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D’Angelo type

Let M be a smooth real hypersurface in Cn.

Recall the definition of type of M at a point p given by D’Angelo.

M

p

It measures the maximum order of contact of M at p with
(possibly singular) holomorphic curves.



D’Angelo type

Let r be a local defining equation for M at p.

For every germ of a holomorphic curve γ at p consider ν(r◦γ)
ν(γ) .

γ

M = {r = 0}

p

T(M, p) = sup
γ

ν(r ◦ γ)

ν(γ)
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The local perspective

Work on local normal forms at a point of finite/infinite type:
Ebenfelt, Lamel, Kolá̌r, Kossovskiy, Meylan, Stanton, Wong,
Zaitsev, ...

Finite type was introduced to characterize local properties
(subellipticity of ∂): Catlin, D’Angelo, Kohn, ...
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The global perspective

Theorem 1 (D’Angelo, 1982)

Let M be a smooth real hypersurface in Cn. Then the set

{p ∈ M |T(M, p) 6=∞}

is an open subset of M.

Type=2 is also an open condition (Levi non-degeneracy).

We consider the set of Levi degenerate finite type points

FM := {p ∈ M | 2 < T(M, p) <∞}.

Questions

How arbitrary is the set FM?

Does FM have any structure?

Same questions for IM := {p ∈ M | T(M, p) =∞}.
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Smooth vs Real Analytic setting

Proposition 2 (D’Angelo)

Let M be a real analytic hypersurface in Cn, and let p ∈ M be
such that T(M, p) =∞. Then M contains the germ of a
holomorphic curve γ through p.

Let M be defined in C3 by

Re z3 + |z21 − z32 |2 = 0.

T(M, 0) =∞, since M contains γ(t) = (t3, t2, 0).
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Smooth vs Real Analytic setting

Let M be defined in C2 by

Re(w) + e
− 1

|z|2 = 0.

The complex line γ(t) = (t, 0) is such that ν(r ◦ γ) =∞.

Theorem 3 (Kim-Thu, 2015)

There exist smooth real hypersurfaces M of infinite type for which
the supremum in

T(M, p) = sup
γ

ν(r ◦ γ)

ν(γ)

is not achieved.

Such M can be taken to be pseudoconvex (Fornæss-Thu, 2018).
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Whitney extension - flat version

A smooth function f is said to be flat at a point p if all derivatives
of f vanish at p.

Proposition 4

Let A ⊂ Rn be a closed set. There exists a function f ∈ C∞(Rn)
such that f −1(0) = A and f is flat at every point of A.

The function f can be taken to be

bounded,

non-negative,

real analytic outside A.



Whitney extension - flat version

A smooth function f is said to be flat at a point p if all derivatives
of f vanish at p.

Proposition 4

Let A ⊂ Rn be a closed set. There exists a function f ∈ C∞(Rn)
such that f −1(0) = A and f is flat at every point of A.

The function f can be taken to be

bounded,

non-negative,

real analytic outside A.



Whitney extension - flat version

A smooth function f is said to be flat at a point p if all derivatives
of f vanish at p.

Proposition 4

Let A ⊂ Rn be a closed set. There exists a function f ∈ C∞(Rn)
such that f −1(0) = A and f is flat at every point of A.

The function f can be taken to be

bounded,

non-negative,

real analytic outside A.



The set IM = {p ∈ M | T(M , p) =∞}

Theorem 5

Let H be a real hyperplane in Cn, and A any closed subset in H.
There exists a smooth real hypersurface M such that IM = A.

Proof.

Take H : Im zn = 0.
Consider a smooth f (z1, z1, . . . , zn−1, zn−1,Re zn) such that

f −1(0) = A

f is flat at every point of A.

Let M be defined by Im zn = f (z1, z1, . . . , zn−1, zn−1,Re zn). Then

M ∩H = A.

T(M, p) =∞ for every p ∈ A.

T(M, p) <∞ for every p ∈ M \ H.
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The set IM : Examples in C2

Re z1

Re z2

Im z1



The set IM : Examples in C2

Re z1

Re z2

Im z1

The truncated cone in R3 represents the intersection of a real
hypersurface M in C2 with the hyperplane Im z2 = 0. It consists of
all the points of infinite type for M.



The set IM : Examples in C2

The sponge is the intersection of a real hypersurface M in C2 with
the hyperplane Im z2 = 0. It consists of all the points of infinite
type for M.



Detecting finite type in C2: the algorithm

Let M be defined by

2 Rew + f (z , z) + (2 Imw) g(z , z , Imw) = 0,

where f and g are smooth functions and f (0) = df (0) = g(0) = 0.

Algorithm

If ν(f ) =∞, then T(M, 0) =∞.

