Symmetries of almost CR structures

Lenka Zalabová (joint work with Jan Gregorovič)

August 24, 2020

Přírodovědecká fakulta Faculty of Science Jihočeská univerzita v Českých Budějovicích University of South Bohemia in České Budějovice Almost CR structure (of hypersurface type) ... smooth manifold M of dim 2n + 1, n > 1 together with

• distribution $\mathcal{H} \subset TM$ of dimension 2n, and

almost complex structure J on H, i.e., J : H → H is an endomorphism with the property J² = −id.

Almost CR structure is *non-degenerate* ... \mathcal{H} is completely non-integrable; defines a contact structure on M.

Endomorphism J extends by complex linearity to an endomorphism of the complexification \mathbb{CH} ; it decomposes as

$$\mathbb{C}\mathcal{H}=\mathcal{H}^{1,0}\oplus\mathcal{H}^{0,1}$$

into *holomorphic* and *anti-holomorphic* parts ... eigenbundles for eigenvalues i and -i of J.

Almost CR structure is *partially integrable* ...

 $\blacksquare \ [\mathcal{H}^{1,0},\mathcal{H}^{1,0}] \subset \mathcal{H}^{1,0} \oplus \mathcal{H}^{0,1},$ or equivalently,

•
$$[\xi, \eta] - [J(\xi), J(\eta)] \in \Gamma(\mathcal{H})$$
 for all $\xi, \eta \in \Gamma(\mathcal{H})$.

The component of $[\mathcal{H}^{1,0}, \mathcal{H}^{1,0}]$ in $\mathcal{H}^{0,1}$ corresponds (up to multiple) to the complexification of the Nijenhuis tensor

$$N(\xi,\eta) = J([\xi,\eta] - [J(\xi), J(\eta)]) - [J(\xi),\eta] - [\xi, J(\eta)]$$

for all $\xi, \eta \in \Gamma(\mathcal{H})$.

Almost CR structure is *integrable* ... the Nijenhuis tensor vanishes. *Signature* of almost CR structure ... the signature of Levi form.

Assumptions

... oriented non-degenerate partially integrable almost CR structure (M, \mathcal{H}, J) of hypersurface type; arbitrary signature (p, q).

Almost CR structures

Consider

■ PSU(p+1,q+1) ... projectivization of the group of matrices preserving the pseudo-Hermitian form on Cⁿ⁺²

$$m(u,v) = u_0 \overline{v_{n+1}} + u_{n+1} \overline{v_0} + \sum_{k=1}^{p} u_k \overline{v_k} - \sum_{k=p+1}^{n} u_k \overline{v_k}$$

■ P ... stabilizer of the complex line generated by first basis vector in the standard basis of Cⁿ⁺².

Maximally symmetric model $PSU(p+1, q+1)/P \dots$ smooth real hypersurface in $\mathbb{C}P^{n+1}$; can be viewed as the projectivization of the null cone of m in \mathbb{C}^{n+2} .

Geometrically, CR structures in question can be viewed as curved versions of maximally symmetric model.

Local CR transformation of $(M, \mathcal{H}, J) \dots$ local diffeomorphism of M such that its tangent map preserves \mathcal{H} and restriction to \mathcal{H} is complex linear

Definition

Local symmetry s_x at x ... local CR transformation such that

•
$$s_x(x) = x$$
, and

$$T_x s_x = -\mathrm{id} \text{ on } \mathcal{H}.$$

CR transformations of the model PSU(p+1, q+1)/P ... left multiplications by elements of PSU(p+1, q+1)

Theorem

There is infinite number of symmetries at each point kP of PSU(p+1, q+1)/P given by matrices of the form $ks_{Z,z}k^{-1}$ for all $Z \in \mathbb{C}^{n*}$ and $z \in \mathbb{R}^*$, where E denotes identity matrix

$$s_{Z,Z} = \begin{pmatrix} -1 - Z \ iz + \frac{1}{2}ZIZ^* \\ 0 \ E \ -IZ^* \\ 0 \ 0 \ -1 \end{pmatrix}.$$

- **1** There exists an infinite number of involutive symmetries at each point characterized by z = 0. For each such symmetry, there is a different metric preserved by this symmetry compatible with the CR geometry.
- **2** There exists an infinite number of non–involutive symmetries at each point characterized by $z \neq 0$. They do not preserve any metric compatible with the CR geometry.

