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1. Introduction

The Leray (or Cauchy-Leray) transform L is a higher dimensional analogue of the 
familiar Cauchy transform on planar domains. Let Ω be a convex domain in Cn with C2

boundary bΩ := S and defining function ρ. Given a function f defined on S, its Leray 
transform Lf is the holomorphic function defined for z ∈ Ω by the following formula:

Lf(z) =
∫

ζ∈S

f(ζ)L (z, ζ), (1.1a)

L (z, ζ) = 1
(2πi)n

∂ρ(ζ) ∧ (∂∂ρ(ζ))n−1

〈∂ρ(ζ), ζ − z〉n . (1.1b)

The (n, n − 1)-form L is called the Leray kernel and 〈·, ·〉 denotes the ordinary bilinear
pairing of (1, 0)-forms and vectors. The operator L reproduces holomorphic functions 
from their boundary values and generates holomorphic functions from more general 
boundary data. It is straightforward to check that formula (1.1a) is independent of 
the choice of defining function ρ used in (1.1b); see [23, Section IV.3.2]. Additional 
background information on this operator is given in Section 2.

A body of recent work [5–9,17–20] has investigated the mapping and invariance prop-
erties of L in a variety of settings, with the construction of interesting holomorphic 
function spaces seen as an important application. For instance, Barrett and Edholm [7]
studied L on the family of unbounded hypersurfaces

Mγ = {(ζ1, ζ2) ∈ C2 : Im(ζ2) = |ζ1|γ}, γ > 1, (1.2)

and used their findings to construct dual pairs of projectively invariant Hardy spaces. 
In the present work, further analysis of the Leray transform on Mγ is carried out and 
detailed analytic information is obtained. Throughout the paper, we always assume γ > 1.

1.1. Distinguished measures

Let us parameterize Mγ by (ζ1, ζ2) = (reiθ, s + irγ), where r ≥ 0, s ∈ R, θ ∈ [0, 2π), 
and consider measures of the form

μd = rd dr ∧ dθ ∧ ds, d ∈ R.

Two measures are of particular importance to higher-dimensional Cauchy-Leray theory: 
the pairing measure σ and the preferred measure ν; see [5–7]. On Mγ , they take the form

σ = rγ−1 dr ∧ dθ ∧ ds, (d = γ − 1), (1.3)

ν = r
γ+1
3 dr ∧ dθ ∧ ds,

(
d = γ+1

3
)
. (1.4)
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The pairing measure σ arises as (a constant multiple of) the Leray-Levi measure corre-
sponding to the natural defining function ρ(ζ) = |ζ1|γ − Im(ζ2); see (2.1b). This measure 
also appears in an alternative description of the Leray transform, facilitating a natural 
bilinear pairing between projectively invariant dual Hardy spaces; see [7, Proposition 
6.18]. The preferred measure ν admits a projective transformation law; see (2.2). This 
leads to a corresponding Leray transformation law in (2.4), and to the definition of the 
aforementioned Hardy spaces in (2.5). These notions were introduced by Barrett [5, Sec-
tions 7 and 8] and developed further in [6,7]. See [7, Section 2] for a detailed discussion 
in the Mγ setting.

Remark 1.5. Note that in the Heisenberg case (γ = 2), the pairing and preferred measures 
are equal and coincide with ordinary Lebesgue measure μ1 on the parameter space R3. 
In fact, the Leray transform and the (orthogonal) Szegő projection coincide on L2(M2,

μ1). ♦

In the present article, we show that the behavior of L on Mγ can be understood rather 
explicitly. In particular, its exact norm is computed in a number of settings:

Theorem 1.6. The norm of L in L2(Mγ , μd) is determined for many γ and d, including:

(a) The norm of the Leray transform on L2(M2, μd) is given by

‖L‖L2(M2,μd) =

⎧⎨
⎩
√

π
2 (1 − d) sec

(
dπ
2
)
, d ∈ (−1, 1) ∪ (1, 3)

1, d = 1.

(b) The norm of the Leray transform on L2(Mγ , μ1) is given by

‖L‖L2(Mγ ,μ1) =

⎧⎨
⎩(γ − 1)

1
γ −1

√
π
4 (γ − 2)γ csc

( 2π
γ

)
, γ ∈ (1, 2) ∪ (2,∞)

1, γ = 2.

(c) The norm of the Leray transform on L2(Mγ , σ) is given by

‖L‖L2(Mγ ,σ) = γ

2
√
γ − 1

.

