On a Theorem of Métivier

Stefan Fürdös University of Vienna

Obergurgl, August 24, 2020

Preliminaries

$$U \subseteq \mathbb{R}^{n} \qquad \dots \text{ open set}$$

$$P(x, D) = \sum_{|\alpha| \le d} a_{\alpha}(x) D^{\alpha} \qquad \dots \text{ PDO with analytic coeff. } a_{\alpha} \in \mathcal{A}(U)$$

$$p(x, \xi) = \sum_{|\alpha| \le d} a_{\alpha}(x) \xi^{\alpha} \qquad \dots \text{ symbol of } P$$

$$p_{d}(x, \xi) = \sum_{|\alpha| = d} a_{\alpha}(x) \xi^{\alpha} \qquad \dots \text{ principal symbol of } P$$

・ロト ・四ト ・ヨト ・ヨト

Analytic vectors

A distribution $u \in \mathcal{D}'(U)$ is an analytic vector of P if

$$\forall V \Subset U \exists C, h > 0: \|P^k u\|_{L^2(V)} \leq Ch^k(dk)! \qquad \forall k \in \mathbb{N}_0.$$

The set of analytic vectors of P is denoted by $\mathcal{A}(U; P)$.

→ < Ξ → <</p>

Analytic vectors

A distribution $u \in \mathcal{D}'(U)$ is an analytic vector of P if

$$\forall V \Subset U \exists C, h > 0: \| \mathcal{P}^k u \|_{L^2(V)} \leq Ch^k(dk)! \quad \forall k \in \mathbb{N}_0.$$

The set of analytic vectors of P is denoted by $\mathcal{A}(U; P)$. Theorem (Kotake, Narasimhan 1962, Komatsu 1962) Let P be an elliptic operator with analytic coefficients. Then

$$\mathcal{A}(U; P) = \mathcal{A}(U).$$

Gevrey vectors

Let $s \geq 1$. The Gevrey class $\mathcal{G}^{s}(U)$ is defined by

$$f \in \mathcal{G}^{s}(U) :\iff \forall V \Subset U \exists C, h > 0 \ \forall \alpha \in \mathbb{N}_{0}^{n} : \ \sup_{x \in V} |D^{\alpha}f(x)| \leq Ch^{|\alpha|} |\alpha|!^{s}.$$

The space of Gevrey vectors is given by

$$u \in \mathcal{G}^{s}(U; P) :\iff \forall V \Subset U \exists C, h > 0 \ \forall k \in \mathbb{N}_{0} :$$
$$\|P^{k}u\|_{L^{2}(V)} \leq Ch^{k}(dk)!^{s}.$$

Ultradifferentiable vectors

Weight sequences $\mathbf{M} = (M_k)_k$ is a weight sequence if $M_0 = 1$,

$$M_k^2 \leq M_{k-1}M_{k+1}$$
 and $\sqrt[k]{M_k} \longrightarrow \infty.$

The Denjoy-Carleman class $\mathcal{E}^{\{M\}}(U)$ is defined by $f \in \mathcal{E}^{\{M\}}(U) :\iff \forall V \Subset U \exists C, h > 0 \ \forall \alpha \in \mathbb{N}_0^n$:

$$\sup_{x\in V} |D^{\alpha}f(x)| \leq Ch^{|\alpha|}M_{|\alpha|}.$$

The space of Denjoy-Carleman vectors is given by

$$u \in \mathcal{E}^{\{\mathsf{M}\}}(U; P) :\iff \forall V \Subset U \exists C, h > 0 \ \forall k \in \mathbb{N}_0 :$$
$$\|P^k u\|_{L^2(V)} \leq Ch^k M_{dk}.$$

Semiregular weight sequences

A weight sequence $\boldsymbol{\mathsf{M}}$ is semiregular if

$$\sup_{k\in\mathbb{N}_0}\sqrt[k]{M_{k+1}/M_k}<\infty\quad\text{and}\quad\sqrt[k]{M_k/k!}\to\infty.$$

Semiregular weight sequences

A weight sequence $\boldsymbol{\mathsf{M}}$ is semiregular if

$$\sup_{k\in\mathbb{N}_0}\sqrt[k]{M_{k+1}/M_k}<\infty\quad\text{and}\quad\sqrt[k]{M_k/k!}\to\infty.$$

q-Gevrey sequences

Let q > 1. The sequence \mathbf{N}^q given by $N_k^q = q^{k^2}$ is semiregular.

