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Problem of jet determination

Real submanifold M ⊂ CN, biholomorphisms φ, ψ of CN such that
φ(M) ⊂ M, ψ(M) ⊂ M

For what r can we conclude that

jrzφ = jrzψ

implies φ = ψ?

Equivalent to ask for what r can we conclude that jrz(φ ◦ ψ−1) = id
implies φ ◦ ψ−1 = id.
Nontrivial φ such that

jrzφ = id

for r > 0 have nontrivial dynamics and pose restrictions, how M
can look like.
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Jet determination of CR automorphisms

(almost) CR structure ... M with distribution D and (almost)
complex structure I onD... CR automorphisms of M preservingD
and I

Regular point of M ⊂ CN ...

D := TM ∩ i(TM)

in the neighborhood of regular point ... CR structure of M,D with I
induced by multiplication by i... biholomorphisms preserving M
restrict to CR automorphisms on M
In general, not every CR structure can be embedded into CN. Not
every CR automorphisms extends uniquely to biholomorphisms
preserving M.
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Jet determination of infinitesimal CR automorphisms

Topology comes to play ... CR automorphisms outside of
connected component of identity can be determined by a higher
jet.
In the connected component of identity, ..., jet determination of
(complete) holomorphic vector fields Z whose flow preserve M:
For what r can we conclude that

jrzZ = 0

implies Z = 0?

Infinitesimal CR automorphisms ... vector fields on M whose flows
are CR automorphisms.
Jet determination of infinitesimal CR automorphisms.
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Bounds on jet determination

What properties of M say about jet determination of
biholomorphisms preserving M with such property?
I.e. we want to obtain bound on jet determination imposed by the
properties of M.

Theorem (Cartan, Tanaka, Chern and Moser)

Let M be a real-analytic hypersurface through a point p in CN with
non-degenerate Levi form at p. Let F, G be two germs of
biholomorphic maps preserving M. Then, if F and G have the
same 2-jets at p, they coincide.

The result becomes false without any hypothesis on the Levi form.
What about higher codimension?
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Beloshapka’s theory of quadric models

(Levi) non–degenerate quadric models M0 ⊂ C
n+k ... 2-degree

polynomial submanifolds given by

Im w1 = zH1z∗, · · · , Im wk = zHk z∗, (1)

where z ∈ Cn, w ∈ Ck , 1 ≤ k ≤ n2,
1 the n × n Hermitian matrices Hj are linearly independent, and
2 the common kernel of all Hermitian matrices Hj is trivial, i.e.,

zHjz∗ = 0 for all j implies z = 0.

Beloshapka investigated jet determination of real-analytic M that
can be approximated by such M0 and proposed that 2–jet
determination in such situation.

Baouendi, Ebenfelt and Rothschild ... there is a general bound
1 + k for jet determination in such situation.
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Counterexample of F. Meylan

Let M ⊆ C9 be the real submanifold of (real) codimension 5 through
0 given in the coordinates (z,w) = (z1, . . . , z4,w1, . . . ,w5) ∈ C9, by

Im w1 = P1(z, z̄) = z1z2 + z2z1

Im w2 = P2(z, z̄) = −iz1z2 + iz2z1

Im w3 = P3(z, z̄) = z3z2 + z4z1 + z2z3 + z1z4

Im w4 = P4(z, z̄) = z1z1

Im w5 = P5(z, z̄) = z2z2

(2)

Then there is the following holomorphic vector field whose flow
preserves M

T = (−
1
2

w1
2 +

1
2

w2
2 + 2w4w5)i(−iz1

∂

∂z3
+ iz2

∂

∂z4
)

+ w1w2i(z1
∂

∂z3
+ z2

∂

∂z4
) − 2w2w5i(z1

∂

∂z4
) − 2w2w4i(z2

∂

∂z3
)
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Aims of the talk

Analyze the counterexample of F. Meylan from viewpoint of
Tanaka’s prolongation theory.

Formulate a general construction of counterexamples to 2–jet
determination Chern-Moser Theorem in higher codimension.