CR symmetries

Weyl connections \ldots admissible connections satisfying certain normalization condition; CR geometries carry two CR-invariants

- Nijenhuis tensor *N* (structure torsion),
- Chern-Moser/Weyl tensor W (trace-free part of curvature of arbitrary Weyl connection).

Theorem

- **1** If there is local symmetry at $x \in M$, then N(x) = 0.
- **2** If there is non–involutive local symmetry at x, then W(x) = 0.
- **3** There is at most one local symmetry at x with $W(x) \neq 0$.
- 4 Local symmetry at x is involutive if and only if there is invariant Weyl connection ∇ at x defined locally near x.
- It holds ∇_ξW(x) = 0 for invariant Weyl connection ∇ at x for each ξ ∈ H.

Symmetric CR geometries

Symmetric geometry ... symmetry at each point. Symmetric CR structures are integrable; admit only systems of involutive symmetries for non-vanishing *W*.

Theorem

Suppose (M, \mathcal{H}, J) is symmetric CR geometry. Then either

- **1** W = 0; CR geometry is locally equivalent to the model PSU(p+1, q+1)/P, or
- **2** $W \neq 0$; group generated by symmetries is a Lie group that acts transitively on M, i.e., CR geometry is homogeneous; (M, S) is homogeneous reflexion space, where S is the smooth system of uniquely given symmetries.

Reflexion space (M, S) ... space M together with map $S: M \times M \to M$ such that for all $x, y, z \in M$

We use the notation $S(x, -) = s_x$.

Then $T_x s_x : T_x M \to T_x M$ is involutive for each $x \in M$, and $T_x M$ decomposes into ± 1 -eigenspaces, where

- \mathcal{H}_x is the -1-eigenspace,
- there is the one-dimensional 1-eigenspace T⁺_xM complementary to H.

Since T_x^+M is involutive it determines a foliation \mathcal{F} on M and

- M = K/H, where K is the Lie group generated by symmetries from S and H is the stabilizer of a point,
- the stabilizer L of the leaf F going through eH is a closed subgroup of K,
- N = K/L is symmetric space,
- F = L/H.

Theorem

Let K be the Lie group generated by all symmetries on a non-flat symmetric CR geometry (M, H, J). Assume

$$\operatorname{Ad}(H^0)|_{\mathfrak{n}/\mathfrak{h}} = \operatorname{Ad}(H)|_{\mathfrak{n}/\mathfrak{h}},$$

where H^0 denotes connected component of identity of the stabilizer $H \subset K$ of a point and \mathfrak{n} is the 1-eigenspace of s = diag(-1, E, -1) in \mathfrak{k} . There exist

- a distinguished Weyl connection ∇ preserving the corresponding Reeb field,
- a K-invariant contact form θ ,
- a K-invariant pseudo-Riemannian metric g on H, and
- a K-invariant Webster metric g on TM,

such that ...

Theorem

- $\mathbf{1} \ \nabla \bar{g} = \mathbf{0}, \nabla g = \mathbf{0},$
- 2 $g|_{\mathcal{H}} = \bar{g}$ and the Reeb field of ∇ is orthogonal to \mathcal{H} and has length 1,
- **3** choosing the Reeb field of ∇ as a trivialization of $TM/\mathcal{H} \otimes \mathbb{C}$, the pseudo-Riemannian metric \overline{g} on \mathcal{H} coincides with the real part of the Levi form up to constant multiple,
- the symmetry at x is linear in geodesic coordinates of ∇ at x, reverses the directions of H_x and preserves the direction of the Reeb field of ∇ at x.

Literature

- A. Čap, J. Slovák, Weyl structures for parabolic geometries. Math. Scand. 93 (2003), no. 1, 53–90.
- A. Čap, J. Slovák, Parabolic geometries. I. Background and general theory. Mathematical Surveys and Monographs, 154. American Mathematical Society, Providence, RI, 2009.
- J. Gregorovič, L. Zalabová, Symmetric parabolic contact geometries and symmetric spaces. Transform. Groups 18 (2013), no. 3, 711–737.
- J. Gregorovič, L. Zalabová, On symmetric CR geometries of hypersurface type. Journal of Geometric Analysis, DOI:10.1007/s12220-018-00110-1
- O. Loos, Spiegelungsräume und homogene symmetrische Räume. (German) Math. Z. 99 1967 141–170.
- L. Zalabová, Symmetries of parabolic contact structures. J. Geom. Phys. 60 (2010), no. 11, 1698–1709.