Semiregular weight sequences

A weight sequence $\boldsymbol{\mathsf{M}}$ is semiregular if

$$\sup_{k\in\mathbb{N}_0}\sqrt[k]{M_{k+1}/M_k}<\infty\quad\text{and}\quad\sqrt[k]{M_k/k!}\to\infty.$$

q-Gevrey sequences

Let q > 1. The sequence \mathbf{N}^q given by $N_k^q = q^{k^2}$ is semiregular.

Theorem (Bolley-Camus-Mattera 1979)

Let \mathbf{M} be a semiregular weight sequence and P be an elliptic differential operator with analytic coefficients. Then

$$\mathcal{E}^{\{\mathsf{M}\}}(U; P) = \mathcal{E}^{\{\mathsf{M}\}}(U).$$

Theorem (Métivier 1978)

Let s > 1 and P be a differential operator with analytic coefficients in $U \subseteq \mathbb{R}^n$. Then the following statements are equivalent:

Theorem (Métivier 1978)

Let s > 1 and P be a differential operator with analytic coefficients in $U \subseteq \mathbb{R}^n$. Then the following statements are equivalent:

1. P is elliptic.

Theorem (Métivier 1978)

Let s > 1 and P be a differential operator with analytic coefficients in $U \subseteq \mathbb{R}^n$. Then the following statements are equivalent:

1. P is elliptic.

2.
$$\mathcal{G}^{s}(U; P) = \mathcal{G}^{s}(U).$$

Theorem (Métivier 1978)

Let s > 1 and P be a differential operator with analytic coefficients in $U \subseteq \mathbb{R}^n$. Then the following statements are equivalent:

1. P is elliptic.

2.
$$\mathcal{G}^{s}(U; P) = \mathcal{G}^{s}(U).$$

Goal: Generalize Métivier's Theorem to other weight sequences.

Theorem (F., Schindl 2020)

Let q > 1 and P a differential operator with analytic coefficients in $U \subseteq \mathbb{R}^n$. Then the following statements are equivalent:

- 1. P is elliptic
- 2. $\mathcal{E}^{\{\mathbf{N}^q\}}(U; P) = \mathcal{E}^{\{\mathbf{N}^q\}}(U).$

→ < Ξ →</p>

Theorem (F., Schindl 2020)

Let q > 1 and P a differential operator with analytic coefficients in $U \subseteq \mathbb{R}^n$. Then the following statements are equivalent:

- 1. P is elliptic
- 2. $\mathcal{E}^{\{\mathbf{N}^q\}}(U; P) = \mathcal{E}^{\{\mathbf{N}^q\}}(U).$

Idea of proof

If P is not elliptic then it is enough to construct for all q > 1 a smooth function u such that

Theorem (F., Schindl 2020)

Let q > 1 and P a differential operator with analytic coefficients in $U \subseteq \mathbb{R}^n$. Then the following statements are equivalent:

1. P is elliptic

2.
$$\mathcal{E}^{\{\mathbf{N}^q\}}(U; P) = \mathcal{E}^{\{\mathbf{N}^q\}}(U).$$

Idea of proof

If P is not elliptic then it is enough to construct for all q > 1 a smooth function u such that

►
$$u \in \mathcal{E}^{\{\mathbf{N}^q\}}(U; P)$$
,

Theorem (F., Schindl 2020)

Let q > 1 and P a differential operator with analytic coefficients in $U \subseteq \mathbb{R}^n$. Then the following statements are equivalent:

1. P is elliptic

2.
$$\mathcal{E}^{\{\mathbf{N}^q\}}(U; P) = \mathcal{E}^{\{\mathbf{N}^q\}}(U).$$

Idea of proof

If P is not elliptic then it is enough to construct for all q > 1 a smooth function u such that

•
$$u \in \mathcal{E}^{\{\mathbb{N}^q\}}(U; P),$$

• $u \notin \mathcal{E}^{\{\mathbb{N}^q\}}(U).$

Métivier's approach in the Gevrey case

Stefan Fürdös On a Theorem of Métivier

æ

э

白とくヨとく

Métivier's approach in the Gevrey case

P non-elliptic at $x_0 \implies \exists \xi_0 \in S^{n-1}: p_d(x_0, \xi_0) = 0$

→ < Ξ → <</p>

P non-elliptic at $x_0 \implies \exists \xi_0 \in S^{n-1}: p_d(x_0, \xi_0) = 0$

For each s > 1 choose suitable $s_0 < s$, $\varepsilon < 1/2$ and s' > s.

