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1. Introduction

The Leray (or Cauchy-Leray) transform L is a higher dimensional analogue of the
familiar Cauchy transform on planar domains. Let 2 be a convex domain in C" with C?
boundary b€2 := S and defining function p. Given a function f defined on S, its Leray
transform L f is the holomorphic function defined for z € Q by the following formula:

Li(z) = / FOZ(2,0), (1.1a)

ces

_ 1 9p(¢) A (@9p(O))"
2= Gy 0. (L10)

The (n,n — 1)-form .Z is called the Leray kernel and (-,-) denotes the ordinary bilinear
pairing of (1,0)-forms and vectors. The operator L reproduces holomorphic functions
from their boundary values and generates holomorphic functions from more general
boundary data. It is straightforward to check that formula (1.1a) is independent of
the choice of defining function p used in (1.1b); see [23, Section IV.3.2]. Additional
background information on this operator is given in Section 2.

A body of recent work [5-9,17-20] has investigated the mapping and invariance prop-
erties of L in a variety of settings, with the construction of interesting holomorphic
function spaces seen as an important application. For instance, Barrett and Edholm [7]
studied L on the family of unbounded hypersurfaces

My ={(¢1,{) €C? 1 Im(G) = |G}, v>1, (1.2)

and used their findings to construct dual pairs of projectively invariant Hardy spaces.
In the present work, further analysis of the Leray transform on M, is carried out and
detailed analytic information is obtained. Throughout the paper, we always assume v > 1.

1.1. Distinguished measures

Let us parameterize M., by ((1,(2) = (re??, s +ir7), where r > 0, s € R, 0 € [0,27),
and consider measures of the form

pa =ridr Ado A ds, d € R.

Two measures are of particular importance to higher-dimensional Cauchy-Leray theory:
the pairing measure o and the preferred measure v; see [5-7]. On M., they take the form

o=r""tdr NdO A ds, (d
V:rj%ldr/\de/\ds, (d

vy —1), (1.3)
), (1.4)
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The pairing measure o arises as (a constant multiple of) the Leray-Levi measure corre-
sponding to the natural defining function p(¢) = |(1|” —Im((z2); see (2.1b). This measure
also appears in an alternative description of the Leray transform, facilitating a natural
bilinear pairing between projectively invariant dual Hardy spaces; see [7, Proposition
6.18]. The preferred measure v admits a projective transformation law; see (2.2). This
leads to a corresponding Leray transformation law in (2.4), and to the definition of the
aforementioned Hardy spaces in (2.5). These notions were introduced by Barrett [5, Sec-
tions 7 and 8] and developed further in [6,7]. See [7, Section 2] for a detailed discussion
in the M, setting.

Remark 1.5. Note that in the Heisenberg case (v = 2), the pairing and preferred measures
are equal and coincide with ordinary Lebesgue measure y; on the parameter space R3.
In fact, the Leray transform and the (orthogonal) Szegd projection coincide on L?(Ma,

pi). QO

In the present article, we show that the behavior of L on M, can be understood rather
explicitly. In particular, its exact norm is computed in a number of settings:

Theorem 1.6. The norm of L in LQ(M,Y,,ud) is determined for many v and d, including:

(a) The norm of the Leray transform on L?(Ma, j1q) is given by

Va1 —dysec (), de(-1,1)U(1,3)

1L\l 22 0ty ) =
PEMzopa) = d=1.

(b) The norm of the Leray transform on L*(M., p1) is given by

1_ s T
D =17 1\/1(’7*2)7686(27), v
, _
L2 (M- ,p1) 17 7:2

(¢) The norm of the Leray transform on L*(M.,,0) is given by

- '7
1Ll 20, 00 = =T

(d) The norm of the Leray transform on L*(M.,,v) is given by

o Y
1Ll 2, ) = WA =T

While the proofs of the parts of Theorem 1.6 employ different techniques that appear
throughout the paper, they all depend critically on analysis of the Leray symbol function
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J(d,~,k) defined in (1.7) below. The proof of part (a) is found in Corollary 3.16. Parts
(b) and (c¢) are found in Section 4, where the Bernstein-Widder theorem and the notion
of complete montonicity play important roles; see Corollaries 4.25 and 4.27, which them-
selves are “endpoint cases” of the more general Theorem 4.23. The preferred measure
result, part (d), is the most difficult to prove. Starting in Section 5, we use the Euler-
Maclaurin summation formula to carry out lengthy analysis, eventually transforming
the problem into concrete questions about the positivity of certain explicit polynomials.
The calculation of the norm of L with respect to the preferred measure v concretely
answers an open question on a natural pairing of projective dual Hardy spaces on M.;
see Proposition 2.6.

To contextualize our results and methods, we provide a short summary of previously
known facts about the Leray transform acting on L?(M,, yq).

1.2. The Leray symbol function

In [7], the rotational symmetry in ¢; yields an orthogonal decomposition of L on
LQ(MW,ud) into sub-Leray operators Ly; see Section 2.3:

We recall for non-negative k € Z, the Leray symbol function of L*(M.,, j1q):

J(d,v,k) =

D (L) (2 4 2 — Ziled (W)M (y— 1)~ (2255 g g

i z
T(k+1)2 2
Proposition 1.8 (Barrett-Edholm [7]). Ly, is bounded on L*(M.,, uq) if and only if
de (—2k—1,(2k+2)(y—1)+1) :=TZy(7). (1.9)

When d is taken in this interval,

||LkHL2(MV,,Ld) =V J(d, v, k). (1.10)

The above intervals are nested, i.e., Zy(v) C Zp+1(7y), and they exhaust the real
line as k — oo. Thus, for any given d, at most a finite number of Lj are unbounded
on L?*(M,, j1q). Remarkably, the symbol function (and therefore the norm of the Ly)
stabilizes to the same value as k — oo, independent of the choice of d:

Proposition 1.11 (Barrett-Edholm [7]). For any d € R, the following limit holds

' B Y
kli)II;OHLkHLZ(Mde) o m
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In Fig. 1 below, the stabilization of the symbol function can be seen for several different
d values in the case v = 5. There is an intriguing relationship between the limit in
Proposition 1.11 and a projective geometric invariant on M,. This is related to the
Leray essential norm conjecture; see [7, Section 2.3].

The range of d for which the full operator L is bounded on L?(M,, f14) can now be
deduced from the previous two propositions:

Corollary 1.12 (Barrett-Edholm [7]). The Leray transform L is a bounded operator from
L2(M,, pa) to itself if and only if d € (—1,2y — 1) = Zo(y).

Remark 1.13. Due to the prominence of measures o and v, we use alternate notation
when the symbol function corresponds to d =y — 1 and d = 'YT'H, as indicated by (1.3)
and (1.4):

Co(y
Cy ('7

7k) = J(’Y*L'}/, k)v (114&)
k) = (k). (1.14b)
We call C, and C,, the pairing symbol and preferred symbol functions, respectively.

1.8. Symbol function monotonicity and symmetries

The results in Section 1.2 show that L is bounded on L?(M.,, p1q) if and only if the
sub-Leray operator Lg is bounded there. But the norm of the full Leray transform is
determined by maximizing the function

k— \Y J(da’%k) = ||Lk||L2(Mﬂ,,ud)

over the positive integers, which is often very difficult. One way to approach this maxi-
mization problem is to investigate when the symbol function is monotone.

In [7] it is shown that for v # 2, the pairing symbol function & — Cy, (v, k) (corre-
sponding to d = vy — 1) is strictly decreasing. But this is not necessarily true for other
values of d, as is seen in Fig. 1, which illustrates how the behavior of the symbol function
can change as d varies within the boundedness interval Zp(y) = (—1,2y — 1).

While symbol function monotonicity fails to hold in general, for many choices of d
and v (including the cases that we are most interested in), it does hold:

Theorem 1.15. The sub-Leray operators Ly exhibit the following monotone behavior.

(a) If y =2 and d € (—1,1) U (1,3), the function k — J(d,~,k) is strictly decreasing
on the non-negative integers. Thus

ILwll 2 (vt oy > 1Lkl 2y g0y -
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Fig. 1. Behavior of k — J(d, 5, k) for certain 1 < d < 4.

) If vy > 2 and d € (-1,1]U [y — 1,2y — 1), the function k — J(d,~,k) is strictly
decreasing on the non-negative integers. Thus

WLkl L2 ary gy > kil L2 ar, i) -
(¢) Ify < 2andd € (=1,y — 1JU[1,2y — 1), the function k — J(d,~,k) is strictly

decreasing on the non-negative integers. Thus

WLkl r2ar, gy > ILktall 2 ar, o) -

(d) Let v # 2. The preferred symbol function k — C,(v,k) = J(’YTH,’)/, k) is strictly
increasing on the non-negative integers. Thus,

1Ll 22 ary ) < I Ektall L2 gar, ) -

The monotonicity result in part (a) is shown in Theorem 3.13, parts (b) and (c) are
shown in Theorem 4.23, and part (d) in Theorem 5.22. The proofs here depend on careful
analysis of certain combinations of polygamma functions. This is previewed in Section 1.4
below.

