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Stefan Fürdös On a Theorem of Métivier



Introduction
Main Theorem

Proof

Preliminaries

U ⊆ Rn . . . open set

P(x ,D) =
∑
|α|≤d

aα(x)Dα . . . PDO with analytic coeff. aα ∈ A(U)

p(x , ξ) =
∑
|α|≤d

aα(x)ξα . . . symbol of P

pd(x , ξ) =
∑
|α|=d

aα(x)ξα . . . principal symbol of P
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Analytic vectors

A distribution u ∈ D′(U) is an analytic vector of P if

∀V b U ∃C , h > 0 :
∥∥Pku

∥∥
L2(V )

≤ Chk(dk)! ∀ k ∈ N0.

The set of analytic vectors of P is denoted by A(U;P).

Theorem (Kotake, Narasimhan 1962, Komatsu 1962)

Let P be an elliptic operator with analytic coefficients. Then

A(U;P) = A(U).
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Gevrey vectors

Let s ≥ 1. The Gevrey class Gs(U) is defined by

f ∈ Gs(U) :⇐⇒ ∀V b U ∃C , h > 0 ∀α ∈ Nn
0 :

sup
x∈V
|Dαf (x)| ≤ Ch|α||α|!s .

The space of Gevrey vectors is given by

u ∈ Gs(U;P) :⇐⇒ ∀V b U ∃C , h > 0 ∀ k ∈ N0 :∥∥Pku
∥∥
L2(V )

≤ Chk(dk)!s .
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Ultradifferentiable vectors

Weight sequences

M = (Mk)k is a weight sequence if M0 = 1,

M2
k ≤ Mk−1Mk+1 and k

√
Mk −→∞.

The Denjoy-Carleman class E{M}(U) is defined by

f ∈ E{M}(U) :⇐⇒ ∀V b U ∃C , h > 0 ∀α ∈ Nn
0 :

sup
x∈V
|Dαf (x)| ≤ Ch|α|M|α|.

The space of Denjoy-Carleman vectors is given by

u ∈ E{M}(U;P) :⇐⇒ ∀V b U ∃C , h > 0 ∀ k ∈ N0 :∥∥Pku
∥∥
L2(V )

≤ ChkMdk .
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Semiregular weight sequences

A weight sequence M is semiregular if

sup
k∈N0

k
√

Mk+1/Mk <∞ and k
√

Mk/k!→∞.

q-Gevrey sequences

Let q > 1. The sequence Nq given by Nq
k = qk

2
is semiregular.

Theorem (Bolley-Camus-Mattera 1979)

Let M be a semiregular weight sequence and P be an elliptic
differential operator with analytic coefficients. Then

E{M}(U;P) = E{M}(U).
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Métivier’s Theorem

Theorem (Métivier 1978)

Let s > 1 and P be a differential operator with analytic coefficients
in U ⊆ Rn. Then the following statements are equivalent:

1. P is elliptic.

2. Gs(U;P) = Gs(U).

Goal: Generalize Métivier’s Theorem to other weight sequences.
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Main Theorem

Theorem (F., Schindl 2020)

Let q > 1 and P a differential operator with analytic coefficients in
U ⊆ Rn. Then the following statements are equivalent:

1. P is elliptic

2. E{Nq}(U;P) = E{Nq}(U).

Idea of proof

If P is not elliptic then it is enough to construct for all q > 1 a
smooth function u such that

I u ∈ E{Nq}(U;P),

I u /∈ E{Nq}(U).
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Métivier’s approach in the Gevrey case

P non-elliptic at x0 =⇒ ∃ ξ0 ∈ Sn−1 : pd(x0, ξ0) = 0

I For each s > 1 choose suitable s0 < s, ε < 1/2 and s ′ > s.

I Let δ > 0 be such that B0 = {x ∈ Rn : |x − x0| < 2δ} b U.

I Choose ϕ ∈ Gs0(Rn) with suppϕ ⊆ {x ∈ Rn : |x | < 2δ} and
ϕ(x) = 1 for |x | < δ.

