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ABSTRACT. The present paper tackles the C ∞ regularity problem for CR maps h : M → M ′ between C ∞-
smooth CR submanifolds M , M ′ embedded in complex spaces of possibly different dimensions. For real
hypersurfaces M ⊂ Cn+1 and M ′ ⊂ Cn′+1 with n′ > n ≥ 1 and M strongly pseudoconvex, we prove that
every CR transversal map of class C n′−n+1 that is nowhere C ∞ on some non-empty open subset of M
must send this open subset to the set of D’Angelo infinite points of M ′. As a corollary, we obtain that
every CR transversal map h : M → M ′ of class C n′−n+1 must be C ∞-smooth on a dense open subset
of M when M ′ is of D’Angelo finite type. Another consequence establishes the following boundary reg-
ularity result for proper holomorphic maps in positive codimension: given Ω ⊂ Cn+1 and Ω′ ⊂ Cn′+1

pseudoconvex domains with smooth boundaries ∂Ω and ∂Ω′ both of D’Angelo finite type, n′ > n ≥ 1,
any proper holomorphic map h : Ω→Ω′ that extends C n′−n+1-smoothly up to ∂Ωmust be C ∞-smooth
on a dense open subset of ∂Ω. More generally, for CR submanifolds M and M ′ of higher codimensions,
our main result describes the impact of the existence of a nowhere smooth CR map h : M → M ′ on the
CR geometry of M ′, allowing to extend the previously mentioned results in the hypersurface case to any
codimension, as well as deriving a number of regularity results for CR maps with D’Angelo infinite type
targets.

1. INTRODUCTION AND RESULTS FOR REAL HYPERSURFACES

In this paper, we are interested in the following question: Under which conditions on C ∞-smooth
CR manifolds M ⊂ CN and M ′ ⊂ CN ′

can we guarantee that a CR map h : M → M ′, which we assume
to be of some finite smoothness C k a priori, is actually C ∞-smooth on an open, dense subset of M?

This question is motivated by the problem of boundary regularity of holomorphic maps between
smoothly bounded domains in CN : CR maps arise as their boundary values. The case most well-
studied is when N = N ′ = 1 and the domains are simply connected; in that case, the boundary regu-
larity of the Riemann map, as studied by Painlevé, Caratheodory, Kellogg, and many others serve as
an answer to that problem.

In several dimensions, the Riemann map becomes unavailable as a tool, as there are many differ-
ent equivalence classes of simply connected domains of holomorphy. However, Fefferman’s mapping
theorem [Fe74] proved that biholomorphic mappings between smoothly bounded strictly pseudo-
convex domains in CN , N > 1, necessarily extend smoothly up to the boundary. The proof of Fef-
ferman’s mapping theorem and also the proof of its generalization due to Bell and Ligocka [BL80],
which reduced the assumptions on the domains to “condition (R)”, rely on inherently global objects
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associated to the domain, in particular on properties of its Bergman kernel. Such methods however
stop short of covering all pseudoconvex domains, as there exist smoothly bounded pseudoconvex
domains which do not satisfy condition (R) by work of Christ [C96]. Furthermore they also are not
applicable when it comes to studying the boundary regularity of proper holomorphic mappings be-
tween smoothly bounded domains in complex spaces of different dimensions (see [Fo93]). One nat-
ural alternative is then to derive global boundary regularity after investigating local regularity along
smooth boundary patches.

Historically, the starting point for investigating the local question was again the case of (bijective)
CR mapppings between smooth, strongly pseudoconvex hypersurfaces in CN studied by Nirenberg,
Webster, and Yang [NWY80]. The case of mappings of positive codimension, i.e. N ′ > N , from a strictly
pseudoconvex hypersurface in CN to one in CN ′

is remarkably different, and harder. One of the rea-
sons is that there actually exist continuous, and even Hölder continuous of exponent α for small α,
CR embeddings of the sphere into a sphere in a higher dimensional space which fail to be smooth
anywhere, by results due to Dor [Do90], Hakim [Ha90] and Stensones [S96]. It turns out that, in con-
trast with the equidimensional case, one can make up for that lack of smoothness by requiring a
certain amount of a priori regularity for the map; this has, for example, been illustrated in the works
of Forstnerič [Fo89] and Huang [Hu99, Hu03] where it was shown that any C k -smooth, for a suitable
integer k, CR map between spheres must be C ∞-smooth (and in fact even rational). Since then, the
natural question of whether a similar regularity result holds for CR maps of positive codimension be-
tween general strongly pseudoconvex real hypersurfaces had been open for a while (see e.g. [Hu94]),
until the recent breakthrough by Berhanu-Xiao [BX15] who settled the problem in the affirmative for
CR maps that are a priori C N ′−N+1-smooth to start with. In a subsequent paper, Berhanu-Xiao [BX17]
were also able to extend their approach to deal with Levi-nondegenerate target hypersurfaces as well
(see also [KLX17] for recent related results in the codimension 1 case).

In this paper, we carry out a study of the C ∞ regularity problem without assuming any geometric
condition on the target manifold. Our basic approach differs significantly from all of these previous
works: Our main result shows that if a CR mapping h : M → M ′ (of a certain a priori C k regularity)
fails to be C ∞-smooth on a large set in M , then M ′ has to carry a certain amount of complex structure
(along the image of M under h). More precisely, we shall prove (see Theorems 1.1 and 2.2) that the
image of any generic point in such a large set of bad points has a formal holomorphic manifold that
is tangent to M ′ to infinite order, and hence must be a point of infinite type in the sense of D’Angelo
[D’A82]. To our knowledge, exhibiting such an explicit link between failure of regularity of a CR map
and impact on the CR geometry of the target manifold seems to be a completely new point of view in
the C ∞ CR regularity problem. As a consequence, our present approach not only allows us to provide
sharper and more general results than earlier works, but also recovers many of the previously known
results. The approach we are taking is, at least in philosophy, akin to our recent work [LM17b] on
the convergence of formal power series mappings. We will apply ideas from [LM17b], adapted to the
C ∞ setting, to the problem at hand. However, the implementation of these ideas require different
strategies and new ingredients because of the different nature of the C ∞ CR regularity problem.

We will discuss results valid for hypersurfaces in the introduction and leave more general results for
later. Before stating our first theorem, let us start by recalling the notion of infinite type of a point q ∈
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M ′ introduced by D’Angelo [D’A82], which means that the order of contact of M ′ at q with (possibly
singular) complex curves is unbounded. To be more precise, let % be a defining function for M ′ near
q . One defines the 1-type of M ′ at q as

∆(M ′, q) = sup
γ : ∆→CN ′

γ(0)=q,γ6≡q

ν0(ρ ◦γ)

ν0(γ)
∈R∪ {∞},

where γ runs over all (non-trivial) holomorphic curves in CN ′
centered at q and ν0 denotes the van-

ishing order at 0. We say that q is a D’Angelo finite type point of M ′ if ∆(M ′, q) < ∞, and an infinite
type point of M ′ if ∆(M ′, q) =∞. We denote the set of infinite type points in M ′ by EM ′ and recall that
EM ′ is closed in M ′ by e.g. [D’A82, D’A93]. We say that M ′ is of D’Angelo finite type if EM ′ =;.

We also need to recall that a CR map h : M → M ′ between real hypersurfaces M ⊂ CN , M ′ ⊂ CN ′
,

with respective CR bundles T (0,1)M and T (0,1)M ′, is said to be CR transversal if

T (1,0)
h(p) M ′+T (0,1)

h(p) M ′+dh(CTp M) =CTh(p)M ′.

for every point p ∈ M .
We may now state our first main result, which, as mentioned above, highlights how the failure of

being C ∞-smooth for a CR map impacts the geometry of the target manifold M ′.

Theorem 1.1. Let M ⊂Cn+1 and M ′ ⊂Cn′+1 be C ∞-smooth real hypersurfaces, n′ > n ≥ 1. Assume that
M is strongly pseudoconvex and that h : M → M ′ is a CR transversal mapping of class C n′−n+1. If there
exists a non-empty open subsetΩ of M where h is nowhere C ∞, then h(Ω) ⊂ EM ′ .

As an immediate consequence of Theorem 1.1, we obtain the following regularity result:

Theorem 1.2. Let M ⊂Cn+1 and M ′ ⊂Cn′+1 be C ∞-smooth real hypersurfaces, n′ > n ≥ 1. Assume that
M is strongly pseudoconvex and that M ′ is of D’Angelo finite type. Then every CR transversal mapping
h : M → M ′ of class C n′−n+1 is C ∞-smooth on a dense open subset of M.

In the special case where M ′ is strongly pseudoconvex, Theorem 1.2 recovers Berhanu-Xiao’s re-
sult alluded above [BX15] (for an embedded hypersurface M) since every CR map between strictly
pseudoconvex hypersurfaces is CR transversal by the Hopf Lemma.

When both hypersurfaces are pseudoconvex, using results from the known literature, we will show
that Theorem 1.2 also yields the following.

Corollary 1.3. Let Ω ⊂ Cn+1 and Ω′ ⊂ Cn′+1 be pseudoconvex domains and h : Ω → Ω′ be a holo-
morphic map, n′ > n ≥ 1. Assume that M ⊂ ∂Ω and M ′ ⊂ ∂Ω′ are C ∞-smooth real hypersurfaces of
D’Angelo finite type. If h extends C n′−n+1-smoothly up to M and satisfies h(M) ⊂ M ′, then h extends
C ∞-smoothly up to a dense open subset of M.

Finally, let us also mention the following new result which follows as an application of Corollary
1.3 to the boundary regularity of (global) proper holomorphic mappings of positive codimension.

Corollary 1.4. LetΩ⊂Cn+1 andΩ′ ⊂Cn′+1 be pseudoconvex domains with smooth boundaries ∂Ω and
∂Ω′ both of D’Angelo finite type, n′ > n ≥ 1. Let h : Ω→Ω′ be a proper holomorphic map that extends
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C n′−n+1-smoothly up to a dense open subset of ∂Ω. Then h extends C ∞-smoothly up to a dense open
subset of ∂Ω.

Let us remark that the preceding results, Theorem 1.2, Theorem 1.1, Corollary 1.3, and Corollary 1.4
hold without any changes for weakly pseudoconvex sources having a dense open subset of strongly
pseudoconvex points. For instance, they all can be applied in the setting where M is pseudoconvex
and does not contain any analytic disc.

We finish the introduction with an outline of the organization of the paper. In §2, we state the gen-
eral main result, Theorem 2.2, which applies to minimal source CR manifolds M ⊂ CN of arbitrary
codimension. It also implies a number of further new regularity results, which not only extend Theo-
rem 1.2 to the setting where the source manifold is allowed to be of higher codimension but are also
valid for target manifolds of infinite D’Angelo type.

The next sections provide the proof of Theorem 2.2 which splits naturally into an analytic part
and a geometric part. The first part is developed in §3 and corresponds to the analytic piece of the
proof. In it, we prove a smooth regularity result for CR maps that satisfy a smooth system of equa-
tions. The result, Theorem 3.1, generalizes a result due to the second author [L04], and may be of
independent interest. The second, geometric, part of the proof is carried out in §4 and §5. We first
introduce in §4 some new numerical invariants associated to any continuous CR map h : M → CN ′

,
establish some of their basic properties and then associate to these invariants an open subset decom-
position of (part of) the CR manifold M . In §5 we relate this decomposition to the C ∞-regularity of
the mapping (Proposition 5.1) as well as to the CR geometry of the image set h(M) (Proposition 5.2).

Finally, in §6, we show, among other things, that the decomposition obtained in §4 covers, at least
in the situations discussed in §2, a dense open subset of M . The proofs of all theorems and corollaries
stated in §1 and §2 are then completed in §7.

2. STATEMENT OF FURTHER RESULTS FOR CR MANIFOLDS OF ANY CODIMENSION

This section is devoted to the formulation of the more general results already alluded to in the
introduction. We let M ⊂ CN be a C ∞-smooth CR submanifold, with N ≥ 2, and recall that a map
h : M → CN ′

of class C 1 is CR if h = (h1, . . . ,hN ′) where each h j a CR function on M . (If h is assumed
to be only continuous, then the preceding definition needs to be understood in the sense of distribu-
tions.)

Let us now consider a subset M ′ ⊂ CN ′
(not necessarily CR or a manifold). For every q ∈ M ′, de-

note by IM ′(q) ⊂C ∞(CN ′
, q) the ideal of all germs at q of C ∞-smooth functions ρ : (CN ′

w , q) →R that
vanish on M ′ near q and denote by Γp (M) the set of all germs at p of CR vector fields of M .

The definition of a D’Angelo infinite type point naturally extends to the more general setting of an
arbitrary subset M ′ ⊂CN ′

in analogy to the hypersurface case. We define the 1-type of M ′ at q as

∆(M ′, q) = sup
γ : ∆→CN ′

γ(0)=q,γ6≡q

(
inf

ρ∈IM ′ (q)

ν0(ρ ◦γ)

ν0(γ)

)
∈R∪ {∞},
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and say that q is a D’Angelo infinite type point of M ′ if∆(M ′, q) =∞. We denote the set of points in M ′

which are of infinite type by EM ′ . Observe that if M ′, M ′′ are two subsets of CN ′
with M ′′ ⊂ M ′ then for

q ∈ M ′′, ∆(M ′′, q) ≤∆(M ′, q) and therefore EM ′′ ⊂ EM ′ .
We also recall that a formal holomorphic subvariety X ⊂CN ′

through q is given by a (radical) ideal
Iq (X ) ⊂ C�Z ′− q�. We say that a formal holomorphic subvariety X ⊂ CN ′

through the point q ∈ M ′

is tangent to infinite order to M ′ at q if for any formal holomorphic map ϕ(t ) ∈ C�t�N ′
with ϕ(0) = q

and ψ◦ϕ(t ) = 0 for every ψ ∈Iq (X ) we have ν0

(
%

(
ϕ(t ),ϕ(t )

))
=∞, for every % ∈IM ′(q). Note that it

follows from this definition that if there exists a nontrivial formal holomorphic subvariety through q
which is tangent to M ′ up to infinite order then q is an infinite type point.