Remark 1.16. The norm and monotonicity results in Theorems 1.6 and 1.15 have imme-
diate implications for the spectra of the related self-adjoint operators L*L, LL* and the
anti self-adjoint L™ — L; see [7, Section 5.3]. ¢

1.8.1. Hélder symmetry of the symbol

In what follows, v* = 25 denotes the Hélder conjugate of 5. In [7] the pairing symbol
v
function is shown to be Holder symmetric, i.e.,

Ca(’Yv k) = 00(7*7 k)
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This observation meshes well with our understanding of Cauchy-Leray theory from a
projective dual point of view, as M.~ is known to be the projective dual hypersurface of
M.,; see [7, Section 6.1]. But it was never clarified in the previous work whether a more
general version of this correspondence holds when other measures are considered, and in
particular, if the preferred symbol function C, (v, k) is Holder invariant.

We prove here that a form of Hélder invariance holds for every choice of v # 2, d € R.
Indeed, given a pair (v, d), we show that there is a unique d’ such that the behavior of
Ly, on L?(M,, j1q) parallels its behavior in L?(M.«, jta). To understand this symmetry
and the value of d’ more explicitly, we re-parameterize the exponent of pg as follows.
Given d € R (since v # 2), choose the unique a € R satisfying

d=a(y—=2)+1:=5,(7). (1.17)

Theorem 1.18. The symbol function J(04(7),, k) is Holder symmetric, in that

J(da(7)7 s k) = J(5a(7*)7 V*a k)

This theorem is proved in Section 3.1. Taking a = % corresponds to d = WTH, which

implies the Holder symmetry of the preferred symbol function:

Cu(% k) = CV(’}/*7 k)

Taking a = 0 shows that J(1,v,k) = J(1,v* k), verifying the analogous invariance
property holds for the symbol functions associated to the Lebesgue measure p;. The
Holder symmetry of the symbol function plays an important role in the proofs of both
Theorems 1.6 and 1.15, and arises from the projective dual nature of the Leray transform;
see Section 2.1.

1.4. Polygamma inequalities and complete monotonicity

Recall the digamma function 1, which is the logarithmic derivative of the familiar
I-function:

Y(r) = : (1.19)

Further derivatives of 1 are called polygamma functions. They satisfy interesting func-
tional identities and arise naturally in both analytic and number theoretic settings; see
[1]. The polygamma functions admit several practical representations; we make use of
both the series form given in (3.17) and the integral form given in (4.5).

The following combination of polygamma functions plays a central role in this paper.

O(r,q) :==r*Y"(r+1—q) +2r' (r +1—q).
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Fig. 2. Behavior of r — ®(r, q) for certain 0 < ¢ < 1.

Fig. 2 shows the function r — ®(r,q) plotted for certain fixed ¢. In Lemma 3.21, we
show the behavior of the Leray symbol function is closely tied to the behavior of ®(r, q):

o if ®(r,q) <1 forr> g, then k — J(61-4(7),7, k) is strictly decreasing.
o if ®(r,q) > 1 for r > ¢, then k — J(61-4(7),, k) is strictly increasing.

(Here 61_4(v) is given by (1.17) witha=1—gq.)
Theorem 1.20. Sharp polygamma inequalities related to the symbol function are obtained.
(a) If g € (—00,0] U [1,00), the following holds for r > q
D(r,q) =1’ (r+1—q)+2r'(r+1—-¢q) <1
(b) When q = %, the following holds for r > %
O(r,2) =r*¢/(r+3)+2r)/(r+ %) > 1

The proof of Theorem 1.20 part (a) is found in Corollary 4.21, where the inequality fol-
lows by proving the complete monotonicity of a closely related function in Theorem 4.15.
The q = % result in part (b) corresponds directly to the preferred symbol function. We
prove this inequality in Theorem 5.5 using a series representation for ®(r, %)

There is a large body of literature on inequalities involving combinations of
polygamma functions; see, e.g., [2,3,12-16,22] and the references therein. The inequal-
ities in Theorem 1.20 appear to be new and we suspect that mathematicians working
in special function theory will take interest in results found in Sections 4, 5, and the
Appendix.

The paper is organized as follows. Section 2 provides background material on the
Leray transform. In Section 3 we establish new symmetries for the symbol function,
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which is then related to ®(r, ¢). In Section 4 we introduce the Bernstein-Widder theorem
and prove several polygamma and symbol function inequalities. In Section 5 the Euler-
Maclaurin formula is used to study the preferred symbol function and the corresponding
D(r, %) The proof of one especially difficult estimate used in Section 5 is postponed until
the Appendix.

1.5. Acknowledgments

We thank Dave Barrett and Bernhard Lamel for their comments. We also thank the
anonymous referee for positive feedback and several helpful suggestions to improve the

paper.
2. The Leray transform

The hypersurfaces M., serve as the boundary of (unbounded) convex domains in C 2,
But the Leray transform L and Leray kernel

1 9p(¢Q) A (98p(¢))" !
(2mi)™  (9p(C),¢ — 2)"

can in fact be defined on the more general class of C-convex domains. A domain 2 is

Z(z,¢) =

C-convex if every (non-empty) intersection with a complex line is both connected and
simply connected. This condition ensures the non-vanishing of the denominator of the
Leray kernel for any z € 2. Both the Leray transform and the notion of C-convexity can
be profitably studied in projective space CIP™. This is briefly discussed in Sections 2.1
and 2.2 below; see [4] for a detailed treatment of this topic.

It is often useful to decompose the Leray kernel .Z into two pieces:

E(Z,C) = <5P(C)7C—Z>_na (213)
3(€) = G 00(C) A G000 (20)

We refer to A\, as the Leray-Levi measure. Readers are invited to draw the connection
between A, and the volume form § A df"~! associated to the pseudo-hermitian structure
arising from the contact form 6 = idp; see [21]. By itself, A\, clearly depends on the
choice of defining function, though natural choices of p often correspond to important
measures. See [17] for a survey on L and related operators within the Cauchy-Fantappié
framework.

Barrett and Lanzani [8] study the L2-theory of L on smoothly bounded, strongly
convex Reinhardt domains in C2. They obtain detailed spectral information on L*L,
LL” and L* — L, and relate the essential norm of L to a geometric invariant of the
domain. Several articles by Lanzani and Stein have investigated other aspects the Leray
transform. In [18] they prove that L preserves LP spaces (1 < p < oo) whenever the
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hypersurface S is bounded, strongly C-linearly convex and C1'! smooth. In [19,20] they
show that counter-examples to LP-boundedness exist when the smoothness or convexity
hypotheses are relaxed.

2.1. Projective invariance

In [5, Section 5], Barrett defines a projective geometric invariant associated to any
smoothly bounded, strongly C-convex hypersurface S. He uses it [5, Section 8] to con-
struct a projectively invariant measure vg: If @ is an automorphism of CP”, the measure
transforms as

O (vg(s)) = | det ®[+57 v, (2.2)

We refer to vs as the preferred measure. Equation (2.2) shows that the operator
[ (det ®)=+1 - (f o ®) (2.3)
maps L? (<I>(S ), Vq,(s)) isometrically to L?(S, vs). If we use the Radon-Nikodym Theorem

to re-express the Leray kernel (1.1b) in terms of the preferred measure, then the Leray
transform admits the transformation law

Ls ((det ®) 77 (f 0 ®)) = (det ®') w7 (Lags)(f) o @) (2.4)

see [5, Section 9] and [9, Section 5]. When the Leray transform is bounded on L*(S,vs)
(e.g., when Lanzani-Stein conditions of [18] hold), it can be used to define projectively
invariant Hardy spaces consisting of the boundary values of holomorphic functions:

HQ(S, 1/5) = LS (LQ(S, 1/5)) . (2.5)
2.2. Projective duality

Given a smooth strongly C-convex hypersurface S C CP", there is a unique complex
tangent hyperplane at each ¢ € S. This determines a unique point in a dual copy of
CP™; the set of all such points form the dual hypersurface S*.

In [5, Section 6], Barrett shows that $* is smoothly bounded and strongly C-convex
whenever § is, and further, that S and &* are diffeomorphic. If w : § — §* is a such a
diffeomorphism, it can be used to pull back the space H?(S*,vs-) by setting

H3 (S, v5) =w* (HQ(S*7 1/5*)) , where v =w*(vs+).