(d) The norm of the Leray transform on L2(Mγ , ν) is given by

‖L‖L2(Mγ ,ν) =
√

γ

2
√
γ − 1

.

While the proofs of the parts of Theorem 1.6 employ different techniques that appear 
throughout the paper, they all depend critically on analysis of the Leray symbol function 
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J(d, γ, k) defined in (1.7) below. The proof of part (a) is found in Corollary 3.16. Parts 
(b) and (c) are found in Section 4, where the Bernstein-Widder theorem and the notion 
of complete montonicity play important roles; see Corollaries 4.25 and 4.27, which them-
selves are “endpoint cases” of the more general Theorem 4.23. The preferred measure 
result, part (d), is the most difficult to prove. Starting in Section 5, we use the Euler-
Maclaurin summation formula to carry out lengthy analysis, eventually transforming 
the problem into concrete questions about the positivity of certain explicit polynomials. 
The calculation of the norm of L with respect to the preferred measure ν concretely 
answers an open question on a natural pairing of projective dual Hardy spaces on Mγ; 
see Proposition 2.6.

To contextualize our results and methods, we provide a short summary of previously 
known facts about the Leray transform acting on L2(Mγ , μd).

1.2. The Leray symbol function

In [7], the rotational symmetry in ζ1 yields an orthogonal decomposition of L on 
L2(Mγ , μd) into sub-Leray operators Lk; see Section 2.3:

L =
∞⊕
k=0

Lk.

We recall for non-negative k ∈ Z, the Leray symbol function of L2(Mγ , μd):

J(d, γ, k) =
Γ
( 2k+1+d

γ

)
Γ
(
2k + 2 − 2k+1+d

γ

)
Γ(k + 1)2

(γ
2

)2k+2
(γ − 1)−

(
2k+2− 2k+1+d

γ

)
. (1.7)

Proposition 1.8 (Barrett-Edholm [7]). Lk is bounded on L2(Mγ , μd) if and only if

d ∈ (−2k − 1 , (2k + 2)(γ − 1) + 1) := Ik(γ). (1.9)

When d is taken in this interval,

‖Lk‖L2(Mγ ,μd) =
√
J(d, γ, k). (1.10)

The above intervals are nested, i.e., Ik(γ) ⊂ Ik+1(γ), and they exhaust the real 
line as k → ∞. Thus, for any given d, at most a finite number of Lk are unbounded 
on L2(Mγ , μd). Remarkably, the symbol function (and therefore the norm of the Lk) 
stabilizes to the same value as k → ∞, independent of the choice of d:

Proposition 1.11 (Barrett-Edholm [7]). For any d ∈ R, the following limit holds

lim
k→∞

‖Lk‖L2(Mγ ,μd) =
√

γ√ .

2 γ − 1
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In Fig. 1 below, the stabilization of the symbol function can be seen for several different 
d values in the case γ = 5. There is an intriguing relationship between the limit in 
Proposition 1.11 and a projective geometric invariant on Mγ . This is related to the 
Leray essential norm conjecture; see [7, Section 2.3].

The range of d for which the full operator L is bounded on L2(Mγ , μd) can now be 
deduced from the previous two propositions:

Corollary 1.12 (Barrett-Edholm [7]). The Leray transform L is a bounded operator from 
L2(Mγ , μd) to itself if and only if d ∈ (−1, 2γ − 1) = I0(γ).

Remark 1.13. Due to the prominence of measures σ and ν, we use alternate notation 
when the symbol function corresponds to d = γ − 1 and d = γ+1

3 , as indicated by (1.3)
and (1.4):

Cσ(γ, k) := J(γ − 1, γ, k), (1.14a)

Cν(γ, k) := J
(
γ+1

3 , γ, k
)
. (1.14b)

We call Cσ and Cν the pairing symbol and preferred symbol functions, respectively. ♦

1.3. Symbol function monotonicity and symmetries

The results in Section 1.2 show that L is bounded on L2(Mγ , μd) if and only if the 
sub-Leray operator L0 is bounded there. But the norm of the full Leray transform is 
determined by maximizing the function

k 
→
√

J(d, γ, k) = ‖Lk‖L2(Mγ ,μd)

over the positive integers, which is often very difficult. One way to approach this maxi-
mization problem is to investigate when the symbol function is monotone.

