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The regularity problem for CR maps

Under which conditions is a CR map h : M → M ′ between CR manifolds
C∞-smooth?

Example 0 (Lewy 1956)

If the Levi form of a hypersurface M ⊂ CN has two nonzero eigenvalues of
different signs, any CR function extends to a holomorphic function on both
sides of M.

Example 1 (Forsterič 1989)

A CR map h : S2N−1 → S2N′−1 of class CN′−N+1 extends to a rational
map on a neighborhood of S2N−1 ⊂ CN .
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Examples of irregularity

If the source is pseudoconvex and the target is not, things can go horribly
wrong!

Example 2 (Berhanu & Xiao 2017)

If M ⊂ CN is strongly pseudoconvex, then for any k ∈ N there exists a CR
function φ which is C k , but nowhere C∞-smooth.

Sketch of proof: At any p ∈ M, take Zp

with <(Zp) > 0 on M\{p} and Zp(p) = 0.

Then Z
κ+ 1

2
p (standard branch cut) is Cκ

but not Cκ+1 on M. For a dense sequence

(pκ)∞κ=k and rapidly decaying λκ ∈ C, the

sum
∑

κ λκZ
κ+ 1

2
pκ works, by a Cantor dia-

gonal argument.
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Examples of irregularity

Example 3

If M ′ ∈ CN′
contains a complex

curve parametrized by γ, then
h := γ ◦ φ : M → M ′ is a C k , but
nowhere C∞-smooth CR map.

Example 4

If M ′ = M × C, the CR map
h : M → M ′ given by
h(q) = (q, φ(q)) is a C k , but
nowhere C∞-smooth map.
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Some necessary definitions

For X ⊆ CN′
, let IX (p′) ⊆ C∞(CN′

, p′) be the vanishing ideal of X at p.

Complex gradients and their derivatives

Consider a CR map h : M → M ′ ⊆ CN′
w . We define

r0(p) := dimC
〈{
ρw ◦ h(p) : ρ ∈ Ih(M)(h(p))

}〉
,

rk(p) := dimC
〈{

L̄1 . . . L̄j(ρw ◦ h)(p) :

ρ ∈ Ih(M)(h(p)), L̄1, . . . , L̄j ∈ Vp(M), 0 ≤ j ≤ k
}〉
,

Formal complex manifolds

A formal complex manifold tangential to infinite order to X ⊆ CN′
at p′ is

a power series Γ ∈ C[[t1, . . . , tk ]]N
′

such that γ0 = p′, rk(γt) = k and such
that T ρ ◦ Γ ≡ 0 as power series for ρ ∈ IX (p′).
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A theorem on “formal foliations”

Theorem (Lamel & Mir 2018)

Let M ⊂ CN be a minimal CR submanifold and h : M → CN′
be a CR

map of class CN′−k+l for some k, l ∈ N. Assume that rk ≥ l .

Then there exists a dense open subset O ⊆ SingSupp(h)◦ such that for
every p ∈ O, there exists a neighborhood V ⊆ O of p,
an integer r ≥ 1 and a C 1-smooth CR
family of formal complex submanifolds
(Γξ)ξ∈V of dimension r through h(V )
for which Γξ is tangential to infinite or-
der to h(M) at h(ξ), for every ξ ∈ V .
In particular, h(O) ⊆ Eh(M).
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Uniformly pseudoconvex hypersurfaces

The Levi null space

The Levi null space N ⊆ T 0,1M of a CR manifold M is given by
Np = {L̄|p : [L̄, Γ] ∈ Γp(T 0,1M ⊕ T 1,0M) for all Γ ∈ Γp(T 1,0M)}.

The Levi foliation (Sommer 1959, Freeman 1974)

Let M be a CR submanifold such that N has constant rank across M.
Then there exists a foliation η of M by complex manifolds such that
Np = T 0,1

p η at all p ∈ M.