The pairing measure os is defined as the geometric mean of vs and v§.
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Given functions f € H*(S,vs) and g € H3 . (S,v%), define their bilinear pairing as

) = / (090 a5(C).
S

The map X, : g — (-, g) gives a quasi-isometric identification of H3 ,(S,v%) with
function theoretic dual space H?(S,vs)’. In the M., setting, we have the following result:

Proposition 2.6 (Barrett-Edholm [7]). The operator X : H3 (M., v) — H*(M,,v) is
an invertible map with

H HH2 M,,v) ||L||L2(M7,u)
In light of Theorem 1.6 part (d) we can now express this as a concrete number:

Theorem 2.7. The operator X~ : H3 (M., v) — H?*(M,,v)" is an invertible map with

ual

S R — (2.8)

-1
H HH2(M vy 27 —1

2.5. Leray theory on M.,

The following material is found in [7, Sections 3, 5]. As in the introduction, parame-
terize M., by ((1,(2) = (re?, s +ir?) and consider the measures

pa = rédr Adf A ds, d e R.

The pairing measure o (d = v — 1) arises as (a constant multiple of) the Leray-Levi
measure corresponding to the defining function p(¢) = |¢1]7 — Im((2).

Rotational symmetry in ¢; yields a decomposition of L?(M., uq) into an orthogonal
sum of subspaces L2 (M., j1q), each consisting of functions of the form fi(r, s)e™*?. Like-
wise, the Leray transform decomposes into orthogonal sub-Leray operators Ly, each
mapping L?(M,, juiq) to LZ(M,,pg) whenever it is bounded: L = @y, Ly. Given
[ € L*(M,, j1q), the following inequality holds; see [7, Theorem 5.2]:

||kaHL2(M7,;Ld) < VJ(dy,k) - Hf”p(MmM) ) (2.9)

where J(d,~, k) is the symbol function defined in (1.7). It turns out there always exist
functions f(r, s)e™*? € L2(M,, uq) achieving equality in the relation (2.9) above.

If f(r,s,0) = > fru(r, 5)e*?  orthogonality implies the following; see [7, Corollary
5.4]:
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NEFIP = SO NEef I = Y ki ™| < 37 J(dy, B fell* < MY 1l
k=0 k=0 k=0 k=0
=M|f|%,

where M denotes the supremum of J(d, v, k) as k ranges over the non-negative integers.
But since the norm of each Ly is achieved by a function in L% (M., pq), it follows that

1Ll 2oz, 0y = SUD {\/J(d,ﬂy, k) k=0,1,2,... } . (2.10)
3. Symmetries and monotonicity
3.1. Hoélder symmetry, ~v # 2

Proposition 1.8 says Ly, is bounded on L?(M.,, uq) if and only if d € Zy (7). Here, it is
shown that for each d there is a unique d’ € R such that the behavior of Ly, in L?(M.,, j1q)
closely parallels its behavior in LQ(M,Y* , bar ), where * is the Holder conjugate of . For
a € R, define

da(y) = aly—2) + 1. (3.1)

Theorem 3.2. The symbol function J(8,(7),7, k) is Holder symmetric, in that

J(éa(7)7 s k) = J(§a(7*)7 ’Y*’ k)

Proof. From (1.7) we have

- F(2k+2+ﬂ5v72)a)r(2k +92- 2k+2+’y(772)a)
‘](5&(’7);77 k) - F(k + 1)2

x (1)1 (e ey

But notice that

2k + 2 *—2 2k +2—2 1
+ +(’Y )a: + a+a:<1__)(2]<;+2—2a)+a
0

7 v
% +2 2
_ohyo o k22
5
% + 2+ (y—2
_oppo_ 2kE2r(=2a g
v

Thus, we have both



L.D. Edholm, Y. Shelah / Journal of Functional Analysis 288 (2025) 110746 13

F(2k+2+79* 2)a> _ F<2k+2 2k+2+7(72)a>’ (3.40)
F(2k+2+7(7—2)a> F<2k+2 2k+2+7i7* —2)a>' (3.4b)

Using that

we deduce from (3.3) that

(= 1) 2k2) () p)(2keao BEREREENN) (D)

Combining the previous two equations we have

(2k+2+(’Y—2)‘1 —2’{7—2)

(3) o S () g e )

2 2
Putting together the equations in (3.4) with (3.5) gives the result. O

Remark 3.6. The computations in the theorem above yield a Hélder symmetric reformu-
lation of the symbol function whenever v # 2:

J(6a(7),7: k)
F(2k+2+("/—2)a)I\(2k+2+(3*—2)a (2k+2+(—y—2)a * (2k+2+(z*,2)a)

@G

T(k+1)2 2 2

Corollary 3.7. The pairing symbol function and the preferred symbol function are both
Hélder symmetric, i.e., Co(v,k) = Co(v*, k) and Cy (v, k) = C,(v*, k).

Proof. The pairing measure 0 = pg with d = v — 1. This d value coincides with &, ()

with @ = 1, so Theorem 3.2 applies. The preferred measure v = pg with d = 'YTH This

1

d value coincides with d,(7) with a = 3, so Theorem 3.2 again applies. O

Remark 3.8. In addition to o and v, Barrett and Edholm [7, Section 6.2.2] also introduce
the dual preferred measure v* on a C-convex hypersurface S as the pullback of the
preferred measure on the dual hypersurface S*. (Recall the discussion in Section 2.1
above, where these three measures are related by the property vvv* = o.)

When § = M,,

" 5y—7
v =r"3 drANdf Ads,

so v* = pg with d = % It follows from (1.9) that % € Zo(7), meaning that L is

bounded on L?(M,,v*). Since this d value equals d,(7) with @ = 3, Theorem 3.2 implies
Holder symmetry: if we set Cy« (7, k) := J(%,’y, k), then Cy« (v, k) = Cp- (v, k). O
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Remark 3.9. When v = 2, the function d,(7) = a(y —2) + 1 = 1 for every a. Thus
each pair of function spaces L?(M.,, p1q) and L?(M,+, 1qr) with parallel symbol function
behavior reduces to a pairing of L?(Ma, u1) with itself when v = 2. We note that on this
space, the Leray transform coincides with the Szegé projection. ¢

3.2. Heisenberg monotonicity

From (1.7), observe that the symbol function greatly simplifies when v = 2:

U(k+ S0 (k + 359)
T(k+1)2 :

J(d, 2, k) = (3.10)

A fraction involving I'-functions in this form is sometimes called Gurland’s ratio; see
[22].

Proposition 3.11. For each non-negative integer k,

1Lkl 2 (vt ) = 1Lk L2 (0t ) -

Proof. From (3.10) it is immediate that J(d,2,k) = J(2 — d,2, k). Now use (1.10). O

Remark 3.12. When v = 2 and d = 1, we see that | Lx|[2(yy, ,,,) = 1 for every k. This
of course is unsurprising, since the Leray transform is the Szegd projection on L?(Ma,

pi). O

Theorem 3.13. Let d be any real number. The function k — J(d,2,k) is decreasing
whenever it is finite. Consequently,

||LkHL2(M2,,LLd) 2 ||Lk+1||L2(M2,/,Ld) :
The inequality is strict for d # 1.

Proof. When d = 1, Remark 3.12 says that the norm of L is equal to 1 for all k.
When d # 1, we see from (1.9) that J(d, 2, k) is finite if and only if

d € Tp(2) = (=2k — 1,2k + 3).

Since Zx(2) C Zi+1(2) and these intervals exhaust the real line, it is clear that J(d,2,~)
can be infinite for at most a finite number of integers k.
Observe that d € Z;(2) if and only if 2—d € Zy(2). Proposition 3.11 says it is sufficient
to consider the case when d > 1, which we now assume for the rest of the proof.
Taking logarithms, (3.10) becomes

log J(d,2,k) =logT'(k + 14%) +log I'(k + 25¢) — 2log I'(k + 1).
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Now treat k as a continuous variable and differentiate:

0 _
o 1087 (d:2, k) = vk + Ly 4k + 354) — 2p(k + 1), (3.14)
where 9 is the digamma function defined in (1.19). Now consider the right-hand side of
(3.14) in two separate pieces. By the mean value theorem,

Pk + 52 =k +1) =¢' (&) (%F1), (3.15a)

for some & € (k; +1,k+ %‘i) Similarly,

Pk +2359) — gk +1) = /(&) (52, (3.15b)

k1),

for some & € (k ,
3. (3.15b) and (3.14) we use the mean value theorem again,

3—
+ 35
Combining (3.15a),

S log I (d,2,K) = (451) (9 (62) ~ ¥(62) = (%59 (69) (& ~ &),

for some &5 € (&2,&1). It is well-known that ¢)” < 0 on the positive reals (see, e.g., formula
(3.17) below). This means that k — log J(d,2,k) is strictly decreasing for k € [0, c0),
which implies that k — J(d, 2, k) is strictly decreasing for k € [0, 00). Now restrict k to
the non-negative integers and recall (1.10) to complete the proof. O

By Corollary 1.12, the Leray transform is bounded on L?(My, j14) if and only if d €
Zp(2) = (—1,3). When this holds, the norm of the full Leray transform can be computed:

Corollary 3.16. Let d € (—1,3). The norm of the Leray transform on L?(Ma, jug) is

\/g(l —d) sec (%ﬂ),

)

||L||L2(M2,ud) =

de(-1,1)uU(1,3)
d=1.
This formula is continuous at d = 1.