In [7] it is shown that for γ �= 2, the pairing symbol function k 
→ Cσ(γ, k) (corre-
sponding to d = γ − 1) is strictly decreasing. But this is not necessarily true for other 
values of d, as is seen in Fig. 1, which illustrates how the behavior of the symbol function 
can change as d varies within the boundedness interval I0(γ) = (−1, 2γ − 1).

While symbol function monotonicity fails to hold in general, for many choices of d
and γ (including the cases that we are most interested in), it does hold:

Theorem 1.15. The sub-Leray operators Lk exhibit the following monotone behavior.

(a) If γ = 2 and d ∈ (−1, 1) ∪ (1, 3), the function k 
→ J(d, γ, k) is strictly decreasing 
on the non-negative integers. Thus

‖Lk‖L2(M ,μ ) > ‖Lk+1‖L2(M ,μ ) .
2 d 2 d
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Fig. 1. Behavior of k �→ J(d, 5, k) for certain 1 ≤ d ≤ 4.

(b) If γ > 2 and d ∈ (−1, 1] ∪ [γ − 1, 2γ − 1), the function k 
→ J(d, γ, k) is strictly 
decreasing on the non-negative integers. Thus

‖Lk‖L2(Mγ ,μd) > ‖Lk+1‖L2(Mγ ,μd) .

(c) If γ < 2 and d ∈ (−1, γ − 1] ∪ [1, 2γ − 1), the function k 
→ J(d, γ, k) is strictly 
decreasing on the non-negative integers. Thus

‖Lk‖L2(Mγ ,μd) > ‖Lk+1‖L2(Mγ ,μd) .

(d) Let γ �= 2. The preferred symbol function k 
→ Cν(γ, k) = J
(
γ+1

3 , γ, k
)

is strictly 
increasing on the non-negative integers. Thus,

‖Lk‖L2(Mγ ,ν) < ‖Lk+1‖L2(Mγ ,ν) .

The monotonicity result in part (a) is shown in Theorem 3.13, parts (b) and (c) are 
shown in Theorem 4.23, and part (d) in Theorem 5.22. The proofs here depend on careful 
analysis of certain combinations of polygamma functions. This is previewed in Section 1.4
below.

Remark 1.16. The norm and monotonicity results in Theorems 1.6 and 1.15 have imme-
diate implications for the spectra of the related self-adjoint operators L∗L, LL∗ and the 
anti self-adjoint L∗ −L; see [7, Section 5.3]. ♦

1.3.1. Hölder symmetry of the symbol
In what follows, γ∗ = γ

γ−1 denotes the Hölder conjugate of γ. In [7] the pairing symbol 
function is shown to be Hölder symmetric, i.e.,

Cσ(γ, k) = Cσ(γ∗, k).
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This observation meshes well with our understanding of Cauchy-Leray theory from a 
projective dual point of view, as Mγ∗ is known to be the projective dual hypersurface of 
Mγ ; see [7, Section 6.1]. But it was never clarified in the previous work whether a more 
general version of this correspondence holds when other measures are considered, and in 
particular, if the preferred symbol function Cν(γ, k) is Hölder invariant.

We prove here that a form of Hölder invariance holds for every choice of γ �= 2, d ∈ R. 
Indeed, given a pair (γ, d), we show that there is a unique d′ such that the behavior of 
Lk on L2(Mγ , μd) parallels its behavior in L2(Mγ∗ , μd′). To understand this symmetry 
and the value of d′ more explicitly, we re-parameterize the exponent of μd as follows. 
Given d ∈ R (since γ �= 2), choose the unique a ∈ R satisfying

d = a(γ − 2) + 1 := δa(γ). (1.17)

Theorem 1.18. The symbol function J(δa(γ), γ, k) is Hölder symmetric, in that

J(δa(γ), γ, k) = J(δa(γ∗), γ∗, k).

This theorem is proved in Section 3.1. Taking a = 1
3 corresponds to d = γ+1

3 , which 
implies the Hölder symmetry of the preferred symbol function:

Cν(γ, k) = Cν(γ∗, k).

Taking a = 0 shows that J(1, γ, k) = J(1, γ∗, k), verifying the analogous invariance 
property holds for the symbol functions associated to the Lebesgue measure μ1. The 
Hölder symmetry of the symbol function plays an important role in the proofs of both 
Theorems 1.6 and 1.15, and arises from the projective dual nature of the Leray transform; 
see Section 2.1.

