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1 A short crash course in SCV

We denote by CN N -dimensional complex space, that is, the vector space {(Z1, . . . , ZN ) : Zj ∈ C}. This is a
complex vector space with the usual addition and (complex) scalar multiplication. We denote the coordinates
of a vector Z by Zj , and identify the coordinate functions with the vectors in the usual way. The norm of a
vector is given by ‖Z‖ =

∑
j |Zj |2; with this norm, CN becomes an inner product space, the inner product

given by 〈Z,W 〉 =
∑
j ZjW j .

The underlying real vector space is R2N ; real coordinates in this space are given by Zj = xj + iyj , i.e.

xj = ReZj =
Zj + Zj

2
, yj = ImZj =

Zj − Zj
2i

.

1.1 Some linear algebra: complexification of vector spaces

Given a real vector space F , its complexification is denoted by CF = C⊗F . In terms of a universal property,
every real linear map from F into a complex vector space has a unique complex linear extension to CF ; in
terms of a basis fj of F , CF is given by all complex linear combinations∑

j

αjfj , αj ∈ C.

F is isomorphic to the real subspace given by {Imαj = 0} = 1⊗ F . Note that F ⊕ iF = CF ; in general, a
real subspace of a complex vector space with this property is said to be maximally totally real.

If we consider the complexification of the underlying real vector space VR of a complex vector space V
of complex dimension N , it is natural to ask whether we can find V as a complex subspace of W = CVR.
Now if we denote the real linear map on VR given by multiplication by i in V by J , J extends to a complex
linear map on W ; since J2 = − id, its eigenvalues are i and −i. We denote the eigenspace of the eigenvalue
i by W (1,0), and the eigenspace of −i by W (0,1). These are two complex subspaces of W , each of complex
dimension N , and W = W (1,0) ⊕ W (0,1). Note that complex conjugation (the real linear map given by
v + iw 7→ v − iw for ∈ VR ⊕ iVR) interchanges these two spaces. Explicit isomorphisms V → W (1,0) and
V →W (0,1) are respectively given by

v 7→ (v − iJv)

2
and v 7→ (v + iJv)

2
,

which are also formulas for projections of W onto these spaces. We also have that

Rew =
w + w̄

2
and Imw =

w − w̄
2i
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are both in VR, and of course w = Rew + i Imw.
If we consider the complexification of the dual space W ∗, its (1, 0) and (0, 1) parts can be identified with

the space of complex linear and complex antilinear forms with values in C. That is, if we have a mapping
λ ∈ CW ∗ (i.e. a real linear map W → C), its decomposition is λ = λ(1,0) + λ(0,1) where

λ(1,0)(w) =
λ(w)− iλ(Jw)

2
, λ(0,1)(v) =

λ(v)− iλ(Jv)

2
,

and for α ∈ C, λ(1,0)(αw) = αλ(1,0)(w) and λ(0,1)(αw) = ᾱλ(0,1)(w).
The decomposition of CW = W (1,0) ⊕ W (0,1) gives rise to decompositions of associated spaces, like

exterior products; e.g.,

ΛnCW =
⊕
p+q=n

ΛpW (1,0) ∧ ΛqW (0,1) =
⊕
p+q=n

W (p,q).

1.2 Tangent spaces: the flat case

The tangent space TpCN is the usual real tangent space. As a vector space, it is spanned by the partial
derivatives

∂

∂xj

∣∣∣∣
p

,
∂

∂yj

∣∣∣∣
p

, j = 1, . . . , N.

For p ∈ CN , the real tangent space TpCN is a real vector space of dimension 2N . We declare a complex
structure operator J on it by

J
∂

∂xj

∣∣∣∣
p

=
∂

∂yj

∣∣∣∣
p

, J
∂

∂yj

∣∣∣∣
p

= − ∂

∂xj

∣∣∣∣
p

, j = 1, . . . , N.

With this, TpCN becomes a complex vector space of dimension N , which we will denote by T cpCN . TCN and

T cCN denote the flat vector bundles over CN (whose fiber over p ∈ CN is TpCN and T cpCN , respectively).

The real cotangent space T ∗pCN is just the dual space to TpCN . The complex structure described above
gives rise to a complex structure on this space.

Let now Ω ⊂ CN be open. A smooth vector field X on Ω is a section of TCN over Ω, for which we write
X ∈ Γ(Ω, TCN ); in terms of the basis vectors introduced before,

X =

N∑
j=1

aj
∂

∂xj
+

N∑
j=1

bj
∂

∂yj
,

where aj and bj are smooth (real-valued) functions on Ω; other regularity classes are similarly defined.
X acts on smooth functions on Ω by differentiation. The (exterior) differential dϕ of a smooth (real-

valued) function ϕ : Ω → R is a section of the cotangent bundle T ∗CN over Ω, defined by dϕ(X) = Xϕ. In
general, section of this bundle are called 1-forms; it is easy to check that the dual basis to our coordinate
basis ∂

∂xj
, ∂
∂yj

of TCN is given by the differentials of the coordinate functions dxj , dyj . Smooth 1-forms on

Ω are therefore expressions of the form

ω =
∑
j

ajdxj +
∑
j

bjdyj ,

where again aj and bj are smooth (real-valued) functions on Ω. The exterior differential is then defined for
forms of arbitrary degree n, that is, sections of ΛnT ∗CN by requiring that d fulfills the Leibniz rule, i.e. for
an n-form ω and a smooth function a, we have daω = da ∧ ω + adω.

We now turn to the complexification of the tangent bundles. Just as tangent vectors act on real-valued
functions, complexified tangent vectors act on complex-valued functions. CTCN can be decomposed into
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its (1, 0) and (0, 1) parts, which are denoted by T (1,0)CN and T (0,1)CN . The coordinate basis of T (1,0)CN
which is associated to the basis ∂

∂xj
in the complex vector bundle T cCN is usually denoted by

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
, j = 1, . . . , N

and likewise we have a coordinate basis of T (0,1)CN given by

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
, j = 1, . . . , N.

Sections of T (1,0)CN over Ω are commonly referred to as (1, 0)-vector fields; they are thus expressions of the
form

X =

N∑
j=1

aj
∂

∂zj
,

where aj are smooth functions on Ω.
We also have the complexification CT ∗CN of the cotangent bundle. Its decomposition into (1, 0)- and

(0, 1)-parts gives rise to (1, 0)- and (0, 1)-forms. A coordinate basis is given by the differentials of the
coordinate functions zj and z̄j , i.e. the dzj = dxj + idyj span CT ∗(1,0)CN and the dz̄j = dxj − idyj span
CT ∗(0,1)CN . This is actually the dual basis to the basis ∂

∂zj
and ∂

∂z̄j
. Also, the exterior differential splits

into d = ∂ + ∂̄; specifically, we have for a smooth function ϕ : Ω→ C

dϕ = ∂ϕ+ ∂̄ϕ =

N∑
j=1

∂ϕ

∂zj
dzj +

N∑
j=1

∂ϕ

∂z̄j
dz̄j .

1.3 Formal power series

Definition 1. A formal power series A : (CN , 0)→ C is an expression of the form

A(Z) =
∑
α∈NN

AαZ
α, Aα ∈ C.

Here, we use standard multi-index notation; α = (α1, . . . , αN ) and Zα = Zα1
1 . . . ZαNN . The ring of formal

power series is denoted by C[[Z]].

Problem 1. Prove that C[[Z]] is a ring. Find a condition which ensures that the composition of two formal
power series is well-defined.

We can also consider formal power series at every other point p ∈ CN ; this ring is denoted by C[[Z − p]].
For convenience, we shall usually only deal with p = 0. Note that it does not make sense to speak about the
“value” of a formal power series (besides of its value at 0).

Example 1. If f is a germ of a smooth function at a ∈ CN , its Taylor series Taf is the series Taf(Z, Z̄) ∈
C[[Z − a, Z − a]] given by

Taf(Z, Z̄) =
∑

α,β∈NN

1

α!β!

∂|α+β|f

∂ZαZ̄β
(a)(Z − a)α(Z − a)β . (1.1)

Similarly, we can define formal maps A : (CN , 0)→ Cm as expressions of the form

A(Z) =
∑
α∈NN

AαZ
α, Aα ∈ Cm;

hence, formal maps can be thought of as elements of C[[Z]]m.
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Differentiation is well-defined on the ring of formal power series; we have

∂|β|

∂Zβ

( ∑
α∈NN

AαZ
α

)
=
∑
γ

(γ + β)!

γ!
Aγ+βZ

γ .

We often denote differentiation by subscripts; thus, we have in particular

AZα(0) = α!Aα.

It is a good exercise to prove the

Theorem 1 (Formal implicit function theorem). Let A(z, w) = (A1, . . . An) : (Cn × Cd, 0) → (Cn, 0) be a
formal map, satisfying A(0) = 0 and detAz(0) 6= 0. Here, Az denotes the matrix

Az =

A
1
z1 . . . A1

zn
...

...
Anz1 . . . Anzn

 .

Then there exists a unique formal map ϕ(w) : (Cd, 0)→ (Cn, 0) which satisfies A(ϕ(w), w) = 0.

We also have a useful operation on formal power series given by truncating all terms of order higher or
equal to some k ∈ N. The resulting object (a polynomial of degree at most k) is often referred to as a “jet”:

Definition 2. The space of k-jets of formal power series, denoted by Jk0 (CN ), is the space of all polynomials
of degree at most k in N variables. The mapping jk0 : C[[Z]]→ Jk0 (CN ) is defined by

jk0

( ∑
α∈NN

AαZ
α

)
=
∑
|α|≤k

AαZα.

jk0A is referred to as the k-jet of A.

Similarly, we can define the space J0,0(CN ,Cn) of k-jets of formal maps (CN , 0) → (Cn, 0), and the
associated truncation operation.

Problem 2. We denote by M the maximal ideal in C[[Z]], that is, M = (Z1, . . . , ZN ). Show that

Jk0 (CN ) =
C[[Z]]

Mk+1
.

The rank of a formal map A : (CN , 0) → (Cm, 0), denoted by rkA, is defined as the rank of the matrix
AZ over the quotient field of C[[Z]]. Hence, rkA = r if there exists a minor of AZ of size r which has nonzero
determinant, but all determinants of minors of AZ of bigger size vanish.

Full-rank maps carry over to the formal setting some of the properties of full-rank maps in the usual
setting. We will record here one such instance (although in rather rough form).

Proposition 1. Let A : (CN , 0) → (CN , 0) be a formal map of full rank, and assume that f : (Cn, 0) →
(CN , 0) is a formal map satisfying

detA′(f(z))≡/ 0.

Then there exists an integer k such that if g : (Cn, 0)→ (CN , 0) is a formal map satisfying

A(f(z)) = A(g(z)), jk0 f = jk0 g,

then f(z) = g(z).
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Proof. We note that we can write

A(Y )−A(X) =

∫ 1

0

A′(tY + (1− t)X) dt (Y −X),

by the fundamental theorem of calculus (which we can apply in this formal setting - why?). Thus, we have

A(Y )−A(X) = B(X,Y )(X − Y ),

where B is a formal map in the variables X and Y taking values in the N × N matrices, and satisfies
B(Y, Y ) = A′(Y ). We can thus write

0 = A(f(z))−A(g(z)) = B(f(z), g(z))(f(z)− g(z)).

Recall that for any N×N -matrix M , its classical adjoint M c is defined by M c = (M c
j,k), where (−1)j+kM c

j,k

is the determinant of the matrix obtained from M by deleting its k-th row and its j-th column. For example,(
a b
c d

)
=

(
d −c
−b a

)
.

The main property of the classical adjoint is that MM c = M cM = (detM)I. Since detA′(f(z))≡/ 0, there
exists a k such that for any g with jk0 g = jk0 f , we have that detB(f(z), g(z))≡/ 0. Thus, multiplying by the
classical adjoint of B(f(z), g(z)), we have that

(detB(f(z), g(z)))(f(Z)− g(Z)) = 0,

and since the determinant is nonzero, f(Z) = g(Z).

1.4 Convergent power series

Definition 3. A formal power series A(Z) ∈ C[[Z]] is convergent at ζ ∈ CN if the series∑
α

Aαζ
α

converges to a finite value, which we will denote by A(ζ).

Given (r1, . . . , rN ) ∈ RN+ and a ∈ CN we denote by P (a, r) the polydisc centered at a with multiradius r,
that is,

P (a, r) =
{
Z ∈ CN : |Zj − aj | < rj .

}
Lemma 1. If A(Z) ∈ C[[Z]] converges at ζ ∈ CN , then it converges uniformly and absolutely on compact
subsets of P (0, (|ζ1|, . . . , |ζN |)).

Proof. Let us write rj = |ζj |. Note that since the series
∑
aαζ

α converges, there exists a constant C such
that

|aα|rα ≤ C, α ∈ NN .

For all η ∈ CN with |ηj | ≤ Rj < rj we have that∑
α

|aα||ηα| ≤ C
∑
α

Rα

rα
=
∏
j

1

1− Rj
rj

<∞,

so the uniform convergence of this series follows from the convergence of the geometric series.

Lemma 2. Assume that the power series A(Z) converges absolutely uniformly on P (0, r). Then

rαAα = rα
AZα(0)

α!
=

1

2NπN

∫
[0,2π]N

A(r1e
it1 , . . . , rNe

itN )e−i(α1tt+···+αN tN ) dt1 · · · dtN . (1.2)

6



Problem 3. Prove Lemma 2.

Lemma 3 (The Cauchy Estimates). Assume that the power series A(Z) converges absolutely uniformly on
P (0, r). Then

rα|Aα| ≤ max{|A(ζ)| : |ζj | = rj , j = 1, . . . , N}. (1.3)

This follows by a brute estimate of (1.2).
The subring of C[[Z]] containing all convergent power series is denoted by C{Z}. It carries a natural

inductive limit topology (which we will discuss in more detail later on) as the limit of the spaces Hr of power
series convergent on the polydisc P (0, r) as r → 0. Differentiation is a continuous map in this topology; and
if A(Z) converges on P (0, r), AZα(Z) also converges on P (0, r).

Problem 4. Show that the domain of convergence D(A) (i.e. the interior of the set of points at which A
converges) of a power series A is a complete Reinhardt domain, that is, Z ∈ D(A) implies λZ ∈ D(A) for all
λ ∈ C with |λ| < 1 which is also logarithmically convex.

1.5 Holomorphic functions

Definition 4. Let Ω ⊂ CN be an open set. A smooth function f : Ω → C is holomorphic if ∂̄f = 0 on Ω.
From the linear algebra above, we thus have that f is holomorphic on Ω if and only if df is complex linear
at every point in Ω. The space of holomorphic functions on Ω is denoted by H(Ω).

Remark 1. H(Ω) is a Frechet space with the topology of uniform convergence on compact subsets of Ω.
This topology is generated by the norms

‖f‖K = max
Z∈K

|f(Z)|,

where K varies over all compact subsets of Ω. By choosing a compact exhaustion of Ω, we see that a
countable number of these norms generates the topology.

Our first goal is to derive the power series expansion of a holomorphic function. Let us first recall the
basic Cauchy formula from one-dimensional complex analysis.

Proposition 2 (The inhomogeneous Cauchy formula). Let D ⊂ C be a smoothly bounded domain, f ∈
C1(D). Then for any z ∈ D,

f(z) =
1

2πi

∫
∂D

f(ζ)

ζ − z
dζ +

1

2πi

∫
D

∂f

∂ζ
(ζ)

ζ − z
dζ ∧ dζ̄. (1.4)

Corollary 1. Let D ⊂ C be a domain with smooth boundary. If f ∈ C1(D) is holomorphic in D, then for
any z ∈ D we have

f(z) =
1

2πi

∫
∂D

f(ζ)

ζ − z
dζ. (1.5)

Proposition 3. Let Ω ⊂ CN be an open set, f a holomorphic function on Ω. Then for any a ∈ Ω, the
Taylor series Taf of f converges to f on any polydisc P (a, r) ⊂ Ω.

Proof. We assume w.l.o.g. a = 0. Let r be any multiradius such that P (0, r) ⊂ Ω. Fix Z = (Z1, . . . , ZN ) ∈
P (0, r). Now we apply the Cauchy formula (1.5) to the holomorphic function of one variabe ζ 7→ f(ζ, Z2, . . . , ZN )
and obtain

f(Z) =
1

2πi

∫
|ζ|=r1

f(ζ, Z2, . . . , ZN )

ζ − Z1
dζ.

Repeated application of this argument gives us the formula

f(Z) =

(
1

2πi

)N ∫
|ζ1|=r1

· · ·
∫
|ζN |=rN

f(ζ1, . . . , ζN )

(ζ1 − Z1) · · · (ζN − ZN )
dζ1 · · · dζN .
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We now develop this integral in a series using the geometric series formula (why is the interchange justified?)
to obtain

f(Z) =
∑
α

aαZ
α,

where

aα =

(
1

2πi

)N ∫
|ζ1|=r1

· · ·
∫
|ζN |=rN

f(ζ1, . . . , ζN )

ζα1+1
1 · · · ζαN+1

N

dζ1 · · · dζN .

The term in the denominator of the integrand above will be denoted by ζα+1 (just as in the one-dimensional
case); since every function represented as a power series is its own Taylor expansion, the Proposition is fully
proved. We also obtain the following useful formula

fZα(a) =

(
α!

2πi

)N ∫
|ζ1−a1|=r1

· · ·
∫
|ζN−aN |=rN

f(ζ1, . . . , ζN )

(ζ − a)α+1
dζ1 · · · dζN . (1.6)

Now that we know that holomorphic functions are exactly functions locally represented as a power series,
we obtain a couple of useful conclusions.

Proposition 4 (The Cauchy estimates, again). Assume that K ⊂⊂ L◦ ⊂⊂ Ω. Then there exists a constant
c (depending on K and L) such that

‖fZα‖K ≤
α!

c|α|
‖f‖L (1.7)

For the proof, we apply Lemma 3 and note that since K is relatively compact in L◦, there exists a radius
r such that P (a, r) ⊂ L◦ for all a ∈ K. One conclusion from the Cauchy estimates is

Theorem 2. M ⊂ H(Ω) is compact if and only if it is closed and bounded.

In other words, the Montel theorem states that if a sequence fn ∈ H(Ω) is uniformly bounded on compact
subsets of Ω, then there exists a subsequence fnk which converges uniformly on compact subsets of Ω.

Proof. We prove the Montel theorem in the second formulation; that this implies the theorem as stated
follows from general functional analysis. We will use the Ascela-Arzoli theorem: Every sequence in a family
F of continuous functions on a compact set K contains a uniformly convergent subsequence if and only if F
is bounded and equicontinuous.

We first choose a compact exhaustion Kj of Ω; that is, each Kj is compact, Kj ⊂ K◦j+1, and ∪Kj = Ω.
Given a sequence fn ∈ H(Ω), we apply the Cauchy estimates to the pair Kj and Kj+1; we obtain that there
exists a constant Cj such that

‖fZk‖Kj ≤ Cj ‖f‖Kj+1
, k = 1, . . . , N.

Since fn is bounded on compacts, we see that the right hand side of this inequality is bounded by some
constant Rj . We claim that this implies that fn is equicontinuous on compacts.

Indeed, by the fundamental theorem of calculus,

f(ζ)− f(η) =

∫ 1

0

fZ(tζ + (1− t)η) · (ζ − η) dt,

and so
|f(ζ)− f(η)| ≤ Rj ‖ζ − η‖ ,

if ζ, η, and the line connecting them are contained within Kj . We now cover Kj−1 by balls whose radius r
is chosen so small that balls of the double radius still stay inside Kj . Thus, if |ζ−η| < r, the line connecting
ζ and η fully stays inside Kj and we can apply the above estimate. The Ascela-Arzoli theorem implies that
we can extract a uniformly convergent subsequence, and a diagonal argument gives the result.
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Proposition 5 (The identity principle). Let Ω ⊂ CN be a domain (an open and connected set). If f ∈ H(Ω)
vanishes on an open subset of Ω, it vanishes on all of Ω.

Problem 5. Prove the identity principle. (Hint: Show that the set of all points in Ω which have an open
neigbourhood on which f vanishes is both open and closed)

Definition 5. The ring of germs of holomorphic functions at 0, denoted by O (or ON , if we want to denote
the dimension), is the limit of the spaces H(∆) as ∆ varies over all open neighbourhoods of 0. That is, it is
the set of all equivalence classes of holomorphic functions defined near 0, where two functions are equivalent
if they agree on some open neighbourhood of 0.

Problem 6. Show that O = C{Z} (as sets; they are actually isomorphic as topological vector spaces).

Definition 6. The space of bounded holomorphic functions, denoted by H∞(Ω), is the space of all holo-
morphic functions on Ω which are also bounded, endowed with the norm

‖f‖Ω = sup
Z∈Ω
|f(Z)|.

Problem 7. Show that H∞(Ω) is a Banach space.

1.6 Domains of holomorphy: just an aside

In one complex variable, if we are given a domain Ω ⊂ C, then there exists a holomorphic function which
cannot be extended to any domain strictly larger than Ω. This is not true in several complex variables; there
exist domains Ω ⊂ CN for which every f ∈ H(Ω) automatically extend to some strictly larger open set.

An example is the “Hartogs figure” Ω, the set given by

Ω = {(z, w) ∈ C2 : 1/2 < |z| < 1, |w| ≤ 1/2} ∪ {(z, w) ∈ C2 : 1/2 ≤ |w| < 1}.

We claim that every function holomorphic on Ω extends to the polydisc P (0, (1, 1)). Given f ∈ H(Ω),
we define a function g by

g(z, w) =
1

2πi

∫
ζ=3/4

f(ζ, w)

ζ − z
, |z| < 3/4.

g is holomorphic on P (0, (3/4, 1)), and agrees with f on the intersection with Ω by the Cauchy formula. We
can thus extend f by setting it equal to g on P (0, (3/4, 1)).

The characterization of domains of holomorphy (i.e. domains on which there exists a function not
extendible to any strictly larger domain) has been one of the leading problems in the analysis of several
complex variables. The solution to the so-called Levi problem gives us that a domain is a domain of
holomorphy if and only if it is pseudoconvex. We will explore this notion in more detail in the case of domains
with smooth boundaries; it turns out that in this case, pseudoconvexity is actually a local holomorphic
boundary invariant.

1.7 The Cartan uniqueness theorem

In the 1930s, H. Cartan proved his important uniqueness theorem, which generalizes the Schwarz Lemma
in one complex variable. Loosely stated it says that biholomorphisms of a bounded domain in CN are
determined by their value and the value of their derivative at any given point. For a domain Ω ⊂ CN , we
denote by Aut(Ω) the set of all holomorphic mappings Ω→ Ω which are one-to-one and onto.