Proof. The d = 1 case can be seen directly from (3.10) (also see Remark 3.12) and
L’Hépital’s rule shows continuity at d = 1. When d # 1, Theorem 3.13 says k — J(d, 7, k)
is strictly decreasing in k. Thus by (2.10),

||LHL2(M2,M): J(d,2,0).
Now compute:

7(0.2,0) = (00 = 05 = (St)mese (5~ %) = 50~ dsec (%),
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In this computation we have used the factorial property of the I'-function along with
Euler’s reflection formula: I'(2)['(1 — z) = wesc(nz). O

3.3. Polygamma functions and ratios of successive symbols

In this section, once again consider v # 2 and set d,(v) = a(y — 2) + 1.

The polygamma functions are the successive derivatives of the digamma function
¥, defined in (1.19). For integers m > 1, these functions admit the following series
representations; see [1, Equation 6.4.10]:

Y (1) = (=1)™ ) Z (3.17)

+j_1m+1

The following polygamma combination is closely tied to Leray symbol function and
is prominently featured throughout the paper (recall Fig. 2 in Section 1):

O(r,q) =2y (r +1—q) + 2" (r + 1 - ). (3.18a)

In light of (3.17), it is often useful to write this function as a series
o(rq) =) CESmE i-a) (3.18b)

The establishment of new inequalities related to the polygamma functions has been
an active area of research for decades; see [2,3,12-16,22] for results with similar flavor to
those we prove below. A typical way in which new polygamma inequalities are obtained
is to show that some auxiliary function is completely monotone (see Section 4.2), a check-
able condition thanks to the celebrated Bernstein-Widder theorem (see Theorem 4.7).

In Sections 4 and 5, we prove inequalities involving ®(r, ¢) and related functions, both
by use of Bernstein-Widder and in situations where it fails to apply. Our inequalities
appear to be new and the methods are likely adaptable to more general settings.

For later convenience, we re-frame the finiteness of the symbol function in terms of
d1—¢- (Setting a =1 — ¢ in (3.1) yields a symmetric formulation of the following result):

Lemma 3.19. Let v # 2. The symbol function J(d1—4(77),, k) is finite for all non-negative
integers k if and only if

v
lg| < ——%;-
Iy — 2|

Proof. By Proposition 1.8, J(61-4(7),7, k) is finite for all & if and only if

51-9(7) € () Ze() = To(y) = (=1,2y = 1).
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For v > 2 this means

g i
-1<(1- —2)+1<2y-1 = ——<g< —,
(I-ag)(v—2)+ g o

confirming the inequality. When ~ < 2,
“1<(l-¢g(v—2)+1<2y-1 = —L<q<i,
2—v 2—v

confirming the inequality. O

Remark 3.20. Observe that the estimate appearing in Lemma 3.19 is Holder symmetric,
i.e., invariant under the change of variable v +— ~*.

Lemma 3.21. Let v # 2 and |q| < so that J(61—-4(7),7, k) is finite for k > 0.

0

Iy =2’

(1) If ®(r,q) < 1 forr > q, then k — J(01-4(7),7, k) is strictly decreasing on the
non-negative integers.

(2) If ®(r,q) > 1 for r > q, then k — J(d1-4(7),7, k) is strictly increasing on the
non-negative integers.

Proof. Strict increasing (resp. decreasing) behavior of the function k — J(61-4(7),7, k)
would follow by showing the below ratio is strictly greater than 1 (resp. strictly less than
1) for non-negative integers k. Throughout the proof, set a =1 — ¢:

2k+4+(v—2)a _ 2k+4+(v—2)a
J@u), 3k 1) T ()T (2 4 4 - 2esehone )( i )2(7_9

o .
J(6a(7),7, k) r (w) r (% Lo 2k+2+$7-2)a> 2k + 2

20

By the Holder symmetry of the symbol function (Theorem 3.2), it is sufficient to
restrict analysis to v € (1,2); upon making the substitution = = 2, this is equivalent to
analyzing the behavior of the following function for = € (1,2):

Fr(k+2—a)z+a)T((k+2—-a)(2—2)+a) _ (2 — )" 2 _ GAlk)
F((k+1—a)z+a)T((k+1—a)(2—2x)+a) (k+1)2

Upon taking a logarithm, observe that A(k,1) = 0, and further that A(k,z) can be
written

A(k,z) = B(k,z) + B(k,2 — ),

where

Fr(k+2—-a)z+a)
Fr(k+1—a)z+a)

B(k,x) :=log —zlogz —log(k +1). (3.22)
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For the remainder of the proof we focus on case (2), noting that the same argument
with trivial modifications in appropriate places will prove case (1).
We have just seen that the statement

J(0a(7), 7,k +1)

a
AORD) > 1 (3.23)

for all non-negative integers k and v € (1, 2) is equivalent to the statement that A(k,x) >
0 for all non-negative integers k and x € (1, 2).

Since A(k,1) = 0 for all non-negative integers k, the desired positivity of A(k,x) will
follow by establishing a stronger condition, namely, that for z € (1,2)

0A 0B 0B

Estimate (3.24) will in turn follow if it can be established that %—f(k,x) is strictly
increasing for x € (1,2), since 0 < 2 — x < z for such . It would thus suffice to show
62
rrel (k,z) > 0. (3.25)

Recalling the representation (3.17) of 1)’ by a series, calculation now shows

2
gz(kx) (k+2—a)2w’((k+2—a)x+a)—(k+1—a)2¢’((k—|—1—a)x+a)—é
S (k+2—a)? > (k+1—a)? 1
f];(j+(k+2—a)a:+ a—1)) ; +k+1—a)x+(a—1)2 =
=D(k+1,z) — D(k,x), (3.26)
where
D(k,z) = i (k+1-0)” _ (3.27)

S G+k+tl-ar+(a-1))? =2

Temporarily regard k as a continuous variable. By (3.26), it would now be sufficient
to show that D(k,z) increases as a function of k € [0,00) in order to conclude that
estimate (3.25) holds. We claim that for z € (1, 2),

) (k+1—a)? 1
ZB_[]+ (k+1-a)z+(@-1)2] =

=1

<.

2k+1-a)(jt+a—-1) 1
G+ (k+1—a)z+(a—1))3

(3.28)

Mg

&I
V
()

j=1
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The inequality in (3.28) is equivalent to saying that, for k& € [0,00) and z € (1,2),

i zktl-a)jta-1) (3.29)

J:1 +(k+1—a)z+(a—1))3
Now substituting ¢ =1 —a and r = 2(k+ 1 —a) = (k4 ¢). The inequality (3.29) would
follow by showing that, for r > ¢,

i (?WJ = ®(r,q) > 1. (3.30)

This is the condition listed in case (2) of the theorem. Retracing our steps, we see that
inequality (3.30) implies inequality (3.28). Now, by (3.26), this implies inequality (3.25).
This implies (3.24), which in turn shows (3.23), meaning that k — J(61-4(7),7, k) is an
increasing function on the non-negative integers.

To prove case (1), return to (3.23) and retrace the same steps, changing “>” to “<”
and “increases” to “decreases” in all necessary places. O

4. Polygamma inequalities and complete monotonicity
4.1. An initial estimate

We now examine the properties of
(r,q) = 2 (r+ 1 — q) + 720" (r +1 - g).

We start from well-known upper and lower estimates on the polygamma functions; see
[16, Theorem 3|. If > 0 and m is a positive integer, then

(m—1)! m!

n m — 1)! m!
m m—+1
T 2x

rm mm+1 :

< (L1 () < ¢ (4.1)

We use this to describe the behavior of ®(r, q) as r — co. (Compare with Fig. 2.)
Proposition 4.2. Let q be a fized real number. Then

lim ®(r,q) = 1.

r—00

Proof. Directly from (4.1), we have for r > max{q — 1,0},

2r2 — 2rq + 3r
(r+1-¢)?

22 — 2rq + 4r

<2rp(r+1—gq)< i1 g?