P non-elliptic at $x_0 \implies \exists \xi_0 \in S^{n-1}: p_d(x_0, \xi_0) = 0$

For each s > 1 choose suitable s₀ < s, ε < 1/2 and s' > s.
Let δ > 0 be such that B₀ = {x ∈ ℝⁿ : |x − x₀| < 2δ} ∈ U.

P non-elliptic at $x_0 \implies \exists \xi_0 \in S^{n-1}: p_d(x_0, \xi_0) = 0$

For each s > 1 choose suitable s₀ < s, ε < 1/2 and s' > s.
Let δ > 0 be such that B₀ = {x ∈ ℝⁿ : |x - x₀| < 2δ} ∈ U.
Choose φ ∈ G^{s₀}(ℝⁿ) with supp φ ⊆ {x ∈ ℝⁿ : |x| < 2δ} and φ(x) = 1 for |x| < δ.

$$P$$
 non-elliptic at $x_0 \implies \exists \xi_0 \in S^{n-1}: p_d(x_0, \xi_0) = 0$

For each s > 1 choose suitable s₀ < s, ε < 1/2 and s' > s.
Let δ > 0 be such that B₀ = {x ∈ ℝⁿ : |x - x₀| < 2δ} ∈ U.
Choose φ ∈ G^{s₀}(ℝⁿ) with supp φ ⊆ {x ∈ ℝⁿ : |x| < 2δ} and φ(x) = 1 for |x| < δ.

Ansatz

$$u(x) = \int_1^\infty \varphi(t^{\varepsilon}(x-x_0)) e^{-t^{1/s'}} e^{it\xi_0(x-x_0)} dt.$$

Observations

Stefan Fürdös On a Theorem of Métivier

▶ $u \in \mathcal{D}(B_0)$

• If we consider derivatives in direction ξ_0 then we obtain

$$D_{\xi_0}^k u(x_0) = \int_1^\infty t^k e^{-t^{1/s'}} dt.$$

伺 ト イヨト イヨト

▶ $u \in \mathcal{D}(B_0)$

• If we consider derivatives in direction ξ_0 then we obtain

$$D_{\xi_0}^k u(x_0) = \int_1^\infty t^k e^{-t^{1/s'}} dt$$

► Hence
$$D_{\xi_0}^k u(x_0) = s' \Gamma(s'(k+1)) - b_k$$
, where $b_k = \int_0^1 t^k e^{1/s'} dt \to 0$ for $k \to \infty$.

伺 ト イヨト イヨト

▶ $u \in \mathcal{D}(B_0)$

• If we consider derivatives in direction ξ_0 then we obtain

$$D_{\xi_0}^k u(x_0) = \int_1^\infty t^k e^{-t^{1/s'}} dt$$

• Hence
$$D_{\xi_0}^k u(x_0) = s' \Gamma(s'(k+1)) - b_k$$
, where $b_k = \int_0^1 t^k e^{1/s'} dt \to 0$ for $k \to \infty$.

• We conclude that $u \notin \mathcal{G}^{\tau}(U)$ for $\tau < s'$.

→ < Ξ → <</p>

▶ $u \in \mathcal{D}(B_0)$

• If we consider derivatives in direction ξ_0 then we obtain

$$D_{\xi_0}^k u(x_0) = \int_1^\infty t^k e^{-t^{1/s'}} dt.$$

► Hence
$$D_{\xi_0}^k u(x_0) = s' \Gamma(s'(k+1)) - b_k$$
, where
 $b_k = \int_0^1 t^k e^{1/s'} dt \to 0$ for $k \to \infty$.