1.4. Polygamma inequalities and complete monotonicity

Recall the digamma function ψ, which is the logarithmic derivative of the familiar 
Γ-function:

ψ(r) = Γ′(r)
Γ(r) . (1.19)

Further derivatives of ψ are called polygamma functions. They satisfy interesting func-
tional identities and arise naturally in both analytic and number theoretic settings; see 
[1]. The polygamma functions admit several practical representations; we make use of 
both the series form given in (3.17) and the integral form given in (4.5).

The following combination of polygamma functions plays a central role in this paper.

Φ(r, q) := r2ψ′′(r + 1 − q) + 2rψ′(r + 1 − q).
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Fig. 2. Behavior of r �→ Φ(r, q) for certain 0 ≤ q ≤ 1.

Fig. 2 shows the function r 
→ Φ(r, q) plotted for certain fixed q. In Lemma 3.21, we 
show the behavior of the Leray symbol function is closely tied to the behavior of Φ(r, q):

• if Φ(r, q) < 1 for r > q, then k 
→ J(δ1−q(γ), γ, k) is strictly decreasing.
• if Φ(r, q) > 1 for r > q, then k 
→ J(δ1−q(γ), γ, k) is strictly increasing.

(Here δ1−q(γ) is given by (1.17) with a = 1 − q.)

Theorem 1.20. Sharp polygamma inequalities related to the symbol function are obtained.

(a) If q ∈ (−∞, 0] ∪ [1, ∞), the following holds for r > q

Φ(r, q) = r2ψ′′(r + 1 − q) + 2rψ′(r + 1 − q) < 1.

(b) When q = 2
3 , the following holds for r > 2

3

Φ
(
r, 2

3
)

= r2ψ′′(r + 1
3 ) + 2rψ′(r + 1

3 ) > 1.

The proof of Theorem 1.20 part (a) is found in Corollary 4.21, where the inequality fol-
lows by proving the complete monotonicity of a closely related function in Theorem 4.15. 
The q = 2

3 result in part (b) corresponds directly to the preferred symbol function. We 
prove this inequality in Theorem 5.5 using a series representation for Φ(r, 23).

There is a large body of literature on inequalities involving combinations of 
polygamma functions; see, e.g., [2,3,12–16,22] and the references therein. The inequal-
ities in Theorem 1.20 appear to be new and we suspect that mathematicians working 
in special function theory will take interest in results found in Sections 4, 5, and the 
Appendix.

The paper is organized as follows. Section 2 provides background material on the 
Leray transform. In Section 3 we establish new symmetries for the symbol function, 
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which is then related to Φ(r, q). In Section 4 we introduce the Bernstein-Widder theorem 
and prove several polygamma and symbol function inequalities. In Section 5 the Euler-
Maclaurin formula is used to study the preferred symbol function and the corresponding 
Φ(r, 23 ). The proof of one especially difficult estimate used in Section 5 is postponed until 
the Appendix.

1.5. Acknowledgments

We thank Dave Barrett and Bernhard Lamel for their comments. We also thank the 
anonymous referee for positive feedback and several helpful suggestions to improve the 
paper.

2. The Leray transform

The hypersurfaces Mγ serve as the boundary of (unbounded) convex domains in C2. 
But the Leray transform L and Leray kernel

L (z, ζ) = 1
(2πi)n

∂ρ(ζ) ∧ (∂∂ρ(ζ))n−1

〈∂ρ(ζ), ζ − z〉n

can in fact be defined on the more general class of C-convex domains. A domain Ω is 
C-convex if every (non-empty) intersection with a complex line is both connected and 
simply connected. This condition ensures the non-vanishing of the denominator of the 
Leray kernel for any z ∈ Ω. Both the Leray transform and the notion of C-convexity can 
be profitably studied in projective space CPn. This is briefly discussed in Sections 2.1
and 2.2 below; see [4] for a detailed treatment of this topic.

It is often useful to decompose the Leray kernel L into two pieces:

�(z, ζ) = 〈∂ρ(ζ), ζ − z〉−n, (2.1a)

λρ(ζ) = 1
(2πi)n ∂ρ(ζ) ∧ (∂∂ρ(ζ))n−1. (2.1b)

We refer to λρ as the Leray-Levi measure. Readers are invited to draw the connection 
between λρ and the volume form θ∧dθn−1 associated to the pseudo-hermitian structure 
arising from the contact form θ = i∂ρ; see [21]. By itself, λρ clearly depends on the 
choice of defining function, though natural choices of ρ often correspond to important 
measures. See [17] for a survey on L and related operators within the Cauchy-Fantappiè 
framework.