)

and
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(r—q+3)r’

r—q+2)r?
S (r+1—9)3 e

2.1
<r r+l1—q)<-—
Vi L AN e

Now combine these:

3+ (2 —3q)r? + (3 — 5q + 2¢°)r
(r+1-4q)°

3+ (4 —3q)r? + (4 — 6q + 2¢°)r
(r+1-9)°

< O(r,q) <

. (4.3)
Taking the limit as r — oo gives the result. O

Remark 4.4. Given ¢, we must show either ®(r,q) > 1 for r > ¢, or ®(r,q) < 1 for r > ¢
in order to apply Lemma 3.21. This requires better estimates than those obtained in
(4.3). This is easily seen when ¢ = 0, in which case

r3 4+ 2r2 + 3r r3 4+ 4r? + 4r
< ®(r,0) < .
r34+3r24+3r+1 r4+3r24+3r+1

This lower bound is always less than 1, while the upper bound is eventually greater than
1. Similarly, neither the upper nor lower bound in (4.3) is strong enough to warrant
application of Lemma 3.21 for any ¢. Our goal is now to improve the estimates on ®(r,

9. ©
4.2. The Bernstein- Widder theorem

Let us recall another well-known formula for the polygamma functions 1("); see 1,
Equation 6.4.1]:

T/)(m)(r) _ (_1)m+1/ f”:e;i

0

dt. (4.5)

Let f be a real-valued function defined on (¢, 00), for some ¢ € R. We say that f is
strictly completely monotone on (¢, 00) if it is of class C*° and
(=™ f() (4.6)

drm

for all non-negative integers m and r > c.
Strictly completely monotone functions are characterized by the following theorem,
which can be found in [25, page 161].

Theorem 4.7 (Bernstein- Widder). A function f is strictly completely monotone on (¢, 00)
if and only if f(r — c) is the Laplace transform of a finite positive Borel measure p on

(¢,00). In other words,
flir—oe¢ /e " du(t)
0
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Our goal is to use Bernstein-Widder to analyze ®(r, ¢) and closely related functions.
Let us define

O(r,q) =)' (r+1—-q) (4.8a)
and observe that
00

Lemma 4.9. For x > 0 we have the following

_ L[ Mg
@(x+q,q)—x+2q—§+/me dt, (4.10)
0
where
M(t,q) = go(t) — g1(t)q + g2(t)q°, (4.11)

and go, g1, 92 are positive functions on (0,00). Explicitly,

go(t) = €' (2 — 2e" + t + te'), (4.12a)
g1(t) = 2(e" —1)(1 — et +te), (4.12b)
ga(t) = t(e’ = )% (4.12¢)

Proof. From definition (4.8a) and (4.5) we have

oote_(x+1)t teqt .
O+ = o [ S—mrdi= [ gt
0 0

Integrate by parts twice, setting

tedt
Uy = te—, dvy = (z + q)Qe_(QH'q)tdt,
et —1
for the first application, and us = % and dve = vy dt for the second. This means that

et —1 —tet — (t —tet)q _
(et = 1)(2 e

U9 =

and consequently,

90(t) — g1(t)q + g2(t)q?

(et — 1)3 eqt dt? U2 = e*(erq)t’

dUQ =
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where gg, g1, g2 are given in the statement of the theorem. Now,
o0 (o ]
[e.e]
@(erq,q) :/Ul dUl :’Z,Ll"Ul’O 7\/1}1 du1
0 0

\
<
=
<
S

0

[ Mg _
(@49 - (3-9)+ | Tz "t (4.13)
0/<e 1)

Using the definitions of M (t, ¢) and the g;(t) given above, we see that for ¢ near 0,

M(tq) = (* g+ %)t?’ +(o* - % + i)t“ +0(t)

On the other hand, if ¢ is large enough (say, ¢ > 1), there is a constant C,; such that
|M(t,q)| < Cqte®.

From these estimates on M (¢, q) we see that the integral appearing in (4.13) converges
for > 0. It now only remains to show the positivity of the g;(t) for ¢ > 0.

Let us first set ho(t) = 2—2ef +t+tet, so that go(t) = e'ho(t). Calculating derivatives,

ho(t) =1+ (t — 1), hi(t) = te',

and so 0 = ho(0) = h((0) = R”(0). Also, clearly hg(t) > 0, for ¢t > 0 which now implies
that h{(t) > 0, which in turn implies ho(t) > 0. Thus go(¢) > 0 for ¢ > 0.

Now let hy(t) =1 — et + tet, so that g (t) = 2(e! — 1)h1(t). We see that

. (t) = te,

and so 0 = hy(0) = h{(0). Clearly hj(t) > 0 for ¢t > 0, which implies hy(t) > 0 and

therefore g1 (¢) > 0 for ¢ > 0.
Finally, it is immediate from the formula that g2(t) > 0 for ¢t > 0. O

4.3. Completely monotone functions

For real ¢ define the following function

1
Fy(z) =O(z +q,q9) =2 —2q + 5. (4.14)
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Theorem 4.15. Let ¢ € (—00,0] U [1,00). The function x — Fy(x) is strictly completely
monotone on x > 0.

Proof. From Lemma 4.9, we have

Fy(z) = /% e "t dt, (4.16)
0

where M(t,q) = go(t) — g1(t)q + g2(t)g?, and the g; are given in (4.12).
Regarding M (t,q) as a quadratic in the ¢ variable, the discriminant is

A(t) = g1(t)* — 4go(t)ga(t)
=4 — 16e" + 24€*" — 163" + det’ + (—4de’ + 8 — 4e3')1?
=4(e' —1)*(1 — 2¢" + &% —e't?). (4.17)

The roots to M(t,q) = 0 are therefore given by taking

o gl(t) + \/A(t)

17 T o)

we now label these roots as

_tet+1fet+\/172et+62t7t26t

s1(t) = e =) , (4.18a)
() = = tétl - 12)6t et — el (4.18b)
Observe that the term under the square root is positive for ¢ > 0:

t 2t 42t t? o Y
1-2e"4+e" —t%e" >0 <= cosht>1+5 — ;(2]_)|>0
We now claim for ¢ > 0 that

0 < s9(t) < s1(t) < 1. (4.19)

The fact that so(t) < s1(¢) is immediate. The inequality s(¢) > 0 follows from the fact
that M(t,q) > 0 for all ¢ <0 and ¢t > 0 (since each g;(t) > 0 for ¢t > 0).
For the remaining inequality we show that it is both true and sharp. Indeed,

s1(t) <1 = tet —t > tel +1— el + /1 — 2et + €2t — t2et

— et—l—t>\/1—2€t+€2t—t2€t
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= (ef —1)% = 2t(e! — 1) + 12 > (ef — 1) — 2!

— (t—2)e" +t+2>0.
Now set E(t) := (t — 2)e' + ¢ + 2. Then
E'(t)=(t—1)e" + 1, E"(t) = te',

and so 0 = E(0) = E’(0) = E”(0). Since E”(¢t) > 0 for ¢ > 0, we have that E'(t) > 0
which in turn implies that E(¢) > 0, thus confirming that s;(¢) < 1. (Notice that the
function E, along with the same line of reasoning given here, appeared in Lemma 4.9,
where the function was called hy.)

For the sharpness of this inequality, observe that

tet 1+t e t—1 t=2(1—et)2 —et
1im51(t):lim£~ +t (e )+\/ (I1—e?)?—e ):1.
t—00 t—oo tet 1 —et

Now since 0 < sa(t) < s1(t) < 1 for all t > 0, we conclude that M(t,q) > 0 for
t > 0and ¢ € (—00,0]U[1,00). The Bernstein-Widder theorem now shows that Fy(x) is
strictly completely monotone for ¢ in this range. 0O

Remark 4.20. The proof of Theorem 4.15 shows the right endpoint ¢ = 1 of the interval
0 < s2(t) < s1(t) < 1 is sharp. No claim of sharpness is made for the left endpoint,
however. Numerical evidence suggests that so(t) is a strictly increasing function on ¢ > 0,
which would imply that the left endpoint can be slightly improved from g = 0 to

: 3—V3
q= }1\1}(1) so(t) = e~ 0.211325.

In any case, we can say that Fy(x) fails to be completely monotone for ¢ € (3*6‘/5, 1). O

Corollary 4.21. Choose g € (—o0,0] U [1,00). Then ®(r,q) < 1 for r > q.