• We conclude that $u \notin \mathcal{G}^{\tau}(U)$ for $\tau < s'$.

Question: How to define *u* in the *q*-Gevrey case? Hint: $s'\Gamma(s'k) = \int_0^\infty t^{k-1}e^{-t^{1/s'}}$ is the *Mellin transform* of the function $t \mapsto e^{-t^{1/s'}}$.

It is convenient to set $\lambda = \log q$, i.e.

$$N_k^q = q^{k^2} = e^{\lambda k^2} = \theta(k, \lambda).$$

白とくヨとく

э

It is convenient to set $\lambda = \log q$, i.e.

$$N_k^q = q^{k^2} = e^{\lambda k^2} = \theta(k, \lambda).$$

• We write (in a slight abuse of notation) $\mathbf{N}^{\lambda} = \mathbf{N}^{q}$.

• We can extend $\theta(k,\lambda)$ to the function $\theta(z,\lambda) = e^{\lambda z^2}$.

It is convenient to set $\lambda = \log q$, i.e.

$$N_k^q = q^{k^2} = e^{\lambda k^2} = \theta(k, \lambda).$$

- We write (in a slight abuse of notation) $\mathbf{N}^{\lambda} = \mathbf{N}^{q}$.
- We can extend $\theta(k,\lambda)$ to the function $\theta(z,\lambda) = e^{\lambda z^2}$.
- $\theta(z, \lambda)$ is the Mellin transform of the function

$$\Theta(t,\lambda) = rac{1}{\sqrt{4\pi\lambda}} \exp\left[-rac{(\log t)^2}{4\lambda}
ight]$$

It is convenient to set $\lambda = \log q$, i.e.

1

$$N_k^q = q^{k^2} = e^{\lambda k^2} = \theta(k, \lambda).$$

- We write (in a slight abuse of notation) $\mathbf{N}^{\lambda} = \mathbf{N}^{q}$.
- We can extend $\theta(k,\lambda)$ to the function $\theta(z,\lambda) = e^{\lambda z^2}$.

• $\theta(z,\lambda)$ is the Mellin transform of the function

$$\Theta(t,\lambda) = rac{1}{\sqrt{4\pi\lambda}} \exp\left[-rac{(\log t)^2}{4\lambda}
ight]$$

Hence

$$eta(z,\lambda) = \int_0^\infty t^{z-1} \Theta(t,\lambda) \, dt,$$

 $N_k^\lambda = \int_0^\infty t^{k-1} \Theta(t,\lambda) \, dt.$

Proof of Main Theorem: Part 1

Let $x_0 \in U$, $\xi_0 \in S^{n-1}$ be such that $p_d(x_0, \xi_0) = 0$ and define $\delta > 0$ and B_0 as before.

→ < Ξ → <</p>

Proof of Main Theorem: Part 1

Let $x_0 \in U$, $\xi_0 \in S^{n-1}$ be such that $p_d(x_0, \xi_0) = 0$ and define $\delta > 0$ and B_0 as before. For each $\lambda > 0$ choose

▶ 0 < λ_0 < λ , λ' > λ and 0 < ε < 1 to be specified later on,

Proof of Main Theorem: Part 1

Let $x_0 \in U$, $\xi_0 \in S^{n-1}$ be such that $p_d(x_0, \xi_0) = 0$ and define $\delta > 0$ and B_0 as before. For each $\lambda > 0$ choose

- ▶ 0 < λ_0 < λ , λ' > λ and 0 < ε < 1 to be specified later on,
- ▶ $\psi \in \mathcal{E}^{\{\mathbf{N}^{\lambda_0}\}}(\mathbb{R}^n)$ such that supp $\psi \subseteq \{x \in \mathbb{R}^n : |x| < 2\delta\}$ and $\psi(x) = 1$ for $|x| < \delta$.

Proof of Main Theorem: Part 1

Let $x_0 \in U$, $\xi_0 \in S^{n-1}$ be such that $p_d(x_0, \xi_0) = 0$ and define $\delta > 0$ and B_0 as before. For each $\lambda > 0$ choose

0 < λ₀ < λ, λ' > λ and 0 < ε < 1 to be specified later on,
ψ ∈ E^{{N^{λ0}}}(ℝⁿ) such that supp ψ ⊆ {x ∈ ℝⁿ : |x| < 2δ} and ψ(x) = 1 for |x| < δ.