Theorem 3. Let Ω ⊂ CN be a bounded domain. If H ∈ Aut(Ω) satisfies H(p) = p and H ′(p) = I, then
H(Z) = Z for Z ∈ Ω.

Proof. W.l.o.g. we can assume that p = 0. Assume that H(Z) = Z + p(Z) + . . . , where p(Z) is the
lowest order homogeneous polynomial in the Taylor series expansion of H which does not vanish. Note that
composing H with itself k times gives us the Taylor expansion of H(k) as

H(k)(Z) = Z + kp(Z) + . . . ;
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but since Ω is bounded, the Cauchy estimates imply that the derivatives of any automorphism at 0 of any
fixed order are uniformly bounded. Hence, p(Z) = 0, and so H(Z) = Z.

2 The Weierstrass theorem and its consequences

2.1 The Weierstrass division theorem

The Weierstrass division theorem paves the way to understanding the most fundamental local properties of
analytic functions. In what follows, we will write Z = (Z ′, ZN ) ∈ CN−1 × C. We say that a (germ of a)
holomorphic function D(Z) defined near 0 is k-regular in the ZN direction if the function ZN 7→ D(0, ZN )
has a zero of order k at the origin. In terms of a power series expansion

D(Z) =
∑
j

Dj(Z
′)ZjN ,

this means that
Dj(0) = 0, j < k, Dk(0) 6= 0.

Problem 8. If D is any holomorphic function, then there exists a k and a holomorphic coordinate system
Z such that D is ZN -regular in that coordinate system.

A function p is polynomial in ZN of degree at most k if

p(Z) =

k∑
j=0

pj(Z
′)ZjN .

We are now ready to state the Weierstrass theorem. It generalizes the well-known division algorithm for
polynomials in the sense that we can divide by any k-regular function:

Theorem 4 (The Weierstrass Division Theorem). Let D be a germ of a holomorphic function near 0, which
is k-regular in the ZN direction. Then there exists a polydisc P = P (0, r) such that any bounded holomorphic
function h on P can be written as

h(Z) = D(Z)q(Z) + r(Z), (2.1)

where r(Z) is polynomial in ZN of degree at most k − 1. Furthermore, this decomposition is unique, and
there exists a constant C such that

‖q‖P ≤ C ‖h‖P . (2.2)

Proof. Note that w.l.o.g. we can assume that Dk(Z ′) = 1 (by dividing D by Dk if necessary). We write
P = P ′ ×∆rN . Given f , we write

f(Z) = f0(Z ′) + ZN (Tf(Z)), T f(Z) =
f(Z)− f(Z ′, 0)

ZN
.

We first claim that T is continuous on H∞(P ) and

‖Tf‖P ≤
2

rN
‖f‖P .

Indeed, this follows from the fact that ‖f(Z ′, 0)‖P ′ ≤ ‖f‖P and

‖ZNϕ(Z)‖P = rN ‖ϕ(Z)‖P ,

which follows from the (one-dimensional) maximum principle.
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We can thus write

f(Z) =

k−1∑
j=0

fk(Z ′)ZjN + ZkNT
kf(Z),

where ∥∥T kf∥∥
P
≤ C

rkN
‖f‖P .

Consider the operator S defined by

Sf = (f(Z)− ZkNT kf(Z)) +D(Z)T kf(Z).

We claim that with an appropriate choice of r = (r′, rN ), this operator is bijective.

To see this, compute Sf − f = E(Z)T kf(Z), where E(Z) =
∑k−1
j=0 Ej(Z

′)ZjN + Zk+1
N Ẽ(Z), where

Ej(0) = 0 for j < k by our assumptions on D. We can thus estimate

‖Sf − f‖P ≤
2k(ε(r′) +Krk+1

N )

rkN
‖f‖P ,

where ε(r′)→ 0 as r′ → 0, and K does not depend on r. We choose r so that this ratio is smaller than 1/2,
and see that on this P we now have

‖Sf − f‖P ≤
1

2
‖f‖P .

This implies that S is bijective, its inverse being given by the series

S−1 =

∞∑
j=0

(I − S)j ,

which is bounded in norm by 2.
Thus, given any h, we have a unique f with Sf = h, or equivalently

h(Z) = D(Z)q(Z) + r(Z),

where q(Z) = T kf(Z) and r(Z) = f(Z)− ZkNT kf satisfy the assumptions of the theorem, their uniqueness
being guaranteed by the uniqueness of f . Furthermore,

‖q‖P ≤
2k+1

rkN
‖h‖P .

If we divide ZkN by a function D which is k-regular in the ZN direction, we obtain a representation of D
as D(Z) = u(Z)W (Z) where W is a Weierstrass polynomial of degree k in ZN , that is

W (Z) = ZkN +W1(Z ′)Zk−1
N + · · ·+Wk(Z ′),

where Wj(0) = 0.

Corollary 2 (The Weierstrass Preparation Theorem). Let D ∈ O be a function which is k-regular in the
ZN -direction. Then there exists a unique unit u(Z) ∈ O and a unique Weierstrass polynomial W (Z) of
degree k in ZN such that D(Z) = u(Z)W (Z).
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2.2 Properties of the ring of germs

In one complex variable, the ring of germs O1 is a principal ideal domain; indeed, every ideal is of the form
I = (zk) for some integer k ∈ N. Thus, it is a unique factorization domain. This means that for any f ∈ O1,
there exist finitely many distinct irreducible elements pj ∈ O1 and integers nj such that

f =
∏

p
nj
j ,

and this representation is unique up to multiplication by units.
The unique factorization property actually carries over to the rings ON for all N ; before we prove that,

we give the following useful property of Weierstrass polynomials.

Lemma 4. If the product of two polynomials W,V ∈ ON−1[ZN ] is a Weierstrass polynomial, so are W and
V .

Proof. Assume that

W (Z) =

k∑
j=1

Wj(Z
′)ZjN , V (Z) =

m∑
j=1

Vj(Z
′)ZjN .

Choose jW minimal with Wjw(0) 6= 0, and jV minimal with VjV (0) 6= 0. Consider the term of order jW + jV
in WV ; it has as a coefficient ∑

a+b=jW+jV

Wa(Z ′)Vb(Z
′),

which evaluated at 0 is equal to Wjw(0)VjV (0) 6= 0, so WV is not Weierstrass unless jW = k and jV = m.

Proposition 6. The ring ON is a unique factorization domain.

Proof. We assume by induction that ON−1 is a unique factorization domain (it’s true for N = 2; see above).
We will use the fact that if a ring U is a unique factorization domain, then so is the polynomial ring U [x]
(which is a standard fact from algebra).

Now let f ∈ ON be a germ of a holomorphic function, f 6= 0. Thus, w.l.o.g., we can assume that f is
k-regular in ZN for some k ≥ 1. By the Preparation Theorem, we can write f = uW , with u a unit in ON
and W ∈ ON−1[ZN ] a Weierstrass polynomial of degree k in ZN . By unique factorization in ON−1[ZN ] we
can thus write W =

∏
j p

nj
j , where the pj are distinct irreducible Weierstrass polynomials in ON−1[ZN ] (see

Lemma 4).
We first claim that the pj are also irreducible in ON . Indeed, assume that p is a Weierstrass polynomial

and p = g1g2 in ON . Then necessarily both gj are regular in ZN of some order; and we can apply the
preparation theorem to each in turn, obtaining gj = ujWj . Thus, p = u1u2W1W2. Since p is Weierstrass,
u1u2 = 1, and p = W1W2 already splits in ON−1[ZN ].

Thus, every f ∈ ON has a representation as a product of irreducible factors; that this representation is
unique up to units follows from the uniqueness of factorization in ON−1[ZN ].

We will have to deal with sets of the form V = Z ∈ CN : fα(Z) = 0, α ∈ A where A is some index set
and the fα are holomorphic functions (such sets are called analytic varieties). One of the most important
simplifications we will use is the fact that any such set can be defined by only finitely many of the fα. In
fact, every ideal I ⊂ ON is finitely generated, i.e. ON is Noetherian:

Definition 7. A ring R (we will always assume that our rings are commutative and with unity) is called
Noetherian if any ideal I ⊂ R is finitely generated, or equivalently, if R satisfies the ascending chain condition:
if I1 ⊂ I2 ⊂ · · · ⊂ Ij ⊂ · · · ⊂ R is an ascending chain of ideals, then Ij = Ij+1 = Ij+2 = . . . for some index j.

Note that O1 is Noetherian, since it is a principal ideal domain - indeed, every ideal is of the form (zk)
for some k ∈ N, as already noted above. The Noetherian property also carries over to the rings ON ; the
proof is based on what is known as the “Hilbert basis theorem”:
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Theorem 5. If R is Noetherian, so is R[x].

Proof. Let I ⊂ R[x] be an ideal. We choose a sequence of elements pj ∈ I by letting p1 be any polynomial
of minimum degree in I, and inductively, pj any polynomial of minimal degree in I \ (p1, . . . , pj−1).

We now consider the ideal Ĩ ⊂ R of initial coefficients of the pj : if pj = ajx
dj + O(dj − 1), then

Ĩ = (a1, a2, . . . ). Since R is Noetherian, there exists an n such that Ĩ = (a1, . . . , an). We claim that
I = (p1, . . . , pn). If not, there exists a polynomial pn+1 of minimal degree in I \ (p1, . . . , pn).

But since Ĩ = (a1, . . . , an), we can write an+1 =
∑
j≤n rjaj for some rj ∈ R. Then the polynomial

pn+1−
∑
j≤n rjx

dj+1−djpj ∈ I \ (p1, . . . pn) has strictly lower degree than pn+1, contradicting the minimality
of the degree of pn+1.

Proposition 7. The ring ON is a Noetherian ring.

Proof. We prove this by induction on N . For N = 1, it follows from the observation above. Now assume
that N > 1 and let I ⊂ ON be an ideal. We can choose variables in such a way that there exists a function
D ∈ ON−1[ZN ] which is k-regular in the ZN -direction. For any f ∈ I, we denote by rf the remainder of
f upon division by D, i.e. f = Dq + rf . Consider the ideal ID ⊂ ON−1[ZN ] generated by {rf : f ∈ I}.
ID is finitely generated by the induction assumption and Theorem 5, and hence, so is I (by D and a set of
generators of ID).

2.3 Local structure of complex hypersurfaces

A complex variety V ⊂ CN is a set given locally by the vanishing of a family of holomorphic functions; i.e.
for any p ∈ V , there exists an open neighbourhood U of p in CN and a family of functions S ⊂ H(U) such
that V ∩ U = {f = 0, f ∈ S}. A germ of a complex variety at p is an equivalence class of complex varieties
through p, the equivalence relation being given by agreeing on a neighbourhood of p. A germ of a variety is
thus defined by a family S ⊂ O (and we will as usual assume that p = 0). Note that we can always replace
S by the ideal I(S) generated by S. Thus, the Noetherian property of O implies that any germ of a variety
is defined by the vanishing of a finite family S ⊂ O. If we can choose S such that it contains of a single
element, we say that V is a germ of a complex hypersurface. It is irreducible if it cannot be written as the
proper union of two complex hypersurfaces.

Lemma 5. If V is the germ of a complex hypersurface, it can be written uniquely as a union V1 ∪ · · · ∪ Vj
of pairwise nonequal complex hypersurfaces.

Lemma 6. If V is the germ of an irreducible complex hypersurface, there exists an integer k, complex
coordinates Z = (Z ′, ZN ), a polydisc P (0, r) ⊂ CN , a complex hypersurface E ⊂ P (0, r′) such that V ∩P (0, r)
has the following properties, where π(Z) = Z ′ is the projection onto the first N − 1 coordinates:

1. π(V ) = P (0, r′);

2. π
∣∣
V ∩π−1(E)

: V ′ → CN−1 is a k-fold covering map.

In particular, the set of points where a complex hypersurface is not smooth is thin; also, we have that its
complement, the set of regular points, is connected. This can be proved by induction from Lemma 6.

3 CR-manifolds

3.1 Basic notions for real submanifolds of Rk

3.1.1 Definitions and short review

Let us recall that a smooth real submanifold of Rk of codimension d is given (locally) by the simultaneous
vanishing of d real-valued, smooth “defining functions”. That is, for any p ∈M , there exists a neighbourhood
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U of p in Rk and smooth functions ρ1, . . . , ρd on U such that M ∩ U = x ∈ U : ρ1(x) = · · · = ρd(x) = 0 and
dρ1(x) ∧ · · · ∧ dρd(x) 6= 0 for x ∈ U . The tangent space at p is the kernel of the defining functions:

TpM = {X ∈ TpRk : dρj(p)(X) = 0, j = 1, . . . , d}. (3.1)

In coordinates, this means that TpM consists of all tangent vectors

X =
∑
j

aj
∂

∂xj

∣∣∣∣
p

which annihilate the ρ`, that is,
∑
j aj

∂ρ`
∂xj

(p) = 0, for ` = 1, . . . , d, and we identify an X as in (3.1) with the

vector vX = (a1, . . . , ak) ∈ Rk.
If we use a rotation to choose coordinates x = (x1, x2) ∈ Rk−d × Rd such that the tangent space TpM

corresponds to x2 = 0, the defining equations necessarily satisfy det ∂ρ
∂x2

(p) 6= 0, so we can apply the implicit
function theorem to write the defining equations in the form x2 = ϕ(x1); we also have that dϕ(p) = 0.

A further transformation shows that a smooth real submanifold as above is locally diffeomorphic to a
coordinate hyperplane x2 = 0. Another way to present a real submanifold of Rk is by a parametrization near
p, that is, a one-to-one smooth map ξ : Rk−d ⊃ U → Rk which satisfies M = ξ(U) ∩ V for a neighbourhood
V of p and where ξ′ is of full rank k on U . A graphing function as in the preceding paragraph gives rise to
such a parametrization by x1 7→ (x1, ϕ(x1)). In that case, TpM = image ξ′(ξ−1(p)).

Example 2. Consider the real submanifold M ⊂ R4 given by

M = {(x, y, s, t) ∈ R4 : t = x2 + y2}.

Its tangent space Tx,y,s,x2+y2M is spanned by the tangent vectors

X =
∂

∂x
+ 2x

∂

∂t
, Y =

∂

∂y
+ 2y

∂

∂t
, S =

∂

∂s
.

A parametrization is given by (x, y, s) 7→ (x, y, s, x2 + y2).

3.1.2 The Lie bracket

A vector field X is a smooth mapping which associates to any point p ∈ M a tangent vector X(p) = Xp ∈
TpM (i.e. it is a smooth section of TM). The set of smooth vector fields on M is denoted by X(M). On
this set, the Lie bracket defines a bilinear map by

[X,Y ] = XY − Y X,

where the right hand side is understood in the operator notation, i.e. it corresponds to the differential
operator XY − Y X. It turns out that this is again a first-order operator, and so it defines a vector field.

3.1.3 The Frobenius Theorem

A particularly important class of submanifolds arise as the solutions to systems of ordinary differential
equations. If we have a family of smooth vector fields {X1, . . . , Xr} ⊂ X(Ω), where Ω ⊂ Rk is open, which
is linearly independent at each point, when is there through any p ∈ Ω a smooth r-dimensional manifold M
such that for any q ∈ M , TqM = span{X1(q), . . . ,Xr(q)}? The answer is given by the Frobenius Theorem,
which states that the “obvious” necessary condition that the system {X1, . . . , Xr} satisfies that the Lie
bracket of every two vector fields can be expressed in terms of the system is also sufficient.

Theorem 6. Assume that {X1, . . . , Xr} ⊂ X(Ω), where Ω ⊂ Rk is open, is linearly independent at each
p ∈ Ω, and that for every j, k = 1, . . . , r we have

[Xj , Xk] =

r∑
`=1

aj,k,`X`, (3.2)

14



for some smooth functions aj,k,` on Ω. Then for any p ∈ Ω, there exists a neighbourhood U ⊂ Ω of p and
smooth coordinates (x1, . . . , xk) on U in which

span{Xj : j ≤ r} = span

{
∂

∂xj
: j ≤ r

}
.

3.2 Biholomorphically invariant geometry: First order

3.2.1 Complex tangent spaces and CR manifolds

We will now assume thatM is a smooth, real submanifold of CN . Our goal will be to describe the fundamental
(that is, first order) invariant associated to the geometry of such a real object when considering biholomorphic
transformations as symmetries. The first one is the complex tangent space. Since M ⊂ CN , we have for any
p ∈ M the real subspace TpM ⊂ TpCN . Recall the complex structure operator J introduced in the first
section. There exists a maximal subspace of TpM which is left invariant by J , given by TpM ∩ JTpM . This
space is called the complex tangent space of M at p and denoted by T cpM . It is a complex vector space of
some (complex) dimension n = n(p).

Example 3. Consider the manifold given by the equation w = |z|2 in C2. It is a real submanifold of real
codimension 2. In this case, dimC T

c
0M = 1, and dimC T

c
pM = 0 for all 0 6= p ∈M .

Example 4. Consider the manifold M from Example 2. The complex tangent space is spanned over R by

Z1 = X + 2yS, Z2 = Y − 2xS.

(Check that JZ1 = Z2, JZ2 = −Z1).

Definition 8. A real submanifold M ⊂ CN is CR (or Cauchy-Riemann) if the dimension of its complex
tangent spaces is constant. The common complex dimension of these spaces is referred to as the CR-
dimension of M .

Example 5. Every real hypersurface in CN is CR of CR-dimension N − 1. Indeed, in every complex
vector space V of complex dimension N , the dimension of the maximal complex subspace of a real 2N − 1-
dimensional real subspace E is N − 1. This follows since E + JE = V and so, as real vector spaces, we have
E/(E ∩ JE) ≡ (E + JE)/JE. So the real codimension of E ∩ JE in E is equal to the real dimension of the
space on the right hand side, which is one.

Since we have identified the real tangent space with a subspace of Rk, we need to give a description of the
complex tangent space as a subspace of the ambient space Ck. We can achieve this in terms of the defining
functions:

Lemma 7. Assume that ρ = (ρ1, . . . , ρd) : CN ⊃ U → Rd is a defining function for a real submanifold M
near p ∈ U . Then for q ∈M near p, we have

T cqM =
{
Z ∈ CN : ∂ρj(q)(Z) = 0

}
.

In other words, T cqM is the kernel of the matrix

ρZ =


∂ρ1
∂Z1

· · · ∂ρ1
∂ZN

...
...

∂ρd
∂Z1

· · · ∂ρd
∂ZN

 ,

evaluated at q.

Proof. Let X ∈ T cqM be any vector. Hence, also JX = iX ∈ T cqM . At q, we thus have dρ(X) = ∂ρ(X) +

∂̄ρ(X) = 0, and −idρ(iX) = ∂ρ(X) − ∂̄ρ(X) = 0. Add the two equations to get ∂ρ(X) = 0. On the other
hand, if ∂ρ(X) = 0, we have ∂̄ρ(X) = 0; indeed, we have

∂ρ(X) = ∂̄ρ(X) = ∂̄ρ(X),

for X ∈ TqCN = TqR2N .
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Corollary 3. A connected real submanifold M ⊂ CN is CR if for any p ∈ M there exists a local defining
function ρ near p such that the rank of ρZ is constant on M near p. The dimension of the complex tangent
spaces n(p) depends upper-semicontinuously on p.

3.2.2 Generic and totally real submanifolds

A special case appears if the matrix ρZ is of maximal rank d. These manifolds are of special importance:

Definition 9. A real submanifold M ⊂ CN of real codimension d is generic if it can be written as the
intersection of d smooth real hypersurfaces whose complex tangent spaces are in general position. M is
generic at p ∈M if there exists a neighbourhood U of p in M such that U is generic.

We have already met a class of real subspaces of complex vector spaces which are of special importance,
the totally real ones. This concept carries over to submanifolds:

Definition 10. A real submanifold M ⊂ CN is totally real if the dimension of its complex tangent spaces
is 0. An equivalent condition is that TpM ∩ JTpM = {0} for p ∈ M . M is maximally totally real if its real
dimension is N , or equivalently, if TpM ⊕ JTpM = TpCN .

Problem 9. Every totally real submanifold is CR. A totally real submanifold is maximal if and only if it is
generic.

Lemma 8. Let M ⊂ CN be a real submanifold of real codimension d and CR-dimension n. Then the
following are equivalent:

(i) M is generic;
(ii) N = n+ d;
(iii) TpM + JTpM = CN for every p ∈M .

Proof. i ⇔ ii: If the rank of ρZ is d̃ ≤ d and the dimension of the kernel of ρZ is n we have (since
N = rk ρZ + dim ker ρZ), N = n+ d̃. So M is generic if and only if N = n+ d.

ii ⇔ iii: Note that for any E ⊂ TpM with TpM = T cpM ⊕ E, we necessarily have JE ∩ TpM = {0}.
Indeed, if f ∈ JE∩TpM , then e = −Jf ∈ T cpM , so e = 0, and f = 0. Hence, TpM+JTpM = T cpM⊕E⊕JE.

So N = n+ d iff TpM + JTpM = CN .

Lemma 9. If M is generic, then for every p ∈ M , if f is a germ of a holomorphic function on CN and f
vanishes on M , necessarily f = 0.

Proof. Assume that f is a nontrivial holomorphic function near p which vanishes on M . Note that we can
choose f such that ∂f does not vanish on M (we can choose f to be a Weierstrass polynomial in some variable
of least degree with the property that it vanishes on a neighbourhood of p on M , then this is automatic). So
there exists a smooth point q of the complex hypersurface F = {f = 0} ⊂ CN on M . By assumption M ⊂ F .
So TqM ⊂ TqF . But TqF is a complex affine hypersurface, and so TqM+JTqM ⊂ TqF+JTqF = TqF 6= CN .
Hence, condition iii in Lemma 8 does not hold.

3.2.3 Special coordinate choices for generic and totally real submanifolds

Proposition 8. If M ⊂ CN is a generic submanifold of real codimension d, p ∈ M , then there exist
holomorphic coordinates Z = (z, w) ∈ Cn ×Cd in which p = 0 and M is given near 0 by a defining equation
of the form

Imw = ϕ(z, z̄,Rew),

where ϕ(z, z̄, s) : Cn × Rd → Rd is a smooth function satisfying ∇ϕ(0) = 0.

