Sphere maps and the reflection map

Michael Reiter

University of Vienna

Obergurgl - August 25, 2020

The reflection map and nondegeneracy conditions

The reflection map and infinitesimal deformations

Spheres and their mappings

The unit sphere S^{2n-1} in \mathbb{C}^n :

$$S^{2n-1} = \{ z = (z_1, \dots, z_n) \in \mathbb{C}^n : ||z||^2 = |z_1|^2 + \dots + |z_n|^2 = 1 \}.$$

A sphere map $H: S^{2n-1} \to S^{2m-1}, m \ge n$ is a holomorphic map $H: U \subset \mathbb{C}^n \to \mathbb{C}^m$, where U is an open neighborhood of S^{2n-1} , satisfying $H(S^{2n-1}) \subset S^{2m-1}$, which means:

$$||H(z)||^2 = 1,$$
 for all $z \in S^{2n-1}$

Forstnerič '89: Sphere maps are rational maps with poles outside of S^{2n-1} .

Let $H = \frac{P}{Q}$ be a rational map, where $P = (P_1, \ldots, P_m)$, such that each P_j and Q are polynomials with no common factors. The *degree* deg(H) of H is defined as

$$\deg(H) = \max(\deg P_1, \ldots, \deg P_m, \deg Q).$$

The homogeneous sphere maps

Example

The homogeneous sphere map $H_n^d: S^{2n-1} \to S^{2K(n,d)-1}$ of degree d in \mathbb{C}^n , for $K(n,d) = \binom{n+d-1}{d}$, is defined as

$$H^d_n(z) \coloneqq \left(\sqrt{\binom{\alpha}{d}} z^\alpha\right)_{|\alpha| =}$$

Rudin '84: The homogeneous sphere map is up to unitary equivalence unique among all homogeneous polynomial sphere maps.

The group invariant sphere maps

D'Angelo '88 defined another class of sphere maps:

$\begin{array}{l} \hline \text{Definition} \\ \text{Define } G^{\ell} : S^{3} \to S^{2\ell+3} \text{ for } \ell \geq 0 \text{ by} \\ \\ G^{\ell}(z,w) = \Big(z^{2\ell+1}, c_{1}^{\ell} z^{2\ell-1} w, \ldots, c_{\ell}^{\ell} z w^{\ell}, w^{2\ell+1} \Big), \\ \\ \text{where } (c_{k}^{\ell})^{2} = \big(\frac{1}{4} \big)^{\ell-k} \sum_{j=k}^{\ell} \big(\frac{2\ell+1}{2j} \big) \big(\frac{j}{k} \big) \text{ for } 1 \leq k \leq \ell. \end{array}$

These maps are invariant under a fixed-point-free finite unitary group.

D'Angelo-Kos-Riehl '03: The degree of a monomial sphere map from S^3 into $S^{2N-1}\subset \mathbb{C}^N$ is bounded by 2N-3.

The tensor operation for sphere maps

For $v = (v_k)_{1 \le k \le n} \in \mathbb{C}^n$ and $w = (w_j)_{1 \le j \le m} \in \mathbb{C}^m$ two vectors, the tensor product of v and w is given by:

$$v \otimes w = (v_1 w_1, \dots, v_1 w_m, \dots, v_n w_1, \dots, v_n w_m) \in \mathbb{C}^{nm}$$

Definition

Let $H: S^{2n-1} \to S^{2m-1}$ and $G: S^{2n-1} \to S^{2\ell-1}$ be CR maps and $A \subseteq \mathbb{C}^m$ be a linear subspace. Decompose $H = H_A \oplus H_{A^{\perp}} \in A \oplus A^{\perp} = \mathbb{C}^m$ and define

$$E_{(A,G)}H \coloneqq (H_A \otimes G) \oplus H_{A^{\perp}},$$

which is called the *tensor product of* H by G on A.

 $E_{(A,G)}H$ is again a sphere map.

D'Angelo '88: Every polynomial sphere map of degree d in \mathbb{C}^n can be tensored to H_n^d (after possibly applying a unitary transformation and a projection onto $\mathbb{C}^{K(n,d)}$).

The reflection map

Definition (D'Angelo '03)

Let $H = \frac{P}{Q} : U \subset \mathbb{C}^n \to \mathbb{C}^m$ be a sphere map of degree d, where $P = (P_1, \ldots, P_m)$ and $Q \neq 0$ on U. The *reflection map* V_H of H is defined by the following equation, evaluated on S^{2n-1} :

$$V_H X \cdot \frac{\bar{H}_n^d}{\bar{Q}} = X \cdot \bar{H}, \quad X \in \mathbb{C}^m.$$

Here,
$$a \cdot b = \sum_{j=1}^{n} a_j b_j$$
 for $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathbb{C}^n$.