Let us now assume that we are given a CR map h : M →CN ′
. For every p ∈ M , we set

(2.1) r0(p) := dimC span
{
ρw (h(p),h(p)) : ρ ∈Ih(M)(h(p))

}
and more generally, if h is of class C `, for some `≥ 1,
(2.2)

rk (p) := dimC span
{

L̄1 . . . L̄ jρw (h(p),h(p)) : ρ ∈Ih(M)(h(p)), L̄1, . . . , L̄ j ∈ Γp (M),0 ≤ j ≤ k
}

, k ≤ `.

In the second equation, the case j = 0 refers to no application of a CR vector field. The complex
gradients

ρw (h(p),h(p)) =
(
∂ρ

∂w1

(
h(p),h(p)

)
, . . . ,

∂ρ

∂wN ′

(
h(p),h(p)

))
,

and their CR derivatives

L̄1 . . . L̄ jρw (h(p),h(p)) =
(
L̄1 . . . L̄ j

∂ρ

∂w1

(
h(p),h(p)

)
, . . . , L̄1 . . . L̄ j

∂ρ

∂wN ′

(
h(p),h(p)

))
are considered as vectors in CN ′

.
We note that for 0 ≤ k ≤ `, p 7→ rk (p) ∈ {

1, . . . , N ′} is an integer-valued, lower semicontinuous func-
tion on M . We define

rk := max
{
e ∈Z+ : rk (p) ≥ e for p on some dense subset of M

}
, k ≤ `.

Let us recall that M is said to be minimal at the point p ∈ M if there does not exist any CR subman-
ifold Σ ⊂ M through p, with dimΣ < dim M , of the same CR dimension as M (see [T90, BER99]). We
say that M is minimal if it is minimal at each of its points.

Before we state our general main result, let us introduce one more notion.

Definition 2.1. Let M ⊂CN be a C ∞-smooth CR submanifold, and h : M →CN ′
a C k -smooth CR map.

A C k -smooth CR family of formal (complex) submanifolds of (complex) dimension r through h(M) is
given by a collection (Γξ)ξ∈M of formal (complex) submanifolds of CN ′

of dimension r in such that, for
every ξ ∈ M, Γξ passes through h(ξ) and such that Γξ is parameterized by a formal holomorphic map
of the form

(Cr ,0) 3 t 7→ϕξ(t ) = h(ξ)+ ∑
α∈Nr

|α|≥1

ϕα(ξ)tα,

where for every α ∈Nr the function ϕα is a C k -smooth CR function on M.
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Theorem 2.2. Let M ⊂CN be a C ∞-smooth CR minimal submanifold, k,` ∈N with 1 ≤ k ≤ `≤ N ′ be
given integers and h : M → CN ′

be a CR mapping of class C N ′−`+k . Assume that rk ≥ ` and that there
exists a non-empty open subset M1 of M where h is nowhere C ∞.

Then there exists a dense open subset M2 ⊂ M1 such that for every p ∈ M2, there exists a neighborhood
V ⊂ M2 of p, an integer r ≥ 1, and a C 1-smooth CR family of formal (complex) submanifolds (Γξ)ξ∈V

of dimension r through h(V ) for which Γξ is tangent to infinite order to h(M) at h(ξ), for every ξ ∈V .
In particular, there exists a dense open subset M2 of M1 with h(M2) ⊂ Eh(M).

Theorem 2.2 provides a detailed picture of how "irregularity" of a given CR map affects the CR
geometry of the target set h(M). Images of "irregular" points under the given map must not only
be of infinite type, but the image of large open subsets carries even more structure than that: One
obtains a family of formal holomorphic submanifolds tangent to h(M) to infinite order that depends
in a CR manner on the "irregular" points. This property will be crucial in the application of Theorem
2.2 given in Corollary 2.6 below, providing a regularity result valid for targets which are foliated by
complex submanifolds.

The integers rk in the statement of the theorem appear very naturally in various geometric settings.
We will discuss in §6 a number of sufficient conditions providing lower bounds on them, in particular,
on r0 and r1, yielding a number of new corollaries (not covered by the results in the introduction). In
the first one, for M ′ ⊂ CN ′

, we denote by κM ′ the maximum dimension of real submanifolds of class
C 1 contained in EM ′ .

Corollary 2.3. Let M ⊂ CN and M ′ ⊂ CN ′
be C ∞-smooth CR submanifolds with n′ = dimC R M ′ and

assume that M is minimal. Then every CR mapping h : M → M ′ of class C n′
and of rank > κM ′ is

C ∞-smooth on a dense open subset of M. In particular, if M ′ is of D’Angelo finite type, then every CR
mapping h : M → M ′ of class C n′

is C ∞-smooth on a dense open subset of M.

If we know more about the target, we can improve the a priori smoothness assumptions signifi-
cantly. Our next corollary shows that if the target is Levi-nondegenerate, then the a priori regularity
can be dropped by (n −1) where n is the CR dimension of the source submanifold:

Corollary 2.4. Let M ⊂ CN and M ′ ⊂ CN ′
be C ∞-smooth CR submanifolds with n = dimC R M, n′ =

dimC R M ′. Assume that M is minimal and that M ′ is Levi-nondegenerate and of D’Angelo finite type.
Then every CR immersion h : M → M ′ of class C n′−n+1 is C ∞-smooth on a dense open subset of M.

If we want to allow complex manifolds in the target, then we can use geometric information given
by Theorem 2.2 on how those complex manifolds are situated in the target (and how large they can
be) in conjunction with the formal submanifolds Γξ provided by Theorem 2.2 in order to rule out
maps which are nowhere smooth on an open subset of M . We can for instance recover the following
result by Berhanu-Xiao [BX17] (referring to their paper for the standard notion of signature):

Corollary 2.5. Let M ⊂ Cn+1 and M ′ ⊂ Cn′+1 be (connected) C ∞-smooth real hypersurfaces with M
strongly pseudoconvex and M ′ Levi-nondegenerate of signature `′, n′ > n ≥ 1. If n′−`′ ≤ n, then every
CR transversal map h : M → M ′, of class C n′−n+1, is C ∞-smooth on some dense open subset of M.

Our following result uses not only the formal submanifolds Γξ constructed in Theorem 2.2, but also
the CR dependence of Γξ on ξ. This is in contrast to Corollary 2.3 and 2.4, where we just use the fact
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that the Γξ exist. We recall that the tube over the light cone (in CN ′
w ), defined by the equation

(2.3)
N ′−1∑
j=1

(Re w j )2 = (Re wN ′)2,

is one of the basic examples of a uniformly 2-nondegenerate hypersurface. The precise statement
given by Theorem 2.2 allows us, in a way similar to the case of convergence of formal maps in [LM17b],
to treat the case of maps taking values in the tube over the light cone.

Corollary 2.6. Let M ⊂ CN be a C ∞-smooth minimal CR submanifold and M ′ ⊂ CN ′
be the tube over

the light cone. Then every CR map h : M → M ′, of class C N ′−1 and of rank ≥ 3, is C ∞-smooth on a
dense open subset of M.

Let us remark that both in Corollary 2.6 and also in the preceding Corollary 2.3 the rank of the map
is measured in terms of its rank as a real C 1 map (from the real manifold M to the real manifold M ′).
Since h, in both cases, is a CR map, its linear part at each point p ∈ M also gives rise to a complex
linear map L(p). In the setting of Corollary 2.6, the requirement that the real rank of h is at least 3
corresponds to requiring that the complex rank of L(p) is at least 2 for every p.

The last corollaries we are going to mention will provide a regularity result for finitely nondegen-
erate source manifolds and in particular, for Levi-nondegenerate sources. Before we formulate this
result, we need to introduce the property which will allow us to use the finite nondegeneracy of M .
While in many respects similar to the notion of CR transversality, the crucial definition needed here
is in some sense dual to transversality. Recall that if M ′ ⊂ CN ′

is a smooth CR submanifold, then its
complex tangent spaces T c

q M ′, q ∈ M ′, form a subbundle T c M ′ of the tangent bundle T M ′. The char-

acteristic bundle of M ′ is the annihilator of this bundle, i.e. T 0
q M ′ := (T c

q M ′)⊥ ⊂ T ∗
q M ′. One can check

that if h is CR, then h∗T 0M ′ ⊂ T 0M . We use the following definition:

Definition 2.7. We say that a CR map h : M → M ′ between CR submanifolds M ⊂CN and M ′ ⊂CN ′
, of

CR codimension d and d ′ respectively, is strictly noncharacteristic (at the point p ∈ M) if

h∗(T 0
h(p)M ′) = T 0

p M .

Remark 2.8. We recall that a map h is CR transversal at p ∈ M if

T (1,0)
h(p) M ′+T (0,1)

h(p) M ′+h′(p)(CTp M) =CTh(p)M ′.

Clearly, CR transversality implies that d ′ ≤ d. On the other hand, if h is strictly noncharacteristic, then
d ≤ d ′. If d = d ′ one may check that a map is CR transversal if and only if it is strictly noncharacteristic.
This conclusion holds in particular when M and M ′ are hypersurfaces.

Let us recall that a CR submanifold M ⊂ CN
z is σ-finitely nondegenerate for some σ ∈ Z+ (see

[BER99]) if and only if for every p ∈ M , and for any (real) defining function % = (%1, . . . ,%d ) for M
near p, we have

span
{(

L̄1 . . . L̄k%
r
z

)
(p, p̄) : L̄ j ∈ Γp (M),0 ≤ j ≤ k ≤σ, 1 ≤ r ≤ d

}=CN .
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Corollary 2.9. Let M ⊂CN and M ′ ⊂CN ′
be C ∞-smooth CR submanifolds. Assume that M is minimal

and σ-finitely nondegenerate for some σ ∈Z+ and that M ′ is of D’Angelo finite type. Then every strictly
noncharacteristic CR map h : M → M ′ of class C N ′−N+σ is C ∞-smooth on some dense open subset of
M.

A particular case of the preceding corollary is the case of a Levi-nondegenerate manifold M (mean-
ing σ = 1). Even in this case, the regularity result given by Corollary 2.9 is new, and provides, using
Remark 2.8, a generalization of Theorem 1.2 to higher codimensions:

Corollary 2.10. Let M ⊂CN and M ′ ⊂CN ′
be C ∞-smooth CR submanifolds. Assume that M is minimal

and Levi-nondegenerate and that M ′ is of D’Angelo finite type. Then every strictly noncharacteristic CR
map h : M → M ′ of class C N ′−N+1 is C ∞-smooth on some dense open subset of M.

3. A SMOOTH REGULARITY RESULT

In this section, we state and prove our main technical tool to be used later in the paper. It provides a
criterion that exhibits sufficient conditions ensuring that a CR map, of class C 1, is in fact C ∞-smooth.
We note that a (weaker) similar result was obtained by the first author in [L04], based in part on the
work of Roberts [R88]. However, for the purpose of this paper, we really need the stronger form stated
below.

Theorem 3.1. Let M ⊂ CN be a C ∞-smooth generic submanifold, p0 ∈ M, and let h : (M , p0) → C` be
a germ of a C 1 CR mapping at p0, g : (M , p0) → Ck be a germ of a continuous CR mapping at p0. Let
U ×V ×O be an open neighborhood of (p0,h(p0), g (p0)) ∈ CN

z ×C`w ×Ck
Λ, and R : U ×V ×O → C` be a

C ∞-smooth mapping, holomorphic inΛ ∈O. Assume that :

(i) R(z, z̄,h(z, z̄),h(z, z̄), g (z, z̄)) = 0 for z ∈ M near p0.
(ii) RkRw (p0, p̄0,h(p0, p̄0),h(p0, p̄0), g (p0, p̄0)) = `.

(iii) All components of h and g extend holomorphically to a common wedge with edge M at p0.

Then h is C ∞-smooth in a neighborhood of p0.

Even though the theorem is similar to the almost holomorphic implicit function theorem in [L04],
we cannot directly apply that theorem. We also include a number of details which are missing from
the proof of the theorem in [L04]. We split the proof into several steps.

3.1. Smooth wedge coordinates. Let M ⊂CN be a C ∞-smooth generic submanifold of codimension
d , p0 ∈ M , and let ρ be a Rd -valued defining function of M near p0. Recall that a wedge of edge M at
p0 is an open subset of CN of the form W = {z ∈U : ρ(z, z̄) ∈ Γ} for some open neighborhood U of p0

in CN and some open convex cone Γwith vertex the origin in Rd , see e.g. [BER99]. In what follows, we
write B r

ε (x) for the ball of radius ε> 0, centered at the point x ∈Rr .
We start with the following known fact.