Proof. Fix g € (—00,0] U [1,00) and set = r — q. Theorem 4.15 now says the function

1
THFq(T—q)Z@(nq)—T—q+§

is strictly completely monotone for r > ¢q. Now differentiate in r to see that

00

5(7"7(1) -1< 07

for all r > q. Since 22(r,q) = ®(r,q) by (4.8b), we obtain the result. O
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Remark 4.22. Notice that ¢ = % (the g-value corresponding to the preferred symbol

function) lies in the interval for which complete monotonicity of F,(z) is known to fail;
see Remark 4.20. This means the Bernstein-Widder approach is not applicable, and the
preferred symbol function must be handled using other means (see Section 5). ¢

4.4. Consequences for the Leray transform

The results in Sections 4.2 and 4.3 are now combined with Lemma 3.21. Recall
(Corollary 1.12) that the Leray transform is bounded on L?*(M,,ug) if and only if
d e (—1,2y—1) = Zy(y). We now see that the norms of the sub-Leray operators Ly, are
strictly decreasing in k for a range of d values with a combined length of more than half
the length of Zy(7).

Theorem 4.23. Let Lj, denote the sub-Leray operator for each non-negative integer k.

(1) Ify>2 and d € (—1,1]U [y — 1,2y — 1), then the function k — J(d,~, k) is strictly
decreasing on the non-negative integers. Thus

Eklleaar, ) > 1wl 220ty ) -

(2) If y <2 and d e (=1, — 1] U[1,2y — 1), then the function k — J(d,~,k) is strictly
decreasing on the non-negative integers. Thus

1Ll 2 ary gy > 1l 22 oty o) -

Consequently, in both settings, the norm of the full Leray transform is

||LHL2(M.Y,Md) = ”LOHL?(MV,/M)'

Proof. By Corollary 4.21, ®(r,q) < 1 for ¢ € (—00,0] U [1,00) and r > ¢. On the
other hand, Lemma 3.19 says that the symbol function J(d1_4(7),7, k) is finite for all
non-negative integers k if and only if |¢| < ﬁ

Upon intersecting these two intervals, Lemma 3.21 says that for v # 2, the function
kv J(01-q(7),7, k) is strictly decreasing on the non-negative integers for

- 0l
q€ (wfzwo} U [1’ |7*2\>'
Let us write
d=01¢(v)=(1-q)(v-2)+1 (4.24)

and recall that \/J(d,v,k) = | Lkl 12(ps, ) Py equation (1.10).
Now consider four separate cases:
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When v > 2 and ¢ € [1, = 1), equation (4.24) implies that k — HL’“HU(MW,M) is
strictly decreasing for d € (—1, 1].

When v > 2 and ¢ € ('y —,0], equation (4.24) implies that k — HL’“”P(MW,M) is
strictly decreasing for d € [y — 1,2y — 1).

When v < 2 and g € [1, 52 'v)’ equation (4.24) implies that k — HL’“”H(MW,M) is
strictly decreasing for d € [1,2vy — 1).

When v < 2 and ¢ € (5=% 1,0}, equation (4.24) implies that k — ||Lk||L2(M'yde) is
strictly decreasing for d € (—1,v — 1].

This establishes both (1) and (2). In all settings encompassed by these two cases, the
L? (M., d)-norm of L;, decreases with k, implying that Ly is the sub-Leray operator with
the biggest norm. Equation (2.10) now says that ||L||L2(MW Q= ||L0||L2(M7 a- O

Both the pairing measure o = 77"1dr Adf A ds (d = v — 1) and Lebesgue measure
w1 = rdr ANdf Ads (d = 1) fall within the range of applicability of Theorem 4.23. We
now record the norms of the Leray transform in both settings:

Corollary 4.25. Let 0 = '~ dr Adf Ads. The Leray transform is bounded on L*(M.,, o)
with norm

7
1L 12 (ar, o) = AT

Proof. Since o corresponds to d = v — 1, Theorem 4.23 applies. Thus by (1.7),

y

||LHL2(M7,0) = ||LO||L2(MW,U) =V Cs(7,0) = o9/~ —1 T

Recall that the pairing symbol function C, (v, k) = J(v —1,v,k). O

Remark 4.26. Barrett and Edholm calculated HLHLQ(MWU) in [7, Proposition 4.2] using a
different approach. The argument given there is tailored to the pairing measure (¢ = 0)
and seems not to easily generalize to other measure settings. ¢

Corollary 4.27. Let p1 = rdr ANdOAds. The Leray transform L is bounded on LQ(M,Y7 1)
with norm

(v — 1)%*1\/%(7 — 2)vycse (27”)7 v € (1,2) U (2,00)

1Ll 2 =
L2(My,p1) 1’ = 9.

The formula is continuous at v = 2.

Proof. Since p; corresponds to d = 1, Theorem 4.23 applies once again for vy # 2:

10520t ) = Bl z2ar, oy = VIE7.0) = (= D3/ (3) T(2)r(2 - 2)
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=(v- 1)%*1\/%(7— 2)y s (),

where we’ve used the factorial property of the I'-function as well as FEuler’s reflection
formula.

The v = 2 case follows from (3.10) and L’Hépital’s rule confirms continuity. O
5. The preferred symbol function

In this section we prove that the preferred symbol function k — C,(v,k), v # 2, is
strictly increasing, in stark contrast with the strictly decreasing symbol function behavior
seen in the earlier parts of the paper. Our goal is to show

O(r, ) > 1, for r> 2.

Unlike the work in Section 4, we are unable to invoke complete monotonicity and the
Bernstein-Widder theorem to prove this inequality, since it is known that the related
function Fy is not completely monotone for g = %; see Remark 4.20.

In place of the integral representations used in the previous section, we use here the
infinite series description obtained from (3.18b):

187(3j — 2)

(3r+3j —2)3 (5.1)

2) :ZfT(j)’ where fr(]):

5.1. Two tools

Two classical results are crucial to the subsequent analysis.
The first is Descartes” Rule of Signs (see [24] for a simple proof):

Proposition 5.2 (Descartes). Let p be a single variable polynomial with real coefficients,
with monomial terms arranged so that exponents appear in ascending order. The number
of positive roots of p (counted with multiplicities) is either (i) equal to the number of
sign changes between consecutive (non-zero) coefficients, or (ii) less than that by an
even number.

The second is the Fuler-Maclaurin formula relating sums and integrals; see [11, Sec-
tion 9.5]. For our purposes it is sufficient to use the following first-order version:

Proposition 5.3 (Euler-Maclaurin). Let m < n be integers and f € C*[m,n]. Then

/f )dz + MW = F(m) /f )Py (z (5.4)
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where P(z) = By(x — |z]), Bi(z) = x — § is the first Bernoulli polynomial and |x] the
greatest integer less than or equal to x.

We refer to the rightmost integral in (5.4) as the Bernoulli integral.
5.2. Applying Fuler-Maclaurin

We use the Euler-Maclaurin formula to re-express the sum in (5.1), then use carefully
chosen bounds to estimate the Bernoulli integral. After a considerable amount of analysis,
the behavior of r — <I>(r, %) is reduced to a problem about the positive real roots of an
explicit polynomial of degree 16. This in turn is completely understood using Descartes’
Rule of Signs and direct evaluation.

The computations in Section 5 and the Appendix involve lengthy manipulations of
polynomials and rational functions. While the reader could (in principle) work these out
by hand, we highly recommend the use of software when verifying these computations.
We have made a detailed and heavily notated Mathematica notebook available at the

Github page of the first author. Please follow the link given in [10].
Theorem 5.5. If r > 2 , then ®(r, —) =2r/ (r+3)+r2"(r+3)>1

Proof. Start with the function f, from (5.1) and use the first order Euler-Maclaurin
formula (5.4) with m = 0 and n — co. Computation yields the first two terms on the
right side of (5.4):

r 4 fr(oo)_fr<0) _ 18r
[ @ =1- ot 5 @z 00

where f,.(00) = lim,,_, f-(n). Computation also shows that

54r(4 + 3r — 6x)

fr(a) = 3z +3r—2)* "’

from which the following expression for the Bernoulli integral in (5.4) is calculated:

00 1
, & =~ 81r(9N%—3N —9r? —2)
O/fr(w)Pl(w)dx—Nzo:O/f (@ + N)Bi(z) dz _NZ= (37 + 3N +1)3(3r + 3N —2)3’

(=)

Denote the rational function appearing in the sum above by

81r(9N? — 3N — 9r? — 2)
(3r +3N +1)3(3r + 3N —2)3°

S(r,N) = (5.7)

Now inserting (5.6) and (5.7) into (5.4), we see by (5.1) that



L.D. Edholm, Y. Shelah / Journal of Functional Analysis 288 (2025) 110746 29

z):;f,(j):h(?)f) 37,7 +ZSrN

(Note that we have peeled off the N = 0 term from the summation.)
It thus remains to show that

6r—1 >
Griip® +21S (5.9)

is strictly positive for r > %

5.2.1. The function S(r,x)
We now show that « — S(r,z) (z is for now regarded as a non-negative real variable)
has a single local extremum (a maximum) on [0, 00). Indeed,

as
% (Tv 33)

243r[(—4 + 39r — 36r% 4 162r%) + (18 + 18r 4 216r%)x + (54 — 54r)x? — 108z7]
N (3r 4+ 3z + 1)*(3r + 3z — 2)*

Write the cubic polynomial in z appearing in the brackets above by
pr(x) := (—4+39r — 3672 +162r%) + (18 + 18r + 216r%)x 4 (54 — 54r)2* — 1082°. (5.10)

It is easily checked that for r > % the coefficients of 1 and x are positive, while the
coefficient of x2? changes sign at = 1, and the coefficient of 3 is a negative constant.
Thus for all r in this range, there is exactly one sign change in consecutive coefficients
when the monomial terms of p,(x) are considered in ascending order. Descartes’ Rule of
Signs thus guarantees a unique positive real root of the function x — p,(x), where the
values of p,(z) change from positive to negative. Denote this root by Q...