Barrett and Lanzani [8] study the L2-theory of L on smoothly bounded, strongly 
convex Reinhardt domains in C2. They obtain detailed spectral information on L∗L, 
LL∗ and L∗ − L, and relate the essential norm of L to a geometric invariant of the 
domain. Several articles by Lanzani and Stein have investigated other aspects the Leray 
transform. In [18] they prove that L preserves Lp spaces (1 < p < ∞) whenever the 



10 L.D. Edholm, Y. Shelah / Journal of Functional Analysis 288 (2025) 110746
hypersurface S is bounded, strongly C-linearly convex and C1,1 smooth. In [19,20] they 
show that counter-examples to Lp-boundedness exist when the smoothness or convexity 
hypotheses are relaxed.

2.1. Projective invariance

In [5, Section 5], Barrett defines a projective geometric invariant associated to any 
smoothly bounded, strongly C-convex hypersurface S. He uses it [5, Section 8] to con-
struct a projectively invariant measure νS : If Φ is an automorphism of CPn, the measure 
transforms as

Φ∗(νΦ(S)
)

= |detΦ′| 2n
n+1 νS . (2.2)

We refer to νS as the preferred measure. Equation (2.2) shows that the operator

f 
→ (detΦ′)
n

n+1 · (f ◦ Φ) (2.3)

maps L2(Φ(S), νΦ(S)
)

isometrically to L2(S, νS). If we use the Radon-Nikodym Theorem 
to re-express the Leray kernel (1.1b) in terms of the preferred measure, then the Leray 
transform admits the transformation law

LS
(
(detΦ′)

n
n+1 (f ◦ Φ)

)
= (detΦ′)

n
n+1

(
LΦ(S)(f) ◦ Φ

)
; (2.4)

see [5, Section 9] and [9, Section 5]. When the Leray transform is bounded on L2(S, νS)
(e.g., when Lanzani-Stein conditions of [18] hold), it can be used to define projectively 
invariant Hardy spaces consisting of the boundary values of holomorphic functions:

H2(S, νS) = LS
(
L2(S, νS)

)
. (2.5)

2.2. Projective duality

Given a smooth strongly C-convex hypersurface S ⊂ CPn, there is a unique complex 
tangent hyperplane at each ζ ∈ S. This determines a unique point in a dual copy of 
CPn; the set of all such points form the dual hypersurface S∗.

In [5, Section 6], Barrett shows that S∗ is smoothly bounded and strongly C-convex 
whenever S is, and further, that S and S∗ are diffeomorphic. If w : S → S∗ is a such a 
diffeomorphism, it can be used to pull back the space H2(S∗, νS∗) by setting

H2
dual(S, ν∗S) = w∗ (H2(S∗, νS∗)

)
, where ν∗S = w∗(νS∗).

The pairing measure σS is defined as the geometric mean of νS and ν∗S .
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Given functions f ∈ H2(S, νS) and g ∈ H2
dual(S, ν∗S), define their bilinear pairing as

〈〈f, g〉〉 =
∫
S

f(ζ)g(ζ)σS(ζ).

The map χ̂γ : g 
→ 〈 〈·, g〉 〉 gives a quasi-isometric identification of H2
dual(S, ν∗S) with 

function theoretic dual space H2(S, νS)′. In the Mγ setting, we have the following result:

Proposition 2.6 (Barrett-Edholm [7]). The operator χ̂γ : H2
dual(Mγ , ν) 
→ H2(Mγ , ν)′ is 

an invertible map with

∥∥χ̂−1
γ

∥∥
H2(Mγ ,ν)′ = ‖L‖L2(Mγ ,ν) .

In light of Theorem 1.6 part (d) we can now express this as a concrete number:

Theorem 2.7. The operator χ̂γ : H2
dual(Mγ , ν) 
→ H2(Mγ , ν)′ is an invertible map with

∥∥χ̂−1
γ

∥∥
H2(Mγ ,ν)′ =

√
γ

2
√
γ − 1

. (2.8)

2.3. Leray theory on Mγ

The following material is found in [7, Sections 3, 5]. As in the introduction, parame-
terize Mγ by (ζ1, ζ2) = (reiθ, s + irγ) and consider the measures

μd = rd dr ∧ dθ ∧ ds, d ∈ R.