Proof. We choose complex coordinates in which T cpM ≡ Cn × {0}. By the proof of Lemma 8, ii⇒iii, we
see that any real subspace E with the property that T cpM ⊕ E = TpM is necessarily totally real, and

T cpM ⊕ E ⊕ JE = CN . With a choice of (real) basis e1, . . . , ed of E, we get thus a complex basis of

Cd = E⊕JE. Choosing coordinates w = (w1, . . . , wd) from the basis homomorphism w 7→ w1e1 + · · ·+wded
we get coordinates which satisfy the conclusion of Proposition 8.
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Proposition 9. If M ⊂ CN is a totally real submanifold of real dimension r, then for any p ∈ M there
exist coordinates Z = (z, w) ∈ Cr × CN−r and smooth functions ϕ : Rd ⊃ U → Rd, ψ : Rd ⊃ U → Cd such
that in these coordinates, M is given (near 0) by Im z = ϕ(Re z), w = ψ(Re z).

Proof. To get these coordinates, just choose a complex complement to the complex subspace TpM ⊕ JTpM ,
which we turn into Cr × {0} by a complex affine change of coordinates.

3.2.4 Holomorphic submanifolds

Definition 11. A smooth submanifoldM ⊂ CN is holomorphic if for any p ∈M there exists a neighbourhood
U of p in CN and holomorphic coordinates Z = (z, w) ∈ Cn × Cd in U , centered at p, such that in U M is
given by w = 0.

Lemma 10. For a smooth CR submanifold M ⊂ CN , the following are equivalent:
(i) M is holomorphic;

(ii) TpM = T cpM for all p ∈M ;
(iii) JTpM = TpM for all p ∈M ;
(iv) 2N = 2n+ d.

Proof. Assuming i, ii–iv hold by simple computations; that they are all equivalent follows by some linear
algebra. Now assume that TpM = T cpM holds for all p ∈ M . For any fixed p ∈ M , we choose holomorphic

coordinates in which TpM = Cn × {0}. Setting Z = (z, w) ∈ Cn × Cd, w = s + it ∈ Rd ⊕ iRd, we can thus
write defining equations s− ϕ(z, z̄), t− ψ(z, z̄), where φ, ψ : Cn ⊃ U → Rd are smooth functions, vanishing
together with their first derivatives at the origin. We claim that ϕ+ iψ : Cn ⊃ U → Cd is holomorphic.

To see this, note that the rank of the ρZ̄ is d on M , where ρ = (ϕ,ψ). Computing, we see that

ρZ̄ =

(
−∂̄ϕ 1

2I
−∂̄ψ − i

2I

)
.

Now add −i times the lower block to the upper block to see that the matrix above is row equivalent to(
−∂̄(ϕ+ iψ) 0
−∂̄ψ − i

2I

)
,

the rank of which is obviously equal to d+rk(∂̄(ϕ+iψ)). So rk(∂̄(ϕ+iψ)) = 0, and Φ = ϕ+iψ is holomorphic.
We can now choose coordinates as required in Definition 11 by using the the transformation (z, w) 7→

(z, w − Φ(z)), which is a biholomorphism near (0, 0), since its derivative there is the identity.

3.3 A preview: Second order invariants

For a smooth CR submanifold M ⊂ CN , we have the subspaces T cpM ⊂ TpM . Choose a family of smooth
vector fields {X1, . . . , X2n} which at each point p ∈ U ⊂ M spans T cpM . We can choose U so small that it

is diffeomorphic to R2N−d × {0}. We can then ask whether the subset {X1, . . . , X2n} ⊂ X(U) is integrable,
as in Theorem 6. This is measured by whether the Lie bracket

[Xj , Xk](p) ∈ T cpM

or not. But if we have a smooth submanifold N ⊂M of real dimension 2n which satisfies the conclusions of
Theorem 6, we can apply Lemma 10 to it to see that for any p ∈ U there exists a holomorphic submanifold
N ⊂ M of (complex) dimension n. This is pretty special! The bracket operation above can actually be
expressed by a hermition form

T cpM × T cpM → TpM/T cpM.

In order to do this most easily, we need to introduce some more concepts. Before we do this, we will first
define real-analytic functions and discuss some of their properties.
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3.4 Real analytic functions and maps

Definition 12. A function f : Rk ⊃ U → C is real analytic if for each p ∈ U there exists a neighbourhood
V of U ⊂ Ck and a holomorphic function F : V → C with F |U = f .

If we consider real analytic functions on CN , instead of considering CN (with coordinates Zj) as a subset
of C2N by means of mapping Z to (ReZ1, ImZ1, . . . ,ReZN , ImZN ), it is often advantageous to consider it
as a totally real subspace of C2N by mapping Z to (Z, Z̄). We can the write any real analytic function f in
a power series of Z and Z̄:

f(Z, Z̄) =
∑
α,β

fα,β(Z − p)α(Z̄ − p̄)β ,

for any p ∈ U , and the set V can be chosen to be of the form V = W ×W , where we can also assume that
the series f(Z, ζ) converges on W ×W . Since the subspace ζ = Z̄ of C2N with coordinates (Z, ζ) is totally
real, we see that for any real analytic function f , if f(Z, Z̄) = 0, then f(Z, ζ) = 0.

A real analytic submanifold M ⊂ CN is a smooth submanifold which can locally be defined by real
analytic defining functions.

3.5 CR vectors, the CR bundle, and intrinsic definition of CR manifolds

3.5.1 Definition of the CR bundle and abstract CR manifolds

If we now consider the complexified tangent bundle CTM of a CR manifold, it contains the (0, 1)- and
(1, 0)-parts of CT cM . These are, respectively, the CR-bundle and the anti-CR-bundle of M ; we will denote
these subbundles by V and V, respectively. In coordinates, sections of V are the tangent (0, 1)-vector fields,
that is, tangent vector fields of the form

N∑
j=1

aj
∂

∂Z̄j
,

which are referred to as CR-vector fields, while sections of V are all tangent vector fields of the form

N∑
j=1

bj
∂

∂Zj
,

which are referred to as anti-CR-vector fields.
We have that n = dimVp is the CR dimension of M . The subbundle V is formally integrable, that is,

the Lie bracket of every two vector fields with values in V is again in V; we denote this by

[V,V] ⊂ V. (3.3)

V also has the property that
V ∩ V = {0}. (3.4)

These are the defining properties of an abstract CR structure:

Definition 13. An abstract CR structure on a smooth manifold M is given by a subbundle V ⊂ CTM
satisfying (3.3) and (3.4).

The CR-dimension of M is n = dimC V. Noting that by (3.4), we have 2n ≤ dimRM , we denote by
d = dimRM − 2n the CR-codimension of M . We write N = n + d (which is the dimension of the ambient
space for generic manifolds).

Our considerations above show that every smooth CR submanifold of CN carries an abstract CR structure.
On the other hand, an abstract CR structure is defined without referring to any embedding into CN . Whether
or not such a structure is embeddable is a fascinating and quite hard question. We first give the following
definition.
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Definition 14. An abstract CR structure is integrable if for any point p ∈M there exist functions Z1, . . . , ZN
which are annihilated by all CR vetor fields and for which dZ1 ∧ · · · ∧ dZN (p) 6= 0.

Such functions are referred to as basic solutions of the CR structure. The question of local embeddability
is equivalent to the question of the existence of basic solutions.

3.5.2 CR vector fields for embedded manifolds

As we already said, sections of the CR bundle are the CR vector fields. For an embedded manifold M , the
CR vector fields are vector fields of the form

L =

N∑
j=1

aj(Z, Z̄)
∂

∂Z̄j

where the aj(Z, Z̄) are smooth functions defined in some neighbourhood of M , which satisfy that Lf = 0 on
M whenever f = 0 on M . Equivalently, they annihilate the defining functions of M . By the general linear
algebra done in the beginning, CR vector fields are in one-to-one correspondence with sections of the bundle
T cM , as are the anti-CR vector fields. Also, the map L 7→ ReL is a (real-linear) homomorphism of V onto
T cM .

Example 6. Consider the unit sphere, given by

|Z1|2 + · · ·+ |ZN |2 = 1.

We have CR vector fields of the form

Lj,k = Zk
∂

∂Z̄j
− Zj

∂

∂Z̄k
;

on any open set Uk of the form {Zk 6= 0}, the vector fields Lj,k for j 6= k constitute a basis of the CR vector
fields, i.e. any CR vector field L on Uk is of the form

L =
∑
j 6=k

aj(Z, Z̄)Lj,k,

for some smooth functions aj(Z, Z̄).

More generally, given any defining function ρ(Z, Z̄), near a point p0 where–say–ρZk(p0, p̄0) 6= 0, the CR
vector fields are spanned by the vector fields

Lj,k = ρZ̄j (Z, Z̄)
∂

∂Z̄k
− ρZ̄k(Z, Z̄)

∂

∂Z̄j
.

3.5.3 Holomorphic and characteristic forms

A form ω with values in CT ∗M is said to be holomorphic if it annihilates all CR vector fields, that is, if
ωp ∈ V⊥p = T ′pM . A characteristic form θ is a form which annihilates both CR and anti CR vector fields,

that is, θp ∈ (Vp ⊕ Vp)⊥ = T 0
pM , and which is real (that is, it is real valued on real elements of CTM).

Lemma 11. Assume that M ⊂ CN is a generic real submanifold, and denote ι : M → CN the embedding of
M into CN . Then the space of holomorphic forms is spanned by ι∗dZ1, . . . ι

∗dZN . If ρ = (ρ1, . . . , ρd) is a
real-valued defining function of M , then a basis of the space of characteristic forms is given by

iι∗(∂ − ∂̄)ρ1, . . . , iι
∗(∂ − ∂̄)ρd.
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Proof. First, note that since dimCTpM = 2n+d, and dimVp = n, the dimension of the space of holomorphic
forms is N = n+d. It is clear from the explicit description of the CR vectors as tangent linear combinations
of the ∂

∂Z̄j
that they are all annihilated by the ι∗dZj . We claim that those are linearly independent. If

they are not, there exists a complex linear combination
∑
ajdZj which annihilates all vectors in CTpM ; in

particular, it annihilates all real tangent vectors. But this implies that all real tangent vectors are in the
complex plane

∑
ajZj = 0, which contradicts the genericity of M .

Again, the fact that the vectors in V are tangent linear combinations of the ∂
∂Z̄j

implies that all of the

forms θj = iι∗(∂− ∂̄)ρj annihilate V and V. The genericity of M implies that they are linearly independent.
We are left with checking that they are also real. But when acting on real elements, θj = θj , which is exactly
what is needed.

3.5.4 The Levi-form (and the Levi-map)

Here goes a definition of that thing, plus basic properties.

3.5.5 CR functions

A smooth function f on M is a CR function if it is annihilated by all CR vector fields. The prototypical
example of a CR function on an embedded manifold is the restriction of a holomorphic function to that
manifold. However, not all CR functions are of this form. On the other hand, a holomorphic function is
given by a convergent power series at any point; we can associate to a CR function its formal holomorphic
series (which neither necessarily converges nor fulfills the identity principle). But for some constructions, it
gives us a good tool to work with.

Proposition 10. Let M be an abstract CR manifold, which is integrable, and assume that Z1, . . . , ZN are
basic solutions near p ∈M . Then for each CR function f defined near p, there exists a unique formal power
series Tpf =

∑
AαZ

α ∈ C[[Z]] which satisfies that for each k,

f(q)−
∑
|α|≤k

AαZ(q)α

vanishes to order k at p.

Proof. We proceed by induction and start by choosing A0 = f(p). Now assume that we have already chosen
the Aα for |α| < k, and that they have the property that D(f −

∑
|α|<k AαZ

α)|p = 0 for every differential
operator of order less than k.

We let L1, . . . , Ln be a basis near p of the space of CR vector fields, and choose vector fields X1, . . . , XN

such that L1, . . . , Ln, X1, . . . , XN forms a local basis of sections of CTM . Since Z1, . . . , ZN are basic solutions,
their differentials are linearly independent, and so for each k, the matrix (XαZβ |p)|α|=|β|=k is invertible.

We define the Aβ for |β| = k as the solution to the equations

Xα(f −
∑
|γ|<k

AγZ
γ)|p =

∑
|β|=k

AβX
αZβ |p,

which exists and is unique. We still have to verify that the solution thus obtained satisfies that its difference
with f annihilates all differential operators of order less or equal to k. For differential operators of length less
than k, this follows from the induction hypothesis and the product rule. If we have a differential operator of
length k, it agrees with an operator whose terms of degree k are actually of the form XαLβ , and if |β| > 0,
those annihilate the difference because the difference is CR.
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4 Segre varieties and maps

Let M ⊂ CN be a generic, real-analytic submanifold. We assume that near p0 ∈M , M is given by a defining
function %(Z, ζ), and that %(Z, ζ) is defined on a set of the form U × Ū , and also, that the rank of %Z(Z, ζ)
(and %ζ(Z, ζ)) remains maximal (= d) throughout U × Ū .

For q ∈ U , we define the Segre-variety of q by

Sq(U) = {Z ∈ U : %(Z, q̄) = 0}.

Note that Sq is a complex submanifold (of dimension n) of U . While the definition is dependent on the
neighbourhood U , we will henceforth suppress U from the notation, and understand that all statements are
understood locally near some reference point p. We first state two basic properties of Segre-varieties, whose
proofs are immediate.

Lemma 12. For p and q near p0, the following holds.
(i) q ∈ Sp ⇔ p ∈ Sq;

(ii) p ∈ Sp ⇔ p ∈M ;

For the next property, which loosely stated implies that Segre-varieties transform nicely under holo-
morphic mappings, we introduce the following terminology: Let M ⊂ CN and M ′ ⊂ CN ′ be real-analytic
hypersurfaces, p ∈ M , p′ ∈ M ′. We say that a holomorphic map H : CN ⊃ U → CN ′ defined on a neigh-
bourhood U of p takes (M,p) into (M ′, p′) and write H : (M,p) → (M ′, p′) if H(p) = p′ and there exists a
neighbourhood V of p with H(M ∩ V ) ⊂M ′. We shall denote the Segre varieties associated to M ′ by S′q′ .

Lemma 13. If H : (M,p)→ (M ′, p′) is a holomorphic map taking (M,p) into (M ′, p′), then for q close by
p, H(Sq) ⊂ S′H(q).

Proof. Choosing defining function % and %′, we see that the assumption that H : (M,p)→ (M ′, p′) is equiv-
alent to %′(H(Z), H̄(ζ)) = A(Z, ζ)%(Z, ζ) for (Z, ζ) close by (p, p̄). Thus, if Z ∈ Sζ̄ , %′(H(Z), H̄(ζ)) = 0,
which means that H(Z) ∈ S′

H(ζ̄)
.

Problem 10. Let S2N−1 be the unit sphere in CN . For an entire map H mapping S2N−1 into S2N ′−1 and
a hyperplane E ⊂ CN , determine a hyperplane E′ ⊂ CN ′ with H(E) ⊂ E′.

A lot of information about the geometry of M is encoded in its Segre-varieties. First, we will discuss the
notion of type.

4.1 Finite type

Let M be an abstract CR manifold, p ∈M . We say that M is of finite type at p if the Lie-algebra generated
by the CR and the anti-CR vector fields, evaluated at p, gives CTpM .

Example 7.

??? From here Michael included the topics we treated in Bernhard’s lecture in summer
term 2011, starting with the section about real-analytic functions on p. 67 of Michael’s notes
???
??? The definition of a real-analytic function is already defined in a previous section ???

5 Real-Analytic Functions and their Complexification

Definition 15. Let U ⊂ Rk be open. We say that the function f : U → C is real-analytic, if for each p ∈ U
there exists a neighborhood V ⊂ Ck of p and a holomorphic function F : V → C such that F |V ∩Rk = f .

Remark 2. (i) An equivalent definition that a function f : Rk ⊃ U → C is real-analytic is the following:
for all p ∈ U there exist constants M, r > 0 and complex numbers (aα)α∈Nk with |aα| ≤ M

r|α|
such that

in a neighborhood of p we have f(x) =
∑
α aα(x− p)α.

21



(ii) The radius of convergence of a real-analytic function essentially depends on V ⊂ Ck as comparing the
power series expansion of the function x 7→ 1

1+x2 at 0 and 1 shows.

(iii) In Definition 15 we could realize Rk in Ck by choosing coordinates z = (z1, . . . , zk) in Ck and identifying
Rk in Ck as the set {z ∈ Ck : Im z = 0}, but other maximally totally real subspaces of Ck can be used.

Choosing any basis {v1, . . . , vk} of Ck we realize Rk in Ck via Rk 3 (x1, . . . , xk) 7→
∑k
j=1 xjvj . More

generally if L : Rk → Ck is a real-linear mapping with real-linearly independent components, then the
image of L under Rk is a maximally totally real subspace of Ck. The same works if we take k = 2N in
Definition 15, i.e., if we start with a real-analytic function f : CN ⊃ U → C. Similarly we can realize
CN as a maximally totally real subspace of C2N by taking L̃ : CN → C2N , a real-linear mapping with
real-linearly independent components. This leads to the definition of real-analyticity of functions in
complex spaces.

Definition 16. Let L̃ : CN → C2N be a real-linear mapping with real-linearly independent components.
Define E := image(L̃) and let Ω ⊂ CN be open. Then f : Ω → C is called real-analytic, if there exists

Ω̃ ⊂ C2N with Ω̃ ∩ E = Ω and a holomorphic function F : Ω̃→ C such that F ◦ L̃ = f .

Remark 3. This definition gives us the freedom to take a convenient subspace for E, i.e, the realization of
CN in C2N can be seen as follows:

(i) As in the beginning we identify CN ∼= R2N by setting xj = Re(zj) and yj = Im(zj). Then we consider
the real-linear mapping (x1, y1, . . . , xN , yN ) 7→ (x1 +iy1, x1− iy1, . . . , xN +iyN , xN− iyN ) and recognize

zj = xj + iyj and z̄j = xj − iyj . So we realized CN in C2N via L̃(z1, . . . , zN ) = (z1, z̄1, . . . , zN , z̄N ) and
hence E = {(Z, ζ) = (z1, . . . , zN , ζ1, . . . , ζN ) ∈ C2N : ζ = Z̄}.

(ii) There is also an argument from Algebra to get to the above L̃. If we consider C as the field expansion
of R ⊂ C, then the group of automorphisms of C fixing R is a Galois group and consists of the identity
and the complex conjugation, such that L̃(z1, . . . , zN ) = (z1, . . . , zN , z̄1, . . . , z̄N ).

(iii) These choices for L̃ and E have the following consequence for real-analytic functions f : CN → C: As
above we write zj = xj + iyj and Z = (z1, . . . , zN ), then f(Z) =

∑
α,β aαβx

αyβ =
∑
γ,δ bγδz

γ z̄δ =

f(Z, Z̄), where we wrote xj =
zj+z̄j

2 and yj =
zj−z̄j

2i for the second equality. Hence the holomorphic
function F from Definition 16 is given by F (Z, ζ) := f(Z, ζ). Realizing a function defined on CN as a
function on C2N is called complexification. Since E is a maximally totally real subspace we also have
the complexification principle, which says that if a real-analytic function f satisfies f(Z, Z̄) ≡ 0, then
also f(Z, ζ) ≡ 0. We can apply this principle to real-analytic submanifolds.

Definition 17. Let M be a real-analytic submanifold of CNZ . Then there is a complex submanifold M of
C2N

(Z,ζ) with M∩ {(Z, ζ) ∈ C2N : ζ = Z̄} = M . We call M the complexification of M .

Remark 4. (i) One can show that M is a maximally totally real submanifold of M and the germ of M
is unique near {(Z, ζ) ∈ C2N : ζ = Z̄}.

(ii) Again we have the complexification principle for real-analytic functions on M , i.e., if f(Z, Z̄) = 0 on
M , then f(Z, ζ) = 0 on M.

(iii) Note that we have the following structure on M. If ρ is a local defining function for M , then we have
by the reality of ρ on M that ρ(Z, Z̄) = ρ̄(Z̄, Z) and thus on M we have ρ(Z, ζ) = ρ̄(ζ, Z).

Example 8. We conclude this section by applying the complexification principle to holomorphic mappings
of real-analytic submanifolds. Let (M, 0) ⊂ CN and (M ′, 0) ⊂ CN ′ be germs of real-analytic subman-
ifolds with defining functions ρ and ρ′ and consider the associated complexifications M and M′. Let
H : M ⊂ U → CN ′ be a holomorphic mapping with H(0) = 0 and H(U ∩ M) ⊂ M ′. The last prop-
erty means that ρ′(H(Z), H(Z)) = 0 if ρ(Z, Z̄) = 0. This is equivalent by saying that there exists a
real-analytic, real matrix-valued function A such that ρ′(H(Z), H(Z)) = A(Z, Z̄)ρ(Z, Z̄) as can be seen
as follows: We write Z = (x1, . . . , x2N ) and after rotating and reordering the coordinates, we can assume
that

(
(ρ′j)xk(0)

)
1≤j≤d,2N−d+1≤k≤2N

is of full rank, hence by the Implicit Function Theorem we can choose

coordinates yj := xj for 1 ≤ j ≤ 2N − d and y2N−d+j := ρ′j(Z) for 1 ≤ j ≤ d. In these new coordinates the
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function f := ρ′ ◦H satisfies f(y1, . . . , y2N−d, 0, . . . , 0) = 0 and thus

f(y1, . . . , y2N ) =f(y1, . . . , y2N )− f(y1, . . . , y2N−1, 0) + f(y1, . . . , y2N−1, 0)− f(y1, . . . , y2N−2, 0, 0)

+ . . .+ f(y1, . . . , y2N−d+1, 0, . . . , 0)− f(y1, . . . , y2N−d, 0, . . . , 0)

=

d∑
l=1

∫ 1

0

y2N−d+lfy2N−d+l(y1, . . . , y2N−d, y2N−d+1, . . . , y2N−d+l−1, ty2N−d+l, 0, . . . , 0)dt

=

d∑
l=1

y2N−d+lal(y1, . . . , y2N ),

where (al)1≤l≤d is the d′×d-matrix A. Then the complexified version of ρ′(H(Z), H(Z)) = A(Z, Z̄)ρ(Z, Z̄) is
ρ′(H(Z), H̄(ζ)) = A(Z, ζ)ρ(Z, ζ) and we obtain the corresponding mapping H(Z, ζ) = (H(Z), H̄(ζ)), which
sends M to M′. We will refer to equations of such form as mapping equations.

6 The Segre Variety

Definition 18. Let M be a generic and real-analytic submanifold of CN and ρ be a real-analytic defining
function for M defined in some V × V̄ ⊂ C2N . The Segre variety Sp of p ∈ V is the complex variety given
by

Sp := Sp(U) := {Z ∈ U : ρ(Z, p̄) = 0},

for U ⊂ V a small neighborhood around p.

Remark 5. (i) If p ∈ V , there is a small neighborhood U ⊂ V of p, such that Sp(U) is nonempty and Sp
is uniquely determined: Let p ∈ U and d denote the codimension of M . Since we assume that M is
generic, we can reorder the components ρ1, . . . , ρd of ρ and the coordinates (z1, . . . , zN ) of CN , such
that ∣∣∣∣∣∣∣

ρ1zn+1
· · · ρ1zN

...
...

