series solution § € C[[z]]". Furthermore ¢ is p—summable.

For v > 0 consider
AV (S) = {F € O(S,CY) | F(0) =0, | fllx = max [ fsllu < +oo},
£l = Mosup ()11 + [g)e™ ", f € O(S).

S:=Sr=25(0,2¢) UDgr C Q,

1
dr
Mo = sup s(1 + s*)I(s) ~ 3. 1(s) := )
0 i‘;lg s(1+s7)1(s) ~ 3.76, (s) [) (1+ 5272)(1 + s2(1 — 7)2)
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For general linear systems it is enough to consider equations of type

%Y = o) + Ale)y,

A(:L) = éxikhAh + (é wlkhI}L) A_;'_([L'),

h=0 h=0

where 0 =ko < k1 < ---<ky, kn ENT, N=ng+---+n,, A, isan, x n,
invertible matrix , [, is the identity matrix of size nj,, A4+ and g analytic at the
origin.

Theorem (Braaksma-Balser-Ramis-Sibuya)

If the system posses a formal solution y then it is k—multisummable, where
k= (ki,...,kn).
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Tauberian properties in one variable

Theorem (Martinet-Ramis)
The followings statements are true for 0 < k < k' and 0 < ko, k1, ..., kn:
1. Iffe E{t}1 /i has no singular directions then it is convergent.
2. Ellz]lye 0 E{th/e = E{t}1/w O E{t}1/r = E{t}.
3. Consider fj € E{t}l/k \ E{t} for j =1,....,n. Then
fo=fi+ -+ fue E{t}1/k, if and only /fko =k; forallj=1,...,n.
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Multisummability

For two levels 0 < k2 < k1 we can compose both kj-summability methods:

Ly, © (Bry 0 Liy) 0 Bkz'

We can work with the central term

i

B o Lu@)@) = o [ eOCa((€/2)*)de™ 1= By s (9) (o).
Here a = k1/k2 > 1 and
o L o 1/ o — (_1 " n
Cu(t) = 9eg Lexp(u tu'*)du = ;FF (%)t ,

it is called a Ecalle’s acceleration kernel. It is entire and
Ca(t)] < crexp(—calt]?), 1/a+1/8=1, |arg(t)] < 7/28 — e
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Definition
Consider k = (ki, ka2, ..., kq) with 0 < kg < -+ < kg < k1. A (multi-)direction
60 = (01, ...,0,) is k—admissible if

s 1 1 1
0; —0;_ 1] < — ith — = — —
| J J 1‘ - 2l€]’7 i Kj k]‘ kijfl’

2<j<q

This is equivalent to say that the intervals I; = [Oj — 57,05 + %} satisfy
J J

I1C12C"'C[q.
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Definition R
A formal power series f € E[[x]]1x, is k—multisumable in direction 6 if:

1. f,= qu (f) can be analitically extended to a sector of infinite radius
bisected by 64 and with exponential growing at most x,. We can then
calculate Rx4x,_, x, (fq)-

2. Forevery 1 <j <q—1, consider f; = Ay, x;,,(fj+1). We ask f; to be
analitically extended to a sector of infinite radius bisected by 6; and with
exponential growing at most r; (k1 for j = 1).

Then f = L, ,0,(f1) is well-defined in a small sector bisected by 01 and
opening larger than 7/k1. It is called the k—multisumm of f in direction 6.

The functions f; satisfy
i~y Fi= B (), 1/ks = 1/kg = 1/k;.

Let E{x}k,0 be the space of k—multisummable series in direction 6.
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Decomposition theorem

Theorem (Decomposition theorem - W. Balser)

Consider k = (k1, ..., kq) € (RT)? with 1717 - kiil <2,1<j<gqanda
k—admissible direction @ = (01,...,0,).

Then for every [ € E{x}x,0 we can find f; € E{x}1/x; 0, such that

f=h++fa

and the k—sum correspond to the sum of the kj—sums if the respective series.
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Asymptotic and Summabiliy in an analytic function
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The formal framework

We work in (C%,0) with coordinates @ = (x1,...,xq). Consider
f= ZﬁgNd fﬁmﬁ € EH:RH

Given a € N\ {0}, we can write uniquely

F=) fan@a", fan(@) =) foarsz’.

n=0 afp

Given P =} 5 1 PgxP € C{z}, P(0) = 0 and an injective linear form
0:N" 5 R, l(a) = Liar + - + Lyog, we can also write uniquely

f: pr,g,n(m)P", fP-,é,n(m) € AZ(Pv E)
n=0
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The domains for asymptotic

A P—sector is a set defined by the conditions
Ip(a,b; R) = {ac € C| P(x) #0,a < arg(P(x)) < b, 0 < |z;] < Rj},