Proposition 3.2. Let M ⊂CN be a generic C ∞-smooth submanifold of CR dimension n and codimen-
sion d. Let p0 ∈ M, W be a wedge with edge M at p0. Then there exist a wedge W ′ ⊂⊂W with compact
closure, ε1,ε2,r > 0 and smooth coordinates (η, s, t ) =Φ−1(η, η̄,ζ, ζ̄) ∈Cn×Rd ×Rd forCN near p0, where
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Φ : B 2n
ε1

(0)×B 2d
ε2

(0) → CN is a smooth diffeomorphism, with the following properties, where we write
σ= s + i t :

i) Φ(0,0,0) = p0,Φ(η, s,0) ⊂ M;
ii) Φ(B 2n

ε1
×B d

ε2
× (0,r )d ) ⊂W ′

iii) For every α,β ∈Nn and every γ,δ ∈Nd and every a ∈N there exist constants Cα,β,γ,δ and Cα,β,γ,δ,a

such that for every continuous CR function ϕ on M extending to a holomorphic function ϕ̃ on W ,
we have that the function f = ϕ̃◦Φ satisfies the following:

(3.1)

∣∣∣∣∂|α|+|β|+|γ|+|δ| f∂ηαη̄βsγtδ
(η, η̄, s, t )

∣∣∣∣≤Cα,β,γ,δ supW ′ |ϕ̃| ‖t‖−(|α|+|β|+|γ|+|δ|) , (η, s, t ) ∈ B 2n
ε1

×B d
ε2
× (0,r )d ,

and

(3.2)

∣∣∣∣∂|α|+|β|+|γ|+|δ|∂ηαη̄βsγtδ
∂ f

∂σ̄ j
(η, η̄, s, t )

∣∣∣∣≤Cα,β,γ,δ,a supW ′ |ϕ̃| ‖t‖a , (η, s, t ) ∈ B 2n
ε1

×B d
ε2
×(0,r )d , 1 ≤ j ≤ d .

Proof. We assume that p0 = 0. We consider a smooth defining function of M near 0 of the form Imζ=
ϕ(η, η̄,Reζ), where CN

z = Cn
η ×Cd

ζ
, and furthermore ∇ϕ(0) = 0 (so that T c

0 M = {ζ= 0}). Thus, for some

neighbourhoods U1,U2 of 0 in Cn and Rd respectively, the map

Ψ : Cn
η ×Rd

s 3 (η, s) 7→ (η, s + iϕ(η, η̄, s))

parametrizes M near 0 for (η, s) ∈U1 ×U2. We choose an almost holomorphic extension ofΨ to U1 ×
U2×Rd , again denoted byΨ, in the s-variable (see for this e.g. [N71]). After possibly shrinking U1 and
U2 a bit, we can assume that for a ∈N there exist constants Ca > 0 such that this newΨ : U1 ×U2 ×Rd

is a smooth map which satisfies:

(3.3)

Ψ(η, η̄, s,0) = (η, s + iϕ(η, η̄, s)) ∈ M ;∣∣∣∣ ∂Ψ∂σ̄ j
(η, η̄, s, t )

∣∣∣∣≤Ca ‖t‖a , j = 1, . . . ,d , η ∈U1, s ∈U2.

Note that since ∇ϕ(0) = 0, we have that Ψ′(0) = id ; hence, again after possibly shrinking U1 and U2

a bit, we can assume that Ψ : U1 ×U2 ×Ũ2 →Ψ(U1 ×U2 ×Ũ2) is a diffeomorphism from U1 ×U2 ×Ũ2

onto a neighbourhood of 0.
Now consider a wedge W with edge M near 0. This means that in a small neighbourhood of 0, we

can assume that we can write W (in our chosen coordinates) as Cn
η ×Rd

s ×Γ, for some open, convex

cone Γ ⊂ Rd . Let us also choose an arbitrary ξ ∈ T0C
N with ξ ∈ W . It follows that Ψ−1(W ) has the

property that we can find a (closed) convex cone Γ′ ⊂ Rd \ {0}, with Γ′∪ {0} = CH{u1, . . . ,ud } for some
vectors u1, . . . ,ud in Rd , linearly equivalent to Rd+, such that for some small balls B 2n

ε1
(0) ⊂Cn , B d

ε̃2
(0) ⊂

Rd , and some r̃ > 0 we have B 2n
ε1

(0)×B d
ε̃2

(0)×Γ′r̃ ⊂Ψ−1(W ), where Γ′r̃ = {t ∈ Γ′ : ‖t‖ < r̃ }. Now consider

the complex linear transformation U : Cd → Cd defined by U (σ1, . . . ,σd ) = ∑d
j=1σ j u j . By choice of

Γ′, we have U (iRd+) = {0}×Γ′. By choosing an appropriate ε2 and r we can assume that U (B d
ε2

(0)+
i (0,r )d ) ⊂ B d

ε̃2
(0)×Γ′r̃ .
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We define the mapΦ : B 2n
ε1

(0)×B d
ε2

(0)× (−r,r )d →CN ,

Φ(η, η̄, s, t ) =Ψ(η, η̄,Us,U t ).

Note that since Γ′ ⊂ Γwas a closed cone, and r can be chosen as small as needed, we can find a wedge
W ′ ⊂⊂W and a constant C > 0 such that

(3.4)
1

C
‖t‖ ≤ d(Ψ(η, s, t ),∂W ′) ≤C ‖t‖ .

Also note that since U (s + i t ) =Us + iU t is complex linear, the estimates (3.3) hold also for the corre-
sponding derivatives ofΦ (where we might to use different constants Ca , a ∈N, of course):

(3.5)

Φ(η, η̄, s,0) = (η,Us + iϕ(η, η̄,Us)) ∈ M ;∣∣∣∣ ∂Φ∂σ̄ j
(η, η̄, s, t )

∣∣∣∣≤Ca ‖t‖a , j = 1, . . . ,d , η ∈ B 2n
ε1

(0), s ∈ B d
ε2

(0), ∀a ∈N.

If a continuous CR function ϕ : M → C extends holomorphically to W near 0, we know by a result
of Rosay [R86] that the extension, which we are still going to denote by ϕ̃, is actually continuous up
to the edge M on any finer wedge than the given W . Therefore, we can apply Cauchy’s inequalities to
the domain W ′: since ϕ̃ is continuous up to the edge, and holomorphic in W , we have that∣∣∣∣∂|α|+|β|ϕ̃∂ηαζβ

(η,ζ)

∣∣∣∣≤ α!β! supW ′ |ϕ̃|
(K d((η,ζ),∂W ′))|α|+|β|

,

with a constant K just depending on the metric used.
Combining this inequality with (3.4), applying the chain rule, and using the fact thatΨ is smooth,

we can therefore find, for any α,β ∈ Nn , and every γ,δ ∈ Nd , a constant Cα,β,γ,δ (independent of ϕ̃)
such that (3.1) holds.

Furthermore, if we appeal to (3.5), a similar argument shows that (3.2) holds. �

3.2. Edge of the wedge theory. In this subsection, we discuss the necessary smooth edge of the
wedge theory. We consider H = B 2n

ε1
(0)×B d

ε2
(0)×{0}d ⊂Cn

η×Rd
s ×Rd

t , and H+ = B 2n
ε1

(0)×B d
ε2

(0)×(0,r )d ,

H− = B 2n
ε1

(0)×B d
ε2

(0)× (−r,0)d . We use, as before, the complex variables σ = s + i t ∈ Cd . We define
A∞(H+) to be the set of all functions f ∈ C ∞(H+) which have the following property: For every
α,β ∈ Nn , every γ,δ ∈ Nd , and every a ∈ N there exist constants Cα,β,γ,δ, Cα,β,γ,δ,a , and b ∈ N such
that

(3.6)

∣∣∣∣∂|α|+|β|+|γ|+|δ| f∂ηαη̄βsγtδ
(η, η̄, s, t )

∣∣∣∣≤Cα,β,γ,δ ‖t‖−b , (η, s, t )H+,∣∣∣∣∂|α|+|β|+|γ|+|δ|∂ηαη̄βsγtδ
∂ f

∂σ̄ j
(η, η̄, s, t )

∣∣∣∣≤Cα,β,γ,δ,a ‖t‖a , (η, s, t ) ∈ H+.

The analogous definition is given for A∞(H−). It is well known, see e.g. [BER99, BCH08], that every
function f in A(H±) has a boundary value distribution defined for χ ∈D(H) by

〈bv f ,χ〉 = lim
t→0
t∈Rd

±

∫
Cn×Rd

f (z, s, t )χ(z, s)dm.
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The edge of the wedge theorem that we are going to use is the following.

Theorem 3.3. Assume that U ∈ D′(H) is both a boundary value from above and from below, i.e. there
exist f+ ∈A∞(H+) and f− ∈A∞(H−) such that bv f+ = bv f− =U . Then U ∈C ∞(H).

A proof of Theorem 3.3 can be found in e.g. [L04].
There are a number of interesting properties for the sets A∞(H±). The most important of them

is probably the inclusion C ∞(H) ⊂ A∞(H±) which follows from the existence of an almost analytic
extension of a smooth function in the s variables : If U ∈ C ∞(H), then there exists a function Ũ ∈
C ∞(Cn ×Rd ×Rd ) with Ũ |H =U and such that ∂Ũ

∂σ̄ j
vanishes to infinite order on H for j = 1, . . . ,d (see

[N71]).
Also, if X is a partial differential operator in the (η, s)-variables with smooth coefficients, and X̃

denotes the extension given by almost analytic extension of the coefficients of X , then X̃ f ∈A∞(H±)
for f ∈A∞(H±) and X bv f = bv X̃ f .

3.3. A priori regularity for ∂̄-bounded extensions. Our goal in this section is to recall a Hölder reg-
ularity result for extensions of Hölder continuous functions which are ∂̄-bounded and whose (first
order) derivatives are of a certain growth (later to be applied to extensions of continuous CR func-
tions).

We first introduce some notation: a continuous function f : Ω→ C is Hölder continuous on a set
Ω⊂Rp with Hölder exponent α ∈ (0,1] if there exists a constant C such that

| f (x)− f (y)| ≤C
∥∥x − y

∥∥α .

The space of all Hölder continuous functions onΩ with Hölder exponent α is denoted by C 0,α(Ω). If
Ω is compact, it becomes a Banach space if endowed with the norm∥∥ f

∥∥
0,α = ∥∥ f

∥∥∞+∥∥ f
∥∥
α ,

where ∥∥ f
∥∥∞ = max

x∈Ω
| f (x)|, ∥∥ f

∥∥
α = max

x 6=y∈Ω
| f (x)− f (y)|∥∥x − y

∥∥α .

Let H ⊂Cn
η ×Rd

s be open, and write (for some r > 0)

H+ = H × (0,r )d , H− = H × (−r,0)d , H+, H− ⊂ H ×Rd
t .

The following result follows from inspecting the proof of Coupet’s paper [C88] including his proposi-
tion 1, and is stated in the context we need to refer to:

Proposition 3.4. Let H̃ ⊂⊂ H , 0 <α< 1. Set β= α
1+α and write σ= s + i t ∈Cd . There exists a constant

K = K (α, H̃) such that if h ∈C 1(H+) is continuous up to H × {0} with

∀(η, s, t ) ∈ H+,

∣∣∣∣ ∂h

∂σ̄ j
(η, η̄, s, t )

∣∣∣∣≤C , h|t=0 ∈C 0,α(H),

∀(η, s, t ) ∈ H+, |hs j (η, η̄, s, t )| ≤ C

‖t‖ , |hηk (η, η̄, s, t )| ≤ C

‖t‖ , |hη̄k (η, η̄, s, t )| ≤ C

‖t‖ ,
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for some constant C > 0 and j = 1, . . . ,d, k = 1, . . . ,n, then

h ∈C 0,β(H̃+), with ‖h‖β ≤ K (C +‖h|t=0‖0,α),

where H̃+ = H̃ × (0, r̃ )d for arbitrary r̃ < r .

3.4. Proof of Theorem 3.1.

Proof. For the proof of the theorem, we need to extend R almost analytically in (most) of its variables.
This will allow us to consider h and h̄ (mostly) as independent variables. We will from now on choose
coordinates for M as in Proposition 3.2, adapted to the wedge W to which we assume that h and g
extend. In these coordinates, h and g extending continuously to functions h+(η, η̄, s, t ), g+(η, η̄, s, t ) ∈
A∞(H+) where H+ = B 2n

ε1
×B d

ε2
× (0,r )d and H = B 2n

ε1
×B d

ε2
. The plan is to use the smooth identity

R(q, q̄ ,h(q, q̄),h(q, q̄), g (q, q̄)) = 0

for q in some neighbourhood of p0 in M , to express h in a second way through an “almost reflection
identity”, which will show that it also extends continuously to a function h− ∈A∞(H−). An application
of Theorem 3.3 then implies the smoothness of h near p0.

We write w = x + i y with x, y ∈ RN ′
, and for simplicity assume that h(p0) = 0 and g (p0) = 0. We

write R as a map in the following way: R(η, η̄, s, x, y,Λ) is defined on a set of the form B 2n
ε1

(0)×B d
ε2

(0)×
U2 ×U2 ×O, where U2 ⊂ RN ′

and O ⊂ Ck are neighbourhoods of the origin. We can extend R almost
analytically in s, x, and y , to a smooth map defined on B 2n

ε1
(0)×B d

ε2
(0)×Rd

t ×U2×RN ′
x ′ ×U2×RN ′

y ′ ×O. We

write complex coordinates σ= s + i t , χ= x + i x ′, and υ= y + i y ′. The extended map will be denoted
by R̃(η, η̄, s, t , x, x ′, y, y ′,Λ) = R̃(η, η̄, s, t ,χ, χ̄,υ, ῡ,Λ). It relates to R by

R̃(η, η̄, s,0, x,0, y,0,Λ) = R(η, η̄, s, x, y,Λ)

and satisfies that
∂

∂σ̄ j
R̃, j = 1, . . . ,d ,

∂

∂χ̄`
R̃, and

∂

∂ῡ`
R̃, `= 1, . . . , N ′,

all vanish to infinite order along t = 0, x ′ = y ′ = 0 (actually, locally uniformly inΛ).
We introduce new complex coordinates (Z ,ζ) ∈CN ′ ×CN ′

by

χ= Z +ζ
2

, υ= Z −ζ
2i

.

