Some remarks on the global distribution of the points of finite D'Angelo type

Martino Fassina (Universität Wien)

joint work in progress with

Yifei Pan (Purdue University - Fort Wayne)

CR Geometry and Dynamics 2020 University Center Obergurgl

August 27, 2020

Background material

- Background material
- Questions

- Background material
- Questions
- Folklore results / Partial results

- Background material
- Questions
- Folklore results / Partial results
- Examples

- Background material
- Questions
- Folklore results / Partial results
- Examples
- More questions

Let *M* be a smooth real hypersurface in \mathbb{C}^n .

Recall the definition of **type** of M at a point p given by D'Angelo.

It measures the maximum order of contact of M at p with (possibly singular) holomorphic curves.

D'Angelo type

Let r be a local defining equation for M at p.

D'Angelo type

Let r be a local defining equation for M at p.

For every germ of a holomorphic curve γ at p consider $\frac{\nu(r\circ\gamma)}{\nu(\gamma)}$.

D'Angelo type

Let r be a local defining equation for M at p.

For every germ of a holomorphic curve γ at p consider $\frac{\nu(r\circ\gamma)}{\nu(\gamma)}$.

$$\mathbf{T}(M,p) = \sup_{\gamma} \frac{\nu(r \circ \gamma)}{\nu(\gamma)}$$

Work on **local normal forms** at a point of finite/infinite type: Ebenfelt, Lamel, Kolář, Kossovskiy, Meylan, Stanton, Wong, Zaitsev, ... Work on **local normal forms** at a point of finite/infinite type: Ebenfelt, Lamel, Kolář, Kossovskiy, Meylan, Stanton, Wong, Zaitsev, ...

Finite type was introduced to characterize **local properties** (subellipticity of $\overline{\partial}$): Catlin, D'Angelo, Kohn, ...

The global perspective

Theorem 1 (D'Angelo, 1982)

Let M be a smooth real hypersurface in \mathbb{C}^n . Then the set

$$\{p \in M \,|\, \mathbf{T}(M,p) \neq \infty\}$$

is an open subset of M.

The global perspective

Theorem 1 (D'Angelo, 1982)

Let M be a smooth real hypersurface in \mathbb{C}^n . Then the set

$$\{p \in M \,|\, \mathbf{T}(M,p) \neq \infty\}$$

is an open subset of M.

Type=2 is also an open condition (Levi non-degeneracy).

Theorem 1 (D'Angelo, 1982)

Let M be a smooth real hypersurface in \mathbb{C}^n . Then the set

$$\{p \in M \mid \mathbf{T}(M, p) \neq \infty\}$$

is an open subset of M.

Type=2 is also an open condition (Levi non-degeneracy).

We consider the set of Levi degenerate finite type points

$$\mathcal{F}_M := \{ p \in M \mid 2 < \mathbf{T}(M, p) < \infty \}.$$

Theorem 1 (D'Angelo, 1982)

Let M be a smooth real hypersurface in \mathbb{C}^n . Then the set

$$\{p \in M \mid \mathbf{T}(M, p) \neq \infty\}$$

is an open subset of M.

Type=2 is also an open condition (Levi non-degeneracy).

We consider the set of Levi degenerate finite type points

$$\mathcal{F}_M := \{ p \in M \mid 2 < \mathbf{T}(M, p) < \infty \}.$$

Questions

- How arbitrary is the set \mathcal{F}_M ?
- Does \mathcal{F}_M have any structure?

Theorem 1 (D'Angelo, 1982)

Let M be a smooth real hypersurface in \mathbb{C}^n . Then the set

 $\{p \in M \mid \mathbf{T}(M, p) \neq \infty\}$

is an open subset of M.

Type=2 is also an open condition (Levi non-degeneracy).

We consider the set of Levi degenerate finite type points

$$\mathcal{F}_M := \{ p \in M \mid 2 < \mathbf{T}(M, p) < \infty \}.$$

Questions

- How arbitrary is the set \mathcal{F}_M ?
- Does \mathcal{F}_M have any structure?