We claim that @, € (% + 1 3r 4 %) Indeed, for r > §7

6’2
pr(3 +§) =81r >0,
Dy (%+%):4+66r72§—5r2<0.

(A more precise estimate on @, is obtained in Lemma A.3.)

We see from (5.7) that x — S(r,x) starts negative, then becomes (and remains)
positive for x large enough, since the function tends to zero as * — oo and its deriva-
tive changes signs exactly once. In particular, the global maximum value of S(r, @,) is
positive.
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We now trivially re-write the quantity in (5.9) as

6r—1

m+5(7‘71)+5(ﬁ2)+25(r71\7)- (5.11)

N=3

(Separating out the N = 1 and N = 2 terms from the rest of the summation simplifies
the following estimate.) We claim that

> S(r,N) > /s rx)de — S(r, Q). (5.12)

N=3

To see this, set K := |Q,], the greatest integer less than or equal to @Q,. From the
discussion above, S(r, -) increases on (1, K') and decreases on (K +1, 00). We now consider
two cases: K <2 and K > 3.

When K < 2, we have that S(r,-) decreases on (3,0), so

i S(r,N) > /S(r7 x) d. (5.13a)
N=3 3

But also note that

3
0> /S r,x)dr — S(r,Qy), (5.13b)
2

since any integral over an interval of unit length is overestimated by the maximum value
of its integrand. Combining (5.13a) with (5.13b) now yields (5.12) for K < 2.
When K > 3, we are able to write

K K
Z S(r,N) > /S(r,a:) dz, (5.14a)

N=3 4

Z S(r,N) / S(r,x) (5.14Db)
N=K+1 K1
Using reasoning identical to what justified (5.13b), we see that

K+1
0> / S(r,z)de — S(r,Qy). (5.14c)
K

Combining (5.14a), (5.14b) and (5.14c) yields (5.12) for K > 3.
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From (5.12), the following quantity is a lower bound on (5.9) = (5.11):

-1 i
(3???1) S(r,1) + S(r,2) +/erd:rf S(r,Q,). (5.15)
2
We now show (5.15) is positive by computing the above integral and estimating S(r, Q).
A partial fraction decomposition of S(r, z) helps to yield the following:

T 3r(10872 + 594r% + 1035 + 616) 3r+7
S dr = —2rl — . 5.16
/ (@) de 2(3r + 4)2(3r + 7)2 3r + 4 (5.16)
2
We also have the following estimate on S(r, @Q,): for r > %,
16
S(T, Qr) < W (517)

The proof this estimate is given in Lemma A.4 of the Appendix. (The right hand side of
(5.17) is the leading term in the Taylor expansion of S(r, @,) at co; see Remark A.9.)
We now use (5.16) and (5.17) to define a new function:

6r — 1 T 16
H(r)=—— 1) 2) )dx —
(r) Bri 1) +S(r, 1)+ S(r, +/S r,x)dx 31953
2
6r—1 81r(4 — 9r?) 817r(28 — 9r?)

3r(108r° 5941 + 10350 + 616) , \  (3r+7) 16
2(3r +4)%2(3r + 7)2 3r+4 3125r3

Upon combining (5.16) with the bound (5.17), we see that H(r) is a lower bound for
(5.15). Our goal is now to show H(r) is positive for r > 2. Note that while H is itself
not a rational function, its second derivative is rational. This is crucial to the coming
argument.

5.2.2. The function H(r)
We now present H in a more digestible fashion. Combining all of the rational functions
in (5.18) yields

Fl(T) 3r + 7
H(r) = ~9rlog [ X0 5.19
(") = 53503 7 193 + AP £ )7 2108 (37" n 4)’ (5.19)

where F} is a polynomial of degree 12 with integer coefficients, the full formula of which
is included in Table 1 below. The leading coefficient of Fy (written ¢ 12 in the table)
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is 246 037 500 = 223°55. Note that the denominator of the rational function in (5.19) is
also a polynomial of degree 12, with leading coefficient 123 018 750 = 2!3°5°. Thus,

lim H(r) =2-2=0.

T—00

Now differentiate H to obtain

H'(r) Fa(r) 2bg<3r+7>, (5.20)

T 312574 (3r + 1)23r + )4 3r + 1)F 3r + 4

where Fy is a polynomial of degree 15 with integer coefficients (the full formula is also
included in Table 1). Since the denominator polynomial has degree 16, it follows that

lim H'(r) = 0.

r—0o0

Finally, differentiate H' to obtain

HN(T) _ F3(r)

= 5.21
312575(3r 4+ 1)5(3r +4)5(3r + 7)°’ (5:21)

where Fj3 is a polynomial of degree 16 with integer coefficients, the exact expression of
which is included in Table 1. Since the denominator polynomial has degree 20, it follows
that

lim H"(r) = 0.

T—00

The following statements are easily verified from Table 1 below:

(1) The coefficients of the 1,7,--- ,77 terms in F3 are negative.

(2) The coefficients of the r8 7% ... 116 terms in Fy are positive.

(3) Descartes’ Rule of Signs thus guarantees that F3 has a unique positive real root.
Since the denominator of H”(r) is positive for » > 0, we see that H"(r) changes sign
exactly once for r > 0.

(4) Evaluation of the rational function H” shows this sign change occurs inside the
. 1 2).
interval (g, g).

437616 243

49618
_ 227070 249 d  H"(2) =
25600000 ° % (3)

oLy _ _
H (3) 2278125°

(5) We conclude that H” > 0 on the interval (2,00).
(6) Since H” > 0 on (2,00), H’ strictly increases on this interval. Since lim H'(r) =0,
r—00
we conclude that H' < 0 on (% oo).
(7) Since H' < 0 on (,00), H strictly decreases on this interval. Since lim H(r) =0,
T—00

we conclude that H > 0 on (%, oo).



L.D. Edholm, Y. Shelah / Journal of Functional Analysis 288 (2025) 110746

Table 1

Exact values of coefficients of polynomials F;(r) = > c¢j,7r" in

Section 5.2.2.

n Cl,n C2.n C3,n

0 —702464 29503 488 —3304 390656

1 —8 805 888 493129 728 —69038161 920

2 —44924 544 3546 063 360 —640689 315 840

3 —258414 880 14 430286 080 —3491968 112640
4 1018 286 832 77896 979 088 —12471183 325440
5 4962 569 148 110838411 360 —48 684 386 314 944
6 11832384015 —17706 703 248 —111582268 515 360
7 23240472534 244982773 080 —78421336 513920
8 29834 360478 1512143688033 148 629 164 640 120
9 23154232644 2940847 647 885 378180897173910
10 10449759 375 3231415617165 377142473066 319
11 2501 381 250 2264445221 688 224 889469 312590
12 246 037500 1025079 243 543 92232089533 215
13 0 290262 740 625 25224 576 030 090
14 0 47054671875 3414213475245

15 0 3321506 250 66 996 641 106

16 0 0 14946 778 125

33

Since H(r) is positive for r > %, the expression in (5.15) is positive for this range of r.

This in turn shows that (5.11) = (5.9) is positive for the same range of r. Thus by (5.8),

(r,2) =Y fli)>1+H(r)>1

for r > %, completing the proof. O

j=1

5.8. Consequences for Leray transform

We now prove that for v # 2, the L?(M,,v) norm of Ly, is strictly increasing in k.

Theorem 5.22. Let v # 2. Then k — C,(v,k) is a strictly increasing function on the

non-negative integers. Thus,

1wl 2 ary ) < IEktall L2 gar, ) -

Proof. We have just seen in Theorem 5.5 that <I>(r, %) > 1 for r > % Lemma 3.21 now
applies, saying the preferred symbol function k — C, (7, k) is strictly increasing on the

non-negative integers. Thus, recalling (1.14b) and (1.10), we have

1Lkl 20, ) = VC,(1,k) < VO, (1, k+1) = ILk+1ll2(ar, ) »

completing the proof. O

We now easily deduce the L?(M,,v) norm of the full Leray transform.