Let us set

R̂(η, η̄, s, t , Z , Z̄ ,ζ, ζ̄,Λ) = R̃

(
η, η̄, s, t ,

Z +ζ
2

,
Z +ζ

2
,

Z −ζ
2i

,
Z −ζ

2i
,Λ

)
.

Note that R̂(η, η̄, s,0,h(η, η̄, s),h(η, η̄, s),h(η, η̄, s),h(η, η̄, s), g (η, η̄, s)) = 0 for (η, s) ∈ H and that since
(Z ,ζ) are complex coordinates, the derivatives

∂

∂σ̄ j
R̂, j = 1, . . . ,d ,

∂

∂Z̄`
R̂, and

∂

∂ζ̄`
R̂, `= 1, . . . , N ′,
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vanish to infinite order along t = 0, ζ= Z̄ ; to be more exact, we can assume (after possibly shrinking
the neighbourhoods a bit near the origin) that for any a ∈N there exists a constant C =Ca , depending
also on the chosen neighbourhood, such that

(3.7)
d∑

j=1

∥∥∥∥ ∂R̂

∂σ̄ j

∥∥∥∥+ N ′∑
`=1

∥∥∥∥ ∂R̂

∂Z̄`

∥∥∥∥+ N ′∑
`=1

∥∥∥∥ ∂R̂

∂ζ̄`

∥∥∥∥≤Ca
(‖t‖+∥∥Z̄ −ζ∥∥)a

Let us now compute the (real) Jacobian of R̂ with respect to Z (at 0), that is, the Jacobian with
respect to all of the underlying real variables of Z . For this, we note that for each `, ` = 1, . . . , N ′, we
have

R̂Z`(0) = 1

2
R̃χ`(0)︸ ︷︷ ︸
=R̃x`

(0)

+ 1

2i
R̃υ`(0)︸ ︷︷ ︸
=R̃y`

(0)

= 1

2

(
Rx`(0)− i Ry`(0)

)= Rw`
(0),

and that

R̂ Z`(0) = 1

2
R̃χ`(0)− 1

2i
R̃υ`(0) = R̃χ̄`(0)+ R̃ῡ`(0) = 0.

Hence the Jacobian matrix of R̂ with respect to all of the underlying real variables constituting the
complex variables Z , evaluated at the origin, has the determinant∣∣∣∣ ∂R̂

∂(Z , Z̄ )
(0)

∣∣∣∣=
∣∣∣∣∣∣∣
∂R̂
∂Z (0) ∂R̂

∂Z̄
(0)

∂R̂
∂Z (0) ∂R̂

∂Z̄
(0)

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∂R
∂w (0) 0

0 ∂R
∂w (0)

∣∣∣∣∣∣∣= |det(Rw (0))|2 6= 0.

We can thus apply the (smooth) implicit function theorem and from it see that there exists a unique
smooth function Φ, defined in a neighbourhood Û1 ×Û2 ×Û3 ×Û4 ⊂ Cn ×Cd ×CN ′ ×Ck of 0 , taking
values in some open neighbourhood V̂ of 0 ∈CN ′

, such that

R̂(η, η̄, s, t , Z , Z̄ ,ζ, ζ̄,Λ) = 0 ⇔ Z =Φ(η, η̄, s, t ,ζ, ζ̄,Λ)

for (η,σ, Z ,ζ,Λ) ∈ Û1 ×Û2 × V̂ ×Û3 ×Û4.
Differentiating with respect to σ̄ and ζ̄, using the usual matrix notation, we see that for Z =Φ(η, η̄, s, t ,ζ, ζ̄,Λ)

Φσ̄ =−R−1
Z

(
R̂σ̄+ R̂Z̄Φσ̄

)
Φζ̄ =−R−1

Z

(
R̂ζ̄+ R̂Z̄Φζ̄

)
.

Using these equalities, (3.7), and the fact that detRZ does not vanish at any point, we see that for every
α,β ∈Nn , γ,δ ∈Nd , ε,ν ∈NN ′

, every µ ∈Nk and every a ∈N there exists a constant C =Cα,β,γ,δ,ε,ν,µ,a >
0 such that for j = 1, . . . ,d and `= 1, . . . , N ′, and (η,σ,ζ,Λ) ∈ Û1 ×Û2 ×Û3 ×Û4

(3.8)

∥∥∥∥∂|α|+|β|+|γ|+|δ|+|ε|+|ν|
∂ηαη̄βsγtδζεζ̄νΛµ

∂Φ

∂σ̄ j
(η, η̄, s, t ,ζ, ζ̄,Λ)

∥∥∥∥≤C
(‖t‖+∥∥Φ(η, η̄, s, t ,ζ, ζ̄,Λ)− ζ̄∥∥)a

∥∥∥∥∂|α|+|β|+|γ|+|δ|+|ε|+|ν|
∂ηαη̄βsγtδζεζ̄νΛµ

∂Φ

∂ζ̄`
(η, η̄, s, t ,ζ, ζ̄,Λ)

∥∥∥∥≤C
(‖t‖+∥∥Φ(η, η̄, s, t ,ζ, ζ̄,Λ)− ζ̄∥∥)a

,

where Û1,Û2,Û3,Û4 may have possibly been shrunk.
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We recall that, shrinking ε1,ε2 if necessary, for (η, s) ∈ H ,

R̂
(
η, η̄, s,0,h(η, η̄, s),h(η, η̄, s),h(η, η̄, s),h(η, η̄, s), g (η, η̄, s))

)
= 0,

from which we conclude that

h(η, η̄, s) =Φ(η, η̄, s, s̄,h(η, η̄, s),h(η, s), g (η, η̄, s)), (η, s) ∈ H .

We recall that we write h+(η, η̄, s, t ), and g+(η, η̄, s, t ) for the almost analytic extensions of h and g to
H+, which exist by assumption.

We now set

h−(η, η̄, s, t ) :=Φ(η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )), (η, s) ∈ H , t ∈ (−r,0)d ,

and claim that h− lies in A∞(H̃−) for some (possibly smaller) neighbourhood H̃ ⊂ H of 0 in Cn ×Rd

and some 0 < r̃ < r .
One can check that the slow growth condition for h−(η, η̄, s, t ) is satisfied on H−, because Φ is

smooth, and h+, h̄+, and ḡ+ are all of slow growth on H+ by assumption. We therefore only have
to check that for any α,β ∈Nn , any γ,δ ∈Nd , and any a ∈N, there exists a constant Cα,β,γ,δ,a such that

(3.9)

∣∣∣∣∂|α|+|β|+|γ|+|δ|∂ηαη̄βsγtδ
∂h−
∂σ̄ j

(η, η̄, s, t )

∣∣∣∣≤Cα,β,γ,δ,a ‖t‖a , (z, s, t ) ∈ H̃−, j = 1, . . . ,d .

So we first compute the derivative with respect to σ̄ j = s j − i t j . Recall that

∂h+(η, η̄, s,−t )

∂σ̄ j
= ∂h+
∂σ̄ j

(η, η̄, s,−t ),

and compute (we drop the arguments):

(3.10)
∂h−
∂σ̄ j

=Φσ̄ j +Φζ
∂h+
∂σ̄ j

+Φζ̄
∂h+
∂σ j

+ΦΛ∂g+
∂σ̄ j

Using similar arguments as in showing that h− is of slow growth, one sees that the second and the
fourth summand satisfy the estimate (3.9). Indeed, ifα,β ∈Nn , β,γ ∈Nd , and a are given, then we can
write

∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ

(
Φζ

∂h+
∂σ̄ j

)
,

∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ

(
ΦΛ

∂g+
∂σ̄ j

)
as as (finite) sum of terms, each of which is a product of three types of factors: First, some derivative
ofΦ, evaluated at (η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )), which stays uniformly bounded
over H−; second, some derivatives of h+, h̄+, and ḡ , each of which are of slow growth; and third, some

derivative of either ∂h+
∂σ̄ j

or ∂g+
∂σ̄ j

. Since by (3.2) each of these vanishes to infinite order at t = 0 , so does

this finite sum.
In order to deal with the first and the third summand, we first need some preparation: Since h(η, η̄, s)

is C 1, by the result of Rosay [R86] already mentioned above, h+ is actually C 1 up to the edge; there-

fore, (3.10) and (3.2) imply that there exists a constant C > 0 with
∣∣∣∂h−
∂σ̄ j

(η, η̄, s, t )
∣∣∣≤C for (η, η̄, s, t ) ∈ H−,
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j = 1, . . . ,d , and that h− ∈C (H−∪H). Also choose C so large that we have that∣∣∣∣∂h−
∂s j

(η, η̄, s, t )

∣∣∣∣< C

‖t‖ ,

∣∣∣∣∂h−
∂η`

(η, η̄, s, t )

∣∣∣∣< C

‖t‖ ,

∣∣∣∣∂h−
∂η̄`

(η, η̄, s, t )

∣∣∣∣< C

‖t‖ , j = 1, . . . ,d ,`= 1, . . . ,n.

Recalling that for (η, s) ∈ H

h(η, η̄, s) =Φ
(
η, η̄, s,0,h+(η, η̄, s,0),h+(η, η̄, s,0), g (η, η̄, s,0)

)
= h−(η, η̄, s,0),

we thus see that h−(η, η̄, s, t ) satisfies the assumptions of Proposition 3.4 for any α< 1. Therefore, h−,
when restricted to any set of the form H̃− = H̃×(r̃ ,0)d as in that corollary, is C 0,β0 (H̃) for every β0 < 1

2 .
Fix any such β0 for the remainder of the proof.

For (η, s, t ) ∈ H̃−, we can therefore estimate∥∥h+(η, η̄, s,−t )−h−(η, η̄, s, t )
∥∥≤C ‖t‖β0 .

We now return to the terms of interest. We claim that both

Φσ̄

(
η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )

)
, Φζ̄

(
η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )

)
are flat along t = 0 on H̃− that is, we will check that for j = 1, . . . ,d , ` = 1, . . . , N ′ and given α,β ∈ Nn ,
γ,δ ∈Nd , and a ∈N there exists a constant Cα,β,γ,δ > 0 such that for (η, s) ∈ H̃−

(3.11)

∥∥∥∥∂|α|+|β|+|γ|+|δ|∂ηαη̄βsγtδ
Φσ̄ j

(
η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )

)∥∥∥∥≤Cα,β,γ,δ,a ‖t‖a

∥∥∥∥∂|α|+|β|+|γ|+|δ|∂ηαη̄βsγtδ
Φζ̄`

(
η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )

)∥∥∥∥≤Cα,β,γ,δ,a ‖t‖a

Write A = |α|+|β|+|γ|+|δ|. First choose a constant C̃ > 0 and b ∈N such that for ever α̃, β̃ ∈Nn and
every γ̃, δ̃ ∈Nd with |α̃|+ |β̃|+ |γ̃|+ |δ̃| ≤ A we have

(3.12)

∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|∂ηα̃η̄β̃sγ̃t δ̃
h+(η, η̄, s,−t )

∥∥∥∥∥≤ C̃

‖t‖b
,

∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|∂ηα̃η̄β̃sγ̃t δ̃
g+(η, η̄, s,−t )

∥∥∥∥∥≤ C̃

‖t‖b
, (η, s, t ) ∈ H−.

By (3.8) we can choose a K > 0 such that for j = 1, . . . ,d and `= 1, . . . , N ′,∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|∂ηα̃η̄β̃sγ̃t δ̃ζε̃ζ̄ν̃Λµ̃
Φσ̄ j (η, η̄,σ, σ̄,ζ, ζ̄,Λ)

∥∥∥∥∥≤ K
(‖t‖+∥∥Φ(η, η̄,σ, σ̄,ζ, ζ̄,Λ)− ζ̄∥∥) a+Ab

β0 ,∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|∂ηα̃η̄β̃sγ̃t δ̃ζε̃ζ̄ν̃Λµ̃
Φζ̄`(η, η̄,σ, σ̄,ζ, ζ̄,Λ)

∥∥∥∥∥≤ K
(‖t‖+∥∥Φ(η, η̄,σ, σ̄,ζ, ζ̄,Λ)− ζ̄∥∥) a+Ab

β0 ,

holds on Û1 ×Û2 ×Û3 ×Û4 for all α̃, β̃ ∈Nn , γ̃, δ̃ ∈Nd , ε̃, ν̃ ∈NN ′
, and µ̃ ∈Nk such that

|α̃|+ |β̃|+ |γ̃|+ |δ̃|+ |ε̃|+ |ν̃| ≤ A.
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We thus see that for (η, s, t ) ∈ H̃− and `= 1, . . . , N ′

(3.13)

∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|∂ηα̃η̄β̃sγ̃t δ̃ζε̃ζ̄ν̃Λµ̃
Φζ̄`

(
η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )

)∥∥∥∥∥
≤ K

(
‖t‖+

∥∥∥Φ(η, η̄,σ, σ̄,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t ))−h+(η, η̄, s,−t )
∥∥∥) a+Ab

β0

= K
(‖t‖+∥∥h−(η, η̄, s, t )−h+(η, η̄, s,−t )

∥∥) a+Ab
β0

≤ K
(
‖t‖+C ‖t‖β0

) a+Ab
β0

≤ K̃ ‖t‖a+Ab ,

and with the same argument, for j = 1, . . . ,d and (η, s, t ) ∈ H̃−∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|∂ηα̃η̄β̃sγ̃t δ̃ζε̃ζ̄ν̃Λµ̃
Φσ̄ j

(
η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )

)∥∥∥∥∥≤ K̃ ‖t‖a+Ab ,

for the same range of α̃, β̃ ∈Nn , γ̃, δ̃ ∈Nd , ε̃, ν̃ ∈NN ′
, and µ̃ ∈Nk as above.