Same questions for $\mathcal{I}_M := \{ p \in M \mid \mathbf{T}(M, p) = \infty \}.$

Proposition 2 (D'Angelo)

Let M be a **real analytic** hypersurface in \mathbb{C}^n , and let $p \in M$ be such that $\mathbf{T}(M, p) = \infty$. Then M contains the germ of a holomorphic curve γ through p.

Proposition 2 (D'Angelo)

Let M be a **real analytic** hypersurface in \mathbb{C}^n , and let $p \in M$ be such that $\mathbf{T}(M, p) = \infty$. Then M contains the germ of a holomorphic curve γ through p.

Let M be defined in \mathbb{C}^3 by

$$\operatorname{Re} z_3 + |z_1^2 - z_2^3|^2 = 0.$$

 $\mathbf{T}(M,0) = \infty$, since M contains $\gamma(t) = (t^3, t^2, 0)$.

Let *M* be defined in \mathbb{C}^2 by

$$\operatorname{Re}(w) + e^{-\frac{1}{|z|^2}} = 0.$$

The complex line $\gamma(t) = (t, 0)$ is such that $\nu(r \circ \gamma) = \infty$.

Let M be defined in \mathbb{C}^2 by

$$\operatorname{Re}(w) + e^{-\frac{1}{|z|^2}} = 0.$$

The complex line $\gamma(t) = (t, 0)$ is such that $\nu(r \circ \gamma) = \infty$.

Theorem 3 (Kim-Thu, 2015)

There exist smooth real hypersurfaces M of infinite type for which the supremum in

$${f T}(M,p) = \sup_{\gamma} rac{
u(r \circ \gamma)}{
u(\gamma)}$$

is not achieved.

Let *M* be defined in \mathbb{C}^2 by

$$\operatorname{Re}(w) + e^{-\frac{1}{|z|^2}} = 0.$$

The complex line $\gamma(t) = (t, 0)$ is such that $\nu(r \circ \gamma) = \infty$.

Theorem 3 (Kim-Thu, 2015)

There exist smooth real hypersurfaces M of infinite type for which the supremum in

$${f T}(M,p) = \sup_{\gamma} rac{
u(r \circ \gamma)}{
u(\gamma)}$$

is not achieved.

Such M can be taken to be pseudoconvex (Fornæss-Thu, 2018).

A smooth function f is said to be *flat* at a point p if all derivatives of f vanish at p.

A smooth function f is said to be *flat* at a point p if all derivatives of f vanish at p.

Proposition 4

Let $A \subset \mathbb{R}^n$ be a closed set. There exists a function $f \in C^{\infty}(\mathbb{R}^n)$ such that $f^{-1}(0) = A$ and f is **flat** at every point of A.

A smooth function f is said to be *flat* at a point p if all derivatives of f vanish at p.

Proposition 4

Let $A \subset \mathbb{R}^n$ be a closed set. There exists a function $f \in C^{\infty}(\mathbb{R}^n)$ such that $f^{-1}(0) = A$ and f is **flat** at every point of A.

The function f can be taken to be

- bounded,
- non-negative,
- real analytic outside A.

Theorem 5

Let \mathcal{H} be a real hyperplane in \mathbb{C}^n , and A any closed subset in \mathcal{H} . There exists a smooth real hypersurface M such that $\mathcal{I}_M = A$.

Theorem 5

Let \mathcal{H} be a real hyperplane in \mathbb{C}^n , and A any closed subset in \mathcal{H} . There exists a smooth real hypersurface M such that $\mathcal{I}_M = A$.

Proof.

Take \mathcal{H} : Im $z_n = 0$. Consider a smooth $f(z_1, \overline{z}_1, \dots, z_{n-1}, \overline{z}_{n-1}, \operatorname{Re} z_n)$ such that • $f^{-1}(0) = A$

• f is flat at every point of A.