If x € IIp(a,b;7r) thent = P(x) € {z€ C|0< |z| <1, a<arg(z) < b}, for
some r > 0.
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Definition R
Let f € O(Ilp, E), Ilp = p(a,b; R) and f € E[[z]]. We will say that f has
f as P—asymptotic expansion on Ilp if for some r > 0 we have:

1. Thereis {fn}nen C Ob(Df7E) is a Pjasymptotic sequence for f i.e.
fn — [ in the m—topology and f, = f( mod P"E[[z]]).

2. For every N € N and II'> C Ilp there exists C’N(H’p) > 0 such that

| f(x) — fn(®)| < Cn(Tp)|P(x)|N, onIlpn DL
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Definition R
Let f € O(Ilp, E), Ilp = p(a,b; R) and f € E[[z]]. We will say that f has
f as P—asymptotic expansion on Ilp if for some r > 0 we have:

1. Thereis {fu nen C Op(DE E) is a P—asymptotic sequence for f ie.
fn — f in the m—topology and f,, = f( mod P"E[[x]]).
2. For every N € N and II’»> C I1p there exists Cv(IT’5) > 0 such that

1f(®) = fn(@)|| < On(Tp)|P(z)|™,  on Tlp N D,

Fixing £ we can take fn = Z;VI_OI fp}zynpj and for every N € N and
[I’> C [Ip there exists Ly (IT’5) > 0 such that

Hf(m) - E_: feen(x)P(x)"|| < Lan(p)|P(x)|™, on I N DY

n=0
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Basic properties

» P —asymptotic expansions are stable under addition and partial derivatives
and products (if E is a Banach algebra).

» The P—asymptotic expansion of a function on a P—sector, if it exists, is
unique. Indeed, if f ~* f =3 fz2® on IIp then

li 0" f 1] IT
>0 51333&( ) = fs, Mp Cllp.
xzell P

» Consider P, Q € C{x} \ {0} such that Q = U - P where U is a unit. If
f~F fon Hp(a b; R) then f ~@ f on Ilg(a+ 01,b+ 0, R), if
01 < arg(U(x)) < 02 and the polyradius R is taken small enough.
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Gevrey type asymptotic in an analytic map

If f~F f on IIp and furthermore:

1. The sequence {fn}nen satisfies || fn(x)|] < KAV NS, for all N € N,
|| < 7.
2. There are constants C, A > 0 such that Oy (IIp) = CAN N1V/*.

Then we say that the asymptotic expansion is of P — 1/k—Gevrey type.
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Gevrey type asymptotic in an analytic map

If f~F f on IIp and furthermore:

1. The sequence {fn}nen satisfies || fn(x)|] < KAV NS, for all N € N,
|| < 7.
2. There are constants C, A > 0 such that Oy (IIp) = CAN N1V/*.

Then we say that the asymptotic expansion is of P — 1/k—Gevrey type.
As in the case of one variable we have:

1. f N{D/k 0 on IIp if and only if for every subsector II'> C IIp there are
constants C, A such that

If (@) < Cexp(~1/A|P(@)"), =€ llp.

2. Watson's lemma: If f Nf’/k 0 on Ilp(a,b; R) and b—a > 7/k then f = 0.
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P — k—summability

Definition
Let f € E[[z]], kK > 0 and 6 be a direction.
1. The series f is called P — k—summable in direction 6 if we can find
f€O(lp, E), Ip(0 — 5 —e,0 + J; +¢&,7) such that f ~17; f on Ilp.

2. The series f is called P — k—summable, if it is P — k—summable in all
directions up to a finite number of them mod. 2.

The corresponding spaces are denoted by E{w}f/kﬁ and E{w}f/k If
P(z) = x> we simply write E{x}{, o and E{x};, respectively.
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Tauberian theorems for summability in analytic functions

Theorem
Let P; € C{z}\ {0}, k; >0 for j=0,1,...,n. Foreachj=1,...,n
consider a series f; € E{m}f/’kj \ E{x}. Then

fo=fi+- 4 fu € B{=},

if and only if there are p; € NT and units U; such that P5° = UjP§j and
po/ko = pj/kj for allj =1,... ,n.

In particular, E{w}fj/‘}m = E{a:}f/kl if and only if there are po,p1 € N* and a
unit U such that po/ko = p1/k1 and P7* = U - PIP.
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An example from Pfaffian systems

Consider a system of PDEs the form:

o1 OY
l‘lfﬂafxl = Fi(z1,22,y),
dy
1
zg* pr Fy(x1,22,y),

Theorem (Gérard-Sibuya)

If the system is completely integrable and 85;1 (0,0,0), a;;z (0,0,0) and are

invertible then it admits a unique analytic solution at the origin y such that
y(0,0) =0.
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Borel-Laplace analysis for monomial summability

If f ~$, f on Ila it follows that f € E[[z]]5,, ie.