If we now consider the term

∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ
Φζ̄`

(
η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )

)
,

then by the chain rule, we can write it as a sum of M ∈N terms (where M is a combinatorial constant
involving the multiindeces α,β,γ,δ) each of which is a product of a derivative of the form

∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|

∂ηα̃η̄β̃sγ̃t δ̃ζε̃ζ̄ν̃Λµ̃
Φζ̄

(
η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )

)
with at most A factors of derivatives of the form

∂|α̃|+|β̃|+|γ̃|+|δ̃|

∂ηα̃η̄β̃sγ̃t δ̃
h+(η, η̄, s,−t ),

∂|α̃|+|β̃|+|γ̃|+|δ̃|

∂ηα̃η̄β̃sγ̃t δ̃
h+(η, η̄, s,−t ),

∂|α̃|+|β̃|+|γ̃|+|δ̃|

∂ηα̃η̄β̃sγ̃t δ̃
g+(η, η̄, s,−t ).

Using this observation together with (3.12) and (3.13) we see that for `= 1, . . . , N ′,

(3.14)

∥∥∥∥∂|α|+|β|+|γ|+|δ|∂ηαη̄βsγtδ
Φζ̄`

(
η, η̄, s, t ,h+(η, η̄, s,−t ),h+(η, η̄, s,−t ), g+(η, η̄, s,−t )

)∥∥∥∥
≤ MK̃ ‖t‖a+Ab

(
C̃

‖t‖b

)A

≤ MK̃ C̃ A ‖t‖a ,

and thus, (3.11) holds for Φζ̄. As the same argument applies to Φσ̄ j , j = 1, . . . ,d , we get that h− lies in

A∞(H̃−) as claimed. The final conclusion follows by applying Theorem 3.3. �
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4. NUMERICAL INVARIANTS FOR A CR MAP AND ASSOCIATED OPEN SUBSETS DECOMPOSITION

4.1. Admissible rings of functions, numerical invariants and some basic properties. Here we intro-
duce a new sequence of invariants attached to a CR map that relates to its smoothness properties. If
X is a real manifold, x0 ∈ X and ` ∈Z+∪ {∞}, we denote by C `(X , x0) the ring of germs of C `-smooth
functions at x0 and by C `(X ) the ring of C `-functions over X .

In this section we assume that M ⊂ CN is a C ∞-smooth generic submanifold of CR dimension
n, and h : M → CN ′

w is a continuous CR map. We denote by C k
C R (M , p), ` ∈ Z+ ∪ {∞}, the ring of

germs of C k -smooth CR functions at a point p ∈ M . For a given ψ ∈ C 1(M , p), we denote by L̄ψ =
(L̄1ψ, . . . , L̄nψ) where L̄1, . . . , L̄n is a given choice of a basis of C ∞-smooth CR vector fields near p. The
reader should note that, wherever we use this notation in what follows, the conditions involved will
not depend on the choice of the basis of CR vector fields.

It will be convenient to introduce the following:

Definition 4.1. Let M and h be as above, µ ∈ Z+, p ∈ M , and j be an integer satisfying 0 ≤ j ≤ µ. In
what follows, we assume that h is C µ− j -smooth.
a) We denote by A

j ,µ
p the set of all pairs (g ,R) with g = (g1, . . . , gk ) ∈ (C µ− j

C R (M , p))k for some integer k

and R(z, z̄, w, w̄ ,Λ) ∈C ∞(M×CN ′×Ck , (p,h(p), g (p))), which have the property that R is holomorphic
inΛ and which satisfy

R
(
ξ, ξ̄,h(ξ, ξ̄),h(ξ, ξ̄), g (ξ, ξ̄)

)
= 0

for ξ ∈ M near p.

b) We denote by F
j ,µ

p the subring of C µ− j (M , p) consisting of those functions ψ that may written in
the form

ψ(ξ, ξ̄) = R
(
ξ, ξ̄,h(ξ, ξ̄),h(ξ, ξ̄), g (ξ, ξ̄)

)
for ξ ∈ M near p where g = (g1, . . . , gk ) ∈ (C µ− j

C R (M , p))k for some integer k, and R(z, z̄, w, w̄ ,Λ) ∈
C ∞(M ×CN ′ ×Ck , (p,h(p), g (p))) is holomorphic inΛ.

c) For (g ,R) ∈A
j ,µ

p , we define the following element of (F j ,µ
p )N ′

Rw : = Rw

(
ξ, ξ̄,h(ξ, ξ̄),h(ξ, ξ̄), g (ξ, ξ̄)

)
=

(
Rw1

(
ξ, ξ̄,h(ξ, ξ̄),h(ξ, ξ̄), g (ξ, ξ̄)

)
, . . . ,RwN ′

(
ξ, ξ̄,h(ξ, ξ̄),h(ξ, ξ̄), g (ξ, ξ̄)

))
,

for ξ ∈ M near p.

Remark 4.2. Note that if ψ ∈F
j ,µ

p then there is a neighbhorhood of p in M such that for any z in that

neighborhood, (the germ at z of) ψ ∈F
j ,µ

z .

We note that for any p ∈ M , the space

D
µ

j (M , p) =
{

Rw

(
p, p̄,h(p, p̄),h(p, p̄), g (p, p̄)

)
: (g ,R) ∈A

j ,µ
p

}
⊂CN ′

is a vector space. We define, for p ∈ M and any integer 0 ≤ j ≤µ:
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(4.1) S
µ

j (M , p) := dimCD
µ

j (M , p)

For every p ∈ M and each µ ∈Z+, we have

D
µ
0 (M , p) ⊂D

µ
1 (M , p) ⊂ ·· · ⊂D

µ
µ (M , p),

and hence
S

µ
0 (M , p) ≤S

µ
1 (M , p) ≤ . . . ≤S

µ
µ (M , p).

Remark 4.3. We note that even though S
µ

j (M , p) was defined using specific coordinates in CN ′
, it is

not hard to see that S
µ

j (M , p) is actually independent of the specific choice of (local) holomorphic

coordinates in CN ′
near h(p). The same is true for the numbers r j (p) defined by (2.2).

We do need to be careful as the sequence S
µ

j (M , p) might be strictly increasing up to a certain j ,
then stabilize, and then can start to strictly increase again. Stabilization, however, is crucial for what
follows.

For p ∈ M , we set

(4.2) V
j ,µ
p =

(
D
µ

j (M , p)
)⊥ =

{
V ∈CN ′

: V ·Rw (p, p̄,h(p, p̄),h(p, p̄), g (p, p̄)) = 0, ∀(g ,R) ∈A
j ,µ

p

}
.

Since D
µ

j (M , p) is increasing in j , we have that

V
µ,µ
p ⊂Vµ−1,µ

p ⊂ ·· · ⊂V0,µ
p and dimV

j ,µ
p = N ′−S

µ

j (M , p).

In the following remark, we define the “holomorphic” derivatives of elements of F
j ,µ

p .

Remark 4.4. Let µ ∈Z+, p ∈ M, and j be an integer satisfying 0 ≤ j ≤µ.

(i) For ψ ∈F
j ,µ

p and V ∈V j ,µ
p , one can define V ·ψw (at p) in a unique way.

Indeed, If ψ ∈F
j ,µ

p can be written in two different ways, using (g 1,R1) and (g 2,R2), so that

ψ(ξ, ξ̄) = R1
(
ξ, ξ̄,h(ξ, ξ̄),h(ξ, ξ̄), g 1(ξ, ξ̄)

)
= R2

(
ξ, ξ̄,h(ξ, ξ̄),h(ξ, ξ̄), g 2(ξ, ξ̄)

)
for ξ ∈ M near p, where each g i ∈ (C µ− j

C R (M , p))ki for some integer ki , and R i ∈ C ∞(M ×CN ′ ×
C

ki
Λi

, (p,h(p), g i (p))) is holomorphic in its last argument, i = 1,2, then we have for g = (g 1, g 2)
and R defined by

R
(
ξ, ξ̄, w, w̄ ,Λ1,Λ2

)= R1 (
ξ, ξ̄, w, w̄ ,Λ1

)−R2 (
ξ, ξ̄, w, w̄ ,Λ2

)
that (R, g ) ∈A

j ,µ
p . Then for every V ∈V j ,µ

p , we have V ·Rw = 0 and so

(4.3) V ·R1
w =V ·R2

w (at p).

It follows that for every V ∈V j ,µ
p , the natural definition

(4.4) V ·ψw :=V ·R1
w (at p)
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is well defined, since (4.3) shows that the right hand side of (4.4) is independent of a particular
choice of representative (g i ,R i ) for ψ.

(ii) For any polynomial P (t , t̄ ) =∑
α,βPα,βtα t̄β ∈F

j ,µ
p [t , t̄ ], t ∈Cr , and any V ∈V j ,µ

p , we define

V ·Pw (t , t̄ ) := ∑
α,β

(V ·Pα,β
w )tα t̄β,

which is well defined by (i).

Lemma 4.5. Let M ⊂ CN be a C ∞-smooth generic minimal submanifold, of CR dimension n, and
p ∈ M. Let µ, j be integers satisfying 0 ≤ j < µ and let h : M →CN ′

be a CR map of class C µ− j . Let K̄ be
a C ∞-smooth CR vector field on M defined near p.

(i) Let ψ ∈ F
j ,µ

p and assume that both ψ and K̄ are defined on a neighbhorhood Up of p. Then

K̄ψ ∈ F
j+1,µ

p , and for every z ∈ Up , (the germ at z) of K̄ψ belongs to F
j+1,µ

z . Furthermore, if

V : Up → CN ′
is a CR map of class C 1 and satisfies V (z) ∈ V j+1,µ

z for z ∈Up , then V · (K̄ψ)w is
defined all over Up and one has

V · (K̄ψ)w = K̄ (V ·ψw ), on Up .

(ii) Let (g ,R) ∈A
j ,µ

p . Then there exists (ĝ K̄ , R̂ K̄ ) ∈A
j+1,µ

p such that K̄ Rw = R̂ K̄
w .

In applications of Lemma 4.5, the place of K̄ will be taken up by entries of a local basis L̄1, . . . , L̄n of
CR vector fields on M near p. In order to simplify notation, we will in that case write R̂ L̄ j =: R̂ j .

Proof. Let ψ ∈ F
j ,µ

p . By definition there exist g ∈ (C µ− j
C R (M , p))k for some integer k and R ∈ C ∞(M ×

CN ′ ×Ck , (p,h(p), g (p))), holomorphic in its last argument (denoted byΛ in what follows) such that

ψ(z, z̄) = R
(
z, z̄,h(z, z̄),h(z, z̄), g (z, z̄)

)
, z ∈ M near p.

Hence for for z ∈ M near p,

(K̄ψ)(z, z̄) = Rz̄(z, z̄,h(z, z̄),h(z, z̄), g (z, z̄)) · K̄ (z̄)+Rw̄ (z, z̄,h(z, z̄),h(z, z̄), g (z, z̄)) · (K̄ h̄)(z, z̄)

+RΛ(z, z̄,h(z, z̄),h(z, z̄), g (z, z̄)) · (K̄ ḡ )(z, z̄).

Since g and h are CR maps of class C µ− j , their components all extend holomorphically to a (com-
mon) wedge of edge M at p by Tumanov’s theorem [T90] and the extensions are of class C µ− j up to
the edge (on any strictly finer wedge), see e.g. [R86, BER99]. Keeping the same notation for the maps
g ,h and for their extension on some appropriate finer wedge, we then may write

K̄ ḡ =
N∑

j=1
a j (z, z̄)

∂g

∂z j
(z, z̄), K̄ h̄ =

N∑
j=1

a j (z, z̄)
∂h

∂z j
(z, z̄)

for z ∈ M near p, where the a j are C ∞ functions defined on Up . Using the notation ∂g =
(
∂g
∂z1

, . . . , ∂g
∂zN

)
and similarly for h, we can therefore write

(K̄ψ)(z, z̄) = R̃
(
z, z̄,h(z, z̄),h(z, z̄), g (z, z̄), (∂h)(z, z̄), (∂g )(z, z̄)

)
,
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with R̃ ∈ C ∞
(
M ×CN ′ ×Ck+N N ′+kN , (p,h(p), g (p),∂h(p),∂g (p))

)
, and holomorphic in its last three

arguments. Hence L̄ψ ∈F
j+1,µ

p , and as observed in Remark 4.2, for z ∈Up , the germ at z of L̄ψbelongs

to F
j+1,µ

z .
Next, suppose that we are given a neighborhood Up of p in M , as in Lemma 4.5, and Up 3 z 7→

V (z) ∈V j+1,µ
z of class C 1 and CR. Then we have on Up

V · (K̄ψ)w =V · K̄ (ψw ) = K̄ (V ·ψw ),

since V is CR. This completes the proof of part (i) of the lemma. Part (ii) can be proven as well by
using the same type of arguments as in (i). The proof of the lemma is therefore complete. �

4.2. Open subset decomposition associated to the numerical invariants. For k,` ∈ N, ` ≤ N ′ and
ν ∈Nwith k ≤ ν≤ N ′−`+k −1, we define

(4.5)
Ω`

k,ν =
{

z ∈ M : S N ′−`+k
j (M ,ξ) =S N ′−`+k

j (M , z) for ξ near z, k ≤ j ≤ ν+1, and

`≤S N ′−`+k
k (M , z) < . . . <S N ′−`+k

ν (M , z) =S N ′−`+k
ν+1 (M , z)

}
,

(4.6)
Ω`

k,N ′−`+k = {
z ∈ M : S N ′−`+k

j (M ,ξ) =S N ′−`+k
j (M , z) for ξ near z, k ≤ j ≤ N ′−`+k, and

`≤S N ′−`+k
k (M , z) < . . . <S N ′−`+k

N ′−`+k (M , z) = N ′}.