Sketch of sketch of proof. Let N = <(N ). Check that
Γq(N) = Γq(T cM) ∩ n(Γq(T cM)), a Lie subalgebra of Γq(TM). Frobenius
theorem ⇒ Existence of η. As Nq ⊆ TqCn are complex subspaces, η
consists of complex manifolds.
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CR maps into uniformly pseudoconvex hypersurfaces

We’ll consider M ′ uniformly pseu-
doconvex with Levi foliation η, and
look at maps h : M → M ′.

In view of the formal foliation
theorem, the existence of the Levi
foliation might spell doom!

But pseudoconvexity makes it
easy to understand tangency of
(formal) complex manifolds.
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CR maps into uniformly pseudoconvex hypersurfaces

Lemma 1

If a formal complex curve
Γ = p′ + tγt + t2

2 γtt + . . . is
tangential to infinite order to M ′,
then γt ∈ Tη.

We get a CR map γt : M → Tη!

Lemma 2

The map R defined by R(L̄, ψ) = PT⊥η(L̄ψ) for L̄ ∈ Γ(T 0,1M ′) and

ψ ∈ Γ(Tη) is a tensor, and T 0,1
p η ⊆ kerRp(·, ψ).

Josef E. Greilhuber Regularity of CR maps 9 / 14



CR maps into uniformly pseudoconvex hypersurfaces

Lemma 1

If a formal complex curve
Γ = p′ + tγt + t2

2 γtt + . . . is
tangential to infinite order to M ′,
then γt ∈ Tη.

We get a CR map γt : M → Tη!

Lemma 2

The map R defined by R(L̄, ψ) = PT⊥η(L̄ψ) for L̄ ∈ Γ(T 0,1M ′) and

ψ ∈ Γ(Tη) is a tensor, and T 0,1
p η ⊆ kerRp(·, ψ).

Josef E. Greilhuber Regularity of CR maps 9 / 14



CR maps into uniformly pseudoconvex hypersurfaces

Lemma 1

If a formal complex curve
Γ = p′ + tγt + t2

2 γtt + . . . is
tangential to infinite order to M ′,
then γt ∈ Tη.

We get a CR map γt : M → Tη!

Lemma 2

The map R defined by R(L̄, ψ) = PT⊥η(L̄ψ) for L̄ ∈ Γ(T 0,1M ′) and

ψ ∈ Γ(Tη) is a tensor, and T 0,1
p η ⊆ kerRp(·, ψ).

Josef E. Greilhuber Regularity of CR maps 9 / 14



CR maps into uniformly pseudoconvex hypersurfaces

Proposition 1

Let M ′ be a uniformly pseudoconvex hypersurface with Levi foliation η, M
be a minimal CR submanifold and h : M → M ′ be a C 1 CR map. Suppose
there exists p ∈ M mapped to p′ := h(p), and a C 1 CR family of formal
complex curves (Γq)q∈O defined on a neighborhood O ⊆ M of p such that
Γq is tangential to second order to M ′ at h(q) for all q ∈ O. Define R as
in Lemma 2.

Then γt(p) ∈ Tp′η and h∗T
0,1
p M ⊆ kerRp′(·, γt(p)).

Sketch of proof. If h∗L̄|p = 0, nothing to show. If not, there’s a 2D slice

S ⊂ M through p with T 1,0
p S =

〈
L̄|p
〉
C, which is immersed into M ′

→ differentiate γt along that.
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CR maps into uniformly pseudoconvex hypersurfaces

Measuring the size of the kernel

For q ∈ M ′, define

νq = max
06=V∈Tqη

dimC kerRq(·,V )− dimC η

The function q → νq is upper semicontinuous on M ′.

Proof. Let K := dimC η. Then νp < ` ⇔ dimC kerRp(·,V ) ≤ `+ K
⇔ For every V ∈ Tpη, some (N ′ − 1− `−K )-minor of R(·,V ) is nonzero.
⇔ Square sum

∑
j |mj(q,V )|2 over all minors nonvanishing on S2K−1.