The reflection matrix is obtained by homogenization of H: Write $H = \frac{1}{Q} \sum_{k=0}^{d} P^k$, where P^k is homogeneous of order k. Then, on S^{2n-1} .

$$X \cdot \bar{H} = X \cdot \frac{1}{\bar{Q}} \sum_{k=0}^{d} \bar{P}^{k}(\bar{z}) ||z||^{2(d-k)} = V_{H}X \cdot \frac{\bar{H}_{n}^{d}}{\bar{Q}}.$$

 V_H is a $K(n,d) \times m$ -matrix with holomorphic entries.

Examples

The reflection map of $H_1(z,w) = (z, zw, w^2)$ is given by

$$V_{H_1} = \begin{pmatrix} z & 0 & 0\\ \frac{w}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

The reflection map of $H_2(z, w) = (z, \cos(t)w, \sin(t)zw, \sin(t)w^2)$, $t \in [0, 2\pi)$ is given by

$$V_{H_2} = \begin{pmatrix} z & 0 & 0 & 0\\ \frac{w}{\sqrt{2}} & \frac{\cos(t)z}{\sqrt{2}} & \frac{\sin(t)}{\sqrt{2}} & 0\\ 0 & \cos(t)w & 0 & \sin(t) \end{pmatrix}.$$

Finite nondegeneracy for sphere maps

Denote by \mathcal{V} the set of CR vector fields tangent to S^{2n-1} .

Definition (Lamel '01)

Let $p\in S^{2n-1}.$ A sphere map $H:S^{2n-1}\to S^{2m-1}$ has degeneracy s at p, if

$$\max_{\ell \in \mathbb{N}} \left[\dim_{\mathbb{C}} \operatorname{span}_{\mathbb{C}} \left\{ L_1 \cdots L_k H(z) |_{z=p} : L_j \in \mathcal{V}, k \le \ell \right\} \right] = m - s.$$

If s = 0, the map is called *finitely nondegenerate* at p.

Example

Example

 H_n^d is finitely nondegenerate at each point of S^{2n-1} .

Idea for n = 2 and $H = H_2^d : S^3 \to S^{2d+1} \subset \mathbb{C}^{d+1}$: Apply \bar{L} to $H \cdot \bar{H} = 1$, use the commutator relations of L, \bar{L} and $T = [L, \bar{L}]$ and the homogeneity of H_2^d to get that the vectors $(L^k \bar{H})$ for $k = 0, 1 \dots, d$ form an orthogonal system in \mathbb{C}^{d+1} .

Holomorphic nondegeneracy for sphere maps

Definition (Lamel-Mir '17)

A sphere map $H: S^{2n-1} \to S^{2m-1}$ is called *holomorphically degenerate* if there exists a nontrivial holomorphic map $Y: U \to \mathbb{C}^m$, where U is an open neighborhood of S^{2n-1} , such that, on S^{2n-1} ,

$$Y \cdot \bar{H} = 0.$$

If a map is not holomorphically degenerate it is called *holomorphically nondegenerate*.

Example

 H_n^d is holomorphically nondegenerate in S^{2n-1} .

Nondegeneracy conditions via reflection map

Theorem

- Let $H: S^{2n-1} \to S^{2m-1}$ be a sphere map and $p \in S^{2n-1}$.
- (a) H is of degeneracy s at p if and only if ker V_H is of dimension s at p. In particular, H is finitely nondegenerate at p if and only if V_H is of rank m at p.
- (b) *H* is holomorphically nondegenerate if and only if V_H is generically of rank *m* in S^{2n-1} .

Idea: (a) Since $X \cdot \bar{H} = V_H X \cdot \bar{H}_n^d$, apply CR vector fields to get $X \cdot \bar{L}^{\alpha} \bar{H} = V_H X \cdot \bar{L}^{\alpha} \bar{H}_n^d$. This leads to $A_p^{\gamma}(\bar{H}) X = A_p^{\gamma}(\bar{H}_n^d) V_H X$, where A_p^{γ} is a matrix-valued map, and use the finite nondegeneracy of H_n^d .

(b) Use the holomorphic nondegeneracy of H_n^d .