The pairing measure σ (d = γ − 1) arises as (a constant multiple of) the Leray-Levi 
measure corresponding to the defining function ρ(ζ) = |ζ1|γ − Im(ζ2).

Rotational symmetry in ζ1 yields a decomposition of L2(Mγ , μd) into an orthogonal 
sum of subspaces L2

k(Mγ , μd), each consisting of functions of the form fk(r, s)eikθ. Like-
wise, the Leray transform decomposes into orthogonal sub-Leray operators Lk, each 
mapping L2(Mγ , μd) to L2

k(Mγ , μd) whenever it is bounded: L =
⊕∞

k=0 Lk. Given 
f ∈ L2(Mγ , μd), the following inequality holds; see [7, Theorem 5.2]:

‖Lkf‖L2(Mγ ,μd) ≤
√

J(d, γ, k) · ‖f‖L2(Mγ ,μd) , (2.9)

where J(d, γ, k) is the symbol function defined in (1.7). It turns out there always exist 
functions fk(r, s)eikθ ∈ L2

k(Mγ , μd) achieving equality in the relation (2.9) above.
If f(r, s, θ) =

∑
k fk(r, s)eikθ, orthogonality implies the following; see [7, Corollary 

5.4]:
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‖Lf‖2 =
∞∑
k=0

‖Lkf‖2 =
∞∑
k=0

∥∥Lkfk e
ikθ

∥∥2 ≤
∞∑
k=0

J(d, γ, k) ‖fk‖2 ≤ M
∞∑
k=0

‖fk‖2

= M ‖f‖2
,

where M denotes the supremum of J(d, γ, k) as k ranges over the non-negative integers. 
But since the norm of each Lk is achieved by a function in L2

k(Mγ , μd), it follows that

‖L‖L2(Mγ ,μd) = sup
{√

J(d, γ, k) : k = 0, 1, 2, . . .
}
. (2.10)

3. Symmetries and monotonicity

3.1. Hölder symmetry, γ �= 2

Proposition 1.8 says Lk is bounded on L2(Mγ , μd) if and only if d ∈ Ik(γ). Here, it is 
shown that for each d there is a unique d′ ∈ R such that the behavior of Lk in L2(Mγ , μd)
closely parallels its behavior in L2(Mγ∗ , μd′), where γ∗ is the Hölder conjugate of γ. For 
a ∈ R, define

δa(γ) = a(γ − 2) + 1. (3.1)

Theorem 3.2. The symbol function J(δa(γ), γ, k) is Hölder symmetric, in that

J(δa(γ), γ, k) = J(δa(γ∗), γ∗, k).

Proof. From (1.7) we have

J(δa(γ), γ, k) =
Γ
( 2k+2+(γ−2)a

γ

)
Γ
(
2k + 2 − 2k+2+(γ−2)a

γ

)
Γ(k + 1)2

×
(γ

2

)2k+2
(γ − 1)

( 2k+2+(γ−2)a
γ −2k−2

)
.

But notice that

2k + 2 + (γ∗ − 2)a
γ∗ = 2k + 2 − 2a

γ∗ + a =
(

1 − 1
γ

)
(2k + 2 − 2a) + a

= 2k + 2 − a− 2k + 2 − 2a
γ

= 2k + 2 − 2k + 2 + (γ − 2)a
γ

. (3.3)

Thus, we have both
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Γ
(

2k + 2 + (γ∗ − 2)a
γ∗

)
= Γ

(
2k + 2 − 2k + 2 + (γ − 2)a

γ

)
, (3.4a)

Γ
(

2k + 2 + (γ − 2)a
γ

)
= Γ

(
2k + 2 − 2k + 2 + (γ∗ − 2)a

γ∗

)
. (3.4b)

Using that
(γ∗

2

)2k+2
=

(γ
2

)2k+2
(γ − 1)−2k−2,

we deduce from (3.3) that

(γ∗ − 1)
( 2k+2+(γ∗−2)a

γ∗ −2k−2
)
= (γ − 1)

(
2k+2− 2k+2+(γ∗−2)a

γ∗
)
= (γ − 1)

( 2k+2+(γ−2)a
γ

)
.