We also define, for k,` ∈N, k ≤ ν≤ N ′−`+k, and `≤ m ≤ N ′,

(4.7) Ω̂`,m
k,ν :=

{
z ∈Ω`

k,ν : S N ′−`+k
ν (M , z) = m

}
.

Note that by construction, for each k,` ∈Nwith `≤ N ′ and every ν with k ≤ ν≤ N ′−`+k we have

(4.8)
N ′⋃

m=`
Ω̂`,m

k,ν =Ω`
k,ν

and that each Ω̂`,m
k,ν is open in Ω`

k,ν and also open in M . Let us finally note that the definition (4.6)
implies that

(4.9) Ω̂`,m
k,N ′−`+k =;, for m < N ′.

5. RELATING THE SMOOTHNESS OF A CR MAP TO THE OPEN SUBSET DECOMPOSITION

For M and h as in §4 we denote by M∞
h the open subset of M consisting of those points p ∈ M such

that h is C ∞-smooth in a neighborhood of p. The relevance of the introduction of the open subsets
Ω̂`,m

k,ν in §4.2 to the study of the smoothness properties of the map h and the CR geometry of h(M) is
explained by our next two results.

Proposition 5.1. Let M ⊂ CN be a C ∞-smooth generic minimal submanifold, and h : M → CN ′
be a

CR map of class C 1. Let `,k ∈Nwith `≤ N ′, k ≤ ν≤ N ′−`+k, and let the setsΩ`
k,ν be defined as above.

Then
⋃N ′−`+k
ν=k Ω̂`,N ′

k,ν ⊂ M∞
h .
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Proof. Let z ∈ ⋃N ′−`+k
ν=k Ω̂`,N ′

k,ν . Hence there is k ≤ ν ≤ N ′−`+k such that S N ′−`+k
ν (M , z) = N ′. Hence

we can find (g ,R1), . . . , (g ,RN ′
) ∈A ν,N ′−`+k

z such that for ξ ∈ M near z

R j (ξ, ξ̄,h(ξ, ξ̄),h(ξ, ξ̄), g (ξ, ξ̄)) = 0, j = 1, . . . , N ′,

and
Rk{R j

w (z, z̄,h(z, z̄),h(z, z̄), g (z, z̄)),1 ≤ j ≤ N ′} = N ′.
Since M is minimal, all components of h and g extend holomorphically to a common wedge of edge
M at z by Tumanov’s theorem [T90]. Observing that h is of class C 1 and g of class C N ′−`+k−ν and
hence at least continuous, we may apply Theorem 3.1 to conclude that h is C ∞-smooth in a neigh-
borhood of z. The proof of Proposition 5.1 is complete. �

Proposition 5.2. Let M ⊂CN be a C ∞-smooth generic minimal submanifold and h : M →CN ′
be a CR

map of class C 1. Let k,`,m,ν ∈Nwith k ≤ ν≤ N ′−`+k −1 and `≤ m < N ′. If h is of class C N ′−`+k−ν

on Ω̂`,m
k,ν , then for every p ∈ Ω̂`,m

k,ν , there exists a neighborhood Up of p in Ω̂`,m
k,ν , and for every ξ ∈ Up ,

an (N ′−m)-dimensional formal holomorphic submanifold Γξ through h(ξ) that is tangent to h(M)
to infinite order at h(ξ). Furthermore, the family of formal holomorphic submanifolds (Γξ)ξ∈Up can be

parametrized in such a way that the dependence on ξ ∈Up is CR and of class C N ′−`+k−ν.

The proof of Proposition 5.2 is more involved than that of the previous proposition and is mainly
inspired by some arguments originating from our previous work on convergence of formal maps
[LM17b].

Throughout the rest of §5, we fix k,`,m,ν ∈Nwith k ≤ ν≤ N ′−`+k −1 and `≤ m < N ′.

For z ∈ Ω̂`,m
k,ν , we have by definition dimV

ν,N ′−`+k
z = N ′ −m. However, locally around any point

p ∈ Ω̂`,m
k,ν we can actually give a basis of vectors spanning Vν,N ′−`+k

z for z close to p which depend on
z in a CR manner. The next proposition gives an exact statement.

Proposition 5.3. Under the assumptions of Proposition 5.2, for every p ∈ Ω̂`,m
k,ν , there exists a neigh-

borhood Wp ⊂ Ω̂`,m
k,ν of p and CR maps V j : Wp → CN ′

of class C N ′−`+k−ν, j = 1, . . . , N ′ −m, whose

components belong to Fν,N ′−`+k
p , such that {V 1(z), . . . ,V N ′−`(z)} forms a basis of Vν,N ′−`+k

z for every
z ∈Wp .

For the proof of Proposition 5.3, we shall need the following lemma.

Lemma 5.4. Let M ⊂CN be a C ∞-smooth generic submanifold of CR dimension n, p ∈ M, and Rp be
a subring of C τ(M , p), for some τ ∈Z+, satisfying the following condition: for every ψ ∈Rp , if ψ(p) 6= 0

then 1/ψ ∈ Rp . Let N ′ ≥ 1, 1 ≤ δ < N ′, and A1, . . . , Aδ be germs of p of CN ′
-valued mappings with

components in Rp . Assume that:

(i) The rank of the N ′×δ matrix A := (A1, . . . , Aδ) is equal to δ at p;
(ii) For any smooth CR vector field L̄ of M near p, the rank of the N ′×2δmatrix (A, L̄ A) is constantly

equal to δ in a neighborhood of p.
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Then there exist N ′−δ germs at p of CN ′
-valued mappings, with components in Rp ∩C τ

C R (M , p), de-

noted by V 1, . . . ,V N ′−δ such that for 1 ≤ j ≤ N ′−δ and 1 ≤ γ≤ δ, we have

(5.1) V j · Aγ :=
N ′∑

i=1
V j

i Aγ

i = 0 in Rp ,

and such that V1(p, p̄), . . . ,VN ′−δ(p, p̄) are linearly independent.

The proof of Lemma 5.4 can be obtained by elementary linear algebra by following e.g. the steps of
[LM17a, Lemma 4.5] and will therefore be left to the reader.

Proof of Proposition 5.3. Let p ∈ Ω̂`,m
k,ν . We may choose (g ,R1), . . . , (g ,Rm) ∈A ν,N ′−`+k

p such that

(5.2) Rk{R j
w (p, p̄,h(p, p̄),h(p, p̄), g (p, p̄)),1 ≤ j ≤ m} = m.

We shall apply Lemma 5.4 to the subring Rp :=Fν,N ′−`+k
p of C N ′−`+k−ν(M , p) and to

A j (z, z̄) := R j
w (z, z̄,h(z, z̄),h(z, z̄), g (z, z̄)), 1 ≤ j ≤ m.

One can check that for everyψ ∈Fν,N ′−`+k
p withψ(p) 6= 0, 1/ψ ∈Fν,N ′−`+k

p . Furthermore, (5.2) shows
that condition (i) in Lemma 5.4 is already satisfied.

In order to apply Lemma 5.4, we now check that condition (ii) is also satisfied. For this, choose a
basis L̄r , 1 ≤ r ≤ n, of C ∞-smooth CR vector fields for M near p. Then by Lemma 4.5 (ii), for every

1 ≤ j ≤ m, 1 ≤ r ≤ n, there exists (g j ,r , R̂ j ,r ) ∈ A ν+1,N ′−`+k
p such that L̄r A j = R̂ j ,r

w . Hence for all j ,r

as above, we have a collection (g ,R j ) and (g j ,r , R̂ j ,r ) all belonging to A ν+1,N ′−`+k
p . Since p ∈ Ω̂`,m

k,ν ,

the rank of the family of vectors in CN ′
given by R j

w , R̂ j ,r
w , for j ,r as above is constant and equal to m

in a neighborhood of p. Since this latter rank coincides with that of the family of vectors A j , L̄r A j ,
1 ≤ j ≤ m, 1 ≤ r ≤ n, the claim is proved. To conclude, we now just have to apply Lemma 5.4, re-

call that dimV
ν,N ′−`+k
z = N ′−m for all z ∈ M near p and note that for z in some sufficiently small

neighborhood of p in M , we have

Vν,N ′−`+k
z =

{
V ∈CN ′

: V ·R j
w (z, z̄,h(z, z̄),h(z, z̄), g (z, z̄)) = 0, j = 1, . . . ,`

}
.

The proof of Proposition 5.3 is complete now. �

In order to prove Proposition 5.2, we shall now follow and adapt the approach developed in [LM17b].
We first make the following simple useful observation which follows from our previous construction.

Lemma 5.5. Under the assumptions of Proposition 5.2, for every p ∈ Ω̂`,m
k,ν , let (V 1, . . . ,V N ′−m) and Wp

be the basis and the neighbourhood constructed in the proof of Proposition 5.3. Then for every z ∈Wp ,

we have Vν,N ′−`+k
z = V

ν+1,N ′−`+k
z . Furthermore, for every ξ ∈ Wp , for j = 1, . . . , N ′−m, and for every

(g ,R) ∈A ν+1,N ′−`+k
ξ

defined on a neighborhood Uξ ⊂Wp of ξ, we have

V j (z) ·Rw (z, z̄,h(z, z̄),h(z, z̄), g (z, z̄)) = 0, z ∈Uξ.

We can now state and prove the last step towards the completion of the proof of Proposition 5.2.
This next result can be thought of as a (C ∞–)smooth version of [LM17b, Theorem 4.1].
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Proposition 5.6. Let M ⊂CN be a C ∞-smooth generic minimal submanifold and h : M →CN ′
be a CR

map of class C 1. Let k,`,m,ν ∈N with k ≤ ν≤ N ′−`+k −1 and `≤ m < N ′. Assume that h is of class
C N ′−`+k−ν on Ω̂`,m

k,ν and for every p ∈ Ω̂`,m
k,ν , let V = (V 1, . . . ,V N ′−m) and Wp be given by Proposition

5.3. For t = (t1, . . . , tN ′−m) ∈ CN ′−m , we set t · V := ∑N ′−m
i=1 ti V i . For every d ∈ Z+, define a family of

homogeneous polynomial maps of degree d in (Fν,N ′−`+k
p [t ])N ′

inductively by setting

(5.3) D1(t ) := t ·V , Dd+1(t ) := 1

d +1
(t ·V ) ·Dd

w (t ), d ≥ 1.

In addition set D(t ) :=∑∞
d=1 Dd (t ) ∈ (Fν,N ′−`+k

p �t�)N ′
and write D(t ) =∑

α∈NN ′−m dαtα. Then, shrinking
Wp if necessary, the following holds:

(a) for each α ∈NN ′−m , dα is well defined on Wp and is of class C N ′−`+k−ν and CR on Wp .
(b) for every ξ ∈Wp , t 7→ D(ξ; t ) := h(ξ)+∑

α∈NN ′−m dα(ξ)tα defines an (N ′−m)-dimensional formal
holomorphic submanifold through h(ξ), denoted by Γξ.

(c) for every ξ ∈Wp , Γξ is tangent to h(M) to infinite order at h(ξ).

Proof of Proposition 5.6. a) The fact that all the dα’s, for α ∈ NN ′−m are well defined and of class

C N ′−`+k−ν on Wp follows from the fact that the V i ’s belong to Fν,N ′−`+k
p , are well defined on Wp ,

and from the construction given in (5.3). It remains to check that the dα’s are CR over Wp . Choose a
basis of C ∞-smooth CR vector fields L̄s , s = 1, . . . ,n, for M defined all over Wp . We show by induction
on d that L̄s(Dd (t )) = 0, s = 1, . . . ,n, where we consider Dd (t ) as a polynomial map with coefficients
in C 1(Wp ).

For d = 1, in view of (5.3) and Proposition 5.3, D1(t ) is polynomial map with coefficients that are CR
over Wp . Assume now that Dd (t ) has all its coefficients CR over Wp . This means that for s = 1, . . . ,n,
L̄s(Dd (t )) = 0 over Wp . By Lemma 4.5 (i), L̄s(Dd (t )) is a homogeneous polynomial in t with coeffi-

cients in Fν+1,N ′−`+k
p and defined all over Wp . Furthermore, sinceVν,N ′−`+k

z =Vν+1,N ′−`+k
z for z ∈Wp

(see Lemma 5.5), we have, for every t ∈ CN ′−m , a CR map of class C 1 given by Wp 3 z 7→ t · V (z) ∈
V
ν+1,N ′−`+k
z . Hence, using again Lemma 4.5 (i), we get

L̄s

(
(d +1)Dd+1(t )

)
= L̄s((t ·V ) ·Dd

w (t )) = (t ·V ) · (L̄sDd (t ))w on Wp .

Since L̄s(Dd (t )) = 0 over Wp , we have (t ·V ) · (L̄sDd (t ))w = 0 and hence L̄s(Dd+1(t )) = 0 for s = 1, . . . ,n
which completes the proof of (a).

Regarding part (b), we use the fact that the vectors V 1(ξ), . . . ,V N ′−m(ξ) are of rank N ′−m at every
ξ ∈Wp , shrinking Wp if necessary, by Proposition 5.3. Hence

∂D

∂t
(ξ,0) =

V 1
1 (ξ) . . . V N ′−m

1 (ξ)
...