Ansatz

u(x) =

∫ ∞
1
ϕ
(
tε(x − x0)

)
e−t

1/s′
e itξ0(x−x0) dt.
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Stefan Fürdös On a Theorem of Métivier



Introduction
Main Theorem

Proof

Métivier’s approach in the Gevrey case

P non-elliptic at x0 =⇒ ∃ ξ0 ∈ Sn−1 : pd(x0, ξ0) = 0

I For each s > 1 choose suitable s0 < s, ε < 1/2 and s ′ > s.

I Let δ > 0 be such that B0 = {x ∈ Rn : |x − x0| < 2δ} b U.

I Choose ϕ ∈ Gs0(Rn) with suppϕ ⊆ {x ∈ Rn : |x | < 2δ} and
ϕ(x) = 1 for |x | < δ.

Ansatz

u(x) =

∫ ∞
1
ϕ
(
tε(x − x0)

)
e−t

1/s′
e itξ0(x−x0) dt.
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Observations
I u ∈ D(B0)

I If we consider derivatives in direction ξ0 then we obtain

Dk
ξ0
u(x0) =

∫ ∞
1

tke−t
1/s′

dt.

I Hence Dk
ξ0
u(x0) = s ′Γ(s ′(k + 1))− bk , where

bk =
∫ 1

0 tke1/s′dt → 0 for k →∞.

I We conclude that u /∈ Gτ (U) for τ < s ′.

Question: How to define u in the q-Gevrey case?

Hint: s ′Γ(s ′k) =
∫∞

0 tk−1e−t
1/s′

is the Mellin transform of the

function t 7→ e−t
1/s′

.
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The q-Gevrey scale
It is convenient to set λ = log q, i.e.

Nq
k = qk

2
= eλk

2
= θ(k , λ).

I We write (in a slight abuse of notation) Nλ = Nq.
I We can extend θ(k, λ) to the function θ(z , λ) = eλz

2
.

I θ(z , λ) is the Mellin transform of the function

Θ(t, λ) =
1√
4πλ

exp

[
−(log t)2

4λ

]
.

Hence

θ(z , λ) =

∫ ∞
0

tz−1Θ(t, λ) dt,

Nλ
k =

∫ ∞
0

tk−1Θ(t, λ) dt.
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Proof of Main Theorem: Part 1
Let x0 ∈ U, ξ0 ∈ Sn−1 be such that pd(x0, ξ0) = 0 and define
δ > 0 and B0 as before.

For each λ > 0 choose

I 0 < λ0 < λ, λ′ > λ and 0 < ε < 1 to be specified later on,

I ψ ∈ E{Nλ0}(Rn) such that suppψ ⊆ {x ∈ Rn : |x | < 2δ} and
ψ(x) = 1 for |x | < δ.

We set

u(x) =

∫ ∞
1
ψ (tε(x − x0)) Θ

(
t, λ′

)
e it(x−x0)ξ0 dt

and obtain

Dk
ξ0
u(x0) =

∫ ∞
1

tkΘ(t, λ′) dt = Nλ′
k+1 −

∫ 1

0
tkΘ(t, λ′) dt.

 u /∈ E{Nτ}(U) for all τ < λ′.
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and obtain

Dk
ξ0
u(x0) =

∫ ∞
1

tkΘ(t, λ′) dt = Nλ′
k+1 −

∫ 1

0
tkΘ(t, λ′) dt.

 u /∈ E{Nτ}(U) for all τ < λ′.
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The Iterates of P

Pku(x) =

∫ ∞
1

Qk(x , t)Θ(t, λ′)e−it(x−x0)ξ0 dt

where

Q0(x , t) = ψ (tε(x − x0))

and

Qk+1(x , t) =
∑
|α|≤d

1

α!
∂αξ p(x , tξ0)Dα

x Qk(x , t), k ∈ N0.
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Estimates for Qk

Theorem
∃A > 0 s.t. ∀ k ∈ N0 ∀ ν ∈ Nn

0, ∀ x ∈ B0 ∀ t ≥ 1:

|Dν
xQk(x , t)| ≤ C0 (h0t

ε)|ν| Ak
[
t(d−ε)kNλ0

|ν| + t(2d−1)kεNλ0

|ν|+dk

]
.

In particular, if ν = 0 then

|Qk(x , t)| ≤ C0A
k
(
t(d−ε)k + t(2d−1)kεNλ0

dk

)
.