Combining the previous two equations we have
(γ∗

2

)2k+2
(γ∗ − 1)

( 2k+2+(γ∗−2)a
γ∗ −2k−2

)
=

(γ
2

)2k+2
(γ − 1)

( 2k+2+(γ−2)a
γ −2k−2

)
. (3.5)

Putting together the equations in (3.4) with (3.5) gives the result. �
Remark 3.6. The computations in the theorem above yield a Hölder symmetric reformu-
lation of the symbol function whenever γ �= 2:

J(δa(γ), γ, k)

=
Γ
( 2k+2+(γ−2)a

γ

)
Γ
( 2k+2+(γ∗−2)a

γ∗

)
Γ(k + 1)2

(γ
2

)( 2k+2+(γ−2)a
γ

) (γ∗

2

)( 2k+2+(γ∗−2)a
γ∗

)
. ♦

Corollary 3.7. The pairing symbol function and the preferred symbol function are both 
Hölder symmetric, i.e., Cσ(γ, k) = Cσ(γ∗, k) and Cν(γ, k) = Cν(γ∗, k).

Proof. The pairing measure σ = μd with d = γ − 1. This d value coincides with δa(γ)
with a = 1, so Theorem 3.2 applies. The preferred measure ν = μd with d = γ+1

3 . This 
d value coincides with δa(γ) with a = 1

3 , so Theorem 3.2 again applies. �
Remark 3.8. In addition to σ and ν, Barrett and Edholm [7, Section 6.2.2] also introduce 
the dual preferred measure ν∗ on a C-convex hypersurface S as the pullback of the 
preferred measure on the dual hypersurface S∗. (Recall the discussion in Section 2.1
above, where these three measures are related by the property 

√
νν∗ = σ.)

When S = Mγ ,

ν∗ = r
5γ−7

3 dr ∧ dθ ∧ ds,

so ν∗ = μd with d = 5γ−7
3 . It follows from (1.9) that 5γ−7

3 ∈ I0(γ), meaning that L is 
bounded on L2(Mγ , ν∗). Since this d value equals δa(γ) with a = 5

3 , Theorem 3.2 implies 
Hölder symmetry: if we set Cν∗(γ, k) := J

( 5γ−7 , γ, k
)
, then Cν∗(γ, k) = Cν∗(γ∗, k). ♦
3
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Remark 3.9. When γ = 2, the function δa(γ) = a(γ − 2) + 1 ≡ 1 for every a. Thus 
each pair of function spaces L2(Mγ , μd) and L2(Mγ∗ , μd′) with parallel symbol function 
behavior reduces to a pairing of L2(M2, μ1) with itself when γ = 2. We note that on this 
space, the Leray transform coincides with the Szegő projection. ♦

3.2. Heisenberg monotonicity

From (1.7), observe that the symbol function greatly simplifies when γ = 2:

J(d, 2, k) =
Γ
(
k + 1+d

2
)
Γ
(
k + 3−d

2
)

Γ(k + 1)2 . (3.10)

A fraction involving Γ-functions in this form is sometimes called Gurland’s ratio; see 
[22].

Proposition 3.11. For each non-negative integer k,

‖Lk‖L2(M2,μd) = ‖Lk‖L2(M2,μ2−d) .

Proof. From (3.10) it is immediate that J(d, 2, k) = J(2 − d, 2, k). Now use (1.10). �
Remark 3.12. When γ = 2 and d = 1, we see that ‖Lk‖L2(M2,μ1) = 1 for every k. This 
of course is unsurprising, since the Leray transform is the Szegő projection on L2(M2,

μ1). ♦

Theorem 3.13. Let d be any real number. The function k 
→ J(d, 2, k) is decreasing 
whenever it is finite. Consequently,

‖Lk‖L2(M2,μd) ≥ ‖Lk+1‖L2(M2,μd) .

The inequality is strict for d �= 1.

Proof. When d = 1, Remark 3.12 says that the norm of Lk is equal to 1 for all k.
When d �= 1, we see from (1.9) that J(d, 2, k) is finite if and only if

d ∈ Ik(2) = (−2k − 1, 2k + 3).

Since Ik(2) ⊂ Ik+1(2) and these intervals exhaust the real line, it is clear that J(d, 2, γ)
can be infinite for at most a finite number of integers k.

Observe that d ∈ Ik(2) if and only if 2 −d ∈ Ik(2). Proposition 3.11 says it is sufficient 
to consider the case when d > 1, which we now assume for the rest of the proof.