...
V 1

N ′(ξ) . . . V N ′−m
N ′ (ξ)


is of maximal rank N ′−m for ξ ∈Wp .
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We prove part (c) by showing that for every ξ ∈ Wp and for every germ ρ : (CN ′
,h(ξ)) → R of a C ∞-

smooth function that vanishes on h(M) near h(ξ) the identity

ρ
(
h(ξ)+D(ξ; t ),h(ξ)+D(ξ; t )

)
∼ 0

holds in the ring of formal power series R�t , t̄�. In the previous statement, we have identified ρ with
its formal power series expansion at h(ξ). From now on we fix ξ ∈Wp and ρ as above. We also assume

that ρ is defined on some neigbhorhood Xξ of h(ξ) in CN ′
and that Vξ is an open neighborhood of ξ

(in M) such that h(Vξ) ⊂ Xξ and Vξ ⊂Wp .
We need the following lemma, analogous to [LM17b, Lemma 4.2], whose proof will therefore be

omitted.

Lemma 5.7. Let ξ ∈Wp , ρ, Vξ and D be as above. For z ∈Vξ, write the formal power series expansion

(5.4) ρ
(
h(z)+D(z; t ),h(z)+D(z; t )

)
∼ ∑

a,b∈Z+

1

a!b!
Ra,b(z; t , t̄ ) ∈R�t , t̄�

where each Ra,b is homogeneous of degree a in t and of degree b in t̄ . Then for any a,b ∈Z+, there exists
a universal polynomial Ua,b in all its arguments such that

(5.5) Ra,b(z; t , t̄ ) =Ua,b

[(
ρwβw̄δ(h(z),h(z))

)
|β|≤a
|δ|≤b

, (s!D s(z; t ))s≤a , (r !Dr (z; t ))r≤b

]
.

Furthermore, for a,b ∈Z+, writing Ua,b = Ua,b((Λβ,δ)|β|≤a
|δ|≤b

,S1, . . . ,Sa ,T1, . . . ,Tb), Λβ,δ ∈ C, Si ,T j ∈ CN ′
,

and Ra+1,b for Ra+1,b(z; t , t̄ ), we have
(5.6)

Ra+1,b =
a∑

i=1
(i +1)!

∂Ua,b

∂Si

[(
ρwβw̄δ(h(z),h(z))

)
|β|≤a
|δ|≤b

, (s!D s(z; t ))s≤a , (r !Dr (z; t ))r≤b

]
·D i+1(z; t )

+ ∑
|γ|≤a
|µ|≤b

∂Ua,b

∂Λγ,µ

[(
ρwβw̄δ(h(z),h(z))

)
|β|≤a
|δ|≤b

, (s!D s(z; t ))s≤a , (r !Dr (z; t ))r≤b

]
D1(z; t ) ·

(
ρwγw̄µ(h(z),h(z))

)
w

In view of Lemma 5.7, we may now complete the proof of Proposition 5.6 (c) by showing that for
ξ ∈ Wp , ρ as above, and for every z ∈ Vξ, Ra,b(z; t , t̄ ) = 0 for every a,b ∈ Z+ by induction on e := b +a

and hence in particular at z = ξ. First observe that R0,0(z; t , t̄ ) = ρ(h(z),h(z)) and hence is identically
zero for z ∈ Vξ. Let e ∈ Z+ and suppose that Ra,b(z; t , t̄ ) = 0 for z ∈ Vξ and a +b ≤ e. We are going to
show that Ra+1,b(z; t , t̄ ) = Ra,b+1(z; t , t̄ ) = 0 for z ∈Vξ and a+b ≤ e. By Lemma 5.7 we have for a+b ≤ e
and z ∈Vξ

(5.7) Ra,b(z; t , t̄ ) =Ua,b

[(
ρwβw̄ν(h(z),h(z))

)
|β|≤a
|ν|≤b

, (s!D s(z; t ))`≤a , (r !Dr (z; t ))r≤b

]
= 0.

Since for every integer d , Dd (z; t ) is polynomial in t with coefficients that are at the same time CR and

belong to Fν,N ′−`+k
ξ

(cf. Proposition 5.6 (a) proved above), we may see (5.7) as a polynomial identity
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in (t , t̄ ), with coefficients in Fν,N ′−`+k
ξ

. Hence it follows from Lemma 5.5 that

(5.8) D1(z; t ) ·Ra,b
w (z; t , t̄ ) = (t ·V (z)) ·Ra,b

w (z; t , t̄ ) = 0, z ∈Vξ.

But in view of (5.7), we have that for z ∈Vξ the left-hand side L of (5.8) satisfies
(5.9)

L =
a∑

i=1
i !
∂Ua,b

∂Si

[(
ρwβw̄δ(h(z),h(z))

)
|β|≤a
|δ|≤b

, (s!D s(z; t ))s≤a , (r !Dr (z; t ))r≤b

]
·D1(z; t ) ·D i

w (z; t )

+ ∑
|γ|≤a
|µ|≤b

∂Ua,b

∂Λγ,µ

[(
ρwβw̄δ(h(z),h(z))

)
|β|≤a
|δ|≤b

, (s!D s(z; t ))s≤a , (r !Dr (z; t ))r≤b

]
D1(z; t ) ·

(
ρwγw̄µ(h(z),h(z))

)
w

=
a∑

i=1
(i +1)!

∂Ua,b

∂Si

[(
ρwβw̄δ(h(z),h(z))

)
|β|≤a
|δ|≤b

, (s!D s(z; t ))s≤a , (r !Dr (z; t ))r≤b

]
·D i+1(z; t )

+ ∑
|γ|≤a
|µ|≤b

∂Ua,b

∂Λγ,µ

[(
ρwβw̄δ(h(z),h(z))

)
|β|≤a
|δ|≤b

, (s!D s(z; t ))s≤a , (r !Dr (z; t ))r≤b

]
D1(z; t ) ·

(
ρwγw̄µ(h(z),h(z))

)
w

.

In the last equality, we have used the definition given in (5.3). Now in view of Lemma 5.7, the last
quantity we found for L in (5.9) happens to coincide with R j+1,k (z; t , t̄ ). Hence R j+1,k (z; t , t̄ ) = 0 for

z ∈Vξ and j +k ≤ e. Furthermore, since ρ is real-valued, we have Rk+1, j (z; t , t̄ ) = R j ,k+1(z; , t , t̄ ). Hence
the induction step is complete, which finishes the proof of Proposition 5.6 (c). �

6. DENSITY AND ELEMENTARY RANK PROPERTIES

Let us now again consider a C ∞-smooth CR submanifold M ⊂ CN and a fixed subset M ′ ⊂ CN ′
.

Recall that we defined for a CR map h : M →CN ′
of class at least C m and every 0 ≤ k ≤ m the following

quantities in (2.1)–(2.2):

rk (p) := dimC span
{

L̄1 . . . L̄ jρw (h(p),h(p)) : ρ ∈Ih(M)(h(p)), L̄1, . . . , L̄ j ∈ Γp (M),0 ≤ j ≤ k
}

,

rk := max
{
e ∈Z+ : rk (p) ≥ e for p on some dense subset of M

}
.

If h(M) ⊂ M ′, we may also define:

rk,M ′(p) := dimC span
{

L̄1 . . . L̄ jρw (h(p),h(p)) : ρ ∈IM ′(h(p)), L̄1, . . . , L̄ j ∈ Γp (M),0 ≤ j ≤ k
}

,

rk,M ′ := max
{
e ∈Z+ : rk,M ′(p) ≥ e for p on some dense subset of M

}
.

In what follows, we will use the following obvious fact: when h(M) ⊂ M ′, for every p ∈ M , rk (p) ≥
rk,M ′(p) and hence rk ≥ rk,M ′ .

The goal of this section is to discuss some elementary bounds on these integers rk when one puts
various geometric properties on the pair (M ,h(M)). The first bound involves r0.
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Lemma 6.1. Let M ⊂CN be a C ∞-smooth CR submanifold and h : M →CN ′
be a continuous CR map.

If there exists a C ∞-smooth CR submanifold M ′ ⊂ CN ′
such that h(M) ⊂ M ′ then r0 ≥ N ′−n′ where

n′ = dimC R M ′. In particular, if M ′ is maximally real, then r0 = N ′.

Proof. Pick p ∈ M . Then by [BER99, Theorem 1.8.1], there exist holomorphic coordinates (χ, (ζ,τ)) ∈
Cn′ ×CN ′−n′−d ′ ×Cd ′

near h(p), vanishing at h(p), such that M ′ is given by the zero set of C ∞-smooth
functions of the form:

(6.1) ζ= θ(χ,τ, χ̄, τ̄), Im τ=Φ(χ, χ̄,Reτ).

Here θ and Φ are defined and C ∞-smooth near the origin in Cn′+d ′
and Cn′ ×Rd ′

, θ(0) = 0, Φ(0) =
dΦ(0) = 0 and θ being CR on the generic submanifold M̂ ′ = {(χ,τ) : Im τ = Φ(χ, χ̄,Reτ)} ⊂ Cn′+d ′

. In
the same vein as what mentioned in Remark 4.3, the integers r j ,M ′ , j ∈ N, are independent of the

choice of holomorphic coordinates inCN ′
. We therefore use w = (χ,ζ,τ) as coordinates near h(p) and

the smooth defining functions (6.1) ρ = (ρ1, . . . ,ρN ′−n′) to see that ρw has rank at least N ′−n′. Since
ρ j ∈IM ′(h(p)), j = 1, . . . , N ′−n′, we have r0,M ′(p) ≥ N ′−n′ for every p ∈ M and hence r0 ≥ N ′−n′. �

The next result provides a bound for r1.

Lemma 6.2. Let M ⊂CN be a C ∞-smooth CR submanifold and h : M →CN ′
be a CR map of class C 1.

Suppose that there exists a C ∞-smooth Levi-nondegenerate submanifold M ′ ⊂ CN ′
such that h(M) ⊂

M ′. If h is immersive (on a dense open subset of M), then r1 ≥ N ′−n′+n where n = dimC R M, n′ =
dimC R M ′.

The content of this Lemma is a well-known fact that can be found in other variants in the existing
literature (see e.g. [M17]). We give a self-contained proof of the statement we need here.

Proof. Pick a point p ∈ M where h is immersive. We will use a defining function of M ′ as in the proof of
Lemma 6.1, where we can (because of the assumption of Levi-nondegeneracy) achieve the additional
property that if we writeΦ= (Φ1, . . . ,Φd ′

), then the matrices

Φ1
χ,χ̄, . . . ,Φd ′

χ,χ̄,

have no common kernel when evaluated at 0, and also assuming that Φχs vanishes at 0. Denote the
components of h in the (χ,ζ,τ)-variables by h = ( f ,F, g ). When we compute r1,M ′ , we have in partic-
ular amongst the ρw (0) with ρ ∈IM ′(0) the vectors(

Φ
j
χ(0),0,0, . . . ,

(
1

2i
− 1

2
Φ

j
Re τ(0)

)
, . . . ,0

)
, (0,0, . . . ,1, . . . ,0, . . . ,0) , j = 1, . . . ,d ′.

Since the last N ′−n′ slots in these give rise to linearly independent vectors in CN ′−n′
as already noted

in the computation for (i), we just need to consider the L̄Φ j
χ( f , f̄ ,Re g ) for all CR vector fields L̄ on M .

Choose a basis L̄1, . . . , L̄n of the CR vector fields on M near p. Since h is immersive, L̄1 f̄ , . . . , L̄n f̄ , is of
rank n at p. We claim that the vectors

L̄ jΦ
k
χ( f , f̄ ,Re g ) =Φk

χ,χ̄L̄ j f̄ + 1

2
Φk
χ,s L̄ j ḡ , j = 1, . . . ,n, k = 1, . . . ,d ′
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have rank at least n when evaluated at p. Since we have normalized Φ so thatΦχ,s( f , f̄ ,Re g )|p = 0, it
is enough to check that the

Φk
χ,χ̄ L̄ j f̄ , j = 1, . . . ,n, k = 1, . . . ,d ′

are of rank at least n at p. We decompose χ= (χ1,χ2) ∈Cn ×Cn′−n and correspondingly f = ( f 1, f 2) ∈
Cn ×Cn′−n , and write the matrix

L̄ f̄ :=
(
L̄1 f̄ 1 L̄2 f̄ 1 . . . L̄n f̄ 1

L̄1 f̄ 2 L̄2 f̄ 2 . . . L̄n f̄ 2

)
=

(
L̄ f̄ 1

L̄ f̄ 2

)
.

After a complex linear change of coordinates in the χ, we may assume that L̄ f̄ 2(p, p̄) = 0, and L̄ f̄ 1 =
In×n is the identity matrix. When we now consider

Φk
χ,χ̄L̄ f̄ =

(
Φk
χ,χ̄1 L̄ f̄ 1 +Φk

χ,χ̄2 L̄ f̄ 2
)

and evaluate at p, we obtain

Φk
χ,χ̄( f (p, p̄), f (p, p̄),Re g (p, p̄))L̄ f̄ (p, p̄) =Φk

χ,χ̄1 ( f (p, p̄), f (p, p̄),Re g (p, p̄)).

We note that the vectors

U1 =



Φ1
χ1,χ̄1
...

Φ1
χn′ ,χ̄1

Φ2
χ1,χ̄1
...

Φ2
χn′ ,χ̄1

...

...
Φd ′
χ1,χ̄1
...

Φd ′
χn′ ,χ̄1



, U2 =



Φ1
χ1,χ̄2
...

Φ1
χn′ ,χ̄2

Φ2
χ1,χ̄2
...

Φ2
χn′ ,χ̄2

...

...
Φd ′
χ1,χ̄2
...

Φd ′
χn′ ,χ̄2



, . . . Un =



Φ1
χ1,χ̄n

...
Φ1
χn′ ,χ̄n

Φ2
χ1,χ̄n

...
Φ2
χn′ ,χ̄n

...