Construct counterexamples with general order of jet determination.
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Infinitesimal CR automorphisms of quadric models

Nondegenerate quadric models Im wj = zHjz∗... weighted
homogeneous for [zj] = 1, [wj] = 2 with corresponding Euler field

E :=
∑

j

zj
∂

∂zj
+ 2
∑

j

wj
∂

∂wj

=> Lie algebra of infinitesimal CR automorphisms decomposes as
g = g−2 ⊕ g−1 ⊕ · · · ⊕ gb−1 ⊕ gb such that [gc , gd ] ⊂ gc+d

g−2 = {
∑

j

qj
∂

∂wj
}

g−1 = {
∑

j

pj
∂

∂zj
+ 2i
∑

j

zHjp∗
∂

∂wj
},

where p ∈ Cn, q ∈ Rk and the real span of the real parts of these
vector fields on M0 is TM0.
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Levi–Tanaka algebra

Definition
A non–degenerate Levi Tanaka algebra (of a nondegenerate
quadric model) is a graded Lie algebra m = g−2 ⊕ g−1 together with
complex structureJ on g−1 satisfying

1 [g−1, g−1] = g−2,
2 [X , g−1] = 0, X ∈ g−1, implies X = 0
3 [J(X), J(Y)] = [X ,Y ] for all X ,Y ∈ g−1.

g−2 ⊕ g−1 in the Lie algebra of infinitesimal CR automorphism with
the Lie bracket taken with the opposite sign defines a
non–degenerate Levi Tanaka algebra (at z = 0,w = 0) of the
nondegenerate quadric model with J induced by multiplication by i.

[(q, p), (q̃, p̃)] = (2i(−pHj p̃∗ + p̃Hjp∗), 0)

in the above coordinates (q, p) of g−2 ⊕ g−1.
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Tanaka prolongation

Tanaka prolongation of Levi Tanaka algebra (m = g−2 ⊕ g−1, J) is
the maximal graded Lie algebra g = m ⊕ ⊕i≥0gi such that

1 g0 consists of grading preserving derivations of m commuting
with J,

2 for all X ∈ ⊕i≥0gi the condition [X , g−1] = 0 implies X = 0.

The ith prolongation gi can be algebraically computed as

gi := {f ∈ ⊕j<0g
∗
j ⊗gj+i : f([X ,Y ]) = [f(X),Y ]+[X , f(Y)], X ,Y ∈ m}.

Theorem (Tanaka)

Suppose for all X ∈ g−1 the condition [X , g−1] = 0 implies X = 0.
Then gl = 0 for all l large enough and g is finite dimensional Lie
algebra.

Jan Gregorovič (joint work with F. Meylan) arXiv:2010.10220
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Jan Gregorovič (joint work with F. Meylan) arXiv:2010.10220



Realization of Tanaka prolongation as infinitesimal CR
automorphisms of M0

Reconstruction of M0 with the coordinates (w, z) of subalgebra
n−2 ⊕ n−1 of complexification gC of Tanaka prolongation g :

Im w :=
1
4

[J(z), z].

Construction of holomorphic vector fields corresponding to
elements Xb ∈ gb whose flow preserves M0:∑

c+2d=b+1, c,d≥0

(−1)c+d

(c + d)!
(ad(z)c(ad(w)d(Xb)))n−1,j

∂

∂zj

+
∑

c+2d=b+2, c,d≥0

(−1)c+d

(c + d)!
(ad(z)c(ad(w)d(Xb)))n−2,j

∂

∂wj

(3)

where ad is Lie bracket on gC and n−i ,j is projection from gC to
jth–component of n−i .
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Levi decomposition of Tanaka prolongation

R ... the radical of the Tanaka prolongation g of (m, J).
Levi decomposition Theorem... the semisimple Lie algebra g/R is
isomorphic to s ⊂ g, i.e., g = s ⊕ρ R, where ρ : s→ gl(R) is the
representation induced by the Lie bracket [s,R] ⊂ R.

Medori and Nacinovich ... Levi decomposition of form

s = s−2 ⊕ s−1 ⊕ s0 ⊕ s1 ⊕ s2

R = R−2 ⊕ · · · ⊕ Rb ,

with J(s−1) ⊂ s−1 and J(R−1) ⊂ R−1.

=> decomposition of coordinates w of s−2, w′ of R−2, z of s−1 and
z′ of R−1 and

Im wj = zHjz∗,

Im w′j = Re(zPj(z′)∗) + z′Qj(z′)∗,

zP(z′)∗ := −2ρ(z)(z′) and Hj ,Qj depend only on brackets in s,R.
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Analysis of Tanaka prolongation of counterexample of F.
Meylan - I

The computation and decomposition of Tanaka prolongation g can
be done in Maple (package DifferentialGeometry).