We set

$$u(x) = \int_1^\infty \psi\left(t^\varepsilon(x-x_0)\right) \Theta\left(t,\lambda'\right) e^{it(x-x_0)\xi_0} dt$$

Proof of Main Theorem: Part 1

Let $x_0 \in U$, $\xi_0 \in S^{n-1}$ be such that $p_d(x_0, \xi_0) = 0$ and define $\delta > 0$ and B_0 as before. For each $\lambda > 0$ choose

0 < λ₀ < λ, λ' > λ and 0 < ε < 1 to be specified later on,
ψ ∈ E<sup>{N^{λ₀}}(ℝⁿ) such that supp ψ ⊆ {x ∈ ℝⁿ : |x| < 2δ} and ψ(x) = 1 for |x| < δ.
</sup>

We set

$$u(x) = \int_1^\infty \psi(t^{\varepsilon}(x-x_0)) \Theta(t,\lambda') e^{it(x-x_0)\xi_0} dt$$

and obtain

$$D^k_{\xi_0}u(x_0)=\int_1^\infty t^k\Theta(t,\lambda')\,dt=N^{\lambda'}_{k+1}-\int_0^1 t^k\Theta(t,\lambda')\,dt.$$

Proof of Main Theorem: Part 1

Let $x_0 \in U$, $\xi_0 \in S^{n-1}$ be such that $p_d(x_0, \xi_0) = 0$ and define $\delta > 0$ and B_0 as before. For each $\lambda > 0$ choose

0 < λ₀ < λ, λ' > λ and 0 < ε < 1 to be specified later on,
ψ ∈ E<sup>{N^{λ₀}}(ℝⁿ) such that supp ψ ⊆ {x ∈ ℝⁿ : |x| < 2δ} and ψ(x) = 1 for |x| < δ.
</sup>

We set

$$u(x) = \int_1^\infty \psi(t^{\varepsilon}(x-x_0)) \Theta(t,\lambda') e^{it(x-x_0)\xi_0} dt$$

and obtain

$$D_{\xi_0}^k u(x_0) = \int_1^\infty t^k \Theta(t,\lambda') dt = N_{k+1}^{\lambda'} - \int_0^1 t^k \Theta(t,\lambda') dt.$$

 $\rightsquigarrow u \notin \mathcal{E}^{\{\mathbf{N}^{\tau}\}}(U)$ for all $\tau < \lambda'$.

The Iterates of P

$$P^{k}u(x) = \int_{1}^{\infty} Q_{k}(x,t)\Theta(t,\lambda')e^{-it(x-x_{0})\xi_{0}} dt$$

where

$$Q_0(x,t) = \psi(t^{\varepsilon}(x-x_0))$$

 and

$$Q_{k+1}(x,t) = \sum_{|lpha| \leq d} rac{1}{lpha!} \partial^lpha_\xi p(x,t\xi_0) D^lpha_x Q_k(x,t), \quad k \in \mathbb{N}_0.$$

æ

▲御▶ ▲ 陸▶ ▲ 陸▶

Estimates for Q_k

Theorem $\exists A > 0 \ s.t. \quad \forall k \in \mathbb{N}_0 \quad \forall \nu \in \mathbb{N}_0^n, \quad \forall x \in B_0 \quad \forall t \ge 1:$ $|D_x^{\nu} Q_k(x,t)| \le C_0 \left(h_0 t^{\varepsilon}\right)^{|\nu|} A^k \left[t^{(d-\varepsilon)k} N_{|\nu|}^{\lambda_0} + t^{(2d-1)k\varepsilon} N_{|\nu|+dk}^{\lambda_0} \right].$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

э

Estimates for Q_k

Theorem

$$\exists A > 0 \ s.t. \ \forall k \in \mathbb{N}_0 \ \forall \nu \in \mathbb{N}_0^n, \ \forall x \in B_0 \ \forall t \ge 1:$$

$$|D_x^{\nu} Q_k(x,t)| \le C_0 (h_0 t^{\varepsilon})^{|\nu|} A^k \left[t^{(d-\varepsilon)k} N_{|\nu|}^{\lambda_0} + t^{(2d-1)k\varepsilon} N_{|\nu|+dk}^{\lambda_0} \right].$$