...
Φd ′
χ1,χ̄n

...
Φd ′
χn′ ,χ̄n



, . . . ,Un′ =



Φ1
χ1,χ̄n′

...
Φ1
χn′ ,χ̄n′
Φ2
χ1,χ̄n′

...
Φ2
χn′ ,χ̄n′

...

...
Φd ′
χ1,χ̄n′

...
Φd ′
χn′ ,χ̄n′



.

are not only linearly independent inCn′d ′
: If we consider the space D = {w = (w 1, . . . , w d ′

) ∈Cn′d ′
: w j ∈

Cn′
, w 1 = ·· · = w d ′

} as a subspace of Cn′d ′
, then {w ∈ D : w ·U1 = ·· · = w ·Un′ = 0} = {0} since the ma-

trices Φ j
χ,χ̄ are hermitian and were assumed to have no common kernel (by Levi-nondegeneracy of

M ′). Therefore, for `≤ n′, dimC{w ∈ D : w ·U1 = . . . = w ·U` = 0} ≤ n′−`, and those vectors w ’s which
annihilate U1, . . . ,Un belong to an at at most n′−n-dimensional subspace of D . It follows that the rank

of theΦ j
χ,χ̄`

for j = 1, . . . ,d ′ and `= 1, . . . ,n is at least n at p. This proves that r1,M ′(p) ≥ N ′−n′+n and

hence that r1 ≥ N ′−n′+n as desired. �
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For the statement of the next lemma, we need to define the following quantities for k ∈Z+:

(6.2)
r M

k (p) := dimC span
{

L̄1 . . . L̄ jρz(p, p) : ρ ∈IM (p), L̄1, . . . , L̄ j ∈ Γp (M),0 ≤ j ≤ k
}

,

r M
k := max

{
e ∈Z+ : r M

k (p) ≥ e for p on some dense subset of M
}

.

Lemma 6.3. Let M ⊂CN be a C ∞-smooth finitely nondegenerate CR submanifold of CR codimension d
and h : M →CN ′

be a CR map of class C 1. Suppose that there exists a smooth CR submanifold M ′ ⊂CN ′

with h(M) ⊂ M ′, with dimC R M ′ = n′. If h is of class C k+1 for some k ∈Z+ and strictly noncharacteristic
at p, then rk (p) ≥ N ′−n′−d + r M

k (p) ≥ r M
k (p). In particular, if M is at most `-finitely nondegenerate

for some ` ≤ k0 on an open dense subset of M and if h is of class C k0+1 and strictly noncharacteristic
(on some open dense subset of M), then rk0 ≥ N .

Proof. We may replace M without loss of generality by a generic submanifold, so that we assume that
M ⊂CN , where N = n +d and n = dimC R M .

Pick a point p ∈ M where h is strictly noncharacteristic. As in the proof of Lemma 6.1, we may
choose coordinates (χ,ζ,τ) such that M ′ near h(p) is locally defined by (6.1), and as in the proof of
Lemma 6.2, we write h = ( f ,F, g ). Consider the generic manifold M̂ ′ ⊂ Cn′

χ ×Cd ′
τ defined by Imτ =

Φ
(
χ, χ̄,Reτ

)
; it is locally CR-diffeomorphic to M ′. We write ĥ = ( f , g ) and obtain a smooth map

ĥ : M → M̂ ′ defined in a neighbourhood of p. Denoting, for j ≤ k + 1, r̂ j ,M̂ ′(p) the integers associ-

ated to the map ĥ, one easily checks that

(6.3) r j ,M ′(p) ≥ N ′−n′−d ′+ r̂ j ,M̂ ′(p).

Note that since h is strictly noncharacteristic, and M ′ and M̂ ′ are CR diffeomorphic, ĥ is also strictly
noncharacteristic.

This means that the pullbacks ĥ∗θν of the characteristic forms

θν = ∂(Imτν−Φν(χ, χ̄,Reτ))|M̂ ′ , ν= 1, . . . ,d ′

span T 0M (near p). After possibly reordering, we can assume that ĥ∗θ1, . . . , ĥ∗θd span.
We are next going to consider the generic submanifold M̃ ′ ⊂Cn′ ×Cd ′−d ×Cd defined by

ρν(χ, χ̄,τ, τ̄) = Imτν−Φν
(
χ, χ̄,Reτ

)= 0, ν= 1, . . . ,d .

Of course, ĥ can also be considered as a map into the (larger) manifold M̃ ′ ⊂ Cn′+d ′
. Hence we see

that r̂ j ,M̂ ′(p) ≥ r̂ j ,M̃ ′(p)+d ′−d , for 0 ≤ j ≤ k +1; taken together with (6.3), we see that

(6.4) r j ,M ′(p) ≥ N ′−n′−d + r̂ j ,M̃ ′(p), j ≤ k +1.

By construction, ĥ, viewed as a map from M into M̃ ′, is also strictly noncharacteristic.
We are now going to check that r̂k,M̃ ′(p) ≥ r M

k (p) thereby finishing the proof of the Lemma. We

first extend each of the components ĥ j of ĥ (which are CR functions of class C k+1 by assumption)

to C k+1-functions on CN such that each of the derivatives
∂ĥ j

∂z̄`
, for 1 ≤ `≤ N , vanish to order k on M

near p. The equations

ρ̃1(z, z) = ρ1
(
ĥ(z), ĥ(z)

)
= 0, . . . , ρ̃d (z, z̄) = ρd

(
ĥ(z), ĥ(z)

)
= 0
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are then defining equations for M of class C k+1 (near p) since ĥ is strictly noncharacteristic at p. We
have that

ρ̃
j
z(z, z̄) = ρ j

w

(
ĥ(z), ĥ(z)

) ∂ĥ

∂z
(z, z̄)+O(k +1),

where the O(k+1)-term vanishes to order (at least) k on M . Therefore, an application of at most k CR
vector fields L̄1, . . . , L̄a , for some a ≤ k, on M gives an expression of the form

L̄1 . . . L̄aρ̃
j
z(z, z̄) =

(
L̄1 . . . L̄aρ

j
w

(
ĥ(z), ĥ(z)

)) ∂ĥ

∂z
(z, z̄)+ρ j

w

(
ĥ(z), ĥ(z)

)
µ(z, z̄)

+
a−1∑
γ=1

∑
1≤i1<...<iγ≤a

L̄i1 . . . L̄iγρ
j
w

(
ĥ(z), ĥ(z)

)
λi1...iγ(z, z̄)+O(k +1−a).

Taking all these equations together (for all possible choices of L̄1, . . . , L̄a and a ≤ k), we infer that, as
claimed, r̂k,M̃ ′(p) ≥ r M

k (p). Summing up everything we have proved so far, we get the desired result.
�

We conclude this section by the following useful and elementary property of the open subsets con-
structed in §4.

Proposition 6.4. Let M ⊂ CN be a C ∞-smooth generic submanifold, h : M → CN ′
a continuous CR

map, and fix `,k ∈N such that 0 ≤ `≤ N ′. If the open subset M k
`

:= {z ∈ M : S N ′−`+k
k (M , z) ≥ `} is dense

in M, then the open subset of M given by
⋃N ′−`+k
ν=k Ω`

k,ν is dense in M, where the open subsets Ω`
k,ν are

given by (4.5) and (4.6).

Proof. Since by assumption M k
`

is dense in M , we only need to prove that
⋃N ′−`+k
ν=k (Ω`

k,ν∩M k
`

) is dense

in M k
`

. For every ν with k ≤ ν≤ N ′−`+k, consider the open subset of M k
`

given by

Mν := {z ∈ M k
` : S N ′−`+k

ν (M ,ξ) =S N ′−`+k
ν (M , z) for ξ near z}.

As each mapping M k
`
3 z 7→ S N ′−`+k

ν (M , z) is integer valued and lower semi-continuous, each Mν is

dense in M k
`

and hence so is their intersection
⋂N ′−`+k
ν=k Mν. We now observe that since for z ∈ M k

`

`≤S N ′−`+k
ν (M , z) ≤ N ′ for all ν with k ≤ ν≤ N ′−`+k, we have that

N ′−`+k⋂
ν=k

Mν ⊂
N ′−`+k⋃
ν=k

(
Ω`

k,ν∩M k
`

)
which proves the proposition. �

7. PROOF OF THEOREMS 2.2 AND 1.1, COROLLARIES 1.3, 2.3, 2.4, 2.5, 2.6 AND 2.9

7.1. Proof of Theorem 2.2. Since any smooth CR submanifold in CN is locally smoothly CR diffeo-
morphic to a generic submanifold in a lower dimensional complex space, see e.g. [BER99], we may
assume without loss of generality that M itself is generic in CN . We first note that by definition, if
h is of class C N ′−`+k , then for ξ ∈ M , we have S N ′−`+k

k (M ,ξ) ≥ rk (ξ) since, by Lemma 4.5, all of the

L̄1 · · · L̄ j%(h(z),h(z)) ∈A
j ,N ′−`+k
ξ

for L̄1, . . . , L̄ j ∈ Γξ(M) and % ∈Ih(M)(h(ξ)), 0 ≤ j ≤ k. Since we assume
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that rk ≥ `, we have that `≤ rk ≤S N ′−`+k
k (M ,ξ) for ξ on some dense open subset of M . Hence the set

M k
`
⊂ M from Proposition 6.4 is actually dense, and we obtain from that Proposition and (4.8) that

O :=
N ′−`+k⋃
ν=k

N ′⋃
m=`

Ω̂`,m
k,ν ⊂ M

is dense in M . If h is nowhere C ∞ on some nonempty subset M1 of M , then by Proposition 5.1 and
(4.9), we have that

(7.1) M2 = M1 ∩O = M1 ∩
(

N ′−`+k⋃
ν=k

N ′−1⋃
m=`

Ω̂`,m
k,ν

)
=

N ′−`+k−1⋃
ν=k

N ′−1⋃
m=`

(Ω̂`,m
k,ν ∩M1)

is. dense in M1 and the conclusion of Theorem 2.2 follows now immediately from Proposition 5.2.

7.2. Proof of Theorem 1.1. First note that since M is strongly pseudoconvex the integer r M
1 defined

in (6.2) must be equal to n + 1. Because both M and M ′ are generic of codimension one in their
respective complex space, we can use Remark 2.8 to see that we may apply Lemma 6.3, which tells
us that r1 ≥ n +1 (because h is at least of class C 2). We can therefore apply Theorem 2.2 with k = 1
and `= n +1 and get that there exists a dense open subset ω of Ω such that h(ω) ⊂ Eh(M) ⊂ EM ′ . The
inclusion h(Ω) ⊂ EM ′ now follows from the closedness of the set EM ′ (see [D’A82, D’A93]).

7.3. Proof of Corollary 1.3. Corollary 1.3 is a direct consequence of Theorem 1.2, since in such a
situation, the set of strongly pseudoconvex points in M is open and dense in M and the mapping h is
automatically CR transversal at every point of M (see [BER99, Proposition 9.10.5] whose proof applies
in our setting as well).

7.4. Proof of Corollary 2.3. Corollary 2.3 is an immediate consequence of Theorem 2.2 with k = 0,
`= N ′−n′ and Lemma 6.1.

7.5. Proof of Corollary 2.4. Corollary 2.4 is an immediate consequence of Theorem 2.2 wtih k = 1,
`= N ′−n′+n and Lemma 6.2.

7.6. Proof of Corollary 2.5. Corollary 2.5 is a consequence of Theorem 2.2, Lemma 6.3 and the fol-
lowing result, whose proof can be obtained by adapting the arguments of [M17, Proposition 3.1].

Proposition 7.1. Let M ⊂ Cn+1 and M ′ ⊂ Cn′+1 be (connected) C ∞-smooth real hypersurfaces with
M strongly pseudoconvex and M ′ Levi-nondegenerate of signature `′, n′ > n ≥ 1. Assume that there
exists a point p ∈ M and a germ at p of CR transversal map h : (M , p) → M ′ of class C 2 satisfying the
following: there exists a neighborhood V ⊂ M of p , and for every ξ ∈ V , a smooth complex curve Υξ
containing h(ξ), depending in a C 1 manner on ξ ∈ V , such that the order of contact of Υξ with M ′ at
h(ξ) is greater or equal to 3. Then necessarily n < n′−`′ < n′.
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7.7. Proof of Corollary 2.6. Corollary 2.6 is a consequence of Theorem 2.2, Lemma 6.1 and the fol-
lowing result.

Proposition 7.2. Let M ⊂ CN be a C ∞- smooth minimal CR submanifold and M ′ ⊂ CN ′
the tube over

the light cone given by (2.3). Assume that that there exists a point p ∈ M and a germ at p of a continuous
CR map h : (M , p) → M ′ satisfying the following: there exists a neighborhood V ⊂ M of p, and for every
ξ ∈ V , a smooth complex curve Υξ containing h(ξ), depending on a continuous and CR fashion on
ξ ∈ V , such that the order of contact of Υξ with M ′ at h(ξ) is greater or equal to 3. Then there exists a

germ at p of a continuous CR function g and real constants α j ,η j , 1 ≤ j ≤ N ′−1 with
∑N ′−1

j=1 α2
j = 1,

such that for ξ near p
h(ξ) = (α1g (ξ)+ iη1, . . . ,αN ′−1g (ξ)+ iηN ′−1, g (ξ)).

The proof of Proposition 7.2 consists of following the steps of the proof of [LM17b, Proposition 6.6]
and [M17, Lemma 2.3] and using the well-known fact that a continuous real-valued CR function on a
smooth minimal CR submanifold of CN is necessarily constant. We leave the details to the reader.

7.8. Proof of Corollary 2.9. We apply Lemma 6.3 in conjunction with Theorem 2.2 with k = σ and
`= N .
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