Theorem 5

Let \mathcal{H} be a real hyperplane in \mathbb{C}^n , and A any closed subset in \mathcal{H} . There exists a smooth real hypersurface M such that $\mathcal{I}_M = A$.

Proof.

Take \mathcal{H} : Im $z_n = 0$. Consider a smooth $f(z_1, \overline{z}_1, \dots, z_{n-1}, \overline{z}_{n-1}, \operatorname{Re} z_n)$ such that • $f^{-1}(0) = A$ • f is flat at every point of A. Let M be defined by Im $z_n = f(z_1, \overline{z}_1, \dots, z_{n-1}, \overline{z}_{n-1}, \operatorname{Re} z_n)$. Then • $M \cap \mathcal{H} = A$.

Theorem 5

Let \mathcal{H} be a real hyperplane in \mathbb{C}^n , and A any closed subset in \mathcal{H} . There exists a smooth real hypersurface M such that $\mathcal{I}_M = A$.

Proof.

Take \mathcal{H} : Im $z_n = 0$. Consider a smooth $f(z_1, \overline{z}_1, \dots, z_{n-1}, \overline{z}_{n-1}, \operatorname{Re} z_n)$ such that • $f^{-1}(0) = A$ • f is flat at every point of A. Let M be defined by Im $z_n = f(z_1, \overline{z}_1, \dots, z_{n-1}, \overline{z}_{n-1}, \operatorname{Re} z_n)$. Then • $M \cap \mathcal{H} = A$.

•
$$T(M, p) = \infty$$
 for every $p \in A$.

Theorem 5

Let \mathcal{H} be a real hyperplane in \mathbb{C}^n , and A any closed subset in \mathcal{H} . There exists a smooth real hypersurface M such that $\mathcal{I}_M = A$.

Proof.

Take \mathcal{H} : Im $z_n = 0$. Consider a smooth $f(z_1, \overline{z}_1, \dots, z_{n-1}, \overline{z}_{n-1}, \operatorname{Re} z_n)$ such that • $f^{-1}(0) = A$ • f is flat at every point of A. Let *M* be defined by Im $z_n = f(z_1, \overline{z}_1, \dots, z_{n-1}, \overline{z}_{n-1}, \text{Re } z_n)$. Then • $M \cap \mathcal{H} = A$. • $\mathbf{T}(M, p) = \infty$ for every $p \in A$. • $\mathbf{T}(M, p) < \infty$ for every $p \in M \setminus \mathcal{H}$.

The set \mathcal{I}_M : Examples in \mathbb{C}^2

The set \mathcal{I}_M : Examples in \mathbb{C}^2

The truncated cone in \mathbb{R}^3 represents the intersection of a real hypersurface M in \mathbb{C}^2 with the hyperplane Im $z_2 = 0$. It consists of all the points of infinite type for M.

The set \mathcal{I}_M : Examples in \mathbb{C}^2

The sponge is the intersection of a real hypersurface M in \mathbb{C}^2 with the hyperplane Im $z_2 = 0$. It consists of all the points of infinite type for M.

Let M be defined by

$$2\operatorname{\mathsf{Re}} w + f(z,\overline{z}) + (2\operatorname{\mathsf{Im}} w)g(z,\overline{z},\operatorname{\mathsf{Im}} w) = 0,$$

where f and g are smooth functions and f(0) = df(0) = g(0) = 0.

Let M be defined by

$$2\operatorname{\mathsf{Re}} w + f(z,\overline{z}) + (2\operatorname{\mathsf{Im}} w)g(z,\overline{z},\operatorname{\mathsf{Im}} w) = 0,$$

where f and g are smooth functions and f(0) = df(0) = g(0) = 0.

Algorithm

• If
$$\nu(f) = \infty$$
, then $\mathbf{T}(M, 0) = \infty$.