In particular, if $\nu = 0$ then

$$|Q_k(x,t)| \leq C_0 A^k \left(t^{(d-\varepsilon)k} + t^{(2d-1)k\varepsilon} N_{dk}^{\lambda_0}
ight).$$

æ

御 と く き と く き と

Estimates for Q_k

Theorem

$$\exists A > 0 \ s.t. \ \forall k \in \mathbb{N}_0 \ \forall \nu \in \mathbb{N}_0^n, \ \forall x \in B_0 \ \forall t \ge 1:$$

$$|D_x^{\nu} Q_k(x,t)| \le C_0 (h_0 t^{\varepsilon})^{|\nu|} A^k \left[t^{(d-\varepsilon)k} N_{|\nu|}^{\lambda_0} + t^{(2d-1)k\varepsilon} N_{|\nu|+dk}^{\lambda_0} \right].$$

In particular, if $\nu = 0$ then

$$|Q_k(x,t)| \leq C_0 A^k \left(t^{(d-\varepsilon)k} + t^{(2d-1)k\varepsilon} N_{dk}^{\lambda_0}
ight).$$

$$\rightsquigarrow \left| P^{k} u(x) \right| \leq C A^{k} \int_{1}^{\infty} \left(t^{(d-\varepsilon)k} + t^{(2d-1)k\varepsilon} N_{dk}^{\lambda_{0}} \right) \exp \left[-\frac{(\log t)^{2}}{4\lambda'} \right] dt$$

æ

御 と く き と く き と

Associated weight functions

If ${\bf M}$ is a weight sequence then the associated weight function $\omega_{{\bf M}}$ is defined by

$$\omega_{\mathsf{M}}(t) = \sup_{k \in \mathbb{N}_0} \log rac{t^k}{M_k}.$$

In particular

$$t^k \le M_k e^{\omega_{\mathsf{M}}(t)} \tag{(*)}$$

for all $k \in \mathbb{N}_0$ and $t \ge 0$.

Weight functions

A weight function in the sense of Braun-Meise-Taylor is a continuous and increasing function $\omega : [0, \infty) \rightarrow [0, \infty)$ satisfying

•
$$\omega(t) = 0$$
 for $t \in [0,1]$,

•
$$\omega(2t) = O(\omega(t))$$
 for $t \to \infty$

▶ log
$$t = O(\omega(t))$$
 for $t \to \infty$,

• $\varphi_{\omega} = \omega \circ \exp$ is convex.

Let $\varphi_{\omega}^{*}(t) = \sup_{s \ge 0} (st - \varphi_{\omega}(s))$ be the conjugate function of φ . The ultradifferentiable class associated to ω is given by

$$egin{aligned} f \in \mathcal{E}^{\{\omega\}}(U) :& \iff \forall V \Subset U \ \exists \ C, h > 0 \ \forall lpha \in \mathbb{N}_0^n : \ & \sup_{x \in V} |D^lpha f(x)| \leq C e^{h^{-1} arphi^*_\omega(h|lpha|)} \end{aligned}$$

伺 ト イヨ ト イヨト

Weight matrices

A weight matrix \mathfrak{M} is a family of weight sequences such that for all $\mathbf{M}, \mathbf{N} \in \mathfrak{M}$ we have either $M_k \leq N_k$ for all k or $N_k \leq M_k$ for all k. The ultradifferentiable associated to \mathfrak{M} is defined by

$$\begin{split} f \in \mathcal{E}^{\{\mathfrak{M}\}}(U) : & \Leftrightarrow \quad \forall \, V \Subset U \; \exists \, \mathbf{M} \in \mathfrak{M} \; \exists \, C, h > 0 \; \forall \, \alpha \in \mathbb{N}_0^n : \\ \sup_{x \in V} |D^{\alpha} f(x)| \leq C h^{|\alpha|} M_{|\alpha|} \end{split}$$

Weight functions vs. Weight matrices

Let ω be a weight function. The weight matrix $\mathfrak{W} = {\mathbf{W}^{\rho} : \rho > 0}$ associated to ω is defined by

$$W^
ho_k = \exp\left[
ho^{-1}arphi^*_\omega(
ho k)
ight].$$

Then $\mathcal{E}^{\{\omega\}}(U) = \mathcal{E}^{\{\mathfrak{W}\}}(U)$ as topological vector spaces.