⇔ By compactness of S2K−1, for a neighborhood O of q,
∑

j |mj(q,V )|2

is nonzero for (q,V ) ∈ O × S2K−1. ⇔ νq < ` for all q ∈ O.
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CR maps into uniformly pseudoconvex hypersurfaces

Proposition 2

Let M ′ ⊂ CN′
be a uniformly pseudoconvex hypersurface with Levi

foliation η, M be a minimal CR manifold and h : M → M ′ be a
CN′−1-regular CR map h : M → M ′ mapping p ∈ M to p′ ∈ M ′.

If νp′ = 0, then there exists an open neighborhood O of p such that each
connected open set Õ ⊆ SingSupp(h)◦ is mapped into a single leaf ηh(q).

Sketch of proof. Choose O ′ ⊆ M ′ s.t. νO′ = 0 and let O = h−1(O ′).
Suppose Õ ⊆ SingSupp(h)◦ ∩ O is connected. By prop. 1 and the formal
foliation theorem, h∗T

0,1Õ ⊆ Tη on a dense open subset, but that is a
closed property, thus h∗T

0,1Õ ⊆ Tη.
For generic q ∈ Õ, h−1(h(q)) is a manifold integrating T 0,1M, thus
minimality implies that h−1(h(q)) is open ⇒ h∗TqÕ ∈ Tqη. Thats a
closed property too. Thus h∗TÕ ⊆ Tη, finish by connectedness of Õ.
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0,1Õ ⊆ Tη on a dense open subset, but that is a
closed property, thus h∗T
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Suppose Õ ⊆ SingSupp(h)◦ ∩ O is connected. By prop. 1 and the formal
foliation theorem, h∗T

0,1Õ ⊆ Tη on a dense open subset, but that is a
closed property, thus h∗T

0,1Õ ⊆ Tη.
For generic q ∈ Õ, h−1(h(q)) is a manifold integrating T 0,1M, thus
minimality implies that h−1(h(q)) is open ⇒ h∗TqÕ ∈ Tqη. Thats a
closed property too. Thus h∗TÕ ⊆ Tη, finish by connectedness of Õ.
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CR maps into uniformly pseudoconvex hypersurfaces

Proposition 3

Let M ′ ⊂ CN′
be a uniformly pseudoconvex hypersurface with Levi

foliation η, M be a pseudoconvex hypersurface with at least n+ positive
Levi eigenvalues and h : M → M ′ be a CN′−n+-regular CR transversal
CR map mapping p ∈ M to p′ ∈ M ′.

If νp′ < n+, then h is C∞-smooth on a dense open subset of some
neighborhood of p.

Sketch of proof. Choose O ′ ⊆ M ′ s.t. νO′ < n+ and let O = h−1(O ′). CR
transversality and strong pseudoconvexity of a (1 + 2n+)-dimensional slice
of M through q yield first r1 > n+ and then dimC h∗T

0,1
q M ≥ n+ at any

q ∈ M, contradicting prop. 1 and the formal foliation theorem on O.
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Maps into boundaries of classical symmetric domains

Bounded symmetric domain

A bounded domain Ω ⊆ CN s.t. at each p ∈ Ω there exists a
biholomorphic involution with p as isolated fixed point.

Irreducible bounded symmetric domains fall into four series of classical
symmetric domains and two exceptional domains (E. Cartan 1935).

Computing ν on the boundary of classical symmetric domains

Dm,n
I ⊆ Cm×n: n+ = m + n − 2 ν = m + n − 4

Dm
II ⊆ Cm(m−1)/2: n+ = 2m − 4 ν = 2m − 8

Dm
III ⊆ Cm(m+1)/2: n+ = m − 1 ν = m − 1

Dm
IV ⊆ Cm: n+ = m − 2 ν = 0
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