ρdzn+1
. . . ρdzN

∣∣∣∣∣∣∣ (p, p̄) 6= 0.

Now we complexify the equation ρ(Z, p̄) = 0, i.e., we consider p̄ as fixed and write ρp̄(Z) := ρ(Z, p̄).
Further we denote Z = (Z ′, Z ′′) ∈ Cn × Cd. Since ρp̄(p) = 0 and ∂

∂Z′′ ρp̄(Z
′, Z ′′) is invertible for

(Z ′, Z ′′) ∈W ⊂ V , a neighborhood of p ∈ V , we apply the Implicit Function Theorem. This gives the
existence of neighborhoods (U ′, U ′′) ⊂ Cn ×Cd of p′ and p′′, respectively, and a holomorphic mapping
Z ′′ : U ′ → U ′′, such that (q′, Z ′′(q′)) ∈ U ′ × U ′′ ⊂ W , satisfies ρp̄(q

′, Z ′′(q′)) = 0 for all q′ ∈ U ′. To
sum up, there exists Z = (q′, Z ′′(q′)) for q′ being in a neighborhood of p′, such that ρ(Z, p̄) = 0 and
the neighborhood U can be set to U ′×U ′′. Note that in general the Segre set is not open, but we have
shown that Sp is a complex submanifold of codimension d. Further, since the coefficients of ρp̄ depend
real-analytically on p̄, we have a real-analytic dependence of Z on p̄.
The uniqueness of Sp follows from the fact that local defining functions for Sp only differ by a unit in
the space of holomorphic functions.

(ii) If M is the complexification of M , then Sζ̄ = {Z ∈ CN : (Z, ζ) ∈M}.

Proposition 11. The Segre variety Sp has the following properties:
(i) p ∈ Sq ⇔ q ∈ Sp
(ii) p ∈ Sp ⇔ p ∈M
(iii) If H is a holomorphic mapping sending (M,p) to (M ′, p′) with H(p) = p′, then we have H(Sp) ⊂ S ′H(p).
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Proof. (i) and (ii) are immediately from the definition of Sp. For (iii) we take ρ and ρ′ defining functions
for M and M ′ near p and p′. As in Example 8, H has to satisfy %′(H(Z), H̄(ζ)) = A(Z, ζ)%(Z, ζ) for (Z, ζ)
close by (p, p̄). Thus, if Z ∈ Sζ̄ , %′(H(Z), H̄(ζ)) = 0, which means that H(Z) ∈ S ′

H(ζ̄)
.

Example 9. Geometrically Proposition 11 (iii) can be viewed as a reflection principle, which can easily be
observed in C. We define Ω+ := {z ∈ C : Im z > 0} and Ω− := {z ∈ C : Im z < 0}. Let f ∈ H(Ω−) ∩ C(Ω−)
with f(R) ⊂ R. Since R ⊂ C is given by ρ(z, z̄) := z − z̄ as a real-analytic submanifold in C, we have
Sw = {w̄} and Proposition 11 (iii) says that {f(w̄)} ⊂ {f(w)}. This suggests to define the holomorphic
extension of f to Ω+ by f(z̄) := f(z), which is known as the Schwarz reflection principle.

7 Normal Coordinates

Motivation 1. Before we continue with iterating the Segre varieties, we introduce special coordinates for
real-analytic submanifolds such that the Segre varieties are given by easy-to-handle equations.

In Proposition 8 we introduced coordinates for a generic and real-analytic submanifold M ⊂ CN which
are given by w − τ = 2iϕ(z, χ, w+τ

2 ) in the complexified form. Applying the Implicit Function Theorem
and solving for w, we obtain that M is given by w = Q(z, χ, τ). Then S(0,w0) is given by w = Q(z, 0, w0).
Intuitively we want to change coordinates by setting w̃ = w+Q(z, 0, w0) to obtain that S(0,w0) is “flat”, i.e.,
to have S(0,w0) = {(z, w) ∈ CN : w = w̄0}. This implies that Q(z, 0, w̄0) = w̄0 or, since z ∈ Sw̄ if and only if
w ∈ Sz̄, Q(0, χ, w̄0) = w̄0. Also note that in this case S0 = T cp (M) for p near 0 and geometrically this means
that we graphed M over its complex tangent space.

Definition 19. (z, w) ∈ Cn × Cd are called normal coordinates for a generic and real-analytic submanifold
M at 0, if for w0 near 0 we have S(0,w0) = {w = w̄0} or equivalent, for the complexification of M , there

exists a holomorphic Q : Cn × Cn × Cd → Cd with Q(z, 0, τ) = τ = Q(0, χ, τ).

Remark 6. (i) If ρ is a defining function for M, then yet another equivalent condition for (z, w) being
normal coordinates is that ρ(z, w, 0, w) = 0.

(ii) The property Q(z, 0, τ) = τ = Q(0, χ, τ) is called normality condition.
(iii) In normal coordinates we have the following reality condition: Together with w = Q(z, χ, τ) we have

τ = Q̄(χ, z, w), thus w = Q(z, χ, Q̄(χ, z, w)) as well as τ = Q̄(χ, z,Q(z, χ, τ)).

Lemma 14. For a generic and real-analytic submanifold M there always exist normal coordinates.

Proof. Since M is generic, by Proposition 8, we can find coordinates (z′, w′) ∈ Cn × Cd such that M =
{Imw′ = ϕ(z′, z̄′,Rew′)}, where ϕ is a real-analytic function with ∇ϕ(0) = 0. Complexifying this equation

we obtain the defining function ρ′(z′, w′, χ′, τ ′) := w′ − τ ′ − 2iϕ(z′, χ′, w
′+τ ′

2 ) for M. Since there are no
linear terms in ϕ we have ρw′(0) = Id×d − 2iϕw′(0) = Id×d and we can solve for w′ by the Implicit Function
Theorem to obtain that M is given by ρ′′(z′, w′, χ′, τ ′) := w′ − Q(z′, χ′, τ ′). To prove the Lemma we
need to determine a holomorphic change of coordinates (z′, w′) = (f(z, w), g(z, w)), such that in the new
coordinates (z, w) we have Q(z, 0, τ) = τ = Q(0, χ, τ). An equivalent formulation is that ρ(z, w, χ, τ) :=
ρ′′(f(z, w), g(z, w), f̄(χ, τ), ḡ(χ, τ)) = g(z, w) − Q(f(z, w), f̄(χ, τ), ḡ(χ, τ)) has to satisfy ρ(z, w, 0, w) = 0.

Since there are no linear terms in ϕ, the only linear term inQ(z, χ, τ) is τ . We writeQ(z, χ, τ) = τ+Q̃(z, χ, τ),

where in Q̃ only terms of order 2 in (z, χ, τ) occur. Let’s see what conditions we get for (f, g), if we require
that (z, w) are normal coordinates:

0 = ρ(z, w, 0, w) = g(z, w)−Q(f(z, w), f̄(0, w), ḡ(0, w)) (7.1)

= g(z, w)− ḡ(0, w)− Q̃(f(z, w), f̄(0, w), ḡ(0, w)).

From above we see that good choices for f and g are g(z, w) = g(w) and f(z, w) = z to simplify matters,
then we need to assume for g:

g(w)− ḡ(w) = Q̃(z, 0, ḡ(w)). (7.2)
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Since we are dealing with transformations we need gw(0) 6= 0, hence we set g(w) = w + G̃(w), where G̃ is

of order 2. Then we note that (7.2) is a condition for Im(G̃), hence we take G̃ = iG, where G only consists
of real coefficients, i.e., G(w) = Ḡ(w). Now we need to check, if such a holomorphic G actually exists: We
plug in our choices for g into (7.2), set z = 0 to obtain, since we require G(w) = Ḡ(w), that

w + iG(w)− (w − iḠ(w)) = Q̃(0, 0, w + iḠ(w))⇔ 2iG(w) = Q̃(0, 0, w + iḠ(w)),

and since the left-hand side is of order 2 in G(w) we can solve this equation by the Implicit Function Theorem
to obtain a holomorphic G. Finally we need to check if the so attained G satisfies G(w) = Ḡ(w), which was
our assumption in the first place. Since our transformations f and g satisfy the condition in (7.1), we plug
ḡ(χ, τ) = g(z, w) = w + iG(w) and f̄(χ, τ) = f(z, w) = z into ρ and set z = 0 to obtain

w + iG(w) = Q(0, 0, w − iG(w)),

and after conjugating this equation and replacing w̄ by w we obtain

w − iḠ(w) = Q̄(0, 0, w + iḠ(w)).

Finally we combine the two previous equations and use the reality condition to obtain G(w) = Ḡ(w).

Remark 7. Note that normal coordinates are not unique, since they depend on the choices of f and Re(g).

8 Iterated Segre Varieties and Segre Mappings

??? Fill in Bernhard’s draft to illustrate the iterations ???
We can actually iterate the Segre varieties as follows:

Definition 20. We define

S1
p := Sp,

Skp :=
⋃

q∈Sk−1
p

Sq,

for k ≥ 2, called the k-th iterated Segre variety Skp at p.

Remark 8. In what follows we want to give a description of Skp in terms of normal coordinates. If M is

given in normal coordinates (z, w) such that w = Q(z, χ, τ), we also have τ = Q̄(χ, z, w) and Q : C2n+d ⊃
U → Cd is holomorphic satisfying the normality condition. We also assume U to be small enough such that
Q : C2n+d ⊃ V × V ×W →W .
Then we have Sp ∩ {V ×W} = {(z1, w1) ∈ V ×W : w1 = Q(z1, p̄), p ∈ V ×W} = {(z1, w1) ∈ V ×W :
w̄1 = Q̄(z̄1, p), p ∈ V × W}. Note that we have written Sp as the image of the holomorphic mapping
S1(z; p) : V 3 z 7→ (z,Q(z, p̄)).
To start with the iteration process, let q := (z1, w1) ∈ Sp, i.e., w1 = Q(z1, p̄) and Sq = {(z, w) ∈ V ×W :
w = Q(z, q̄)} and

S2
p =

⋃
q∈Sp

Sq =
⋃
z1∈V
{(z, w) ∈ V ×W : w = Q(z, z̄1, Q̄(z̄1, p))}

= image
{

(z, z1) 7→ (z,Q(z, z̄1, Q̄(z̄1, p))) : (z, z1) ∈ V × V
}
.

If we complexify the real-analytic mapping in the previous equation, we get that S2
p is the image of the

holomorphic mapping

(z, χ1) 7→ S2(z, χ1; ζ) := (z,Q(z, χ1, Q̄(χ1, p))),
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where (z, χ1) ∈ V ×V . Similar, if we go one step further, we obtain that S3
p is the image of the holomorphic

mapping

(z, χ1, z1) 7→ S3(z, χ1, z1; ζ) := (z,Q(z, χ1, Q̄(χ1, z1, Q(z1, p̄)))),

where (z, χ1, z1) ∈ V 3. For higher iterations we introduce the following notation.

Definition 21. We define for xm ∈ Cn, where m ≥ 1, x[k] := (xk, . . . , x1) ∈ Ckn, t ∈ CN and j ≥ 2 ???
Define S without the first component or give the second component a separate name, only
needed once ???

S0(t) := (0, t),

S1(x1; t) := (x1, Q(x1, t)),

Sj(x[j]; t) := (xj , Q(xj , S̄j−1(x[j−1]; t))),

the j-th Segre mapping Sj(x[j]; t).

Remark 9 (Segre sets as images of Segre maps). With the above notation we have that the image of

(z, χ1, z1, χ2, . . . , zk−1, χk) 7→ S2k(z, χ1, z1, χ2, . . . , zk−1, χk; p)

is S2k
p for k ≥ 1 and the image of

(z, χ1, z1, χ2, . . . , χk, zk) 7→ S2k+1(z, χ1, z1, χ2, . . . , χk, zk; p̄)

is S2k+1
p for k ≥ 0.

Remark 10 (Segre sets via submanifolds). Another way to describe the iterated Segre sets is, if we asso-
ciate the following submanifolds M(k) of codimension kd to the complexification of M . We will skip the
neighborhoods involved.
We start with M(1) := M the complexification of M , where we write (Z, ζ) for points on M. Next we
replace ζ by points (ζ1, Z1) ∈M, attach them to M according to Definition 20, and define

M(2) := {(Z, ζ1, Z1) ∈ C3N : (Z, ζ1) ∈M, (Z1, ζ1) ∈M}.

The next step is to replace Z1 by (Z1, ζ2) ∈M and attach them to M(2) to obtain

M(3) := {(Z, ζ1, Z1, ζ2) ∈ C4N : (Z1, ζ2) ∈M, (Z, ζ1, Z1) ∈M(2)}

and more generally we have

M(2j−1) := {(Z, ζ1, Z1, . . . , Zj−1, ζj) ∈ C2jN : (Z, ζ1, Z1, . . . , Zj−1) ∈M(2j−2), (Zj−1, ζj) ∈M},
M(2j) := {(Z, ζ1, Z1, . . . , ζj , Zj) ∈ C(2j+1)N : (Z, ζ1, Z1, . . . , ζj) ∈M(2j−1), (Zj , ζj) ∈M}.

Let us denote πf for the projection onto the first N components and πl for the projection on the last N
components in some ClN . Then for k even we have Skp = πf (π−1

l (p)) whenever p ∈ πl(M(k)) and if k is

odd we have Skp = πf (π−1
l (p̄)) whenever p̄ ∈ πl(M(k)). These observations provide a parametrization for

the iterated Segre sets. It is also possible to give a description of M(k) in terms of normal coordinates. ???
Write it down to make the connection to the manifold induced by the iterated flows in the
next chapter ???

??? Fill in a diagram for the projections involved here ???
??? Different choices of coordinates for the Segre maps give parametrizations for Segre

manifolds, which are biholomorphically equivalent, see section 4 on p. 10f of BER 2003 -
Dynamics-article ???
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Example 10. The question is if the Segre varieties contain open subsets of CN . If so, we basically could
restrict to work with Segre varieties without losing any information, e.g., if we study mappings on M . To
see what can happen, we give the following example:
The hypersurface M = {(z, w) ∈ C2 : Imw = |z|2} has the complexification M = {(z, w, χ, τ) ∈ C4 :
w = τ + 2izχ = Q(z, χ, τ)}. Then S0 = image(S1(z; 0)) = image(z 7→ (z, 0)) = {w = 0} and S2

0 =
image(S1(z, χ1; 0)) = (z, 2izχ1). We observe that no neighborhood of 0 is contained in S2

0 , since∣∣∣∣∂S2(z, χ1; 0)

∂(z, χ1)

∣∣∣∣ =

∣∣∣∣ 1 0
2χ1 2iz

∣∣∣∣ = 2iz,

therefore the variety, where S2 is not of full rank, is given by {z = 0} and contains 0. But if we go one
step further and look at S3

0 = image(S3(z, χ1, z1; 0)) = (z, 2iχ1(z − z1)), we obtain that S3
0 contains a

neighborhood of 0 in C2, if we set z1 := z − z0, where z0 6= 0 is independent of z and χ1.

9 Finite Type

Definition 22. ??? We defined the following already in some previous section ??? Let M be the
complexification of a generic and real-analytic submanifold M of CN , then we define the space of (1, 0)–vector
fields

D(1,0)(p, p̄) :=
{
X =

N∑
j=1

aj(Z, ζ)
∂

∂Zj
: X is tangent to M near (p, p̄) ∈M)

}
,

and the space of (0, 1)–vector fields

D(0,1)(p, p̄) :=
{
Y =

N∑
j=1

bj(Z, ζ)
∂

∂ζj
: Y is tangent to M near (p, p̄) ∈M

}
.

Definition 23. ??? We already defined finite type in some previous section ??? Let D(p, p̄) :=
D(1,0)(p, p̄)⊕D(0,1)(p, p̄) be the space spanned by (1, 0)- and (0, 1)-vector fields tangent toM near (p, p̄) ∈M
and D(p, p̄) the Lie algebra of D(p, p̄) evaluated at (p, p̄) ∈M.
Then M is of finite type at p ∈M , if D(p, p̄) = T(p,p̄)M.

Remark 11. (i) An equivalent formulation for p being a point of finite type is, that all (1, 0)– and (0, 1)–
vector fields tangent to M generate CTpM .

(ii) Since we have that dimC(D(1,0)(p, p̄)) = n = dimC(D(0,1)(p, p̄)) and dimC(T(p,p̄)M) = 2N − d =
2(n+d)−d = 2n+d the commutators of all (1, 0)– and (0, 1)–vector fields tangent toM have to span
d additional directions, which are called missing directions.

Example 11. Let M be a hypersurface given by M = {Im(w) = ϕ(z, z̄,Re(w))} and we assume w.l.o.g.
that ϕ(z, 0, 0) = 0 = ϕ(0, z̄, 0). Then M is of finite type at 0 if and only if ϕ(z, z̄, 0) 6≡ 0. Moreover the
length of the commutators, which span the missing direction, is the order of vanishing of ϕ(z, z̄, 0) at 0. The
length of these commutators is defined as the type of p. ??? Maybe fill in the computation here ???

??? The following Lemma is needed for the proof of Stanton’s Theorem, but the Lemma
actually follows from the proof of the Theorem concerning the Characterization of Segre sets;
but an independent (and shorter) proof of this fact is also fine ???

Lemma 15. Let M be a generic and real-analytic submanifold of CN and p ∈M a point of finite type.
Then there exists a proper, real-analytic subvariety V ⊂M , such that any q ∈M \V is a point of finite type.

Proof. ??? TBC, see BER 1999, Thm. 1.5.10, p. 19f ???

Theorem 7. Let M be a generic and real-analytic submanifold of CN and p ∈ M . Then the following
statements are equivalent:
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(i) M is of finite type at p ∈M .
(ii) There exists j ∈ N such that the iterated Segre map Sj(x[j]; p) is generically of full rank.

(iii) There exists j ∈ N such that the iterated Segre set Sjp contains an open set of CN .

Remark 12. (i) Theorem 7 (ii) means that for x[j] = (xj , . . . , x1) with xk = (xk1 , . . . , x
k
n) ∈ Cn for

1 ≤ k ≤ j, there exist multiindices k1, . . . , kN with 1 ≤ kr ≤ n and j1, . . . , jN with 1 ≤ js ≤ j for
1 ≤ r, s ≤ N such that ∣∣∣∣∣ ∂Sj(x[j]; p)

∂(xj1k1 , . . . , x
jN
kN

)

∣∣∣∣∣ 6≡ 0.

(ii) The course of the proof of Theorem 7 (i) ⇔ (ii) is the following: Starting with the next remark we
forget about M and actually show the statement for p ∈ CN . We start with a family of K-analytic
vector fields Y in CN and denote by Y(p) its Lie algebra at p ∈ KN . The flow of elements in Y
consist of iterated flows of the elements in Y and will be denoted by Φ. Then we show that such Φ
are generically of full rank N at p if and only if Y(p) spans TpKN . In a last step we identify the Segre
mappings as flows of elements in D(p, p̄) and take into account that we are not in the flat case, but on
a submanifold M .

Remark 13 (The setup). Let K = {R,C} and let X = {X1, . . . , Xl} be a family of germs of K-analytic
vector fields in KN near 0. We write

Xj =

N∑
k=1

ajk(x)
∂

∂xk
,

where, for 1 ≤ k ≤ N and 1 ≤ j ≤ l, ajk : KN → K are germs of analytic functions near 0. Further we

denote aj = (aj1, . . . , a
j
N ). The flow of Xj ∈ X at time s ∈ K at x ∈ KN is denoted by ϕsXj (x) ≡ ϕj(x, s) :

KN ×K→ KN , i.e., it is the unique solution of the following initial value problem for small s:

∂ϕj

∂s
(x, s) =aj(ϕj(x, s))

ϕj(x, 0) =x.

Next we start to flow with respect to all vector fields in X: We let t = (t1, . . . , tl) ∈ Kl and we write for
1 ≤ k ≤ l, yk := ϕtkXk ◦ · · · ◦ ϕ

t1
X1

(x) ∈ KN . If we temporarily denote for 1 ≤ k ≤ l, ψk ≡ ψk(x, t1, . . . , tk) :

KN ×Kk → KN the flow of the vector fields X1, . . . , Xk at times t1, . . . , tk. Then ψk is the solution of

∂ψk
∂tk

(yk−1, tk) =ak(ψk(yk−1, tk))

ψk(yk−1, 0) =yk−1,

where y0 := x, hence ψk = ϕtkXk ◦ · · · ◦ ϕ
t1
X1

(x) is a germ of an analytic mapping. ??? Where do we need

the following notation ??? We introduce one more notation: We let t[j] = (t1, . . . , tj) for each tk ∈ Km
and set

ϕt
[1]

X (x) :=ϕt
1

X(x)

ϕt
[j]

X (x) :=ϕt
j

X ◦ ϕt
[j−1]

X (x),

and each ϕt
[j]

X (x) ≡ ϕt
[j]

(x) ≡ ϕ(x, t[j]) : KN × Kjm → KN is a germ of an analytic mapping. To sum up,
for this definition we iterated the flows ϕtX(x), which are solutions of the appropriate initial value problem
similar as above. The question to which vector fields the iterated flows correspond, will be addressed to
Remark 16.

28



??? Is it useful to introduce the following ranks since we will prove directly that the dimension
of the Lie algebra of X is equal to the dimension of the tangent space of the orbits ??? We fix
x ∈ KN and denote by

skX(x) := max
j∈N

rkϕ(x, t[j]).

??? Separate definition for “generic rank” and “generically of full rank” (see below the state-
ment of the previous theorem) somewhere in the intro ??? Here rkϕ(x, t[j]) denotes the generic
rank of ϕ(x, t[j]), which means that we consider the rank of ϕ(x, t[j]) over the quotient field K{t[j]}. More
precisely, rkϕ(x, t[j]) is the largest number r ∈ N, such that the Jacobian of ϕ(x, t[j]) with respect to t[j] has
a non vanishing minor of size r near 0 ∈ Kjl.
Further we denote by

rkX(x) := dimK X(x),

the dimension of the Lie algebra of the family of vector fields X evaluated at x.
For two vector fields X,Y let us write (adX)(Y ) := [X,Y ] and (adX)j(Y ) := (adX)

(
(adX)j−1(Y )

)
for

j ≥ 2.

Theorem 8 (Vector fields vs. flows). Let K = {R,C} and let X = {X1, . . . , Xl} be a family of germs of
K-analytic vector fields in KN near 0. Then we have for fixed x ∈ KN sufficiently near 0

rkX(x) = skX(x).