Let M be defined by

$$2\operatorname{\mathsf{Re}} w + f(z,\overline{z}) + (2\operatorname{\mathsf{Im}} w)g(z,\overline{z},\operatorname{\mathsf{Im}} w) = 0,$$

where f and g are smooth functions and f(0) = df(0) = g(0) = 0.

Algorithm

- If $\nu(f) = \infty$, then $\mathbf{T}(M, 0) = \infty$.
- If $\nu(f) = m \neq \infty$, consider the homogeneous term f_m in the Taylor expansion of f at 0.

Let M be defined by

$$2\operatorname{\mathsf{Re}} w + f(z,\overline{z}) + (2\operatorname{\mathsf{Im}} w)g(z,\overline{z},\operatorname{\mathsf{Im}} w) = 0,$$

where f and g are smooth functions and f(0) = df(0) = g(0) = 0.

Algorithm

- If $\nu(f) = \infty$, then $\mathbf{T}(M, 0) = \infty$.
- If $\nu(f) = m \neq \infty$, consider the homogeneous term f_m in the Taylor expansion of f at 0.
 - If f_m is not harmonic, then $\mathbf{T}(M, 0) = m$.

Let M be defined by

$$2\operatorname{\mathsf{Re}} w + f(z,\overline{z}) + (2\operatorname{\mathsf{Im}} w) g(z,\overline{z},\operatorname{\mathsf{Im}} w) = 0,$$

where f and g are smooth functions and f(0) = df(0) = g(0) = 0.

Algorithm

• If
$$\nu(f) = \infty$$
, then $\mathbf{T}(M, 0) = \infty$.

- If $\nu(f) = m \neq \infty$, consider the homogeneous term f_m in the Taylor expansion of f at 0.
 - If f_m is not harmonic, then $\mathbf{T}(M, 0) = m$.
 - If f_m is harmonic, $f_m = 2 \operatorname{Re} F_m$, perform the change of coordinates

$$\begin{cases} \tilde{z} = z \\ \tilde{w} = w + F_m \end{cases}$$

and repeat the analysis on the new defining function.

Detecting finite type in \mathbb{C}^2 : Example

Let M be defined by

$$2\operatorname{Re} w + \underbrace{z^2 + \overline{z}^2}_{2\operatorname{Re} z^2} + (2\operatorname{Im} w)(z + \overline{z}) = 0.$$

Detecting finite type in \mathbb{C}^2 : Example

Let M be defined by

$$2\operatorname{Re} w + \underbrace{z^2 + \overline{z}^2}_{2\operatorname{Re} z^2} + (2\operatorname{Im} w)(z + \overline{z}) = 0.$$

Perform the change of coordinates

$$\begin{cases} \tilde{z} = z \\ \tilde{w} = w + z^2 \end{cases}$$

In the new coordinates M is defined by

$$2\operatorname{\mathsf{Re}} \tilde{w} + i(\tilde{z}^2 - \overline{\tilde{z}}^2)(\tilde{z} + \overline{\tilde{z}}) + (2\operatorname{\mathsf{Im}} \tilde{w})(\tilde{z} + \overline{\tilde{z}}) = 0.$$

Detecting finite type in \mathbb{C}^2 : Example

Let M be defined by

$$2\operatorname{Re} w + \underbrace{z^2 + \overline{z}^2}_{2\operatorname{Re} z^2} + (2\operatorname{Im} w)(z + \overline{z}) = 0.$$

Perform the change of coordinates

$$\begin{cases} \tilde{z} = z \\ \tilde{w} = w + z^2 \end{cases}$$

In the new coordinates M is defined by

$$2\operatorname{Re} \tilde{w} + i(\tilde{z}^2 - \overline{\tilde{z}}^2)(\tilde{z} + \overline{\tilde{z}}) + (2\operatorname{Im} \tilde{w})(\tilde{z} + \overline{\tilde{z}}) = 0.$$
$$\mathbf{T}(M, 0) = 3 \text{ and is realized by the curve } (t, 0).$$