Examples

The reflection map of $H_1(z,w) = (z, zw, w^2)$ is given by

$$V_{H_1} = \begin{pmatrix} z & 0 & 0\\ \frac{w}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

The reflection map of $H_2(z, w) = (z, \cos(t)w, \sin(t)zw, \sin(t)w^2)$, $t \in [0, 2\pi)$ is given by

$$V_{H_2} = \begin{pmatrix} z & 0 & 0 & 0\\ \frac{w}{\sqrt{2}} & \frac{\cos(t)z}{\sqrt{2}} & \frac{\sin(t)}{\sqrt{2}} & 0\\ 0 & \cos(t)w & 0 & \sin(t) \end{pmatrix}.$$

Applications

Example

For each $\ell \geq 0,$ the group invariant map G^ℓ is finitely nondegenerate.

Theorem

Let $H: S^{2n-1} \to S^{2m-1}$ be a monomial sphere map of degree dand define $s_H = \min_{p \in S^{2n-1}} s(p)$, where s(p) is the degeneracy of H at p.

Then H is of degeneracy s_H in $U := \{z_1 \cdots z_n \neq 0\} \cap S^{2n-1}$, while for points in S^{2n-1} , which belong to the complement of U, the degeneracy is at least s_H .

The invariant s_H is called *generic degeneracy*. The points in S^{2n-1} at which H is of degeneracy s(H) form an open dense subset of S^{2n-1} (Lamel '01).

Applications

Example

For each $\ell \geq 0$, the group invariant map G^{ℓ} is finitely nondegenerate.

Theorem

Let $H: S^{2n-1} \to S^{2m-1}$ be a monomial sphere map of degree dand define $s_H = \min_{p \in S^{2n-1}} s(p)$, where s(p) is the degeneracy of H at p. Then H is of degeneracy s_H in $U \coloneqq \{z_1 \cdots z_n \neq 0\} \cap S^{2n-1}$, while for points in S^{2n-1} , which belong to the complement of U, the degeneracy is at least s_H .

The invariant s_H is called *generic degeneracy*. The points in S^{2n-1} at which H is of degeneracy s(H) form an open dense subset of S^{2n-1} (Lamel '01).

Infinitesimal deformations of sphere maps

Definition

Let $H: S^{2n-1} \to S^{2m-1}$ be a sphere map. A holomorphic map $X: U \to \mathbb{C}^m$, for an open neighborhood U of S^{2n-1} , is called an *infinitesimal deformation of* H, if on S^{2n-1} ,

$$\operatorname{Re}(X \cdot \bar{H}) = 0.$$

The space of infinitesimal deformations of H is denoted by $\mathfrak{hol}(H)$.

If H = id, then X is an infinitesimal automorphism of S^{2n-1} . The space of *infinitesimal automorphisms* of S^{2n-1} is denoted by $\mathfrak{hol}(S^{2n-1})$.

Motivation - local rigidity

Smooth curves of maps give rise to infinitesimal deformations: Let H_t be smooth curve of sphere maps, i.e. $H_t \cdot \bar{H}_t = 1$. Writing $V = \frac{d}{dt}\Big|_{t=0} H_t$ we have that $V \cdot \bar{H}_0 + H_0 \cdot \bar{V} = 0$, i.e. $V \in \mathfrak{hol}(H_0)$.

Infinitesimal deformations are useful to study *local rigidity*, the CR analogue of the notion of *stability* of smooth mappings of smooth manifolds due to Mather '68.

Definition

A map $H: M \to M'$ is called *locally rigid* if there is a neighborhood of H in the space of holomorphic mappings (equipped with its natural topology), which only consists of maps belonging to the orbit $G \cdot H$, where $G = \operatorname{Aut}(M) \times \operatorname{Aut}(M')$ and for $g = (g_1, g_2) \in G$ define the G-action by $g \cdot H = g_2 \circ H \circ g_1^{-1}$.

A sufficient condition for local rigidity

Definition

For a map H we denote the space of *trivial infinitesimal deformations* by $\mathfrak{aut}(H)$, given by $\mathfrak{aut}(H) = H_*(\mathfrak{hol}(M)) + \mathfrak{hol}(M')|_H$.

Theorem (della Sala–Lamel–R. '19)

Let $M \subset \mathbb{C}^N$ and $M' \subset \mathbb{C}^{N'}$ be compact, generic real-analytic submanifolds. Assume that M is minimal. Consider the class \mathcal{F} of CR maps sending M into M', which are finitely nondegenerate at all points of M. Let $H : M \to M'$ be a map in \mathcal{F} satisfying $\mathfrak{hol}(H) = \mathfrak{aut}(H)$, then H is locally rigid.