Remark 14. (i) It is clear that 1 ≤ skX(x), rkX(x) ≤ N . The advantage of considering skX(x) instead
of rkX(x) lies in the fact that (rkϕ(x, t[j]))j∈N is a strictly increasing sequence ??? Refer to this
aspect, when we prove this claim; we skipped the proof in the lecture, but BER 2003 -
Dynamics ..., Prop. 3.1 gives a formal argument ???. Hence, in order to compute the dimension
of the Lie algebra of vector fields we are done after finitely many steps.

(ii) The following Lemma is the starting point of an induction process and describes the flows of the Lie
bracket of two vector fields X,Y in terms of one vector field Y evaluated at the flow of X.

Lemma 16. Let X =
∑N
k=1 ak(x) ∂

∂xk
and Y =

∑N
l=1 bl(x) ∂

∂xl
be germs of K-analytic vector fields near 0

and denote by ϕ(x, t) : KN ×K→ KN the flow of X. Then

W (x, t) := ϕx(ϕ(x, t),−t)Y (ϕ(x, t))

uniquely solves

∂W

∂t
(x, t) =ϕx(ϕ(x, t),−t)[X,Y ](ϕ(x, t)) (9.1)

W (x, 0) =Y (x).

Moreover we have

ϕ−1
x (ϕ(x, t), t)Y (ϕ(x, t)) =

∑
j∈N

1

j!
(adX)jY (x)tj ,

where the sum converges absolutely and uniformly on compact subsets in a neighborhood of 0 ∈ K.

Proof. First we deduce some properties of the flow ϕ: Since ϕ(ϕ(x, t),−t) = x we obtain, if we take derivatives
with respect to x, that

ϕx(ϕ(x, t),−t) = ϕ−1
x (x, t). (9.2)
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We write a = (a1, . . . , aN ) and b = (b1, . . . , bN ). Since ϕ satisfies

∂ϕ

∂t
(x, t) =a(ϕ(x, t)) (9.3)

ϕ(x, 0) =x,

we get, if we differentiate (9.3) with respect to x that

ϕt,x(x, t) = ax(ϕ(x, t))ϕx(x, t). (9.4)

Using (9.2) and ϕx(ϕ(x, t),−t) = ϕ−1
x (ϕ(x, t), t), we arrive at

ϕx(x, t)W (x, t) = Y (ϕ(x, t)). (9.5)

First we take derivatives with respect to t of the left-hand side of (9.5) and stick in (9.4) and (9.5) to obtain

d

dt

(
ϕx(x, t)W (x, t)

)
= Y (X(ϕ(x, t))) + ϕx(x, t)

dW

dt
(x, t). (9.6)

Next we take derivatives with respect to t of the right-hand side of (9.5) and obtain

d

dt
Y (ϕ(x, t)) = bx(ϕ(x, t))ϕt(x, t) = bx(ϕ(x, t)X(ϕ(x, t)) = X(Y (ϕ(x, t))). (9.7)

Finally, combining (9.6) and (9.7) we get the desired identity

ϕx(x, t)
dW

dt
(x, t) = X(Y (ϕ(x, t)))− Y (X(ϕ(x, t))) = [X,Y ](ϕ(x, t)). (9.8)

To prove the expansion of W (x, t) = ϕ−1
x (ϕ(x, t), t)Y (ϕ(x, t)), we write W (x, t) as its Taylor series in the

second variable. We differentiate (9.8) again with respect to t, evaluate at 0 and use (9.1), (9.2) and (9.4)

to obtain the correct formula for d2W
dt2 (x, 0). The rest follows by induction and noting that the coefficients

of the series are derivatives of a real-analytic mapping.

Remark 15. The following Lemma is an iteration of the previous Lemma 16 using the notation as in
Remark 13 for iterated flows of a family of vector fields. In contrast to the previous Lemma 16, we get a
formula for derivatives of W with respect to t at t = 0 in terms of Lie brackets.

??? Adjust the notation for the iterated flows from the definition above ???

Lemma 17. Let X1, . . . , Xk, Y be germs of K-analytic vector fields near 0 and denote by ϕtXj (x) ≡ ϕj(x, t) :

KN × K → KN the flow of Xj. We write t[j] := (tj , . . . , t1) ∈ Kj and by ϕ(x, t[j]) the iterated flow of the
vector fields X1, . . . , Xj at x ∈ KN and time t[j] ∈ Kj. Then

W (x, t[k]) := ϕx(ϕ(x, t1),−t1) · · ·ϕx(ϕ(x, t[k−1]),−tk−1)ϕx(ϕ(x, t[k|),−tk)Y (ϕ(x, t[k]))

satisfies

∂kW

∂t1 · · · ∂tk
(x, 0) = [X1, [X2, [· · · [Xk, Y ] · · · ]]](x).

Moreover, after setting Φ(x, t) := ϕtkXk ◦ · · · ◦ ϕ
t1
X1

(x) we have

Φ−1
x (Φ(x, t), t)Y (Φ(x, t)) =

∑
α∈Nk

1

α!
(adX1)α1 · · · (adXk)αkY (x)tα,

where the sum converges absolutely and uniformly on compact subsets in a neighborhood of 0 ∈ Kk.
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Proof. The proof is induction on k ≥ 1. The induction hypothesis is Lemma 16 and the induction step is as
in Lemma 16 with t = 0.

Remark 16. Lemma 16 implies that the Lie bracket [X,Y ] is the derivative of the iterated flow (s, t) 7→
ϕ−sX ◦ϕtY ◦ϕsX with respect to t at 0. Let ϕ(x, s) denote the flow of X and ψ(x, t) the flow of Y , then we get

d

dt

∣∣∣∣
t=0

ϕ(ψ(ϕ(x, s), t),−s) = ϕx(ψ(ϕ(x, s), t),−s)
∣∣
t=0

ψt(ϕ(x, s), t)
∣∣
t=0

= ϕx(ϕ(x, s),−s)Y (ϕ(x, s))

and by Lemma 16 the claim follows. For iterated flows of higher order we have to consider flows of the form

ϕ(x, tJ) := ϕj1,−t1 ◦ · · · ◦ ϕj|J|−1,−t|J|−1 ◦ ϕj|J|,t|J| ◦ ϕj|J|−1,t|J|−1 ◦ · · · ◦ ϕj1,t1(x),

where tJ = (t1, . . . , t|J|) and ϕjk,tk is the flow of the vector field Xk for 1 ≤ k ≤ |J | − 1 and Y for k = |J |.
Then we take derivatives with respect to t|J| and apply Lemma 17 to get that the derivative of ϕ(x, tJ) with
respect to t|J| at t|J| = 0 is equal to [X1, [X2, [· · · [Xk, Y ] · · · ]]](x).
Thus the flows of elements of the Lie algebra of a family of vector fields are iterated flows as we have
introduced them in Remark 13.

??? One has to evaluate the flows at some fixed time t0 ???

Definition 24. For X a germ of a family of K-analytic vector fields near x ∈ KN we denote by X its Lie
algebra and by F the collection of all flows of elements of X. We define by F(x) the orbit of X at x as

F(x) := {y ∈ CN : ∃ϕ ∈ F : y = ϕ(x)}.

Remark 17. Suppose there exists Y ∈ X such that Y (x) 6= 0. Since the parametrizations of F(x) consists
of iterated flows t[j] 7→ ϕ(x, t[j]), there exists a k ∈ N such that d

dtk

∣∣
t=0

ϕ(x, t[j]) = Y (x) 6= 0, hence F(x) is

a submanifold of dimension dim(span{X(x) : X ∈ X}) of CN . As for the Segre sets we can write F as the
projection of iterated submanifolds as follows:
Let X = {X1, . . . , Xk} be a family of vector fields in KN . We set j = (j1, . . . , jl) ∈ Nl with 1 ≤ jm ≤ k. Let
y ∈ F(x) be given by y = ϕ(x, t[j]). Then we define Mjm := {(x, y) ∈ KN : y = ϕ(x, t[jm])} and the iterated
submanifold Mj to be

(x, y1, . . . , yl) ∈Mj ⇔ (x, y1) ∈Mj1 , (y1, y2) ∈Mj2 , . . . , (yl−1, yl) ∈Mjl .

We get F(x) = πl(Mj) and after reordering the coordinates (x, y1, . . . , yl) we could have also written F(x) =
πf (Mj) to see the connection to the definition of the manifolds given in Remark 10 directly.

Proposition 12 (Nagano’s Orbit Theorem light). Fix X = {X1, . . . , Xk} a family of germs of K-analytic
vector fields near 0. Denote by X(x) the Lie algebra of X at x ∈ KN . Then we have for fixed x ∈ KN
sufficiently close to 0

dimK X(x) = dimK X(y) = dimK TyF(x) ∀y ∈ F(x).

Proof. Let y ∈ F(x) and Φ ∈ F be an iterated flow, such that y = Φ(x, t) for some t. Then dimK X(x) ≤
dimK X

(
Φ(x, t)

)
holds for continuity reasons: Let r := dimK X(x), choose a basis Y1(x), . . . , Yr(x) ∈ X(x)

and write Yj = (Y 1
j , . . . , Y

N
j ), such that∣∣∣∣∣∣∣

Y 1
1 (x) · · · Y 1

r (x)
...

. . .
...

Y r1 (x) · · · Y rr (x)

∣∣∣∣∣∣∣ 6= 0. (9.9)

By continuity of the components of elements in X(x) and their flows, we obtain∣∣∣∣∣∣∣
Y 1

1 (Φ(x, t)) · · · Y 1
r (Φ(x, t))

...
. . .

...
Y r1 (Φ(x, t)) · · · Y rr (Φ(x, t))

∣∣∣∣∣∣∣ 6= 0,
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which means that Y1(Φ(x, t)), . . . , Yr(Φ(x, t)) ∈ X(Φ(x, t)) is a set of K-linearly independent vectors in
X(Φ(x, t)), hence r ≤ dimK X

(
Φ(x, t)

)
.

To show the converse inequality dimK X(x) ≥ dimK X
(
Φ(x, t)

)
we assume that for all choices of r+ 1 vectors

Z1(x), . . . , Zr+1(x) ∈ X(x) each r + 1-minor of the matrix (Z1(x), . . . , Zr+1(x)) vanishes. Then we have to
conclude, that for each choice of r + 1 vectors V1(Φ(x, t)), . . . , Vr+1(Φ(x, t)) ∈ X(Φ(x, t)) every r + 1-minor
of the matrix

(
V1(Φ(x, t)), . . . , Vr+1(Φ(x, t))

)
vanishes. As in Lemma 17 we write for 1 ≤ j ≤ r + 1

Φ−1
x (Φ(x, t), t)Vj(Φ(x, t)) =

∑
α∈Nk

1

α!
(adX1)α1 · · · (adXk)αkVj(x)tα,

where Zα,j(x) := (adX1)α1 · · · (adXk)αkVj(x) ∈ X(x). We set Zα,j = (z1
α,j , . . . , z

N
α,j) and define Ṽj(x, t) :=

Φ−1
x (Φ(x, t), t)Vj(Φ(x, t)). Since Φ−1

x (Φ(x, t), t) is near the identity for small t, it is enough to show that

each r+ 1-minor of the matrix Ṽ := (Ṽ1(x, t), . . . , Ṽr+1(x, t)) vanishes. Let us take any r+ 1-minor of Ṽ and

write Ṽj = (ṽ1
j , . . . , ṽ

N
j ). Since all involved sums converge absolutely and uniformly, we can reorder in such

a way that∣∣∣∣∣∣∣
ṽα1

β1
· · · ṽα1

βr+1

...
. . .

...
ṽ
αr+1

β1
· · · ṽ

αr+1

βr+1

∣∣∣∣∣∣∣ (x, t) =
∑
γ∈Kk

∑
δ1+···+δr+1=γ

1

δ1! · · · δr+1!

∣∣∣∣∣∣∣
zα1

δ1,β1
· · · zα1

δr+1,βr+1

...
. . .

...
z
αr+1

δ1,β1
· · · z

αr+1

δr+1,βr+1

∣∣∣∣∣∣∣︸ ︷︷ ︸
=0

(x)tγ = 0.

The second equality dimK X(y) = dimK TyF(x) is immediate, since we know F(x) is a submanifold and
consists of the flows of the elements in X(y). ??? Is this clear? + identification of Lie algebra with
tangent space ???

Remark 18. Note that (9.9) shows that the set, where dimK X(x) is not maximal, is a proper, K-analytic
variety of KN , which in particular means that dimK X(x) is generically locally constant. Moreover we have
seen that formally the Lie algebras transform as follows:

X(x) = Φ−1
x (Φ(x, t), t)X

(
Φ(x, t)

)
Proof of Theorem 8. The iterated flows give a parametrization of F(x), hence dimK F(x) = skX(x) and if
we apply the previous Proposition 12 we are done.

Remark 19. To get Theorem 8 in the general case of generic submanifolds M , we have to take into account
the codimension d of M , when counting dimensions in Proposition 12.

Proof of Theorem 7. Since the equivalence (ii) ⇔ (iii) is clear we are left by showing (i) ⇔ (ii). This
equivalence follows from Theorem 8 if we are able to identify the Segre maps as iterated flows of (1, 0)- and
(0, 1)-vector fields tangent toM. ForM given in normal coordinates near p ∈M we have for z = (z1, . . . , zn)
and w = (w1, . . . , wd) that w = Q(z, χ, τ), where Q = (Q1, . . . , Qd). Further we write Z = (z, w) and
ζ = (χ, τ). For 1 ≤ j ≤ d we set

Lj :=
∂

∂zj
+Qzj (z, ζ)

∂

∂w
and L̄j :=

∂

∂χj
+ Q̄χj (χ,Z)

∂

∂τ
.

Then L = (L1, . . . , Ln) and L̄ = (L̄1, . . . , L̄n) are a basis of D(1,0)(p, p̄) and D(0,1)(p, p̄) respectively. We
equip T(p,p̄)M with coordinates ( ∂∂z ,

∂
∂w ,

∂
∂χ ,

∂
∂τ ). Then we see that the mappings

ΦtLj (Z, ζ) := (z + tej , Q(z + tej , ζ), ζ) and ΦtL̄j (Z, ζ) := (Z, χ+ tej , Q̄(χ+ tej , Z))
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are the flows of Lj and L̄j , respectively. We denote by ΦtL and Φt
L̄

the iterated flow of L and L̄, respectively,
at complex time t = (t1, . . . , tn) ∈ Cn. That means we have

ΦtL(Z, ζ) =(z1 + te1, . . . , zn + ten, Q(z1 + te1, . . . , zn + ten, ζ), ζ) and

ΦtL̄(Z, ζ) =(Z, χ1 + te1, . . . , χn + ten, Q̄(χ1 + te1, . . . , χn + ten, Z)).

By Remark 9 using the notation of Remark 10, we have that S1(t; ζ) is equal to

t 7→ πf
(
ΦtL(Z, ζ)

)
.

We write for k ≥ 1 tk = (tk1 , . . . , t
k
n) ∈ Cn. For higher iterated Segre maps we have, that if j is odd,

Sj(t1, . . . , tj ; ζ) is equal to

(t1, . . . , tj) 7→ πf

(
Φt

1

L ◦ Φt
2

L̄ ◦ · · · ◦ Φt
j

L (Z, ζ)
)

and if j is even, then Sj(t1, . . . , tj ; ζ) is equal to

(t1, . . . , tj) 7→ πf

(
Φt

1

L ◦ Φt
2

L̄ ◦ · · · ◦ Φt
j

L̄ (Z, ζ)
)
,

if each tk stays in some small neighborhood around 0.
In order to make the connection to skX of Theorem 8, we observe the following:
Since the above iterated flows Φj are given in their complexified form, the first component of Φj is a
parametrization of the first component of submanifolds like Mj from Remark 17. Also note that the iterated
flow Ψj , we had in the definition of skX, occurs in the first component of submanifolds like Mj . This means
that the Segre maps are special cases of iterated flows of the form Ψj and the submanifoldsM(j) are special
cases of submanifolds like Mj . Hence the rank of the Segre map Sj is the same as the rank of Ψj and since
skX = maxj rk Ψj , we have for large k, that skX = rkSk.
??? There is still a part of the proof missing, we still need to show that the rank conditions skX
and rkX coincide, see [dSJL 2011, Formal Theory of Segre Varieties] or can we work directly
with Proposition 12 since if the rank of the iterated Segre map is full, this corresponds to the
dim of the orbit-manifold ???

Corollary 4. Let M be a generic and real-analytic submanifold of CN , p ∈M and f ∈ Op with f(M) ⊂ R.
If M is of finite type at p, then f = f(p) is constant.

Proof. Let us assume p = 0, then we have by the reality of f , that f(Z) = f(Z) for Z ∈ M . After
complexifying we obtain f(Z) = f̄(ζ) for (Z, ζ) ∈ M. Setting ζ = 0 we get f(Z) = f̄(0) for Z ∈ S0. If we
let Z ∈ S2

0 =
⋃
ζ∈S0 Sζ we have f(Z) = f̄(ζ) = f(0). Iterating this process we obtain that f(Z) = f(0)

for all Z ∈ Sj0 with j ≥ 1. Hence by Theorem 7 and the Identity Principle we obtain f(Z) = f(0) for all
Z ∈ (CN , 0).

10 Nondegeneracy Conditions

Motivation 2. If we start with a mapping H sending M to M ′, we can ask under which conditions on M ′

we are able to write H(Z) = Ψ(ζ, ∂̄αH̄(ζ)) for (Z, ζ) ∈ M. Moreover we want Ψ to be a “nice” mapping,
which does not depend on H. If this should hold, we need to require that the “variable” H(Z) occurs in
the mapping equation or even more that the defining equation for M ′ depends on all variables. E.g. if we
take M ′ = M = {Imw = |z1z2|2} ⊂ C3, then we generically identify M with {Imw′ = |z′|2} ∈ C2 via
(z1, z2, w) 7→ (z1z2, w) =: (z′, w′) ∈ C2. This suggests that M actually depends only on two variables. We
could also argue as follows to see that such a representation of H by Ψ as above is not possible for M : We
let H = (f1, f2, g) be a mapping from M to M and introduce H̃ = (eϕf1, e

−ϕf2, g). If we write ρ for the

defining function of M , then ρ◦H̃ = ρ◦H, i.e., ϕ cannot be determined by taking derivatives of the mapping
equation.
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Example 12. We start with an example which should illustrate how to construct a “parametrization” Ψ
as above in the case of the local automorphisms of M = {(z, w) ∈ C2 : Imw = |z|2} fixing 0, denoted by
Aut0(M, 0). ??? Copied from Survey: Jet embeddability of local automorphisms groups of r.-a.
CR manifolds section 2.3 by Bernhard Lamel ??? We use coordinates (z, w, χ, τ) on C4 to describe
the complexification M, which is given by

w − τ = 2izχ.

A map H(z, w) = (f(z, w), g(z, w)) is an automorphism of (M, 0) fixing 0 if and only if

g(z, w)− ḡ(χ, τ) = 2if(z, w)f̄(χ, τ), (10.1)

when w − τ = 2izχ, f(0, 0) = g(0, 0) = 0 and if the matrix(
∂f
∂z (0) ∂f

∂w (0)
∂g
∂z (0) ∂g

∂w (0)

)
is invertible. We now evaluate (10.1) at w = χ = τ = 0 to see that g(z, 0) = 0; thus, the invertibility
condition reduces to fz(0, 0)gw(0, 0) 6= 0.

Now substitute w = τ + 2izχ into (10.1) to see that

g(z, τ + 2izχ) = ḡ(χ, τ) + 2if(z, τ + 2izχ)f̄(χ, τ); (10.2)

an application of ∂
∂z to (10.2) leads to

gz + gw2iχ = 2i(fz + fw2iχ)f, (10.3)

where we have dropped the arguments for better readability. Evaluation of (10.3) at z = w = τ = 0 gives

f̄(χ, 0)(fz(0) + 2iχfw(0)) = gw(0)χ. (10.4)

??? From the above we get gw(0) = |fz(0)|2 ??? If we apply ∂
∂τ to (10.3) and evaluate again at

z = w = τ = 0, we get a similar formula for f̄τ (χ, 0), namely

2if̄τ (χ, 0)(fz(0) + 2iχfw(0)) = gzw(0) + gw2(0)2iχ− 2if̄(χ, 0)(fzw(0) + 2iχfw2(0)), (10.5)

and applying ∂
∂τ to (10.2) also a formula for ḡτ (χ, 0),

ḡτ (χ, 0) = gw(0)− 2ifw(0)f̄(χ, 0). (10.6)

Now we substitute w = 0, τ = −2izχ into (10.1) to obtain

− ḡ(χ,−2izχ) = 2if(z, 0)f̄(χ,−2izχ), (10.7)

and into (10.3), which leads to

gw(z, 0)χ = (fz(z, 0) + fw(z, 0)2iχ)f̄(χ,−2izχ). (10.8)

Substituting back the complex conjugates of (10.5) and (10.6) into (10.8) gives with D = f̄χ(0)− 2izf̄τ (0)

f̄(χ,−2izχ) =
gw(z, 0)χ

fz(z, 0) + 2iχfw(z, 0)

=

χ

(
ḡτ (0) + 2if̄τ (0)

ḡτ (0)z

D

)
f̄χ(0)ḡτ (0)

D2
+ 2iχ

(
−ḡχτ (0) + 2izḡτ2(0)

2iD
− ḡτ (0)z(f̄χτ (0)− 2izf̄τ2(0))

D2

)
=

χḡτ (0)D2 + 2izχf̄τ (0)ḡτ (0)D

f̄χ(0)ḡτ (0) + χD(−ḡχτ (0) + 2izḡτ2(0))− 2izχḡτ (0)(f̄χτ (0)− 2izf̄τ2(0))

=
χf̄χ(0)2ḡτ (0)− 2izχf̄χ(0)ḡτ (0)f̄τ (0)

f̄χ(0)ḡτ (0)− χf̄χ(0)ḡχτ (0)− 2izχ(f̄χτ (0)ḡτ (0)− f̄χ(0)ḡτ2(0)) + z2χR
.
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Since the left hand side of this equation is a holomorphic function in χ and −2izχ, R has to vanish. So all
in all, we arrive at

f(z, w) =
fz(0)z + fw(0)w

1− gzw(0)
gw(0) z +

(
fzw(0)
fz(0) −

gw2 (0)

gw(0)

)
w
. (10.9)

Using g(z, 2izχ) = 2if(z, 2izχ)f̄(χ, 0) and (10.4) we get a similar equation for g, namely

g(z, w) =
gw(0)w

1− gzw(0)
gw(0) z +

(
fzw(0)
fz(0) −

gw2 (0)

gw(0)

)
w

(10.10)

The right hand sides of (10.9) and (10.10) are parametrizations for f and g, i.e. H = Ψ(Z, j2
0H). Of course,

we would have to arrange things such that j2
0Ψ(Z,Λ) = Λ; but computationally, it is preferable to use the

additional information present in (10.9) and (10.10) in order to compute j2
0(Aut(M, 0)): We thus check which

map of the form

(z, w) 7→
(

αz + βw

1 + γz + δw
,

εw

1 + γz + δw

)
(10.11)

gives rise to an automorphism of M . Writing D(z, w) = 1 + γz + δw, this amounts to finding all α, β, γ, δ, ε
such that

ε(τ + 2izχ)D̄(χ, τ)− ε̄τD(z, τ + 2izχ) = (αz + β(τ + 2izχ))(ᾱχ+ β̄τ).