The Levi decomposition

su(2, 3) ⊕ρ (R ⊕· Vλ2+λ3),

where

su(2, 3) is 24 dimensional simple Lie algebra that commutes
with R and acts on 75 dimensional vector space Vλ2+λ3 by a
real representation with highest weight λ2 + λ3,

R in radical acts by multiplication · on Vλ2+λ3 , and

Vλ2+λ3 in radical is abelian.
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Analysis of Tanaka prolongation of counterexample of F.
Meylan - II

su(2, 3) is |2|–graded and corresponds to universal quadric model
Im w1 = z1z2 + z2z1

Im w2 = −iz1z2 + iz2z1

Im w3 = z1z1

Im w4 = z2z2

(4)

R ⊂ g0

dimR(V−2) = 1, dimC(V−1) = 2 corresponds to additional equation

Im w′1 = z′1z2 + z′2z1 + z2z1
′ + z1z2

′ (5)
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Analysis of Tanaka prolongation of counterexample of F.
Meylan - III

dimR(V0) = 8, dimR(V1) = 16, dimR(V2) = 17,
dimR(V3) = 16,dimR(V4) = 8, dimR(V5) = 4, dimR(V6) = 1
In particular, the holomorphic vector field T ∈ V4 and in V6 is

(−3w4
1 − 6w2

1 w2
2 + 24w2

1 w3w4 − 3w4
2 + 24w2

2 w3w4 − 48w2
3 w2

4 )
∂

∂w′1

+ (2w3
1 + 2w1w2

2 − 8w1w3w4)(2w1
∂

∂w′1
+ z1

∂

∂z′1
+ z2

∂

∂z′2
)

+ (2w2
1 w2 + 2w3

2 − 8w2w3w4)(2w2
∂

∂w′1
− iz1

∂

∂z′1
+ iz2

∂

∂z′2
)

+ (−4w2
1 w3 − 4w2

2 w3 + 16w2
3 w4)(2w4

∂

∂w′1
+ z2

∂

∂z′1
)

+ (−4w2
1 w4 − 4w2

2 w4 + 16w3w2
4 )(2w3

∂

∂w′1
+ z1

∂

∂z′2
),
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Conclusions from the counterexample

We can try to prescribe the Levi decomposition g = s ⊕ρ (K ⊕ Vλ):
|2|–grading of simple Lie algebras corresponding to simple Lie
algebras are classified by Medori and Nacinovich.
Representations of simple Lie algebras are classified via the
heighest weights λ.
K = R,C or H for real, complex or quaternionic representations.

Proposition

Suppose Es ∈ s is the element providing the grading on s with
largest/smallest eigenvalues Kmax and Kmin on Vλ. Suppose
Vλ = Vλ

−2 ⊕ · · · ⊕ Vλ
c . Then:

1 Vλ
i is the i + Kmin + 2 eigenspace of ρ(Es) in Vλ and

c = Kmax − Kmin − 2.
2 Infinitesimal CR automorphisms in Vλ

c are at least K–jet
determined, where K is Kmax−Kmin

2 rounded down.
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|2|–grading of simple Lie algebras corresponding to simple Lie
algebras are classified by Medori and Nacinovich.
Representations of simple Lie algebras are classified via the
heighest weights λ.
K = R,C or H for real, complex or quaternionic representations.

Proposition
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General construction of counterexamples

Additional assumptions are required to:
Find J on V−1 that would make g−2 ⊕ g−1 into Levi Tanaka algebra.
Check g = s ⊕ρ (K ⊕ Vλ) is in Tanaka prolongation of (g−2 ⊕ g−1, J).