伺 ト イヨ ト イヨト

Weight functions vs. Weight matrices

Let ω be a weight function. The weight matrix $\mathfrak{W} = {\mathbf{W}^{\rho} : \rho > 0}$ associated to ω is defined by

$$W_k^
ho = \exp\left[
ho^{-1} \varphi^*_\omega(
ho k)
ight].$$

Then $\mathcal{E}^{\{\omega\}}(U) = \mathcal{E}^{\{\mathfrak{W}\}}(U)$ as topological vector spaces.

Lemma

Let ω be a weight function and $\mathfrak{W} = \{\mathbf{W}^{\rho} : \rho > 0\}$ the weight matrix associated to ω . Then

$$\omega_{\mathbf{W}^
ho}(t) \leq rac{\omega(t)}{
ho} \qquad orall t > 0, \;\; orall
ho > 0.$$

We consider the weight function $\omega_2(t) = (\max\{0, \log t\})^2$.

→ < Ξ → <</p>

We consider the weight function $\omega_2(t) = (\max\{0, \log t\})^2$. $\Rightarrow \varphi_2(t) = \omega_2 \circ \exp(t) = t^2$.

• • = • • = •

We consider the weight function $\omega_2(t) = (\max\{0, \log t\})^2$. $\Rightarrow \varphi_2(t) = \omega_2 \circ \exp(t) = t^2$. $\Rightarrow \varphi_2^*(t) = \sup_{s \ge 0} (st - \varphi_2(s)) = t^2/4$.

• • = • • = •

We consider the weight function $\omega_2(t) = (\max\{0, \log t\})^2$. $\Rightarrow \varphi_2(t) = \omega_2 \circ \exp(t) = t^2$. $\Rightarrow \varphi_2^*(t) = \sup_{s \ge 0} (st - \varphi_2(s)) = t^2/4$. Let $\mathfrak{W}^2 = \{\mathbf{W}^{2,\rho}, \rho > 0\}$ be the weight matrix associated to ω_2 .

We consider the weight function $\omega_2(t) = (\max\{0, \log t\})^2$. $\Rightarrow \varphi_2(t) = \omega_2 \circ \exp(t) = t^2$. $\Rightarrow \varphi_2^*(t) = \sup_{s \ge 0} (st - \varphi_2(s)) = t^2/4$. Let $\mathfrak{W}^2 = \{\mathbf{W}^{2,\rho}, \rho > 0\}$ be the weight matrix associated to ω_2 . Then

$${\sf N}^\lambda = {\sf W}^{2,4\lambda} \qquad orall \, \lambda > 0.$$

We consider the weight function $\omega_2(t) = (\max\{0, \log t\})^2$. $\Rightarrow \varphi_2(t) = \omega_2 \circ \exp(t) = t^2$. $\Rightarrow \varphi_2^*(t) = \sup_{s \ge 0} (st - \varphi_2(s)) = t^2/4$. Let $\mathfrak{W}^2 = \{\mathbf{W}^{2,\rho}, \rho > 0\}$ be the weight matrix associated to ω_2 . Then

$$\mathbf{N}^{\lambda} = \mathbf{W}^{2, 4\lambda} \qquad orall \, \lambda > 0.$$

Hence

$$\omega_{\mathbf{N}^{\lambda}}(t) \leq rac{(\log t)^2}{4\lambda}, \qquad orall t \geq 1, \ \ orall \, \lambda > 0.$$

Final estimates I

Set $r = t^{1-\varepsilon/d}$, $R = t^{\varepsilon(2-1/d)}$ for $t \ge 1$ and $\lambda_1 = \lambda - \lambda_0 > 0$.

