Regularity of CR maps into uniformly pseudoconvex hypersurfaces

Josef E. Greilhuber

University of Vienna

Obergurgl, August 2020

The regularity problem for CR maps

Under which conditions is a CR map $h: M \to M'$ between CR manifolds C^{∞} -smooth?

Under which conditions is a CR map $h: M \to M'$ between CR manifolds C^{∞} -smooth?

Example 0 (Lewy 1956)

If the Levi form of a hypersurface $M \subset \mathbb{C}^N$ has two nonzero eigenvalues of different signs, any CR function extends to a holomorphic function on both sides of M.

Under which conditions is a CR map $h: M \to M'$ between CR manifolds C^{∞} -smooth?

Example 0 (Lewy 1956)

If the Levi form of a hypersurface $M \subset \mathbb{C}^N$ has two nonzero eigenvalues of different signs, any CR function extends to a holomorphic function on both sides of M.

Example 1 (Forsterič 1989)

A CR map $h: \mathbb{S}^{2N-1} \to \mathbb{S}^{2N'-1}$ of class $C^{N'-N+1}$ extends to a rational map on a neighborhood of $\mathbb{S}^{2N-1} \subset \mathbb{C}^N$.

Examples of irregularity

If the source is pseudoconvex and the target is not, things can go horribly wrong!

Example 2 (Berhanu & Xiao 2017)

If $M \subset \mathbb{C}^N$ is strongly pseudoconvex, then for any $k \in \mathbb{N}$ there exists a CR function ϕ which is C^k , but nowhere C^∞ -smooth.

Example 2 (Berhanu & Xiao 2017)

If $M \subset \mathbb{C}^N$ is strongly pseudoconvex, then for any $k \in \mathbb{N}$ there exists a CR function ϕ which is C^k , but nowhere C^∞ -smooth.

Sketch of proof: At any $p \in M$, take Z_p with $\Re(Z_p) > 0$ on $M \setminus \{p\}$ and $Z_p(p) = 0$. Then $Z_p^{\kappa + \frac{1}{2}}$ (standard branch cut) is C^{κ} but not $C^{\kappa+1}$ on M.

Example 2 (Berhanu & Xiao 2017)

If $M \subset \mathbb{C}^N$ is strongly pseudoconvex, then for any $k \in \mathbb{N}$ there exists a CR function ϕ which is C^k , but nowhere C^∞ -smooth.

Sketch of proof: At any $p \in M$, take Z_p with $\Re(Z_p) > 0$ on $M \setminus \{p\}$ and $Z_p(p) = 0$. Then $Z_p^{\kappa+\frac{1}{2}}$ (standard branch cut) is C^{κ} but not $C^{\kappa+1}$ on M. For a dense sequence $(p_{\kappa})_{\kappa=k}^{\infty}$ and rapidly decaying $\lambda_{\kappa} \in \mathbb{C}$, the sum $\sum_{\kappa} \lambda_{\kappa} Z_{p_{\kappa}}^{\kappa+\frac{1}{2}}$ works, by a Cantor diagonal argument.

Example 2 (Berhanu & Xiao 2017)

If $M \subset \mathbb{C}^N$ is strongly pseudoconvex, then for any $k \in \mathbb{N}$ there exists a CR function ϕ which is C^k , but nowhere C^∞ -smooth.

Sketch of proof: At any $p \in M$, take Z_p with $\Re(Z_p) > 0$ on $M \setminus \{p\}$ and $Z_p(p) = 0$. Then $Z_p^{\kappa+\frac{1}{2}}$ (standard branch cut) is C^{κ} but not $C^{\kappa+1}$ on M. For a dense sequence $(p_{\kappa})_{\kappa=k}^{\infty}$ and rapidly decaying $\lambda_{\kappa} \in \mathbb{C}$, the sum $\sum_{\kappa} \lambda_{\kappa} Z_{p_{\kappa}}^{\kappa+\frac{1}{2}}$ works, by a Cantor diagonal argument.