 
∣∣∣Pku(x)

∣∣∣ ≤ CAk

∫ ∞
1

(
t(d−ε)k + t(2d−1)kεNλ0

dk

)
exp

[
−(log t)2

4λ′

]
dt
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Associated weight functions

If M is a weight sequence then the associated weight function ωM

is defined by

ωM(t) = sup
k∈N0

log
tk

Mk
.

In particular
tk ≤ Mke

ωM(t) (?)

for all k ∈ N0 and t ≥ 0.
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Weight functions

A weight function in the sense of Braun-Meise-Taylor is a
continuous and increasing function ω : [0,∞)→ [0,∞) satisfying

I ω(t) = 0 for t ∈ [0, 1],

I ω(2t) = O(ω(t)) for t →∞,

I log t = O(ω(t)) for t →∞,

I ϕω = ω ◦ exp is convex.

Let ϕ∗ω(t) = sups≥0(st − ϕω(s)) be the conjugate function of ϕ.
The ultradifferentiable class associated to ω is given by

f ∈ E{ω}(U) :⇐⇒ ∀V b U ∃C , h > 0 ∀α ∈ Nn
0 :

sup
x∈V
|Dαf (x)| ≤ Ceh

−1ϕ∗ω(h|α|)
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Weight matrices

A weight matrix M is a family of weight sequences such that for
all M,N ∈M we have either Mk ≤ Nk for all k or Nk ≤ Mk for all
k . The ultradifferentiable associated to M is defined by

f ∈ E{M}(U) :⇐⇒ ∀V b U ∃M ∈M ∃C , h > 0 ∀α ∈ Nn
0 :

sup
x∈V
|Dαf (x)| ≤ Ch|α|M|α|
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Weight functions vs. Weight matrices

Let ω be a weight function. The weight matrix W = {Wρ : ρ > 0}
associated to ω is defined by

W ρ
k = exp

[
ρ−1ϕ∗ω(ρk)

]
.

Then E{ω}(U) = E{W}(U) as topological vector spaces.

Lemma
Let ω be a weight function and W = {Wρ : ρ > 0} the weight
matrix associated to ω. Then

ωWρ(t) ≤ ω(t)

ρ
∀ t > 0, ∀ ρ > 0.
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An example

We consider the weight function ω2(t) = (max{0, log t})2.

⇒ ϕ2(t) = ω2 ◦ exp(t) = t2.
⇒ ϕ∗2(t) = sups≥0(st − ϕ2(s)) = t2/4.
Let W2 = {W2,ρ, ρ > 0} be the weight matrix associated to
ω2.Then

Nλ = W2,4λ ∀λ > 0.

Hence

ωNλ(t) ≤ (log t)2

4λ
, ∀ t ≥ 1, ∀λ > 0. (�)
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Final estimates I

Set r = t1−ε/d , R = tε(2−1/d) for t ≥ 1 and λ1 = λ− λ0 > 0.

 (?) and (�) ⇒

t(d−ε)k = rdk ≤ Nλ
dk exp

[
(d − ε)2

d2λ

(log t)2

4

]
t(2d−1)kε = Rdk ≤ Nλ1

dk exp

[
ε2(2d − 1)2

d2λ1

(log t)2

4

]
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Fixing the constants

For fixed λ > 0 choose ε and λ0 < λ such that

0 < ε ≤ d
√
λ− λ0√

λ− λ0 +
√
λ(2d − 1)

<
1

2

=⇒ ε2(2d − 1)2

(λ− λ0)d2
≤ (d − ε)2

λd2
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Final estimates II

The integral∫ ∞
1

(
t(d−ε)k + t(2d−1)kεNλ0

dk

)
exp

[
−(log t)2

4λ′

]
dt

≤ Nλ
dk

∫ ∞
1

exp

[
(log t)2

4

(
(d − ε)2

λd2
− 1

λ′

)]
dt

converges for

λ′ <
d2

(d − ε)2
λ.

=⇒
∥∥Pku

∥∥
L2(B0)

≤ CAkNλ
dk

Since u ∈ D(B0) we have shown that u ∈ E{Nλ}(U;P).
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