This is only a sufficient condition: The homogeneous sphere map $H_2^2(z,w) = (z^2, \sqrt{2}zw, w^2)$ is locally rigid but satisfies $27 = \dim \mathfrak{hol}(H) > \dim \mathfrak{aut}(H) = 19.$

A sufficient condition for local rigidity

Definition

For a map H we denote the space of *trivial infinitesimal deformations* by $\mathfrak{aut}(H)$, given by $\mathfrak{aut}(H) = H_*(\mathfrak{hol}(M)) + \mathfrak{hol}(M')|_H$.

Theorem (della Sala–Lamel–R. '19)

Let $M \subset \mathbb{C}^N$ and $M' \subset \mathbb{C}^{N'}$ be compact, generic real-analytic submanifolds. Assume that M is minimal. Consider the class \mathcal{F} of CR maps sending M into M', which are finitely nondegenerate at all points of M. Let $H : M \to M'$ be a map in \mathcal{F} satisfying $\mathfrak{hol}(H) = \mathfrak{aut}(H)$, then H is locally rigid.

This is only a sufficient condition: The homogeneous sphere map $H_2^2(z,w) = (z^2, \sqrt{2}zw, w^2)$ is locally rigid but satisfies $27 = \dim \mathfrak{hol}(H) > \dim \mathfrak{aut}(H) = 19.$

A sufficient condition for local rigidity

Definition

For a map H we denote the space of *trivial infinitesimal deformations* by $\mathfrak{aut}(H)$, given by $\mathfrak{aut}(H) = H_*(\mathfrak{hol}(M)) + \mathfrak{hol}(M')|_H$.

Theorem (della Sala–Lamel–R. '19)

Let $M \subset \mathbb{C}^N$ and $M' \subset \mathbb{C}^{N'}$ be compact, generic real-analytic submanifolds. Assume that M is minimal. Consider the class \mathcal{F} of CR maps sending M into M', which are finitely nondegenerate at all points of M. Let $H : M \to M'$ be a map in \mathcal{F} satisfying $\mathfrak{hol}(H) = \mathfrak{aut}(H)$, then H is locally rigid.

This is only a sufficient condition: The homogeneous sphere map $H_2^2(z,w) = (z^2,\sqrt{2}zw,w^2)$ is locally rigid but satisfies $27 = \dim \mathfrak{hol}(H) > \dim \mathfrak{aut}(H) = 19.$

Infinitesimal deformations of sphere maps

Question

Are there sphere maps which admit only trivial infinitesimal deformations?

Good candidates are the group invariant maps $G^\ell.$ Let N be the real dimension of the space of nontrivial infinitesimal deformations of G^ℓ :

ℓ	4	$\overline{7}$	10	12	13	16	17	19	22	24	25	27	28	31
N	10	24	28	14	32	36	32	40	80	18	48	40	52	96

For values of ℓ which are less than 31 and not included in the above table, the corresponding map G^ℓ only admits trivial infinitesimal deformations.

Infinitesimal deformations of sphere maps

Theorem

(a) Let $H:S^{2n-1}\to S^{2m-1}$ be a holomorphically nondegenerate sphere map of degree d, then

$$\dim \mathfrak{hol}(H) \leq \dim \mathfrak{hol}(H_n^d) = \left(\frac{2d+n}{d}\right) K(n,d)^2.$$

(b) If $H: S^{2n-1} \to S^{2m-1}$ is a polynomial sphere map of degree d, it holds that $\dim \mathfrak{hol}(H) = \dim \mathfrak{hol}(H_n^d)$ if and only if H is unitarily equivalent to H_n^d .

Idea:

(a) $X \cdot \bar{H} = V_H X \cdot \bar{H}_n^d$ implies $X \in \mathfrak{hol}(H) \Leftrightarrow V_H X \in \mathfrak{hol}(H_n^d)$. (b) The reflection map V_H is invertible and $X \cdot {}^tV_H^{-1}\bar{H} = X \cdot \bar{H}_n^d$. Take $X = H_n^d$ such that $1 = V_H^{-1}H_n^d \cdot \bar{H}$.

References

- Michael Reiter. The Reflection Map and Infinitesimal Deformations of Sphere Mappings. *The Journal of Geometric Analysis*, Oct 2019. arXiv:1906.02587.
- [2] Giuseppe Della Sala, Bernhard Lamel, and Michael Reiter. Sufficient and necessary conditions for local rigidity of CR mappings and higher order infinitesimal deformations (accepted). Arkiv för Matematik, 2018. arXiv:1906.02584.

Thank you very much for your attention.

Supported by FWF (Austrian Science Fund).