Examples of irregularity

Example 3

If $M' \in \mathbb{C}^{N'}$ contains a complex curve parametrized by γ , then $h := \gamma \circ \phi : M \to M'$ is a C^k , but nowhere C^{∞} -smooth CR map.

Examples of irregularity

Example 3

If $M' \in \mathbb{C}^{N'}$ contains a complex curve parametrized by γ , then $h := \gamma \circ \phi : M \to M'$ is a C^k , but nowhere C^{∞} -smooth CR map.

Example 4

If $M' = M \times \mathbb{C}$, the CR map $h: M \to M'$ given by $h(q) = (q, \phi(q))$ is a C^k , but nowhere C^{∞} -smooth map.

Some necessary definitions

For $X \subseteq \mathbb{C}^{N'}$, let $\mathscr{I}_X(p') \subseteq C^{\infty}(\mathbb{C}^{N'}, p')$ be the vanishing ideal of X at p.

For
$$X \subseteq \mathbb{C}^{N'}$$
, let $\mathscr{I}_X(p') \subseteq C^\infty(\mathbb{C}^{N'},p')$ be the vanishing ideal of X at p .

Complex gradients and their derivatives

Consider a CR map $h: M \to M' \subseteq \mathbb{C}_w^{N'}.$ We define

$$\begin{split} r_0(p) &:= \dim_{\mathbb{C}} \left\langle \left\{ \rho_w \circ h(p) : \rho \in \mathscr{I}_{h(M)}(h(p)) \right\} \right\rangle, \\ r_k(p) &:= \dim_{\mathbb{C}} \left\langle \left\{ \bar{L}_1 \dots \bar{L}_j(\rho_w \circ h)(p) : \\ \rho \in \mathscr{I}_{h(M)}(h(p)), \bar{L}_1, \dots, \bar{L}_j \in \mathcal{V}_p(M), 0 \le j \le k \right\} \right\rangle, \end{split}$$

For
$$X\subseteq \mathbb{C}^{N'}$$
, let $\mathscr{I}_X(p')\subseteq C^\infty(\mathbb{C}^{N'},p')$ be the vanishing ideal of X at p .

Complex gradients and their derivatives

Consider a CR map $h: M \to M' \subseteq \mathbb{C}_w^{N'}$. We define

$$\begin{split} r_0(p) &:= \dim_{\mathbb{C}} \left\langle \left\{ \rho_w \circ h(p) : \rho \in \mathscr{I}_{h(M)}(h(p)) \right\} \right\rangle, \\ r_k(p) &:= \dim_{\mathbb{C}} \left\langle \left\{ \bar{L}_1 \dots \bar{L}_j(\rho_w \circ h)(p) : \\ \rho \in \mathscr{I}_{h(M)}(h(p)), \bar{L}_1, \dots, \bar{L}_j \in \mathcal{V}_p(M), 0 \le j \le k \right\} \right\rangle, \end{split}$$

Formal complex manifolds

A formal complex manifold tangential to infinite order to $X \subseteq \mathbb{C}^{N'}$ at p' is a power series $\Gamma \in \mathbb{C}[[t_1, \ldots, t_k]]^{N'}$ such that $\gamma_0 = p'$, $\operatorname{rk}(\gamma_t) = k$ and such that $\mathcal{T}\rho \circ \Gamma \equiv 0$ as power series for $\rho \in \mathscr{I}_X(p')$.

Theorem (Lamel & Mir 2018)

Let $M \subset \mathbb{C}^N$ be a minimal CR submanifold and $h: M \to \mathbb{C}^{N'}$ be a CR map of class $C^{N'-k+l}$ for some $k, l \in \mathbb{N}$. Assume that $r_k > l$. Then there exists a dense open subset $O \subseteq \text{SingSupp}(h)^{\circ}$ such that for every $p \in O$, there exists a neighborhood $V \subseteq O$ of p, an integer r > 1 and a C^1 -smooth CR family of formal complex submanifolds $(\Gamma_{\mathcal{E}})_{\mathcal{E} \in V}$ of dimension r through h(V)for which $\Gamma_{\mathcal{E}}$ is tangential to infinite order to h(M) at $h(\xi)$, for every $\xi \in V$. In particular, $h(O) \subseteq \mathcal{E}_{h(M)}$.