< CAP min B.11/ke a
las|l < CA™ min 5 , BEN

The formal k— Borel transform associated to the monomial ** with weight
s € G4 is defined by

B :E[[z]] — £ " E[[¢]]

B—ko
wﬁ’ — 67

'((B,A)

Here and below, a4 := {s € (R>¢)? | s1 + -+ s4 = 1} and

A= S1 Sd
a1k’ " ank




S. Carrillo — The problem of multisummability in higher dimensions

Let f € E[[x]]%),, s € T4 and 0 a direction. We will say that fis k — s—Borel
summable in the monomial £ in direction 0 if:

1. Bk(f) can be analytically continued, say as ¢4, to an unbounded
monomial sector containing 6.

2. The extension satisfies

lo()]] < Cexp (B max{&x] . 6] T }) .

In this case the k — s—Borel sum of f in direction 0 is defined as

f(@) :=Lx(ps) ()

i6

L ¢ _S1_ sn
—x 0‘/ f(:clgaw,...,zngm)e*ﬁdg.
0
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Equivalence of the methods

Theorem
Let f be a 1/k— Gevrey series in the monomial ™. Then it is equivalent:

1. fe E{x})) . i€ [ is > — k—summable in direction 6.

2. There is s € G4 such that f is k — s—Borel summable in the monomial ™
in direction 6.

3. Forall s € 54, [ is k — s—Borel summable in the monomial % in
direction 6.

In all cases the corresponding sums coincide.
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For each & € N¥\ {0}, k£ > 0 and s € 54 we have the following
monomorphism between the structures

(EHQ}”?/;“+, X 7X)\) & <£7kaE{§}a+a*>\a€ka('))7

_ S1 Sd
- P )
Otlk Oédk

-1 s El s s
(f¥ag) (@) = 2" / Fair ™%, zaraaF ) g(y (1-7)31F . 3a(1—7) 7 )dr.
0

where

and the convolution is given by
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Applications to singularly perturbed PDEs

Consider the singularly perturbed PDE

e (Mma—? + ot Ay 88

Dy ) F(x,e,y),
A=

where 2 € C",e € C™, ac € (NT)", @’ € (NT)™, A= (A1,...,An) € (RT)"

and F' analytic at the origin.

Theorem
If A= %(O, 0,0) is an invertible matrix the above problem has a unique

formal power series solution §j € C[[x,&]]N and it is 1 — x*® —summable.
The singular directions are determined by the equation

det ((A, @) €0 Iy — AO) -0,

in the (&, m)— Borel space.
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For 1 > 0 we work in the space

A () i={f € O(S,CY) | £(0,m) =0, [l i= max [Ifs]l < +oc,

I fllu = Mo sup |f(&n)|(1+R(E)*)e O feo(s),
(&,meS

R(£) = Rx(£) = max {|&]%/%},

1<j<n

Sc{(&neC" xC"| e n™ £\ forallj=1,...,N}.
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The problem of multisummability

How to mix the possible summability methods we have at hand?
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Monomial acceleration operators

We formally compute the composition of a Borel and Laplace transform for
different indexes. If o, 3 € (NT), k,k' >0, 5,8 € 04 and

’
— S1 Sd — S1 Sd
A= <a1k,,..,adk>, n= (ﬂﬂc”"" 3dk,>, then

6

By o La(ip)(€) = gFo+'P / P(ErT IR 4O (r)dr,

= A A (9)(8)-
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1. The parameters must satisfy the relations

S1/Oé1k‘ o Sd/adk

= =z SRy
s1/B1k’! sy/Bak’
2. Given s € o4 then s’ is given by
s, = 5383/ j=1,....d

sifr/on + -+ saBa/oa’
This holds if

!

oy <
max —— -—.
1<j<d B;  k

3. Ap.x,0(p) is well-defined for functions ¢ with

, 1
< y : S| — = — =1,...,d.
£ < Cexp (M @@gdlfjl ) ;= : j=1,...,d



S. Carrillo — The problem of multisummability in higher dimensions

Goals

1. Prove that a multisummable series can we decomposed as sum of
summable series, each one of a different level. Prove that the set of
multisummable series is an algebra stable by partial derivatives.

2. Apply the methods of multisummability to treat formal solutions of
systems of type

. d
diag{e? 2" T a2 P2 1(2)}xd—y = Aoy + 2G(z;€; ),
X
where 1) denotes the identity matrix of dimension n; € N, N = n; + no,

y € CN, Ag = diag{\1,...,\n}, and g is analytic at
(0,0,0) € C x C x CV.
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Thanks for your attention.
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