Comparing coefficients on both sides of this equation, we get

ε− ε̄ = 0 −2iββ̄ + εδ̄ − δε̄ = 0

ε− αᾱ = 0 2βᾱ+ iεγ̄ = 0.

This describes the image of Aut0(M,p) defined by mappings of the form (10.11). An explicit parametrization
of this image is given by

α = reiθ, β = reiθa, γ = −2iā, δ = t− i|a|2, ε = r2, (10.12)

where θ, t ∈ R, r ∈ R+ and a ∈ C, with which choices the group Aut0(M, 0) can be written in the usual
form as the mappings of the form

(z, w) 7→
(
reiθ

z + aw

1− 2iāz + (t− i|a|2)w
,

r2w

1− 2iāz + (t− i|a|2)w

)
.

Let us retrace our steps: We first determined H̄(χ, 0) and H̄τ (χ, 0) in (10.4), (10.5), and (10.6) in terms
of j2

0H. This was done using a so called “nondegeneracy condition” on (M, 0), namely, that we could solve
for f̄(χ, 0) in (10.3) evaluated at z = w = τ = 0. Then we leveraged this knowledge to get a formula for
f̄(χ,−2izχ) in terms of j2

0H̄, again using the fact that we could solve for it in (10.3) evaluated at w = 0
in terms of j2

(z,0)H. This procedure led to a formula for H since the Segre map (z, χ) 7→ (χ,−2izχ) is
generically of full rank.

Definition 25. ??? see Definition 2 ??? Let p ∈ CN , h = (h1, . . . , hN ′) ∈ ON
′

p and D(k,N) :=
(
N+k
N

)
.

Then the k-th jet mapping jkp is defined as

jkp : ON
′

p → CN
′D(k,N),

jkph :=

(
∂|α|h

∂αZ
(p) : |α| ≤ k

)
.

Further if we write jkxF (X,Λ), we take the k-jet of F (X,Λ) with respect to the X-variable evaluated at x.
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Definition 26. We call Fn(CN ) the (bundle of) germs of n-dimensional complex-analytic submanifolds of
CN . Germs of fibres Fp ∈ Fn(CN ) are determined by p ∈ Fp, the n-dimensional subspace TpFp and d
holomorphic functions ϕ = (ϕ1, . . . , ϕd) such that Fp = {(x, ϕ(x)) : x ∈ TpFp} ⊂ TpFp × TpF⊥p .

Remark 20. Since the defining functions ϕ for Fp are graphed over TpFp, they are uniquely determined.
??? argument, where did we do that ??? That means Fp ∈ Fn(CN ) can uniquely be represented by the
triple (p, TpFp, ϕ) ∈ CN×Gr(N,n)×Odp, where Gr(N,n) stands for the manifold of n-dimensional subspaces

of CN . It may seem that Fp is an infinite dimensional object, but in fact the rank of Fp is determined by a
finite data. This can be realized by using the jet mapping.

Definition 27. We denote by F kn (CN ) the space of (bundles of) germs of k-jets of n-dimensional complex-
analytic submanifolds of CN . A germ of a fibre F kp ∈ F kn (CN ) is given by the triple (p, TpF, j

k
pϕ).

Remark 21. Here jkp acts on Fp ∈ Fn(CN ) as follows: jkp : Fn(CN )→ F kn (CN ) is defined as (p, TpFp, ϕ) 7→
(p, TpFp, j

k
pϕ). Note that for k = 1 we have j1

p(p, TpFp, ϕ) = (p, TpFp, TpFp).

Definition 28. Let M be a generic and real-analytic submanifold of CN of CR-dimension n and M be its
complexification. Then the mapping

π :M−→ Fn(CN ),

(Z, ζ) 7−→ (Sζ̄ , Z),

is called the reflection map π of M. The k-th jet mapping can be used to define

πk :M−→ F kn (CN ),

(Z, ζ) 7−→ jkZSζ̄ ,

the reflection mapping πk of M of order k.

Definition 29. Let (M,p) be a germ of a generic, real-analytic submanifold of CN . Then:
(i) (M,p) is holomorphically nondegenerate if π is generically of full rank.
(ii) (M,p) is of class C at p if π|p×Sp is generically of full rank.

(iii) (M,p) is essentially finite at p if π|p×Sp is a finite mapping.
(iv) (M,p) is finitely nondegenerate at p if π|p×Sp is immersive.

Remark 22. (i) Each of the conditions in Definition 29 can be restated for πk if we replace π or π|p×Sp by
the formulation “πk for sufficiently large k ∈ N” or “πk|p×Sp for sufficiently large k ∈ N” respectively.

(ii) A finite mapping H : X → imageH =: Y is a mapping whose fibre at y ∈ Y consists of finitely many
x ∈ X for each y ∈ Y .

(iii) Note that the formulation for (M,p) being holomorphically nondegenerate in Definition 29 does not
depend on any particular point near p. We call M which is not holomorphically nondegenerate at any
point in (M,p) holomorphically degenerate.

(iv) How do we use these properties on π? Throughout the computations in Example 12 we used an
inversion of π as can be illustrated as follows: If H is a mapping (with no fibres, e.g., a biholomorphism
or immersion) sending M to M ′, then H(Z, ζ) = (H(Z), H̄(ζ)) sends M to M′ and we require that
the following diagram commutes: ??? Maybe take the diagram from the lecture ???

M M′

F kn (CN ) F kn (CN )

H

πk π′k

jkZH

(π′k)−1

(v) In the sequel we want to investigate the relations between the conditions in Definition 29 as well as to
give descriptions of these nondegeneracy conditions in terms of normal coordinates.

Lemma 18. Let M ⊂ CN be a generic and real-analytic submanifold of codimension d with n = N − d.
We choose normal coordinates (z, w) centered at 0 so that M is given by w = Q(z, χ, τ) and we write
Q(z, χ, τ) =

∑
αQα(χ, τ)zα. Then the following holds:
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(i) M is holomorphically nondegenerate if and only if ζ 7→ (Qα(ζ))α is generically of full rank N .
(ii) M is of class C if and only if χ 7→ (Qα(χ, 0))α is generically of full rank n.

(iii) M is essentially finite if and only if χ 7→ (Qα(χ, 0))α is finite at χ = 0.
(iv) M is finitely nondegenerate if and only if χ 7→ (Qα(χ, 0))α is immersive at χ = 0.

Proof. We writeQ(z, χ, τ) =
∑
α∈Nn Qzα(0, χ, τ)zα =:

∑
α∈Nn Qα(χ, τ)zα. Then for (Z0, ζ0) = (z0, w0, χ0, τ0) ∈

M we have Sζ̄0 = {(z, w) ∈ CN : w = Q(z, χ0, τ0) =
∑
α∈Nn Qα(χ0, τ0)zα}. Hence we identify π(Z0, ζ0) with(

(Qα(ζ0))α∈Nn , Z0

)
and all the conditions imposed on π are passed on to (Qα(ζ))α∈Nn . We immediately

obtain (i) and since π(0) = (S0, 0) = {w = 0}, we set τ = 0 to obtain (ii), (iii) and (iv).

Remark 23. The condition given in Lemma 18 (i) is equivalent to Stanton’s criterion: We assume p = 0
and write Q = (Q1, . . . , Qd) and ζ = (χ, τ) ∈ CN . Since Q(z, 0, τ) = τ we have that Qζ(0) = (0, Id×d) ∈
CdN . Then in Lemma 18 (i) the characterization of holomorphically nondegeneracy is that

(
(Qα)ζ(ζ0)

)
α

is generically of full rank n for ζ0 near 0 which is equivalent to the statement that there exist indices
α1, . . . , αn, β1, . . . , βn where 1 ≤ αk, βl ≤ n and j1, . . . , jn, where 1 ≤ jm ≤ d such that

|(Qj1α1
)χβ1 · · · (Q

jn
αn)χβn | 6≡ 0,

as a power series in χ and τ .

Lemma 19. Let (Mk, 0) ⊂ CN for 1 ≤ k ≤ 4 be germs of generic and real-analytic submanifolds. Then we
have:

(i) If M1 is finitely nondegenerate, then M1 is essentially finite.
(ii) If M2 is essentially finite, then M2 is of class C.

(iii) If M3 is of class C, then M3 is holomorphically nondegenerate.
(iv) If M4 is holomorphically nondegenerate, then there exist real-analytic subvarieties V1 ⊂ V2 ⊂ V3 ⊂M4,

such that for all p ∈M4 \ V1 (M4, p) is of class C, for all p ∈M4 \ V2 (M4, p) is essentially finite and
for all p ∈M4 \ V3 (M4, p) is finitely nondegenerate.

Proof. ??? TBC ???

Example 13. To clarify that the inclusions in Lemma 19 are strict, we give the following examples:
(i) M1 = {(z, w) ∈ C2 : Imw = |z|4} is essentially finite, but not finitely nondegenerate, since Q1(z, χ, τ) =

τ + 2iz2χ2 and χ 7→ ((Q1)α(χ, 0))α = 2iχ2 is of rank 0 at χ = 0.
(ii) M2 = {(z1, z2, w) ∈ C3 : Imw = |z1z2|2 + |z1|2} is of class C, but not essentially finite, since we

have Q2(z1, z2, χ1, χ2, τ) = τ + z1χ1(1 + z2χ2) and (χ1, χ2) 7→
(
(Q2)α(χ1, χ2, 0)

)
α

= χ1(1, χ2) sends
(χ1, χ2) = (0, χ2) to 0.

(iii) M3 = {(z, w) ∈ C2 : Imw = Rew|z|2} is holomorphically nondegenerate, but not of class C, since we
have Q3(z, χ, τ) = τ 1+izχ

1−izχ and Q3(z, χ, 0) ≡ 0.

Remark 24 (The situation in). In C2 we have that M is essentially finite if and only if it is of class C. If M is
of finite type in C2, then holomorphically nondegenerate is equivalent to class C. A finite type hypersurface,
which is holomorphically nondegenerate, but not of class C for Example 13 (iii) is given in C3. ??? see
BER 99 article “Convergence and finite Determination of formal CR maps” at the very end
???

Lemma 20 (Geometric description of nondegeneracy conditions). Let (M,p) be a germ of a connected,
generic and real-analytic submanifold of CN .

(i) The following statements are equivalent:
(a) M is holomorphically degenerate.

(b) There exists a nontrivial X =
∑N
j=1 aj(Z) ∂

∂Zj
with aj ∈ Oq for some q ∈ (M,p) and X is tangent

to M near q.
(c) Generically M ∼= M̂ × C near q ∈ (M,p), where M̂ is a real-analytic CR-submanifold of CN−1.

(ii) M is essentially finite if and only if
⋂
q∈Sp Sq = {p}.
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(iii) ??? Geometric description of class C exists in terms of Segre sets ???
(iv) ??? geometric description of finite nondegeneracy or we take an equivalent description

or the original definition respectively, with an ascending chain of subspaces Ek, ... , and
see BER-book Def. 11.1.8, p. 317 as well as p. 319f ???

Proof. We start proving (i) and show the first equivalence: We write Z = (z, w) and ζ = (χ, τ), such that
M is given in normal coordinates. M is holomorphically degenerate if and only if there exist functions
f1, . . . , fN in the quotient field of C{ζ}, which are not all equal to 0, such that for all α and ζ near 0,

N∑
j=1

fj(ζ)(Qα)ζj (ζ) = 0.

By Taylor’s Theorem we have that the previous equation is equivalent to

0 =
∑
α

N∑
j=1

fj(ζ)
(Qα)ζj (ζ)

α!
zα =

N∑
j=1

fj(ζ)Qζ(z, ζ),

which is equivalent to X =
∑N
j=1 fj(ζ) ∂

∂ζj
being tangent to M and after conjugation we obtain Y =∑N

j=1 f̄j(Z) ∂
∂Zj

a holomorphic vector field tangent to M considering τ = Q̄(χ, z, w) as defining function for

M .
For the second equivalence in (i) the necessary direction is clear. For the sufficient direction suppose X =∑N
j=1 aj(Z) ∂

∂Zj
a holomorphic vector field is tangent to M . Then V := {p ∈ M : X(p) = 0} is a proper,

real-analytic subset of M , since otherwise if X vanishes on M , X has to be identically 0. Thus we can find a
point p0 ∈M \V such that {ReX, ImX} is a set of linearly independent vector fields tangent to M near p0.
Since they are deduced from a holomorphic vector field, we have [ReX, ImX] = 0. By the (real) Frobenius
Theorem we can find coordinates such that X = 1

2

(
∂

∂xN
+ i ∂

∂yN

)
= ∂

∂ZN
is tangent to M near p0. If q′ ∈M

is a point near p0, then {q = (q1, . . . , qN ) ∈ CN : qN = q′N} ⊂ M near q′, which means that generically

M ∼= M̂ × C, where M̂ is as in the hypothesis.
??? TBC essential finite ???

Remark 25. One can show that if M is generic and given in normal coordinates near p, then a holomorphic
vector field X is tangent to M if and only if X =

∑n
j=1 aj(Z) ∂

∂zj
for aj(Z) ∈ Op. If we iterate the argument

in the proof of (i) we obtain that M ∼= M̃ × Ck, where M̃ is a holomorphically nondegenerate and real-

analytic CR-submanifold with dimC M̃ = N − k or if M is holomorphically degenerate, we have M ∼= Cm
for m ≤ N .

Example 14. For M a hypersurface: M is levi-nondegenerate if and only if M is 1-nondegenerate. ???
introduce k0-nondegeneracy, see BER-book, Prop. 11.1.12, p. 317 for a proof with differential
forms; By Remark 11.1.15 this also works for submanifolds, but then the formulation is as
follows: The Levi map is nondegenerate iff the submanifold is finitely nondegenerate ???

11 Automorphisms of Real-Analytic CR-Submanifolds

11.1 Excursus: Lie Groups and Lie Algebras

??? Very short section concerning the definition of Lie groups and Lie algebras plus basic
properties of flows: Maybe we insert this section already when we handle the Lie bracket ???

The following object will be our prototype example of a Lie group.

Definition 30. We define

Gkp(CN ) := {jkpH : H : (CN , p)→ (CN , p), H holomorphic, |H ′(p)| 6= 0},

the jet group of order k at p.
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Remark 26. We can identify Gkp(CN ) with the set of polynomial mappings H : CN → CN of degree at
most k with H(p) = p and |H ′(p)| 6= 0.

Lemma 21. Gkp(CN ) becomes a complex and algebraic Lie group if we define the operation · : Gkp(CN ) ×
Gkp(CN )→ Gkp(CN ) by

H ·G := jkp (H ◦G),

for every H,G ∈ Gkp(CN ).

Proof. Gkp(CN ) is a finite dimensional, complex submanifold with algebraic and immersive parametrization

ϕ = idGkp(CN ) in the space of all germs of holomorphic mappings of (CN , p). Hence all operations on Gkp(CN )

are complex analytic and by the Implicit Function Theorem the group Gkp(CN ) is closed under taking
inverses.

11.2 Infinitesimal CR-Automorphisms vs. CR-Automorphisms

Motivation 3. ??? Why do we want (finite dimensional) Aut(M,p): equivalence problem etc.
???

Definition 31. Let (M,p) be a germ of a CR-submanifold in CN . The space of holomorphic vector fields,
whose real part is tangent to (M,p) is called the germ of infinitesimal CR-automorphisms hol(M,p) of (M,p).
In coordinates we have

hol(M,p) :=

X =

N∑
j=1

aj(Z)
∂

∂Zj
: aj ∈ Op,ReX is tangent to M near p

 .

We define the subalgebra hol0(M,p) ⊂ hol(M,p) as

hol0(M,p) := {X ∈ hol(M,p) : X(p) = 0}.

??? The Automorphism group as defined below is actually not a group, but a so called pseu-
dogroup: we must be careful composing two elements, because the image of one automorphism
has to be in the domain of the other ???

Definition 32. The automorphism group Aut(M,p) of (M,p) is defined as

Aut(M,p) = {H : (CN , p)→ CN : H(M) ⊂M,H holomorphic , |H ′(p)| 6= 0}.

The isotropy group of M at p or stability group of M at p Autp(M,p) is defined as

Autp(M,p) :={H ∈ Aut(M,p) : H(p) = p}.

Theorem 9. (i) The flows ΦtX(Z) of X ∈ hol(M,p) satisfy ΦtX(Z) ∈ Aut(M,p) for t ∈ R in a small
neighborhood of 0.

(ii) Let Aut(M,p) be a finite dimensional Lie group. Then hol(M,p) is the Lie algebra of Aut(M,p).

Remark 27. (i) We point out that the conclusion of Theorem 9 (i) in particular holds for infinite dimen-
sional Lie algebras hol(M,p).

(ii) Theorem 9 (ii) is also true in the case of Aut(M,p) being an infinite dimensional Lie group, but one
has to use a different argument than below. ??? Is this true ???

(iii) If Aut(M,p) is a Lie group, then by (i) and (ii) of the above Theorem 9, it follows that there is a
one-to-one correspondence of hol(M,p) and Aut(M,p), i.e., in this case we identify the flows ΦtX(Z)
of X ∈ hol(M,p) with elements of Aut(M,p).
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Proof. ??? see BER 1999, Prop. 12.4.26, p. 365 for holomorphic vector fields ??? We show
the first statement: Let Φ(Z, t) := ΦtX(Z) be the flow of X =

∑N
j=1 aj(Z) ∂

∂Zj
∈ hol(M,p) and denote

A(Z) = (a1(Z), . . . , aN (Z)). Then Φ(Z, t) solves

∂Φ

∂t
(Z, t) =A(Φ(Z, t))

Φ(Z, 0) =Z.

Let ρ be the defining function for M and set r(t) := ρ(Φ(Z, t),Φ(Z, t)). Then r(0) = 0 and

dr(t)

dt
=ρZ(Φ(Z, t),Φ(Z, t))Φt(Z, t) + ρZ̄(Φ(Z, t),Φ(Z, t))Φt(Z, t)

=(Xρ)(Φ(Z, t),Φ(Z, t)) + (X̄ρ)(Φ(Z, t),Φ(Z, t))

=(2(ReX)ρ)(Φ(Z, t),Φ(Z, t)) (11.1)

Since ReX is tangent to M , using a similar argument as in Example 8, we obtain that there exists a real
matrix valued function B, such that (2(ReX)ρ)(Z, Z̄) = B(Z, Z̄)ρ(Z, Z̄). If we use this fact in (11.1) and
set C(t) := B(Φ(Z, t),Φ(Z, t)), we obtain

dr(t)

dt
= C(t)r(t).

The unique solution is given by r ≡ 0 near 0. That means Φ(Z, t) ∈M for small t and since ΦZ(Z, 0) = id,
the mapping Z 7→ Φ(Z, t) is a one-parameter family of automorphisms of M .
To prove (ii) of the Theorem we show that each element of Aut(M,p) is related to an element of hol(M,p).
We let ρ be a defining function for M and since Aut(M,p) is finite dimensional, we parametrize Aut(M,p)
via s 7→ Hs ∈ Aut(M,p) belonging to a neighborhood of the identity, where s ∈ RK near 0 for some K ∈ N
and H0 = id. Then for each s there exists a matrix valued function As, such that

ρ(Hs(Z), H̄s(Z̄)) = As(Z, Z̄)ρ(Z, Z̄). (11.2)

Since Aut(M,p) is a Lie group, this equation depends smoothly on s. If we differentiate (11.2) with respect
to s and evaluate at 0, we get

ρZ(Z, Z̄)
d

ds

∣∣∣∣
s=0

Hs(Z) + ρZ̄(Z, Z̄)
d

ds

∣∣∣∣
s=0

H̄s(Z̄) =
d

ds

∣∣∣∣
s=0

As(Z, Z̄)ρ(Z, Z̄).

Hence X = d
ds

∣∣
s=0

Hs(Z) ∂
∂Z ∈ hol(M,p) and we conclude that each automorphism gives rise to an infinites-

imal automorphism.

??? The dimension of the group of automorphisms of M which do not fix a point, is at most
as large as the dimension of M : see Remark 17, that’s why we only need to parametrize the
isotropies ???

11.3 Jet Parametrization of the Stability Group of CR-Automorphisms

Motivation 4. This section is devoted to give characterizations for Autp(M,p) being a finite dimensional
Lie group and to explicitly compute biholomorphisms of a large class of real-analytic submanifolds.

Remark 28. If dimR hol0(M,p) <∞, then by ??? Kobayashi, Transformation groups in Differential
Geometry, p. 13 ??? we obtain that there is a unique topology for Autp(M,p) such that hol0(M,p) is the
Lie algebra of Autp(M,p), but in general we do not know which topology for Autp(M,p) occurs. ??? What
can happen, which topologies can occur ??? One possible topology for Autp(M,p) is the induced
topology of the natural topology in the space of holomorphic mappings:
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Definition 33. (Topology of uniform convergence on compact sets) Let H, (Hj)j∈N ∈ ONp be defined in a
neighborhood U of p. Then we say Hj converges uniformly to H on the compact neighborhood K of p if
there exists a compact neighborhood K of p, such that all Hj are holomorphic in a neighborhood of K, and
Hj converges uniformly to H on K. Further let (Ki)i∈I be a compact exhaustion of the neighborhood U of
p and Hi be defined as the space of holomorphic mappings with respect to the uniform convergence on Ki.
Then we define the topology with respect to uniform convergence on compact neighborhoods of p as the
inductive limit of the Frechét spaces Hi. We equip Autp(M,p) with the induced topology of uniform
convergence on compact neighborhoods of p and refer to this topology as the natural topology of Autp(M,p).

Definition 34. Let V ⊂ Gkp(CN ) be a neighborhood of jkp id ∈ Gkp(CN ) and U a neighborhood of {p}×V ⊂
CN × Gkp(CN ). Then a mapping Ψ : U → CN , which is holomorphic in the first and real-analytic in the
second variable, such that

H(Z) = Ψ(Z, jkpH) and jlpH = jlpΨ(Z, jkpH), ∀l ≤ k

for all H ∈ Autp(M,p) with jkpH ∈ V , is called a jet parametrization Ψ for Autp(M,p) of order k near
id ∈ Autp(M,p).