The Levi null space

The Levi null space $\mathcal{N} \subseteq T^{0,1}M$ of a CR manifold M is given by $\mathcal{N}_p = \{\bar{L}|_p : [\bar{L}, \Gamma] \in \Gamma_p(T^{0,1}M \oplus T^{1,0}M)$ for all $\Gamma \in \Gamma_p(T^{1,0}M)\}$.

The Levi foliation (Sommer 1959, Freeman 1974)

Let *M* be a CR submanifold such that \mathcal{N} has constant rank across *M*. Then there exists a foliation η of *M* by complex manifolds such that $\mathcal{N}_p = T_p^{0,1}\eta$ at all $p \in M$.

The Levi null space

The Levi null space $\mathcal{N} \subseteq T^{0,1}M$ of a CR manifold M is given by $\mathcal{N}_p = \{\bar{L}|_p : [\bar{L}, \Gamma] \in \Gamma_p(T^{0,1}M \oplus T^{1,0}M) \text{ for all } \Gamma \in \Gamma_p(T^{1,0}M)\}.$

The Levi foliation (Sommer 1959, Freeman 1974)

Let M be a CR submanifold such that \mathcal{N} has constant rank across M. Then there exists a foliation η of M by complex manifolds such that $\mathcal{N}_p = T_p^{0,1}\eta$ at all $p \in M$.

Sketch of sketch of proof. Let $N = \Re(\mathcal{N})$. Check that $\Gamma_q(N) = \Gamma_q(T^c M) \cap \mathfrak{n}(\Gamma_q(T^c M))$, a Lie subalgebra of $\Gamma_q(TM)$. Frobenius theorem \Rightarrow Existence of η . As $N_q \subseteq T_q \mathbb{C}^n$ are complex subspaces, η consists of complex manifolds. We'll consider M' uniformly pseudoconvex with Levi foliation η , and look at maps $h: M \to M'$.

We'll consider M' uniformly pseudoconvex with Levi foliation η , and look at maps $h: M \to M'$.

In view of the formal foliation theorem, the existence of the Levi foliation might spell doom!

We'll consider M' uniformly pseudoconvex with Levi foliation η , and look at maps $h: M \to M'$.

In view of the formal foliation theorem, the existence of the Levi foliation might spell doom!

But pseudoconvexity makes it easy to understand tangency of (formal) complex manifolds.

Lemma 1

If a formal complex curve $\Gamma = p' + t\gamma_t + \frac{t^2}{2}\gamma_{tt} + \dots$ is tangential to infinite order to M', then $\gamma_t \in T\eta$.

Lemma 1

If a formal complex curve $\Gamma = p' + t\gamma_t + \frac{t^2}{2}\gamma_{tt} + \dots$ is tangential to infinite order to M', then $\gamma_t \in T\eta$.

We get a CR map $\gamma_t : M \to T\eta!$

Lemma 1

If a formal complex curve $\Gamma = p' + t\gamma_t + \frac{t^2}{2}\gamma_{tt} + \dots$ is tangential to infinite order to M', then $\gamma_t \in T\eta$.

We get a CR map $\gamma_t : M \to T\eta!$

Lemma 2

The map R defined by $R(\bar{L},\psi) = \mathbb{P}_{T^{\perp}\eta}(\bar{L}\psi)$ for $\bar{L} \in \Gamma(T^{0,1}M')$ and $\psi \in \Gamma(T\eta)$ is a tensor, and $T_{\rho}^{0,1}\eta \subseteq \ker R_{\rho}(\cdot,\psi)$.

Let M' be a uniformly pseudoconvex hypersurface with Levi foliation η , M be a minimal CR submanifold and $h: M \to M'$ be a C^1 CR map. Suppose there exists $p \in M$ mapped to p' := h(p), and a C^1 CR family of formal complex curves $(\Gamma_q)_{q \in O}$ defined on a neighborhood $O \subseteq M$ of p such that Γ_q is tangential to second order to M' at h(q) for all $q \in O$. Define R as in Lemma 2.