If ν(f ) = m 6=∞, consider the homogeneous term fm in the
Taylor expansion of f at 0.

If fm is not harmonic, then T(M, 0) = m.
If fm is harmonic, fm = 2 ReFm, perform the change of
coordinates {

z̃ = z

w̃ = w + Fm,

and repeat the analysis on the new defining function.
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Detecting finite type in C2: Example

Let M be defined by

2 Rew + z2 + z2︸ ︷︷ ︸
2Re z2

+(2 Imw)(z + z) = 0.

Perform the change of coordinates{
z̃ = z

w̃ = w + z2.

In the new coordinates M is defined by

2 Re w̃ + i(z̃2 − z̃
2
)(z̃ + z̃) + (2 Im w̃)(z̃ + z̃) = 0.

T(M, 0) = 3 and is realized by the curve (t, 0).
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Detecting finite type in C2

Theorem 6 (Folklore)

Let M be a smooth real hypersurface in C2 and p ∈ M. Then
T(M, p) = m if and only if there exist coordinates {z ,w} for
which p is the origin and M has a local defining function at p of
the form

2 Rew + f (z , z) + (2 Imw) g(z , z , Imw) = 0.

Here

1 The functions f , g are smooth and f (0) = df (0) = g(0) = 0.

2 The function f vanishes to order m at 0.

3 The homogeneous term fm of order m in the Taylor series of f
at 0 is not harmonic.



Detecting finite type in C2: the rigid case

Definition 7

A smooth function f is said to be formally harmonic at p if the
Taylor expansion of f at p contains only harmonic
terms.

Equivalently, if ∆f vanishes to infinite order at p.

Corollary 8

Let M be a smooth real hypersurface in C2 globally defined by

Im(w) = f (z , z),

where f (z , z) is a smooth function. Then

1 T(M, p) =∞ if and only if f is formally harmonic at p.

2 T(M, p) = m if and only if νp
(

∆f (z , z)
)

= m − 2.
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The set FM = {p ∈ M | 2 < T(M , p) <∞}

Theorem 9

Let A ⊂ R be a closed set. There exists a smooth pseudoconvex
real hypersurface M in C2 such that FM ' A× R.

Proof.

Let z = x + iy . Take h(x) non-negative smooth such that
h−1(0) = A, with h being flat at every point of A. Let

f (z , z) = y2m+2 +

∫ x

0

∫ t

0
h(τ) dτ dt.

Define M by Imw = f (z , z). Then

∆f (z , z) =
y2m

(2m + 2)(2m + 1)
+ h(x).
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The set FM : Example

Re z = x

Im z = y

Rew

A

The shaded region is the projection onto Imw = 0 of the set FM .



The set FM : Cantor trees of finite type points

Re z = x

Im z = y

Rew

A

In C2 every “tree” sits at a potentially different (Imw)-coordinate.



The set FM : More exotic examples

One can prescribe directly ∆f to be some smooth function u with
the wanted vanishing properties, then solve globally

∆f = u in C

(by applying Hörmander ∂-solution twice). Finally, define M by

Imw = f (z , z).



The set FM : Cantor forest of finite type points

Let θ1, . . . , θs be in [0, π], and define[
xj
yj

]
=

[
cos θj sin θj
− sin θj cos θj

] [
x
y

]

u =
s∏

j=1

(y
2mj

j + h(xj)).

Solve
∆f = u in C,

and let M be defined by

Imw = f (z , z).
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The set FM : Cantor forest of finite type points

Re z = x

Im z = y

Rew

A

The “forest” is the projection onto Imw = 0 of the set FM .



The set FM : Prison of finite type points

Solve
∆f = y2 − sin

(π
x

)
e−

1
x2 in C,

Let M be the rigid real hypersurface defined in C2 by

Imw = f (z , z).

Recall that the points in FM are the ones at which ∆f vanishes to
finite order.



A stratification result

Theorem 10 (Bär, 1999)

Let U be an open neighborhood of 0 in Rn. Let f : U → R be a
smooth function vanishing to finite order at 0. Then for sufficiently
small r > 0 the set f −1(0) ∩ B(0, r) is countably
(n − 1)− C∞−rectifiable.

Corollary 11

Let M be a smooth rigid real hypersurface in C2. Then the set FM

is contained in the countable union of smooth codimension 1
submanifolds. In particular, FM is of measure zero.

To generalize examples and results to rigid real hypersurfaces in Cn

one needs to replace the Laplace operator with the Monge-Ampère
operator.
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The non-rigid case

(Open?) Question

Is it true that T(M, p) <∞ implies that the Levi determinant
vanishes to finite order at p (along the tangential directions)?



Thank you for your attention!