Remark 29. (i) We write Autkp(M,p) := image
(
jkp (Autp(M,p))

)
and note that the jet parametrization is

the continuous inverse of jkp : Autp(CN , p) ⊃ Autp(M,p)→ Autkp(M,p) ⊂ Gkp(CN ) in a neighborhood

V ⊂ Gkp(CN ) of jkp id ∈ Autkp(M,p).

(ii) To get a Lie group structure on Autp(M,p), we need to transport the topology from Autkp(M,p) to

Autp(M,p). To conclude that jkp is a homeomorphism from Autp(M,p) to Autkp(M,p), we have the
following characterization in terms of the jet parametrization.

Lemma 22. Let (M,p) be a germ of a generic and real-analytic CR-submanifold in CN . The following
statements are equivalent:

(i) Autkp(M,p) is a finite dimensional Lie group with the induced topology of Gkp(CN ).
(ii) There exists a jet parametrization for Autp(M,p) of order k.

(iii) There exists an embedding ι : Autp(M,p)→ Gkp(CN ), which is a homeomorphism on its image.

Proof. To verify (i) ⇔ (ii), we need to identify Autkp(M,p) as a real-analytic subset of Gkp(CN ). ??? TBC
???

Remark 30. (i) We point out, that if we assume a jet parametrization for Autp(M,p), we explicitly

specify the real-analytic defining functions for Autkp(M,p) in the previous proof.
(ii) In order to construct a jet parametrization for Autp(M,p) we need to require nondegeneracy conditions

for M .

Theorem 10. For (M,p) a germ of a finitely nondegenerate, generic and real-analytic submanifold of CN
and p a point of finite type, there exists a jet parametrization for Autp(M,p) of order l0 = l0(M,p) near
id ∈ Autp(M,p).

Corollary 5. Let M be a generic and real-analytic submanifold of CN and assume p ∈M is a point of finite
type and M is finitely nondegenerate at p. Let H1, H2 : (CN , p)→ (CN , p) be germs of biholomorphisms with
Hl(M ∩ U) ⊂ M for a neighborhood U of p and l = 1, 2. The following holds for q ∈ U outside a proper,
real-analytic subvariety of M :
There exists k0 ∈ N such that, if we have

∂H1

∂Zα
(q) =

∂H2

∂Zα
(q), ∀|α| ≤ k0, (11.3)

then H1 ≡ H2. Further k0 only depends on N and the codimension of M .

Proof. The proof of Corollary 5 is a direct consequence of Theorem 10 for Autp(M,p).
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Remark 31. (i) The heart of the proof of Theorem 10 is Theorem 11, which already gives the jet
parametrization along Segre sets. For this to be true, we only need to require the nondegeneracy
condition. The main ingredient for the proof of Theorem 11 is the basic identity for biholomorphisms.
In Theorem 12 we pass from the Segre sets to normal coordinates to complete the jet parametriza-
tion. Here we restrict ourselves to hypersurfaces in order to avoid technicalities. ??? We restrict
ourselves to hypersurfaces ???

(ii) If M is a hypersurface then M is of finite type if and only if M is finitely nondegenerate: From
Example 11 we know that M being of finite type is equivalent to Q(z, χ, 0) 6≡ 0, which says that the
Segre map S2 is generically of full rank.

Lemma 23 (Basic identity for biholomorphisms). Let (M,p), (M ′, p′) ∈ CN be generic and real-analytic
submanifolds of real codimension d, H : (CN , p)→ (CN , p′) a germ of biholomorphisms with H(M∩U) ⊂M ′
for a neighborhood U of p and H(p) = p′. Further let (z, w) and (z′, w′) be normal coordinates for M and
M ′ centered at p and p′ respectively, such that M = {(z, w) ∈ CN : w = Q(z, χ, τ)} and M ′ = {(z′, w′) ∈
CN : w′ = Q′(z′, χ′, τ ′)}. Set H = (f, g) = (z′, w′) ∈ Cn × Cd.
Then there exist polynomials (Pα)α∈Nn , which only depend on M and M ′, such that for (z, w) ∈ M near p
we have

Q′zα
(
f(z, w), H̄(χ, τ)

)
=
Pα

(
j
|α|
(z,w)H

)
D(f,Q)2|α|−1

, (11.4)

where D(f,Q) := det
(
fz(z, w) + fw(z, w)Qz(z, χ, τ)

)
. Further if we set Λ := j

|α|
(z,w)H then Pα(Λ) has

coefficients which are holomorphic in M .

Proof. W.l.o.g. we assume p = 0 = p′. Then H has to satisfy the following mapping equation if H sends M
to M ′:

g(z,Q(z, χ, τ)) = Q′
(
f(z,Q(z, χ, τ)), H̄(χ, τ)

)
, ∀(z, χ, τ) ∈ (C2n+d, 0). (11.5)

Setting τ = 0 = χ we obtain g(z, 0) = 0, thus |H ′(0)| = |fz(0)||gw(0)| 6= 0, which in particular says
that fz(z, w) is invertible near 0. We write (f, g) = (f1, . . . , fn, g1, . . . , gd), Q = (Q1, . . . , Qd) and Q′ =
(Q′1, . . . , Q′d) and differentiate the m− th component of (11.5) with respect to zj for 1 ≤ j ≤ n. We obtain,
if we skip the arguments,

gmzj +

d∑
k=1

gmwkQ
k
zj =

n∑
k=1

Q′mz′k
(f, H̄)

(
fkzj +

d∑
l=1

fkwlQ
l
zj

)
,

or – for short – in matrix notation

gz + gwQz = Q′z′(f, H̄)
(
fz + fwQz

)
. (11.6)

Since the n×n-matrix
(
fz+fwQz

)
is invertible near 0, we apply Cramer’s rule to (11.6) to obtain polynomials

Pj which satisfy

Q′z′j (f(z,Q(z, χ, τ)), H̄(χ, τ)) =
Pj
(
j1
(z,Q(z,χ,τ))H

)
D(f,Q)

,

where D(f,Q) = det
(
fz(z, w) + fw(z, w)Qz(z, χ, τ)

)
. To obtain derivatives of Q′ of order 2 and higher with

respect to z, we write α = β + ek, i.e., |β| = |α| − 1. In (11.4) we replace α by β and differentiate the result
with respect to zk to obtain a polynomial Pα such that

Q′zα
(
f, H̄

)
D(f,Q) =

(Pβ)zkD(f,Q)2|β|−1 − (2|β| − 1)D(f,Q)2|β|−2(D(f,Q))zkPβ
D(f,Q)4|β|−2

=:
Pα

D(f,Q)2|β| .

Solving this equation for Q′zα
(
f, H̄

)
with Cramer’s rule completes the induction.
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Lemma 24. Let A, b, h : (CN , 0) → (CN , 0) be holomorphic and |A′(0)| 6= 0. Write x ∈ (Cp, 0) and
t ∈ (Cq, 0), p+ q = N .
Then for every δ ∈ Nq there exists a mapping pδ, such that if

∂

∂tγ

∣∣∣∣
t=0

A(h(x, t)) =
∂

∂tγ

∣∣∣∣
t=0

b(x, t), |γ| ≤ |δ|,

then

∂

∂tδ

∣∣∣∣
t=0

h(x, t) = pδ

(
∂

∂tε

∣∣∣∣
t=0

b(x, t), |ε| ≤ |δ|
)
. (11.7)

Further if we set Λε := ∂
∂tε

∣∣
t=0

b(x, t) we have that pδ(Λε) is polynomial for |ε| > 0 and holomorphic for all
ε.

Proof. First we let δ = 0: We have to solve A(h(x, 0)) = b(x, 0) for h. By the Implicit Function Theorem
there exists a holomorphic B : CN → CN such that h(x, 0) = B(A(h(x, 0))) = B(b(x, 0)). Since h is only
assumed to be holomorphic, B at the right-hand side of the previous equation need not be polynomial in
the variable b(x, 0). Next let |δ| = 1 and write t = (t1, . . . , tq). For 1 ≤ l ≤ q we have

∂

∂tl

∣∣∣∣
t=0

A(h(x, t)) = btl(x, 0)⇔ A′(h(x, 0))htl(x, 0) = btl(x, 0),

which can be solved for htl(x, 0) by Cramer’s rule. We obtain a holomorphic mapping p̃el with

htl(x, 0) = p̃el(btl(x, 0), h(x, 0)) = p̃el(btl(x, 0), B(b(x, 0))) =: pel(btl(x, 0), b(x, 0))

and we have shown the claim for |δ| = 1. For |δ| > 1 we obtain a holomorphic mapping Fδ such that

∂

∂tδ

∣∣∣∣
t=0

A(h(x, t)) = A′(h(x, 0))htδ(x, 0) + Fδ(htε(x, 0), |ε| < |δ|).

We apply the induction hypothesis to the arguments of Fδ and solve the resulting equation using Cramer’s
rule to obtain pδ and the desired equation (11.7). Note that Fδ is polynomial in its arguments where
|ε| > 0.

Lemma 25. Let k ∈ N and a holomorphic mapping H : CN → CN . Then there exist polynomials Pm, whose
coefficients are analytic functions in (x[k]; t) ∈ Ckn × CN , such that

jmSk(x[k];t)H = Pm
(
jm(x[k];t)(H ◦ S

k)
)
, ∀m ≥ 0,

if (x[k]; t) is in a small neighborhood of 0.

Proof. Let N = n + d, then we write t = (t1, t2) ∈ Cn × Cd and H = (f, g) ∈ Cn × Cd. Further we set
Sk(x[k]; t) = (xk, V k(x[k]; t)), then

∂(H ◦ Sk)

∂(xk, t2)
(x[k]; t) =

(
fz(S

k) + fw(Sk)V kxk fw(Sk)V kt2
gz(S

k) + gw(Sk)V kxk gw(Sk)V kt2

)
(x[k]; t)

=
∂H

∂(z, w)
(Sk(x[k]; t))

(
In×n 0
V kxk V kt2

)
(x[k]; t). (11.8)

Since Q(x1, 0, t2) = t2, we have that V k(0; 0, t2) = t2, hence the d×d-matrix V kt2(x[k]; t) is invertible for small

(x[k]; t). By Cramer’s rule we can solve for the first order derivatives of H evaluated at Sk(x[k]; t) in terms of
the required polynomial P1 depending on first order derivatives of H ◦ Sk(x[k]; t). This computation covers
the case m = 1 in the hypothesis. For m > 1 we proceed inductively: We take higher order derivatives of
(11.8) and apply the induction hypothesis to the derivatives of H at Sk(x[k]; t), which are of order less than
m. The expression, where we take derivatives of order m, is handled in the same manner as in the case for
m = 1.
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Theorem 11. Let M be a finitely nondegenerate, generic and real-analytic submanifold of CN .
Then for each k ≥ 1 there exists k0 = k0(k) ∈ N and a holomorphic mapping Ψk : Ckn × Gk0p (CN ) → CN ,
such that

H ◦ Sk(x[k]; p) = Ψk(x[k], jk0p H), (11.9)

for all H ∈ Autp(M,p) near id ∈ Autp(M,p). We write p = (p1, p2) ∈ Cn×Cd and p[k] := (p1, 0, . . . , 0; 0, p2) ∈
Ckn × CN . Then for each k ≥ 1 the mapping Ψk satisfies the following condition:

jlpH = jlp[k]Ψk(x[k], jk0p H), ∀l ≤ k0.

Here we skip the conjugation of p[k] depending on k. ??? Here the RHS has to be understood as
taking derivatives w.r.t. xk and t2, as in (11.8) of Lemma 25 ???
In short we describe the conclusion of this Theorem as “Autp(M,p) has a jet parametrization along Segre
sets”.

Proof. W.l.o.g. we assume p = 0. Further we choose normal coordinates forM and write Z = (z,Q(z, χ, τ))
and ζ = (χ, τ). We denote the right-hand side of (11.4) from Lemma 23 as Rα, a Cd-valued mapping and
Q = (Q1, . . . , Qd) and Rα = (R1

α, . . . , R
d
α). We recall what it means for M to be finitely nondegenerate:

From Lemma 18 (iv) we know that χ 7→ (Qzα(0, χ, 0))α is immersive at χ = 0 if and only if there exist
indices α1, . . . , αn ∈ N and j1, . . . , jn ∈ N such that

|Qzαχ(0)| :=
∣∣Qj1zα1χ(0) · · ·Qj

n

zαnχ(0)
∣∣ 6= 0. (11.10)

We start by showing (11.9) for k = 1. We choose the following parametrization for (Z, ζ) = (0, s, x, s) ∈
M. Then we have from the mapping equation and (11.4) the following system for H̄(x, s):

ḡ(x, s)− Q̄(f̄(x, s), H(0, s)) =0,

Qj
l

zαl
(f(0, s), f̄(x, s), ḡ(x, s)) =Rj

l

αl
, 1 ≤ l ≤ n.

We set m0 := max1≤l≤n α
l and denote the above system by F 1(H̄(x, s)) = B1, where both sides are CN -

valued and B1 only depends on the m0-jet of H at (0, s) and derivatives of Q. We write y = (y1, y2) :=
(f̄(x, s), ḡ(x, s)) and compute

F 1
y (0) =

(
0 Id×d

Qzαχ(0) ∗

)
,

which is invertible for H̄(x, s) near 0 since we assumed the nondegeneracy condition (11.10). We apply
Lemma 24 to F 1(H̄(x, s)) = B1 and obtain mappings Φ1

β such that for all β

∂|β|

∂sβ

∣∣∣∣
s=0

H̄(x, s) = Φ1
β

(
x,
d|γ|

dsγ

∣∣∣∣
s=0

(
jm0

(0,s)H
)
, |γ| ≤ |β|

)
=: Φ1

β(x, j
m0+|β|
0 H). (11.11)

Note that we could have relied on Lemma 25 for S0(s) = (0, s), in the last equality, but this would be too
much in this case. For β = 0 and setting s = Q(x, t) we have

H̄ ◦ S1(x; 0) = H̄(x, 0) = Φ1
0(x, jm0

0 H)

and we get the desired formula for k = 1. The above formula implies that Φ1
0 has to satisfy the compatibility

condition.
We note that (11.11) gives t-derivatives of H̄ ◦ S1(x; t) at 0 in terms of derivatives of H at 0:

d|β|

dtβ

∣∣∣∣
t=0

(
H̄ ◦ S1(x; t)

)
=
d|β|

dtβ

∣∣∣∣
t=0

H̄(x,Q(x, t)) =
∂|β|

∂sβ

∣∣∣∣
s=0

H̄(x, s) = Φ1
β(x, j

m0+|β|
0 H).
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If we take derivatives with respect to x of the above formula we obtain that

jm(x;0)(H̄ ◦ S
1) = Ψ1

m(x, jm0+m
0 H). (11.12)

To determine H on higher iterates of the Segre maps we prove an induction on k, where a formula as in
(11.12) serves as induction hypothesis:

jm(x[k];0)(H ◦ S
k) = Ψk

m(x[k], jm0k+m
0 H), ∀m ≥ 0. (11.13)

We skip the conjugation of H, which varies with k. Note that a formula as (11.13) for k ≥ 2 proves the
Theorem if we set m = 0. We show (11.13) for k, assuming the formula for k − 1.
We start by setting k0(k) := m0k and noting that the Segre sets have the following property ??? Include
this in the appropriate section ???

(Sk(x[k]; t), S̄k−1(x[k−1]; t)) ∈M ∀k ≥ 1, (x[k], t) ∈ C(k+1)N .

From this fact it follows, as for k = 1, that in the system F k(H ◦ Sk(x[k]; t)) = Bk, Bk only depends on the
m0-jet of H at Sk−1(x[k−1]; t) and derivatives of Q. We write y = (y1, y2) := (f ◦ Sk(x[k]; t), g ◦ Sk(x[k]; t))
and obtain as above that F ky (0) is invertible assuming the nondegeneracy condition from (11.10). Thus we

apply Lemma 24 to the system F k(H ◦ Sk(x[k]; t)) = Bk to get holomorphic mappings Φkβ such that

d|β|

dtβ

∣∣∣∣
t=0

H(Sk(x[k]; t)) = Φkβ

(
x[k],

d|γ|

dtγ

∣∣∣∣
t=0

(
jm0

Sk−1(x[k−1];t)
H
)
, |γ| ≤ |β|

)
. (11.14)

We want to write the right-hand side of (11.14) as a mapping depending on the (k − 1)m0 + |β|-jet of
H ◦ Sk−1(x[k−1]; t) evaluated at 0. We use Lemma 25 in the first equality and the induction hypothesis
(11.13) for the equality before the last equation to obtain

Φkβ

(
x[k],

d|γ|

dtγ

∣∣∣∣
t=0

(
jm0

Sk−1(x[k−1];t)
H
)
, |γ| ≤ |β|

)
=Φkβ

(
x[k],

d|γ|

dtγ

∣∣∣∣
t=0

(
Pm0

(
jm0

(x[k−1];t)
H ◦ Sk−1

))
, |γ| ≤ |β|

)
=:Φ̃kβ

(
x[k],

d|γ|

dtγ

∣∣∣∣
t=0

(
jm0

(x[k−1];t)
H ◦ Sk−1

)
, |γ| ≤ |β|

)
=Φ̃kβ

(
x[k], j

m0+|γ|
(x[k−1];0)

H ◦ Sk−1, |γ| ≤ |β|
)

=Φ̃kβ

(
x[k],Ψk−1

m0+|γ|(x
[k−1], j

(k−1)m0+m0+|γ|
0 H), |γ| ≤ |β|

)
=:Ψ̃k

β

(
x[k], j

m0k+|γ|
0 H), |γ| ≤ |β|

)
.

Taking derivatives with respect to x gives (11.13) for k. ??? Add a note how the compatibility follows
from the compatibility of the jet parametrization along Segre sets ???

Remark 32. ??? The previous Theorem makes the picture of inverting the reflection map
explicit ???

Theorem 12. Let M be a real-analytic hypersurface of CN of finite type at p ∈ M and Autp(M,p) has a
jet parametrization along Segre sets as in Theorem 11.
Then there exists a jet parametrization Ψ for Autp(M,p) of order k0 near id ∈ Autp(M,p), such that if we
choose normal coordinates (z, w) ∈ Cn × C centered at p ∈M , we have

H(z, w) = Ψ(z, w, jk00 H),

for all (z, w) ∈M near p.
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Remark 33. The proof of Theorem 12 consists of two parts. In the first part we invert the second Segre
map (z, χ) 7→ (z,Q(z, χ, 0)) evaluated at p = 0 “singularly”, meaning that we write (z, w) for (z,Q(z, χ, 0))
with the consequence that the jet parametrization Ψk0 along Segre sets has singularities. In the second step
we “desingularise” the parametrization from the first step to obtain a holomorphic mapping Ψ, which is the
desired jet parametrization for Autp(M,p).

Proof. Let (z, w) denote normal coordinates for M . We write (z, χ) = (z1, . . . , zn, χ1, . . . , χn) and since M
is a hypersurface of finite type, M is finitely nondegenerate. This means by Lemma 18 (iv), that there exist
multiindices α1, . . . , αn ∈ Nn, such that∣∣∣∣∣∣∣

Qzα1χ1(0) · · · Qzα1χn(0)
...

...
Qzαnχ1(0) · · · Qzαnχn(0)

∣∣∣∣∣∣∣ 6= 0.

We take the lexicographical ordering in Nn and write

Qk(z) := Qzα1χk(0)zα1 + . . .+Qzαnχk(0)zαn ,

where for all 1 ≤ k ≤ n we have Qk 6≡ 0. Then we expand

Q(z, χ, 0) =
∑
|γ|≥1

aγ(z)χγ

and note that aγ(0) = 0 for all γ. We have Ak(z) := aek(z) = Qk(z) +Bk(z) for some holomorphic function
Bk, where in Bk only monomial in z occurs which are of higher order with respect to the lexicographical
ordering. Thus, taking a small neighborhood of 0, we can assume Ak 6≡ 0 for all 1 ≤ k ≤ n. We want to
solve for χ in

w = Q(z, χ, 0) =

n∑
k=1

Akχk +
∑
|γ|≥2

aγ(z)χγ . (11.15)

We set χ2 = . . . = χn = 0 and divide (11.15) by A2
1 to obtain

w

A2
1

=
χ1

A1
+
∑
j≥2

b1j (z)
χj1
A2

1

and set t1 := w
A2

1
and u1 := χ1

A1
. We solve the so obtained equation

t1 = u1 +
∑
j≥2

b1j (z)A
j−2
1 uj1

for u1 applying the Implicit Function Theorem. The solution is given by

u1 = t1 +
∑
j≥2

v1
j (z)tj1 =: ϕ1(z, t1),

where v1
j (0) = 0 for j ≥ 2. Thus

χ1 = A1u1 = A1ϕ1(z, t1) = A1ϕ1

(
z,
w

A2
1

)
solves w = Q(z, χ1, 0, 0), i.e., w = Q

(
z,A1ϕ1

(
z, w

A2
1

)
, 0, 0

)
, if t1 = w

A2
1

stays in in a small neighborhood of 0

according to the neighborhood given by the Implicit Function Theorem. Assume we have functions ϕl such
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that for 1 ≤ l ≤ k we have χl = Alϕl(z, w/A
2
1, . . . , w/A

2
l ) satisfying w = Q(z, χ1, . . . , χk, 0, 0). We want to

find χk+1, depending on z,Ak+1 and χ1, . . . , χk such that w = Q(z, χ1, . . . , χk+1, 0, 0).
For 1 ≤ k ≤ n− 2 we set χk+2 = . . . = χn = 0 and χ′ = (χ1, . . . , χk) in (11.15), which becomes

w = Ãk+1(z, χ′) +Ak+1(z)χk+1 +
∑
j≥2

bk+1
j (z, χ′)χjk+1, (11.16)

where Ãk+1 is a function only depending on z and linearly on χ′. Then we divide the previous equation
(11.16) by A2

k+1 to obtain

w

A2
k+1

=
Ãk+1

A2
k+1

+
χk+1

Ak+1
+
∑
j≥2

bk+1
j

χjk+1

A2
k+1

and set tk+1 := w
A2
k+1

and uk+1 := χk+1

Ak+1
. We solve the so obtained equation for uk+1

tk+1 = Ck+1(z, χ′, tk+1) + uk+1 +
∑
j≥2

bk+1
j Aj−2

k+1u
j
k+1,

where Ck+1 does not depend on uk+1, applying the Implicit Function Theorem. The solution is denoted by
uk+1 = ϕk+1(z, χ′, tk+1). Thus

χk+1 = Ak+1uk+1 = Ak+1ϕk+1(z, χ′, tk+1) = Ak+1ϕk+1

(
z, χ′,

w

A2
k+1

)
=: Ak+1ϕ̃k+1

(
z,
w

A2
1

, . . . ,
w

A2
k+1

)
solves w = Q(z, χ′, χk+1, 0, 0), i.e.,

w = Q(z,A1ϕ1(z, w/A2
1), A2ϕ̃2(z, w/A2

1, w/A
2
2), . . . , Ak+1ϕ̃k+1(z, w/A2

1, . . . , w/A
2
k+1), 0, 0)

for 1 ≤ k ≤ n − 1, if t1, . . . , tk+1 and z stay in a small neighborhood of 0 according to the neighborhoods
given by the Implicit Function Theorem. The case k = n − 1 works in the same way as the induction step
from k to k + 1.
We end up with a holomorphic map ϕ̃ := (ϕ1, ϕ̃2, . . . , ϕ̃n), depending on z and w/A2

1, . . . , w/A
2
n, satisfying

w = Q(z, ϕ̃(z, w/A2
1, . . . , w/A

2
n)). We set A := A1 · · ·An and consider ϕ(z, w/A2) := ϕ̃(z, w/A2

1, . . . , w/A
2
n).