Then $\gamma_t(p) \in T_{p'}\eta$ and $h_*T_p^{0,1}M \subseteq \ker R_{p'}(\cdot,\gamma_t(p))$.

Let M' be a uniformly pseudoconvex hypersurface with Levi foliation η , M be a minimal CR submanifold and $h: M \to M'$ be a C^1 CR map. Suppose there exists $p \in M$ mapped to p' := h(p), and a C^1 CR family of formal complex curves $(\Gamma_q)_{q \in O}$ defined on a neighborhood $O \subseteq M$ of p such that Γ_q is tangential to second order to M' at h(q) for all $q \in O$. Define R as in Lemma 2.

Then
$$\gamma_t(p) \in T_{p'}\eta$$
 and $h_*T_p^{0,1}M \subseteq \ker R_{p'}(\cdot,\gamma_t(p))$.

Sketch of proof. If $h_*\bar{L}|_p = 0$, nothing to show. If not, there's a 2D slice $S \subset M$ through p with $T_p^{1,0}S = \langle \bar{L}|_p \rangle_{\mathbb{C}}$, which is immersed into $M' \to \text{differentiate } \gamma_t$ along that.

Measuring the size of the kernel

For $q \in M'$, define

$$\nu_q = \max_{0 \neq V \in T_q \eta} \dim_{\mathbb{C}} \ker R_q(\cdot, V) - \dim_{\mathbb{C}} \eta$$

For $q \in M'$, define

$$\nu_q = \max_{0 \neq V \in T_q \eta} \dim_{\mathbb{C}} \ker R_q(\cdot, V) - \dim_{\mathbb{C}} \eta$$

The function $q \rightarrow \nu_q$ is upper semicontinuous on M'.

For $q \in M'$, define

$$\nu_{\boldsymbol{q}} = \max_{0 \neq V \in \mathcal{T}_{\boldsymbol{q}} \eta} \dim_{\mathbb{C}} \ker R_{\boldsymbol{q}}(\cdot, V) - \dim_{\mathbb{C}} \eta$$

The function $q \rightarrow \nu_q$ is upper semicontinuous on M'.

Proof. Let $K := \dim_{\mathbb{C}} \eta$. Then $\nu_p < \ell \Leftrightarrow \dim_{\mathbb{C}} \ker R_p(\cdot, V) \le \ell + K$

For $q \in M'$, define

$$\nu_{\boldsymbol{q}} = \max_{0 \neq V \in \mathcal{T}_{\boldsymbol{q}} \eta} \dim_{\mathbb{C}} \ker R_{\boldsymbol{q}}(\cdot, V) - \dim_{\mathbb{C}} \eta$$

The function $q \rightarrow \nu_q$ is upper semicontinuous on M'.

Proof. Let $K := \dim_{\mathbb{C}} \eta$. Then $\nu_p < \ell \Leftrightarrow \dim_{\mathbb{C}} \ker R_p(\cdot, V) \le \ell + K$ \Leftrightarrow For every $V \in T_p \eta$, some $(N' - 1 - \ell - K)$ -minor of $R(\cdot, V)$ is nonzero.

For $q \in M'$, define

$$\nu_q = \max_{0 \neq V \in \mathcal{T}_q \eta} \dim_{\mathbb{C}} \ker R_q(\cdot, V) - \dim_{\mathbb{C}} \eta$$

The function $q \rightarrow \nu_q$ is upper semicontinuous on M'.

Proof. Let $K := \dim_{\mathbb{C}} \eta$. Then $\nu_p < \ell \Leftrightarrow \dim_{\mathbb{C}} \ker R_p(\cdot, V) \le \ell + K$ \Leftrightarrow For every $V \in T_p \eta$, some $(N' - 1 - \ell - K)$ -minor of $R(\cdot, V)$ is nonzero. \Leftrightarrow Square sum $\sum_i |m_j(q, V)|^2$ over all minors nonvanishing on \mathbb{S}^{2K-1} .

