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Almost CR structures

Almost CR structure (of hypersurface type) . . . smooth manifold
M of dim 2n + 1, n > 1 together with

distribution H ⊂ TM of dimension 2n, and

almost complex structure J on H, i.e., J : H → H is an
endomorphism with the property J2 = −id.

Almost CR structure is non–degenerate . . . H is completely
non–integrable; defines a contact structure on M.

Endomorphism J extends by complex linearity to an endomorphism
of the complexification CH; it decomposes as

CH = H1,0 ⊕H0,1

into holomorphic and anti–holomorphic parts . . . eigenbundles for
eigenvalues i and −i of J.



Almost CR structures

Almost CR structure is partially integrable . . .

[H1,0,H1,0] ⊂ H1,0 ⊕H0,1, or equivalently,

[ξ, η]− [J(ξ), J(η)] ∈ Γ(H) for all ξ, η ∈ Γ(H).

The component of [H1,0,H1,0] in H0,1 corresponds (up to
multiple) to the complexification of the Nijenhuis tensor

N(ξ, η) = J([ξ, η]− [J(ξ), J(η)])− [J(ξ), η]− [ξ, J(η)]

for all ξ, η ∈ Γ(H).

Almost CR structure is integrable . . . the Nijenhuis tensor vanishes.

Signature of almost CR structure . . . the signature of Levi form.

Assumptions

. . . oriented non–degenerate partially integrable almost CR
structure (M,H, J) of hypersurface type; arbitrary signature (p, q).



Almost CR structures

Consider

PSU(p + 1, q + 1) . . . projectivization of the group of
matrices preserving the pseudo–Hermitian form on Cn+2

m(u, v) = u0vn+1 + un+1v0 +

p∑
k=1

ukvk −
n∑

k=p+1

ukvk

P . . . stabilizer of the complex line generated by first basis
vector in the standard basis of Cn+2.

Maximally symmetric model PSU(p + 1, q + 1)/P . . . smooth real
hypersurface in CPn+1; can be viewed as the projectivization of
the null cone of m in Cn+2.

Geometrically, CR structures in question can be viewed as curved
versions of maximally symmetric model.



CR symmetries

Local CR transformation of (M,H, J) . . . local diffeomorphism of
M such that its tangent map preserves H and restriction to H is
complex linear

Definition

Local symmetry sx at x . . . local CR transformation such that

sx(x) = x , and

Txsx = −id on H.

CR transformations of the model PSU(p + 1, q + 1)/P . . . left
multiplications by elements of PSU(p + 1, q + 1)



CR symmetries

Theorem

There is infinite number of symmetries at each point kP of
PSU(p + 1, q + 1)/P given by matrices of the form ksZ ,zk

−1 for
all Z ∈ Cn∗ and z ∈ R∗, where E denotes identity matrix

sZ ,z =

(
−1 −Z iz+ 1

2
ZIZ∗

0 E −IZ∗

0 0 −1

)
.

1 There exists an infinite number of involutive symmetries at
each point characterized by z = 0. For each such symmetry,
there is a different metric preserved by this symmetry
compatible with the CR geometry.

2 There exists an infinite number of non–involutive symmetries
at each point characterized by z 6= 0. They do not preserve
any metric compatible with the CR geometry.



CR symmetries

Weyl connections . . . admissible connections satisfying certain
normalization condition; CR geometries carry two CR-invariants

Nijenhuis tensor N (structure torsion),

Chern-Moser/Weyl tensor W (trace-free part of curvature of
arbitrary Weyl connection).

Theorem

1 If there is local symmetry at x ∈ M, then N(x) = 0.

2 If there is non–involutive local symmetry at x , then W (x) = 0.

3 There is at most one local symmetry at x with W (x) 6= 0.

4 Local symmetry at x is involutive if and only if there is
invariant Weyl connection ∇ at x defined locally near x .

5 It holds ∇ξW (x) = 0 for invariant Weyl connection ∇ at x
for each ξ ∈ H.



Symmetric CR geometries

Symmetric geometry . . . symmetry at each point.
Symmetric CR structures are integrable; admit only systems of
involutive symmetries for non-vanishing W .

Theorem

Suppose (M,H, J) is symmetric CR geometry. Then either

1 W = 0; CR geometry is locally equivalent to the model
PSU(p + 1, q + 1)/P, or

2 W 6= 0; group generated by symmetries is a Lie group that
acts transitively on M, i.e., CR geometry is homogeneous;
(M,S) is homogeneous reflexion space, where S is the smooth
system of uniquely given symmetries.

Reflexion space (M,S) . . . space M together with map
S : M ×M → M such that for all x , y , z ∈ M

S(x , x) = x ,
S(x , S(x , y)) = y ,
S(x , S(y , z)) = S(S(x , y),S(x , z)).



Symmetric CR geometries

We use the notation S(x ,−) = sx .

Then Txsx : TxM → TxM is involutive for each x ∈ M, and TxM
decomposes into ±1–eigenspaces, where

Hx is the −1–eigenspace,

there is the one–dimensional 1–eigenspace T+
x M

complementary to H.

Since T+
x M is involutive it determines a foliation F on M and

M = K/H, where K is the Lie group generated by symmetries
from S and H is the stabilizer of a point,

the stabilizer L of the leaf F going through eH is a closed
subgroup of K ,

N = K/L is symmetric space,

F = L/H.



Symmetric CR geometries

Theorem

Let K be the Lie group generated by all symmetries on a non–flat
symmetric CR geometry (M,H, J). Assume

Ad(H0)|n/h = Ad(H)|n/h,

where H0 denotes connected component of identity of the
stabilizer H ⊂ K of a point and n is the 1–eigenspace of
s = diag(−1,E ,−1) in k. There exist

a distinguished Weyl connection ∇ preserving the
corresponding Reeb field,

a K–invariant contact form θ,

a K–invariant pseudo–Riemannian metric ḡ on H, and

a K–invariant Webster metric g on TM,

such that . . .



Symmetric CR geometries

Theorem

1 ∇ḡ = 0,∇g = 0,

2 g |H = ḡ and the Reeb field of ∇ is orthogonal to H and has
length 1,

3 choosing the Reeb field of ∇ as a trivialization of TM/H⊗C,
the pseudo–Riemannian metric ḡ on H coincides with the real
part of the Levi form up to constant multiple,

4 the symmetry at x is linear in geodesic coordinates of ∇ at x ,
reverses the directions of Hx and preserves the direction of
the Reeb field of ∇ at x .
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