If we set χ = ϕ we obtain

H(z, w) = H(z,Q(z, χ, 0)) = H ◦ S2(z, χ; 0)

= Ψ(z, χ, jk00 H) = Ψ
(
z, ϕ

(
z,
w

A2

)
, jk00 H

)
=
∑
j≥1

cj(z, j
k0
0 H)

( w
A2

)j
. (11.17)

After a linear change of coordinates in z we assume that A is m-regular for some m ∈ N. Note that a linear
change of normal coordinates (z, w) preserves the normality condition. Applying the Weierstrass Division
Theorem there exist functions qj and rj , both holomorphic in the first variable, such that

cj(z, j
k0
0 H) = A2j(z)qj(z, j

k0
0 H) + rj(z, j

k0
0 H).

Since the left-hand side of (11.17) is required to be holomorphic with respect to (z, w), we must have that
rj ≡ 0 for all j ≥ 1. Hence

H(z, w) =
∑
j≥1

qj(z, j
k0
0 H)wj ,

which is formally a power series expansion without singularities in (z, w) at 0. Since the cj are the coefficients
of a holomorphic mapping Φ(t) := H(z,Q(z, ϕ(z, t), 0)), the convergence of H is guaranteed by the estimates
given in the Weierstrass Division Theorem, which provide Cauchy estimates for qj and the convergence of
H.

??? Discuss how to get the jet parametrization in the general case of a submanifold instead
of a hypersurface ???

??? Maybe add a note how to get a jet parametrization for Aut(M,p) ???
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11.4 Infinitesimal CR-Automorphisms

??? Stanton’s Theorem would follow for hol0(M) directly from the jet parametrization Theorem
if we have the jet parametrization for holomorphically nondegenerate submanifolds of finite
type, since then we know that the stability group of the automorphism group is a finite
dimensional Lie group, which is of the same dimension as its Lie Algebra – the infinitesimal
automorphisms sending 0 to 0. The transitive part of the automorphisms is finite dimensional
automatically. ??? But for the proof of Stanton’s Theorem one just needs the jet determination
(a consequence of the jet parametrization) for finitely nondegenerate submanifolds. Till now,
we only have the jet parametrization for finitely nondegenerate hypersurfaces ???

Remark 34. We denote the space ht(M,p) of tangent holomorphic vector fields on (M,p) by

ht(M,p) :=

X =

N∑
j=1

aj(Z)
∂

∂Zj
: aj(Z) ∈ Op, X is tangent to M near p

 .

Then ht(M,p) ⊂ hol(M,p) as algebras and even more is true:

hol(M,p) ∩ ihol(M,p) = {X ∈ hol(M,p) : ReX tangent to M} ∩ {iX ∈ hol(M,p) : Re(iX) tangent to M}
= {X ∈ hol(M,p) : X tangent to M} = ht(M,p).

That means ht(M,p) is the maximal complex subspace of hol(M,p) or seen differently hol(M,p) is to-
tally real if and only if M is holomorphically nondegenerate. If M is holomorphically degenerate we have
dimR hol(M,p) = ∞, since if there exists a holomorphic vector field X 6= 0 tangent to M , then also
f · X ∈ ht(M,p) for any f ∈ Op. Now one can ask for a sufficient condition for dimR hol(M,p) < ∞.
Note that if dimR hol(M,p) < ∞ for one p ∈ M , then this also holds for all q in the connected component
of p.

Theorem 13 (Stanton’s Theorem). Let M be a connected, generic and real-analytic submanifold of CN and
p ∈M a point of finite type. Then

∃q ∈ (M,p) : dimR hol(M, q) <∞⇐⇒ M is holomorphically nondegenerate.

Remark 35. (i) It is a fact from the theory of Lie groups, that the dimension of the Lie group agrees
with the dimension of its Lie algebra ??? Actually we prove this for the characterization of
finite type ???. If M satisfies the hypothesis of Theorem 13, i.e., if dimR hol(M,p) < ∞, then, if
Aut(M,p) is a Lie group, we have dimR Aut(M,p) < ∞. The question under which conditions on M
we can guarantee that Aut(M,p) is a Lie group, is answered in Section 11.3.

(ii) Note that the existence of a point of finite type is crucial: Consider M = {(z, w) ∈ C2 : Imw = 0}.
Then all points in M are not of finite type and X = ∂

∂z is tangent to M , hence dimR hol(M,p) = ∞
for p ∈M .

(iii) We have already discussed the necessary condition for hol(M,p) being finite dimensional. In order to
proof Theorem 13 we use the jet determination for Autp(M,p).

Example 15. ??? Example in infinite type case (definition!) in C3: Does there exist M of
infinite type at 0 and holomorphically nondegenerate, with dimR hol(M, 0) =∞? (for C2: Stan-
ton 1995, Thm. 4.3: finite type implies holomorphic nondegeneracy, easy to show with our
characterizations), for higher dimensions: [BER98, Theorem 3 (ii)]: ”CR Automorphisms of
real-analytic manifolds”, one has either the possibility the the dimension is ∞ or 0 if it is
nowhere minimal. ???

Lemma 26. Let us consider y = (y1, . . . , yl) ∈ Rl, x = (x1, . . . , xm) ∈ Rm and Xk :=
∑m
j=1 a

k
j (x) ∂

∂xj
for

1 ≤ k ≤ l. We require that {X1, . . . , Xl} is a set of real-linearly independent, real-analytic vector fields for

all x near 0. Further we define S(y) :=
∑l
j=1 yjXj and F (x, y) := Φ1

S(y)(x), the flow of the vector field S(y)
at time t = 1 and x near 0.
If F (x, y′) = F (x, y′′), for small y′, y′′ ∈ Rl and x near 0, then y′ = y′′.
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Proof. ??? Proof from BER99, Proof of Thm. 12.5.3, p. 367f ??? Let us denote

A(x) :=
(
A1(x), . . . , Al(x)

)
:=

 a1
1(x) . . . al1(x)
...

. . .
...

a1
m(x) . . . alm(x)

 .

Since {X1, . . . , Xl} are linearly independent, we have that the operator norm ‖A(x)‖ = supy∈Rl
∣∣∣A(x)y
‖y‖

∣∣∣ of

A(x) is not zero for all x near 0. Let us assume that there exists C1 > 0 such that ‖A(x)‖ ≥ C1, hence
‖A(x)y‖ ≥ C1 ‖y‖ for all y ∈ Rm. The flow Φ(t, x, y) := ΦtS(y)(x) of the vector field S(y) satisfies

∂Φ

∂t
(t, x, y) =

l∑
k=1

ykA
k(Φ(t, x, y)), (11.18)

Φ(0, x, y) = x,

for all (t, x, y) ∈ R × Rm × Rl near 0. By the Fundamental Theorem of ODEs we obtain that Φ(t, x, y) is
real-analytic in (t, x) in a neighborhood of 0 ∈ R× Rm ??? KN1 p.267 in smooth case ???. There is a
certain invariance encoded in (11.18): If we let s ∈ R, then for small y ∈ Rl, Φ(x, t, sy) solves an equation
similar to (11.18), i.e.,

∂Φ

∂t
(t, x, sy) =

l∑
k=1

sykA
k(Φ(t, x, sy)),

Φ(0, x, sy) = x.

Now we define ϕ(t, x, y) := Φ(st, x, y), set t̃ := st and use (11.18) to obtain

∂ϕ

∂t
(t, x, y) =

dΦ

dt
(st, x, y) = s

∂Φ

∂t̃
(t̃, x, y) = s

l∑
k=1

ykA
k(Φ(t̃, x, y)) =

l∑
k=1

sykA
k(ϕ(t, x, y)),

ϕ(0, x, y) = x.

That means both Φ(st, x, y) and Φ(t, x, sy) solve the following initial value problem:

∂Ψ

∂t
(t, x, y) =

l∑
k=1

sykA
k(Ψ(t, x, y)), (11.19)

Ψ(0, x, y) = x.

Since the solution of (11.19) is unique, we obtain

Φ(st, x, y) = Φ(t, x, sy), s ∈ R, (11.20)

which implies that Φ is real-analytic in a neighborhood of 0 ∈ R×Rm×Rl. If we use the identity of (11.20)
and the second and then the first equation of (11.18), we get

∂F

∂yi
(x, 0) =

∂Φ

∂yi
(1, x, 0) =

d

ds

∣∣∣∣
s=0

(
Φ(1, x, sei)

)
=

d

ds

∣∣∣∣
s=0

(
Φ(s, x, ei)

)
= Ai(x).

Finally we use Taylor’s Theorem in the second variable and write

F (x, y) = F (x, 0) + Fy(x, 0)y +
∑
|α|≥2

bα(x)yα.
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Then we have

‖F (x, y′)− F (x, y′′)‖ =

∥∥∥∥∥∥F (x, 0) + Fy(x, 0)y′ +
∑
|α|≥2

bα(x)y′α − F (x, 0)− Fy(x, 0)y′′ −
∑
|β|≥2

bβ(x)y′′β

∥∥∥∥∥∥
≥ ‖Fy(x, 0)(y′ − y′′)‖ −

∥∥∥∥∥∥
∑
|γ|≥2

bγ(x)(y′γ − y′′γ)

∥∥∥∥∥∥
≥ C1 ‖y′ − y′′‖ − C2 ‖y′′ − y′‖

2
,

where C2 > 0, for all x, y near 0. The last inequality shows the claim.

Proof of Theorem 13. (⇐) ??? see BER 1999, p. 366 ff, Thm. 12.5.3 bzw. Lemma 12.5.10, what
we need here and Thm 12.3.1 and Thm. 1.5.10 and the previous Lemmas, respectively ???
By Lemma 15 we can find p0 ∈M such that in a neighborhood U of p0, M is of finite type and holomorphically
nondegenerate. From Lemma 19 (iv) we obtain that there exists a point q0 ∈ M , such that near q0 every
point q ∈ M is of finite type and finitely nondegenerate. W.l.o.g. assume q = 0. Let {X1, . . . , Xl} ∈
hol(M, 0) be linearly independent vector fields and consider for y = (y1, . . . , yl) ∈ Rl, S(y) :=

∑l
j=1 yjXj

and F (Z, y) := Φ1
S(y)(Z), the flow of the vector field S(y) at time t = 1 and Z ∈M near 0. Since S(0) = 0,

we have by Theorem 9, F (Z, y) ∈ Aut0(M, 0). Let k0 ∈ N be chosen according to Corollary 5. Lemma 26
implies that, y 7→ jk00 F (Z, y) is injective, where jk00 acts on F (Z, y) in the Z-component at 0. Hence we
obtain

dimR hol(M, 0) = l ≤ dimR F
k0
n (CN ) <∞.

Remark 36. We remark that it is not enough to know that jkp is injective, to conclude that Autkp(M,p) is
a Lie group. ??? example: torus + lines with irrational slope ??? As a consequence we cannot use
Stanton’s Theorem to get a Lie group Autp(M,p), instead we need to construct a jet parametrization, as
shown in Section 11.3.

Example 16. We compute hol(M,p) for M = {(z, w) ∈ C2 : Imw = |z|2} and p = 0. Since we know
that Aut0(M, 0) is a finite dimensional Lie group, we get Aut0(M, 0) from hol0(M, 0). We work with the
complexification M given by ρ(z, w, z̄, w̄) = w − w̄ − 2izz̄.
Similar as we have shown in Example 8 we obtain that a vector field Y is tangent to M if and only if there
exists a real-analytic, real-valued function A(z, w, z̄, w̄) such that Y ρ(z, w, z̄, w̄) = A(z, w, z̄, w̄)ρ(z, w, z̄, w̄)
for all (z, w, z̄, w̄) ∈ C4 near 0.
To compute hol(M, 0) we consider homogeneous parts of the previous equation as follows:
We endow z with weight 1 and w with weight 2 and say that a real-analytic function F (z, w, z̄, w̄) is of weight
k if F (tz, t2w, tz̄, t2w̄) = tkF (z, w, z̄, w̄) for t ∈ R. This concept translates to – in our case – holomorphic
vector fields Z =

∑
j aj(z, w) ∂

∂zj
+bj(z, w) ∂

∂wj
and we have that Z is of weight k if and only if aj is of weight

k+ 1 and bj is of weight k+ 2, i.e., we endow ∂
∂zj

with weight −1 and ∂
∂wj

with weight −2. If we start with

any vector field T tangent to M we write T =
∑
k Tk, where each Tk is of weight k and tangent to M . In

the case of X ∈ hol(M, 0) the homogeneous expansion starts with k ≥ −2.
Now we compute Xk for −2 ≤ k ≤ 2 whose real parts are tangent to M and their flows ΦtXk , which give us
the elements of Aut(M, 0).
We write X−2 = a ∂

∂w with a ∈ C. Then ReX−2 is tangent to M if and only if there exists a real-analytic,
real-valued function A−2 with

ReX−2ρ(z, w, z̄, w̄) = A−2(z, w, z̄, w̄)ρ(z, w, z̄, w̄). (11.21)
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Since the left-hand side of (11.21) is of weight 0, this implies A−2 ≡ 0 and we have to solve(
a
∂

∂w
+ ā

∂

∂w̄

)
(w − w̄ − 2izz̄) = 0,

which can only happen if and only if a ∈ R. The flow ΦtX−2
(0) =: (z(t), w(t)) is the solution of {ż = 0, ẇ = a}

and is equal to (z, w) = (z′, at+w′), where (z′, w′) ∈ C2 are constants with respect to t ∈ R. Since the flow
of X−2 has its values in M for all t, we plug (z, w) = (z′, at+w′) into the defining function for M and obtain
(z′, w′) ∈M . In total we obtain the automorphism of M given by (z′, w′) 7→ (z′, w′ + r) for r := at ∈ R.
We denote X−1 = a ∂

∂z + bz ∂
∂w , where a, b ∈ C and we have that ReX−1 is tangent to M if and only if(
a
∂

∂z
+ bz

∂

∂w
+ ā

∂

∂z̄
+ b̄z̄

∂

∂w̄

)
(w − w̄ − 2izz̄) = 0.

Comparing coefficients we get that b = 2iā. The flow of X−1 is the solution of {ż = a, ẇ = 2iāz} and is equal
to (z(t), w(t)) = (at+ z′, i|a|2t2 + 2iāz′t+ w′). Again if we plug in (z(t), w(t)) into the defining function of
M we obtain that (z′, w′) ∈M and the automorphism (z′, w′) 7→ (z′ + b, w′ + 2ib̄z′ + i|b|2) for b := at ∈ C.
Note that the automorphisms we got so far form a real 3-dimensional subgroup of the automorphism group
of M , the so called group of translations which is given by all mappings of the form (z, w) 7→ (z + z0, w +
w0 + 2izz̄0) with (z0, w0) ∈ M . ??? In general true: vector fields with negative weight give
translations, since the weight of the coefficients of the vector fields must be less than the
weight of the coordinates. E.g. for levi-nondegenerate only the weights −2,−1, 0, 1, 2 can occur
???
Next, X0 = az ∂

∂z + (bz2 + cw) ∂
∂w for a, b, c ∈ C is tangent to M if and only if there exists A0(z, w, z̄, w̄) =

A ∈ R such that

1

2

(
az

∂

∂z
+ (bz2 + cw)

∂

∂w
+ āz̄

∂

∂z̄
+ (b̄z̄2 + c̄w̄)

∂

∂w̄

)
(w − w̄ − 2izz̄) = A(w − w̄ − 2izz̄). (11.22)

Comparing coefficients in (11.22) we obtain c = 2A,Re a = A and b = 0. In fact we conclude that no zl-terms
for l ≥ 2 can occur as coefficients of ∂

∂w in Xk for k ≥ 0, since there is no possibility that such pure terms
occur on the right-hand side of equations as (11.22) for k ≥ 0.
We end up with a familiy of vector fields X0 with parameters (A, Im a) ∈ R2. Taking the standard basis of
R2 for the parameter space (A, Im a), we obtain that X1

0 = z ∂
∂z + 2w ∂

∂w and X2
0 = iz ∂

∂z generate all vector
fields belonging to X0.
The flow of X1

0 is the solution of {ż = z, ẇ = 2w} and is equal to (z(t), w(t)) = (etz′, e2tw′). Again
the condition for the flow to stay in M is satisfied if and only if (z′, w′) ∈ M and we end up with the
automorphism (z′, w′) 7→ (λz′, λ2w′) for λ := et > 0.
Similar for X2

0 : the flow is the solution of {ż = iz, ẇ = 0} and can be written as (z(t), w(t)) = (eitz′, w′)
which corresponds to the automorphism (z′, w′) 7→ (uz′, w′) for u := eit ∈ C if and only if (z′, w′) ∈M .
Considering weight k = 1, we write X1 = (az2+bw) ∂∂z +czw ∂

∂w and A1 has to be of the form A1(z, w, z̄, w̄) =
Az + Āz̄ for A ∈ C. Then we have

1

2

(
(az2 + bw)

∂

∂z
+ czw

∂

∂w
+ (āz̄2 + b̄w̄)

∂

∂z̄
+ c̄z̄w̄

∂

∂w̄

)
(w − w̄ − 2izz̄) = (Az + Āz̄)(w − w̄ − 2izz̄).

(11.23)

Comparing coefficients in (11.23) we obtain that a = 2A, b = iĀ and c = 2A. The flow is obtained by solving
{ż = 2Az2 + iĀw, ẇ = 2Azw}. The second equation gives z = ẇ

2Aw and together with the first one we obtain

1

w

((
ẇ

w

)·
− ẇ2

w2

)
= 2i|A|2 ⇔

(
1

w

)··
= −2i|A|2.
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If we take z′, w′ as constants not depending on t, the solution is given by

(z(t), w(t)) =
(2i|A|2t− z′, 2A)

2A(−i|A|2t2 + z′t+ w′)
.

After writting z′ = 2iAz′′ and plugging in the flow into ρ = 0 for M , we get that (z′′, w′) ∈ M . Defining
c = iĀt ∈ C and (ẑ, ŵ) ∈M via z′′ = iẑ/ŵ and w′ = 1/ŵ, we obtain the automorphism

(ẑ, ŵ) 7→ (ẑ + cŵ, ŵ)

1− 2ic̄ẑ − i|c|2ŵ
.

Finally X2 = (az3 + bzw) ∂∂z + (cz2w + dw2) ∂
∂w and A2(z, w, z̄, w̄) = Aw + Āw̄ + Bz2 + B̄z̄2 for A,B ∈ C.

Then

1

2

(
(az3 + bzw)

∂

∂z
+ (cz2w + dw2)

∂

∂w
+ (āz̄3 + b̄z̄w̄)

∂

∂z̄
+ (c̄z̄2w̄ + d̄w̄2)

∂

∂w̄

)
(w − w̄ − 2izz̄)

=(Aw + Āw̄ +Bz2 + B̄z̄2)(w − w̄ − 2izz̄). (11.24)

We immediately obtain B = 0 and A = Ā. Further comparison of coefficients in (11.24) show a = 0 = c
and b = 2A = d and we end up with real multiples of X3 = zw ∂

∂z + w2 ∂
∂w . The flow has to satisfy

{ż = zw, ẇ = w2} and is equal to (z(t), w(t)) = (z′,−1)
t+w′ . Again we obtain (z′, w′) ∈ M and after setting

(ẑ, ŵ) = −(z′/w′, 1/w′) ∈M and s = −t ∈ R, the automorphism (ẑ, ŵ) 7→ (ẑ,ŵ)
1+sŵ .

Comparing with Example 12, the automorphisms coming from X0, X1 and X2 form the real 5-dimensional
group of isotropies or stability group of the automorphism group of M .
To handle the case Xk for k ≥ 3 we write Xk = fk+1

∂
∂z + gk+2

∂
∂w , where fk+1 and gk+2 are polynomials

of weight k + 1 and k + 2 respectively. We want to conclude that fk+1 = 0 = gk+2 for k ≥ 3. In general
if a monomial zlwm is of weight k, then necessarily k/2 ≥ m. Thus if k is even, then the monomial with

lowest degree in Xk is wk/2 and if k is odd the monomial with lowest degree in Xk is zw
k−1
2 . Hence the only

monomial of degree two occurring as coefficient of Xk is w2 in f4. Let us fix k ≥ 3, then ReXk is tangent
to M if

ReXkρ
∣∣
M
≡ 0⇔

(
−2iz̄fk+1 + gk+2 − 2izf̄k+1 + ḡk+2

)∣∣
M
≡ 0

⇔Re(igk+2 + 2z̄fk+1)
∣∣
M
≡ 0.

We write H = (f, g) for a mapping of M , Hk = (fk+1, gk+2) and denote L(f, g) := Re(ig + 2z̄f)
∣∣
M

, the so
called Chern-Moser operator for M. Under the hypothesis that k ≥ 3 we show that the kernel of L applied
to Hk is trivial, i.e., Xk = 0 for k ≥ 3. More precisely we show the following Lemma:

Lemma 27 (Chern–Moser). Let H = (f, g) be a mapping from C2 to C2. If f(0) = g(0) = fz(0) = gz(0) =
fw(0) = gw(0) = gz2(0) = Re gw2(0) = 0, then L(f, g) ≡ 0 has the unique solution (f, g) ≡ 0.

As discussed above, we have for k ≥ 3, that fk+1 is of degree two or higher and gk+2 is of degree three or
higher, thus we apply Lemma 27 and our claim is proved.
??? Make link to section about normal forms ???
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