For $q \in M'$, define

$$\nu_q = \max_{0 \neq V \in \mathcal{T}_q \eta} \dim_{\mathbb{C}} \ker R_q(\cdot, V) - \dim_{\mathbb{C}} \eta$$

The function $q \rightarrow \nu_q$ is upper semicontinuous on M'.

Proof. Let $K := \dim_{\mathbb{C}} \eta$. Then $\nu_p < \ell \Leftrightarrow \dim_{\mathbb{C}} \ker R_p(\cdot, V) \le \ell + K$ \Leftrightarrow For every $V \in T_p \eta$, some $(N' - 1 - \ell - K)$ -minor of $R(\cdot, V)$ is nonzero. \Leftrightarrow Square sum $\sum_j |m_j(q, V)|^2$ over all minors nonvanishing on \mathbb{S}^{2K-1} . \Leftrightarrow By compactness of \mathbb{S}^{2K-1} , for a neighborhood O of q, $\sum_j |m_j(q, V)|^2$ is nonzero for $(q, V) \in O \times \mathbb{S}^{2K-1}$.

For $q \in M'$, define

$$\nu_{q} = \max_{0 \neq V \in \mathcal{T}_{q}\eta} \dim_{\mathbb{C}} \ker R_{q}(\cdot, V) - \dim_{\mathbb{C}} \eta$$

The function $q \rightarrow \nu_q$ is upper semicontinuous on M'.

Proof. Let $K := \dim_{\mathbb{C}} \eta$. Then $\nu_p < \ell \Leftrightarrow \dim_{\mathbb{C}} \ker R_p(\cdot, V) \le \ell + K$ \Leftrightarrow For every $V \in T_p \eta$, some $(N' - 1 - \ell - K)$ -minor of $R(\cdot, V)$ is nonzero. \Leftrightarrow Square sum $\sum_j |m_j(q, V)|^2$ over all minors nonvanishing on \mathbb{S}^{2K-1} . \Leftrightarrow By compactness of \mathbb{S}^{2K-1} , for a neighborhood O of q, $\sum_j |m_j(q, V)|^2$ is nonzero for $(q, V) \in O \times \mathbb{S}^{2K-1}$. $\Leftrightarrow \nu_q < \ell$ for all $q \in O$.

Let $M' \subset \mathbb{C}^{N'}$ be a uniformly pseudoconvex hypersurface with Levi foliation η , M be a minimal CR manifold and $h: M \to M'$ be a $C^{N'-1}$ -regular CR map $h: M \to M'$ mapping $p \in M$ to $p' \in M'$. If $\nu_{p'} = 0$, then there exists an open neighborhood O of p such that each connected open set $\tilde{O} \subseteq \operatorname{SingSupp}(h)^{\circ}$ is mapped into a single leaf $\eta_{h(q)}$.

Let $M' \subset \mathbb{C}^{N'}$ be a uniformly pseudoconvex hypersurface with Levi foliation η , M be a minimal CR manifold and $h: M \to M'$ be a $C^{N'-1}$ -regular CR map $h: M \to M'$ mapping $p \in M$ to $p' \in M'$. If $\nu_{p'} = 0$, then there exists an open neighborhood O of p such that each connected open set $\tilde{O} \subseteq \operatorname{SingSupp}(h)^{\circ}$ is mapped into a single leaf $\eta_{h(q)}$.

Sketch of proof. Choose $O' \subseteq M'$ s.t. $\nu_{O'} = 0$ and let $O = h^{-1}(O')$. Suppose $\tilde{O} \subseteq \operatorname{SingSupp}(h)^{\circ} \cap O$ is connected. By prop. 1 and the formal foliation theorem, $h_*T^{0,1}\tilde{O} \subseteq T\eta$ on a dense open subset, but that is a closed property, thus $h_*T^{0,1}\tilde{O} \subseteq T\eta$.

Let $M' \subset \mathbb{C}^{N'}$ be a uniformly pseudoconvex hypersurface with Levi foliation η , M be a minimal CR manifold and $h: M \to M'$ be a $C^{N'-1}$ -regular CR map $h: M \to M'$ mapping $p \in M$ to $p' \in M'$. If $\nu_{p'} = 0$, then there exists an open neighborhood O of p such that each connected open set $\tilde{O} \subseteq \operatorname{SingSupp}(h)^{\circ}$ is mapped into a single leaf $\eta_{h(q)}$.