(5.23)
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Theorem 5.24. The norm of the Leray transform on L2(MA,, v) is given by

B v
1Ll 2,0y = A =T

Proof of Theorem 5.24. The strictly increasing behavior seen in (5.23) combines with
(2.10) and Proposition 1.11 to give

i N e S
1Ll 2 (ar, 0y = Jim (| L]l = NS

completing the proof. O

Appendix A. Proof of the estimate on S(r, Q,)

In this appendix we prove (5.17), the crucial upper bound on S(r, Q) that was used
in our proof of Theorem 5.5. Recall the definition of the rational function

81r(92% — 3z — 9r? — 2)
(3r+3x+1)3(3r 4+ 3z — 2)3°

S(r,z) =

It was shown in Section 5.2.1 that for 7 > 2, x — S(r,z) has a single local extrema (a

maximum) at = Q,, where @, is the unique positive root of the polynomial
pr(x) = (=4 + 397 — 3612 +162r3) + (18 + 187 + 216r?)x + (54 — 54r)x? — 1082°. (A.1)

It was previously demonstrated that @, € (3 + &, 3 + 1), but here sharper precision
is needed; see Remark A.9.

A.1. A sharper estimate on Q.

Let us define

3 1 2 21
31 2 A2
mr) =5 45t o5 3105, (A-22)
3r 1 2
Mr)="424 = A2b
=5 +6" % (A-2b)

(These functions are truncated Taylor expansions of Q.. at oo; see Remark A.9.)

Lemma A.3. Let m(r) and M (r) be as above. The following inequality holds

m(r) < Q < M(r).
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Proof. This can be seen from direct evaluation. Indeed,

81(12348 + 125r2(1515625r% + 2100072 — 5292))

pT(m(T)) = 515 T,g ’

and it is easily checked that 1515625r% + 21000r2 — 5292 > 0 for r > % Since all other
terms in the formula are clearly positive, we conclude p,(m(r)) > 0.
Now calculate

81 (36 + 875r?)

pr(M () = =

which is clearly negative for r > % Since @, is the unique positive root of p,., we conclude
it must lie in the interval (m(r), M(r)). O

With these improved bounds on @, we are ready to prove the desired estimate:

Lemma A.4. The following estimate holds for r > %

16

S(r@r) < 31553

(A.5)
Proof. First define the following two variable polynomial
W(r,Q)=2*3r+3Q +1)3(3r +3Q — 2)® — 3*5°7*(9Q% — 3Q — 9r* —2).  (A.6)

This function is closely tied to the inequality in (A.5). Indeed,

16

W(r,Qr) >0 = S(r,Qr) < 312555

Now expand (A.6) and collect like-terms to express W as

aj k rQF.

W(T’ Q) = Z

Jik

Let H be the Heaviside step function (the indicator function of the positive real numbers)
and define two closely related polynomials with positive integer coefficients:

U(r,Q) = Zj Hlajn) ajnr’QF (A.7a)
V(r,Q) = — ik H(—ajx) ajrm Q. (A.7b)

Clearly, we have that

W(T7 Q) = U(Ta Q) - V(Ta Q)
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Table 2
Coefficients polynomials in U(r, Q) and V (7, Q).
ko ug(r) v (7)
0 2289789r% 4 502362r* 4+ 4752r% 4+ 864r2  11664r° + 5761 + 128
1 69984r° + 701055r* + 1425672 + 17287 1555273 + 576
2 142561 + 864 21031657 + 11664073 + 2332872
3 233280r3 + 4752 11664072 + 155527
4 17496012 583207 + 3888
5  69984r 11664
6 11664 0

Since both U and V have only positive coefficients in their expansions, Lemma A.3
implies

U(r,Qr) > U(r,m(r)), Vi(r,M(r)) > V(r,Q:).
Our goal will be to prove that
U(r,m(r)) > V(r, M(r)),
which will imply W (r, Q) > 0 and thereby give the result.

A.2. Analysis of the polynomials U(r, Q) and V(r,Q)

The polynomials U and V are obtained from W by expanding (A.6) and separating
the monomial terms by the signs of their coefficients. After collecting terms in this way,
we may re-write (A.7a) and (A.7b) as polynomials in the @ variable:

5
U(r,Q) =Y u(r)Q", V(r,Q) =Y u(rQF, (A.8)

k=0 k=0

where the coefficient functions wuy(r) and vy (r) are given in Table 2.
Now insert m(r) and M(r) into (A.8) and expand U (r,m(r)) — V(r, M(r)) out as a
rational function of the form

Z br™.

Using Table 2 together with degree considerations, we see that b, = 0 for n < —18 and
n > 6. Some of the remaining b;, including b5 and bs, are also equal to zero; see Table 4,
noting that 3, = b,—1s. But it is easily checked from (A.8) and Table 2 that b_g # 0,
which leads to the definition of the related polynomial

P(r) = r®(U(r,m(r)) = V(r, M(r)) = Y fur”
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Table 3
Signs of coefficients 8, in P(r).

o 1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
+ 0 - — 4+ + + - - - — 4+ 4+ 4+ - - - - - - — 0 +

The exact values of the (,, are listed in Table 4. But we can explain the next step of the
argument just by considering the signs of the 3, in Table 3.

Table 3 shows that the coefficients of P(r) change signs six times when its terms
are listed in ascending order; Descartes’ Rule of Signs thus says that the number of
positive real roots of P is either 0, 2, 4 or 6. This is not precise enough for our purposes,
but we can cut down the number of sign changes by repeatedly differentiating. After
fourteen derivatives, Table 3 shows the resulting polynomial has ezactly one coefficient
sign change when the coefficients are listed in ascending order. Consequently, P14 has
a unique positive real root.

The remaining computations are nothing more than differentiation and direct poly-
3
PU4)(r) is evaluated at r = 0 and 2. These calculations are tedious by hand, but they

nomial evaluation: P(r) and its first thirteen derivatives are evaluated at r = £, while
can be worked out in totality using Table 4. (See also the supplementary Mathematica
notebook found by following the link given in [10].)

Evaluation shows that the unique root of P14 (r) lies in the interval (0, 2). Indeed,

21591 2972
P (o) = - ZELOSRIEETE o s 76366 - 10,

2\ 1844153574 168 145 4
o (2) = BTSSRI 05 _, s 10

We thus conclude that
(14) 2
PYY(r)y >0, r > 3"
It can also be seen by direct evaluation that for integers 0 < n < 13,

pm (%) > 0.

Decreasing the number of derivatives one step at a time, we see that for integers 0 <
n < 13, it also holds that

2
PM (1) > 0, r> 3

In particular, P(r) > 0 for 7 > 2, so the difference U(r,m(r)) — V (r, M(r)) > 0. This
implies U(r, Q) — V(r,Q,) = W(r,Q,) > 0, thereby proving (A.5). O
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Table 4
Exact values of coefficients in P(r) = > B,r".
162030 456 3195801
n  Bn Tt 15 - 56
1000376 035 344 3421928916 2065794 597
0 o TRetm g _2RE TR g 22 Eterl
530 517 59
84 873096 91 854
1 0 Ve 17 - 52
857465173152 922948 992 629807 157
R i [ S ctdicutaticit 18 2ot el
527 515 2256
47636 954 064 17635968 12267612
3 —_—— 11 _ 19 -
525 511 54
163 326 699 648 657460071 9 71827641
4 524 12 512 0 - 2254
6805279152 10471356
5 —_— 13 @ — 21 0
521 59
9694 822 284 619 164 455625
6 —_— 14 — 22
520 59 2

Remark A.9. Applying the cubic formula to the polynomial p,.(x) given in (A.1), we have

Qr

= 3425r 4+ (1 — r)ay. + o?), where
6o "

1/3
a, = (1257"3 4 36r — 3v/3751% + 6912 — 3)

The bounds M(r) and m(r) in Lemma A.3 come from the Taylor expansion of @, at
oo:

3r 1 3 21 1
T o)
@ 2 + 6 + 25r 312573 + r4
It should be emphasized that the negative degree terms in M (r) and m(r) are crucial to
the proof of Lemma A.4; simply using affine functions to bound @), is not sufficient to

prove the estimate on S(r, Q,).
Similarly, the bound on S(r, Q,) also comes from its the Taylor expansion at co:

16 1
SnQr) =33+ O(r_5)

This method of generating candidates for sufficiently sharp bounds is likely to have ap-
plication for many other polygamma inequalities, and more generally, in other problems
in which the Euler-Maclaurin formula is utilized. ¢

Data availability
To help the reader verify polynomial and rational function computations in Section 5

and the Appendix, a link to a detailed Mathematica notebook written by the authors is
included in the references.
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