Theorem 6 (Folklore)

Let *M* be a smooth real hypersurface in \mathbb{C}^2 and $p \in M$. Then T(M, p) = m if and only if there exist coordinates $\{z, w\}$ for which *p* is the origin and *M* has a local defining function at *p* of the form

$$2\operatorname{Re} w + f(z,\overline{z}) + (2\operatorname{Im} w)g(z,\overline{z},\operatorname{Im} w) = 0.$$

Here

- The functions f, g are smooth and f(0) = df(0) = g(0) = 0.
- **2** The function f vanishes to order m at 0.
- The homogeneous term f_m of order m in the Taylor series of f at 0 is not harmonic.

Detecting finite type in \mathbb{C}^2 : the rigid case

Definition 7

A smooth function f is said to be *formally harmonic* at p if the Taylor expansion of f at p contains only harmonic terms.

Definition 7

A smooth function f is said to be *formally harmonic* at p if the Taylor expansion of f at p contains only harmonic terms. Equivalently, if Δf vanishes to infinite order at p.

Definition 7

A smooth function f is said to be *formally harmonic* at p if the Taylor expansion of f at p contains only harmonic terms. Equivalently, if Δf vanishes to infinite order at p.

Corollary 8

Let M be a smooth real hypersurface in \mathbb{C}^2 globally defined by

$$\mathsf{Im}(w) = f(z,\overline{z}),$$

where $f(z, \overline{z})$ is a smooth function. Then **1** $\mathbf{T}(M, p) = \infty$ if and only if f is formally harmonic at p. **2** $\mathbf{T}(M, p) = m$ if and only if $\nu_p(\Delta f(z, \overline{z})) = m - 2$.

Theorem 9

Let $A \subset \mathbb{R}$ be a closed set. There exists a smooth pseudoconvex real hypersurface M in \mathbb{C}^2 such that $\mathcal{F}_M \simeq A \times \mathbb{R}$.

Theorem 9

Let $A \subset \mathbb{R}$ be a closed set. There exists a smooth pseudoconvex real hypersurface M in \mathbb{C}^2 such that $\mathcal{F}_M \simeq A \times \mathbb{R}$.

Proof.

Let z = x + iy. Take h(x) non-negative smooth such that $h^{-1}(0) = A$, with h being flat at every point of A.

Theorem 9

Let $A \subset \mathbb{R}$ be a closed set. There exists a smooth pseudoconvex real hypersurface M in \mathbb{C}^2 such that $\mathcal{F}_M \simeq A \times \mathbb{R}$.

Proof.

Let z = x + iy. Take h(x) non-negative smooth such that $h^{-1}(0) = A$, with h being flat at every point of A. Let

$$f(z,\overline{z}) = y^{2m+2} + \int_0^x \int_0^t h(\tau) \, d\tau \, dt.$$

Define *M* by Im $w = f(z, \overline{z})$.

Theorem 9

Let $A \subset \mathbb{R}$ be a closed set. There exists a smooth pseudoconvex real hypersurface M in \mathbb{C}^2 such that $\mathcal{F}_M \simeq A \times \mathbb{R}$.

Proof.

Let z = x + iy. Take h(x) non-negative smooth such that $h^{-1}(0) = A$, with h being flat at every point of A. Let

$$f(z,\overline{z}) = y^{2m+2} + \int_0^x \int_0^t h(\tau) \, d\tau \, dt.$$

Define *M* by Im $w = f(z, \overline{z})$. Then

$$\Delta f(z,\overline{z}) = \frac{y^{2m}}{(2m+2)(2m+1)} + h(x).$$

The set \mathcal{F}_M : Example

The shaded region is the projection onto Im w = 0 of the set \mathcal{F}_M .