(日本) (日本) (日本)

3

Final estimates I

Set $r = t^{1-\varepsilon/d}$, $R = t^{\varepsilon(2-1/d)}$ for $t \ge 1$ and $\lambda_1 = \lambda - \lambda_0 > 0$. $\rightsquigarrow (\star)$ and $(\diamond) \Rightarrow$

$$t^{(d-\varepsilon)k} = r^{dk} \le N_{dk}^{\lambda} \exp\left[\frac{(d-\varepsilon)^2}{d^2\lambda} \frac{(\log t)^2}{4}\right]$$
$$t^{(2d-1)k\varepsilon} = R^{dk} \le N_{dk}^{\lambda_1} \exp\left[\frac{\varepsilon^2(2d-1)^2}{d^2\lambda_1} \frac{(\log t)^2}{4}\right]$$

< 同 > < 三 > < 三 > 、

э

Fixing the constants

For fixed $\lambda > 0$ choose ε and $\lambda_0 < \lambda$ such that

$$0 < \varepsilon \leq \frac{d\sqrt{\lambda - \lambda_0}}{\sqrt{\lambda - \lambda_0} + \sqrt{\lambda}(2d - 1)} < \frac{1}{2}$$

→ < Ξ → <</p>

Fixing the constants

For fixed $\lambda > 0$ choose ε and $\lambda_0 < \lambda$ such that

$$egin{aligned} 0 < arepsilon &\leq rac{d\sqrt{\lambda-\lambda_0}}{\sqrt{\lambda-\lambda_0}+\sqrt{\lambda}(2d-1)} < rac{1}{2} \ & \Longrightarrow \quad rac{arepsilon^2(2d-1)^2}{(\lambda-\lambda_0)d^2} \leq rac{(d-arepsilon)^2}{\lambda d^2} \end{aligned}$$

→ < Ξ → <</p>

Final estimates II

The integral

$$\int_{1}^{\infty} \left(t^{(d-\varepsilon)k} + t^{(2d-1)k\varepsilon} N_{dk}^{\lambda_0} \right) \exp\left[-\frac{(\log t)^2}{4\lambda'} \right] dt$$
$$\leq N_{dk}^{\lambda} \int_{1}^{\infty} \exp\left[\frac{(\log t)^2}{4} \left(\frac{(d-\varepsilon)^2}{\lambda d^2} - \frac{1}{\lambda'} \right) \right] dt$$

converges for

$$\lambda' < rac{d^2}{(d-arepsilon)^2}\lambda.$$

æ

▲御▶ ▲ 陸▶ ▲ 陸▶

Final estimates II

The integral

$$\begin{split} &\int_{1}^{\infty} \Bigl(t^{(d-\varepsilon)k} + t^{(2d-1)k\varepsilon} N_{dk}^{\lambda_0} \Bigr) \exp\left[-\frac{(\log t)^2}{4\lambda'} \right] \, dt \\ &\leq N_{dk}^{\lambda} \int_{1}^{\infty} \exp\left[\frac{(\log t)^2}{4} \left(\frac{(d-\varepsilon)^2}{\lambda d^2} - \frac{1}{\lambda'} \right) \right] \, dt \end{split}$$

converges for

$$\lambda' < \frac{d^2}{(d-\varepsilon)^2}\lambda.$$
$$\implies \qquad \left\| P^k u \right\|_{L^2(B_0)} \le C A^k N_{dk}^{\lambda}$$

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Final estimates II

The integral

$$\begin{split} &\int_{1}^{\infty} \left(t^{(d-\varepsilon)k} + t^{(2d-1)k\varepsilon} N_{dk}^{\lambda_{0}} \right) \exp\left[-\frac{(\log t)^{2}}{4\lambda'} \right] dt \\ &\leq N_{dk}^{\lambda} \int_{1}^{\infty} \exp\left[\frac{(\log t)^{2}}{4} \left(\frac{(d-\varepsilon)^{2}}{\lambda d^{2}} - \frac{1}{\lambda'} \right) \right] dt \end{split}$$

converges for

$$\lambda' < \frac{d^2}{(d-\varepsilon)^2}\lambda.$$

$$\implies \qquad \left\| P^k u \right\|_{L^2(B_0)} \le C A^k N_{dk}^{\lambda}$$

Since $u \in \mathcal{D}(B_0)$ we have shown that $u \in \mathcal{E}^{\{\mathbf{N}^{\lambda}\}}(U; P)$.