Sketch of proof. Choose $O' \subseteq M'$ s.t. $\nu_{O'} = 0$ and let $O = h^{-1}(O')$. Suppose $\tilde{O} \subseteq \operatorname{SingSupp}(h)^{\circ} \cap O$ is connected. By prop. 1 and the formal foliation theorem, $h_*T^{0,1}\tilde{O} \subseteq T\eta$ on a dense open subset, but that is a closed property, thus $h_*T^{0,1}\tilde{O} \subseteq T\eta$. For generic $q \in \tilde{O}$, $h^{-1}(h(q))$ is a manifold integrating $T^{0,1}M$, thus minimality implies that $h^{-1}(h(q))$ is open $\Rightarrow h_*T_q\tilde{O} \in T_q\eta$. Thats a closed property too. Thus $h_*T\tilde{O} \subseteq T\eta$, finish by connectedness of \tilde{O} .

Let $M' \subset \mathbb{C}^{N'}$ be a uniformly pseudoconvex hypersurface with Levi foliation η , M be a *pseudoconvex* hypersurface with at least n_+ positive Levi eigenvalues and $h: M \to M'$ be a $C^{N'-n_+}$ -regular *CR transversal* CR map mapping $p \in M$ to $p' \in M'$.

If $\nu_{p'} < n_+$, then h is C^∞ -smooth on a dense open subset of some neighborhood of p.

Let $M' \subset \mathbb{C}^{N'}$ be a uniformly pseudoconvex hypersurface with Levi foliation η , M be a *pseudoconvex* hypersurface with at least n_+ positive Levi eigenvalues and $h: M \to M'$ be a $C^{N'-n_+}$ -regular *CR transversal* CR map mapping $p \in M$ to $p' \in M'$.

If $\nu_{p'} < n_+$, then h is C^{∞} -smooth on a dense open subset of some neighborhood of p.

Sketch of proof. Choose $O' \subseteq M'$ s.t. $\nu_{O'} < n_+$ and let $O = h^{-1}(O')$. CR transversality and strong pseudoconvexity of a $(1 + 2n_+)$ -dimensional slice of M through q yield first $r_1 > n_+$ and then $\dim_{\mathbb{C}} h_* T_q^{0,1} M \ge n_+$ at any $q \in M$, contradicting prop. 1 and the formal foliation theorem on O.

Bounded symmetric domain

A bounded domain $\Omega \subseteq \mathbb{C}^N$ s.t. at each $p \in \Omega$ there exists a biholomorphic involution with p as isolated fixed point.

Bounded symmetric domain

A bounded domain $\Omega \subseteq \mathbb{C}^N$ s.t. at each $p \in \Omega$ there exists a biholomorphic involution with p as isolated fixed point.

Irreducible bounded symmetric domains fall into four series of *classical symmetric domains* and two exceptional domains (E. Cartan 1935).

Bounded symmetric domain

A bounded domain $\Omega \subseteq \mathbb{C}^N$ s.t. at each $p \in \Omega$ there exists a biholomorphic involution with p as isolated fixed point.

Irreducible bounded symmetric domains fall into four series of *classical symmetric domains* and two exceptional domains (E. Cartan 1935).

Computing ν on the boundary of classical symmetric domains

$D_I^{m,n} \subseteq \mathbb{C}^{m \times n}$:	$n_+=m+n-2$	$\nu = m + n - 4$
$D_{II}^m \subseteq \mathbb{C}^{m(m-1)/2}$:	$n_{+} = 2m - 4$	$\nu = 2m - 8$
$D_{III}^m \subseteq \mathbb{C}^{m(m+1)/2}$:	$n_+ = m - 1$	$\nu = m - 1$
$D_{IV}^m \subseteq \mathbb{C}^m$:	$n_{+} = m - 2$	$\nu = 0$