The set \mathcal{F}_M : Cantor trees of finite type points

In \mathbb{C}^2 every "tree" sits at a potentially different (Im w)-coordinate.

One can prescribe directly Δf to be some smooth function u with the wanted vanishing properties, then solve globally

$$\Delta f = u$$
 in \mathbb{C}

(by applying Hörmander $\overline{\partial}$ -solution twice). Finally, define M by

$$\operatorname{Im} w = f(z,\overline{z}).$$

The set \mathcal{F}_M : Cantor forest of finite type points

Let $\theta_1, \ldots, \theta_s$ be in $[0, \pi]$, and define

$$\begin{bmatrix} x_j \\ y_j \end{bmatrix} = \begin{bmatrix} \cos \theta_j & \sin \theta_j \\ -\sin \theta_j & \cos \theta_j \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$u = \prod_{j=1}^s (y_j^{2m_j} + h(x_j)).$$

The set \mathcal{F}_M : Cantor forest of finite type points

Let $\theta_1, \ldots, \theta_s$ be in $[0, \pi]$, and define

$$\begin{bmatrix} x_j \\ y_j \end{bmatrix} = \begin{bmatrix} \cos \theta_j & \sin \theta_j \\ -\sin \theta_j & \cos \theta_j \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$u = \prod_{j=1}^{s} (y_j^{2m_j} + h(x_j)).$$

Solve

$$\Delta f = u$$
 in \mathbb{C} ,

and let M be defined by

$$\operatorname{Im} w = f(z,\overline{z}).$$

The set \mathcal{F}_M : Cantor forest of finite type points

The "forest" is the projection onto Im w = 0 of the set \mathcal{F}_M .

Solve

$$\Delta f = y^2 - \sin\left(\frac{\pi}{x}\right)e^{-\frac{1}{x^2}}$$
 in \mathbb{C} ,

Let M be the rigid real hypersurface defined in \mathbb{C}^2 by

 $\operatorname{Im} w = f(z,\overline{z}).$

Recall that the points in \mathcal{F}_M are the ones at which Δf vanishes to finite order.

Theorem 10 (Bär, 1999)

Let U be an open neighborhood of 0 in \mathbb{R}^n . Let $f: U \to \mathbb{R}$ be a smooth function vanishing to finite order at 0. Then for sufficiently small r > 0 the set $f^{-1}(0) \cap B(0, r)$ is countably $(n-1) - C^{\infty}$ -rectifiable.

Theorem 10 (Bär, 1999)

Let U be an open neighborhood of 0 in \mathbb{R}^n . Let $f: U \to \mathbb{R}$ be a smooth function vanishing to finite order at 0. Then for sufficiently small r > 0 the set $f^{-1}(0) \cap B(0, r)$ is countably $(n-1) - C^{\infty}$ -rectifiable.

Corollary 11

Let M be a smooth rigid real hypersurface in \mathbb{C}^2 . Then the set \mathcal{F}_M is contained in the countable union of smooth codimension 1 submanifolds. In particular, \mathcal{F}_M is of measure zero.

Theorem 10 (Bär, 1999)

Let U be an open neighborhood of 0 in \mathbb{R}^n . Let $f: U \to \mathbb{R}$ be a smooth function vanishing to finite order at 0. Then for sufficiently small r > 0 the set $f^{-1}(0) \cap B(0, r)$ is countably $(n-1) - C^{\infty}$ -rectifiable.

Corollary 11

Let M be a smooth rigid real hypersurface in \mathbb{C}^2 . Then the set \mathcal{F}_M is contained in the countable union of smooth codimension 1 submanifolds. In particular, \mathcal{F}_M is of measure zero.

To generalize examples and results to rigid real hypersurfaces in \mathbb{C}^n one needs to replace the Laplace operator with the Monge-Ampère operator.

(Open?) Question

Is it true that $T(M, p) < \infty$ implies that the Levi determinant vanishes to finite order at p (along the tangential directions)?

Thank you for your attention!