Theorem

If
1 V−1 is a complex representation of s0 and the corresponding

complex structure J on g−1 is satisfying
ρ(J(X)(J(Y)) = ρ(X)(Y) for all X ∈ s−1,Y ∈ V−1,

2 V0 acts complex linearly as a map from s−1 to V−1,

then (g−2 ⊕ g−1, J) is a non–degenerate Levi Tanaka algebra and
the nondegenerate quadric model M defined as above has Lie
algebra s ⊕ρ (K ⊕ Vλ) of infinitesimal CR automorphisms. In
particular, infinitesimal CR automorphisms in VKmax−Kmin−2 are at
least K–jet determined, where K is Kmax−Kmin

2 rounded down.
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Counterexample in codimension 4 - I

Start with |2|–graded Lie algebra s = so(3, 5) of infinitesimal CR
automorphisms of:

Im w1 = −iz1z̄2 + iz2z̄1

Im w2 = −iz2z̄3 + iz3z̄2

Im w3 = −iz1z̄3 + iz3z̄1

Pick λ = λ3 + λ4 which is real representation with
Kmax = 3,Kmin = −3, V = V−2 ⊕ · · · ⊕ V4, dimR(V−2) = 1.

V−1 is standard complex representation of g0 = sl(3,R) ⊕ C =>
condition (1) is satisfied and we get

Im w′1 = z1z̄′1 + z′1z̄1 + z2z̄′2 + z′2z̄2 + z3z̄′3 + z′3z̄3,

Analysis of wight spaces of V0 implies that condition (2) is satisfied
=> we can apply our theorem
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Counterexample in codimension 4 - II

The following submanifold in C10 :

Im w1 = −iz1z̄2 + iz2z̄1

Im w2 = −iz2z̄3 + iz3z̄2

Im w3 = −iz1z̄3 + iz3z̄1

Im w′1 = z1z̄′1 + z′1z̄1 + z2z̄′2 + z′2z̄2 + z3z̄′3 + z′3z̄3

has infinitesimal CR automorphism in V4 that has weighted order 4
and is 3–jet determined:

− w1w3(iz3
∂

∂z′1
+ iz1

∂

∂z′3
) + w2w3(iz2

∂

∂z′1
+ iz1

∂

∂z′2
)

− w1w2(iz3
∂

∂z′2
+ iz2

∂

∂z′3
) + iw2

3 (z1
∂

∂z′1
) + iw2

2 (z2
∂

∂z′2
) + +iw2

1 (z3
∂

∂z′3
),

where in the braces are rigid holomorphic vector fields in V0.
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Conclusion for 2–jet determination

Codimension 1, 2 ... 2–jet determinations holds
Codimension 3 ... 2–jet determinations is open, our construction
does not lead to any counterexample
Codimension > 3 ... adding equitation for quadrics in new variables
to counterexamples in codimension 4,5 we get:

Theorem

For any codimension k > 5, there is a generic quadratic
submanifold M in C2k−1 of codimension k such that 4−jets are
required (and not less) to determine uniquely germs of
biholomorphisms sending M to M.

CR dimension can be always made greater by adding quadrics
with more new variables
There is counterexample to 2–jet determination in codimension 5
that does not have such a Levi decomposition.
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Arbitrary high order of jet determination

Both of our counterexamples generalize to higher rank:

1 Codimension (n−1)n
2 submanifold in C

n(n+1)
2 that has |2|–graded

Lie algebra s = so(n, n + 2) with λ = λn + λn+1. This has
Kmax = n,Kmin = −n, dimR(V2n−2) = 1 and we get

codimension (n−1)n
2 + 1 submanifold in C

(n+2)(n+1)
2 such that

elements of V2n−2 are n–jet determined.

2 For even n = 2m: Codimension m2 submanifold in Cm+m2
that

has |2|–graded Lie algebra s = su(m,m + 1) with
λ = λm + λm+1. This has Kmax = n,Kmin = −n,
dimR(V2n−2) = 1 and we get codimension m2 + 1 submanifold
in C(m+1)2

such that elements of V2n−2 are n–jet determined.
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Conclusion for n–jet determination

Theorem

For any even n = 2m and any k > m2, there is a generic quadratic
submanifold M in C2k−m2+2m−1 of codimension k such that n−jets
are required (and not less) to determine uniquely germs of
biholomorphisms sending M to M.
For any odd n and any k >

(n−1)n
2 , there is a generic quadratic

submanifold M in C2k− 1
2 n2+ 5

2 n−1 of codimension k such that n−jets
are required (and not less) to determine uniquely germs of
biholomorphisms sending M to M.

Observe that codimension grows quadraticaly w.r.t. to n.
It is not clear, how close to the bound 1 + k–determination you can
get.
We do not know how sharp these counterexamples are.
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