Taking logarithms, (3.10) becomes

log J(d, 2, k) = log Γ
(
k + 1+d

)
+ log Γ

(
k + 3−d

)
− 2 log Γ(k + 1).
2 2
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Now treat k as a continuous variable and differentiate:

∂

∂k
log J(d, 2, k) = ψ(k + 1+d

2 ) + ψ(k + 3−d
2 ) − 2ψ(k + 1), (3.14)

where ψ is the digamma function defined in (1.19). Now consider the right-hand side of 
(3.14) in two separate pieces. By the mean value theorem,

ψ
(
k + 1+d

2
)
− ψ(k + 1) = ψ′(ξ1)

(
d−1
2

)
, (3.15a)

for some ξ1 ∈
(
k + 1, k + 1+d

2
)
. Similarly,

ψ
(
k + 3−d

2
)
− ψ(k + 1) = −ψ′(ξ2)

(
d−1
2

)
, (3.15b)

for some ξ2 ∈
(
k + 3−d

2 , k + 1
)
.

Combining (3.15a), (3.15b) and (3.14) we use the mean value theorem again,

∂

∂k
log J(d, 2, k) =

(
d−1
2

)
(ψ′(ξ1) − ψ′(ξ2)) =

(
d−1
2

)
ψ′′(ξ3)(ξ1 − ξ2),

for some ξ3 ∈ (ξ2, ξ1). It is well-known that ψ′′ < 0 on the positive reals (see, e.g., formula 
(3.17) below). This means that k 
→ log J(d, 2, k) is strictly decreasing for k ∈ [0, ∞), 
which implies that k 
→ J(d, 2, k) is strictly decreasing for k ∈ [0, ∞). Now restrict k to 
the non-negative integers and recall (1.10) to complete the proof. �

By Corollary 1.12, the Leray transform is bounded on L2(M2, μd) if and only if d ∈
I0(2) = (−1, 3). When this holds, the norm of the full Leray transform can be computed:

Corollary 3.16. Let d ∈ (−1, 3). The norm of the Leray transform on L2(M2, μd) is

‖L‖L2(M2,μd) =

⎧⎨
⎩
√

π
2 (1 − d) sec

(
dπ
2
)
, d ∈ (−1, 1) ∪ (1, 3)

1, d = 1.

This formula is continuous at d = 1.

Proof. The d = 1 case can be seen directly from (3.10) (also see Remark 3.12) and 
L’Hôpital’s rule shows continuity at d = 1. When d �= 1, Theorem 3.13 says k 
→ J(d, γ, k)
is strictly decreasing in k. Thus by (2.10),

‖L‖L2(M2,μd) =
√

J(d, 2, 0).

Now compute:

J(d, 2, 0) =
( 1−d

)
Γ
(
1 − 1−d

)
Γ
( 1−d

)
=

( 1−d
)
π csc

(
π − dπ

)
= π (1 − d) sec

(
dπ

)
.
2 2 2 2 2 2 2 2
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In this computation we have used the factorial property of the Γ-function along with 
Euler’s reflection formula: Γ(z)Γ(1 − z) = π csc(πz). �
3.3. Polygamma functions and ratios of successive symbols

In this section, once again consider γ �= 2 and set δa(γ) = a(γ − 2) + 1.
The polygamma functions are the successive derivatives of the digamma function 

ψ, defined in (1.19). For integers m ≥ 1, these functions admit the following series 
representations; see [1, Equation 6.4.10]:

ψ(m)(r) = (−1)m+1m!
∞∑
j=1

1
(r + j − 1)m+1 . (3.17)

The following polygamma combination is closely tied to Leray symbol function and 
is prominently featured throughout the paper (recall Fig. 2 in Section 1):

Φ(r, q) = 2rψ′(r + 1 − q) + r2ψ′′(r + 1 − q). (3.18a)

In light of (3.17), it is often useful to write this function as a series

Φ(r, q) =
∞∑
j=1

2r(j − q)
(r + j − q)3 . (3.18b)

The establishment of new inequalities related to the polygamma functions has been 
an active area of research for decades; see [2,3,12–16,22] for results with similar flavor to 
those we prove below. A typical way in which new polygamma inequalities are obtained 
is to show that some auxiliary function is completely monotone (see Section 4.2), a check-
able condition thanks to the celebrated Bernstein-Widder theorem (see Theorem 4.7).

In Sections 4 and 5, we prove inequalities involving Φ(r, q) and related functions, both 
by use of Bernstein-Widder and in situations where it fails to apply. Our inequalities 
appear to be new and the methods are likely adaptable to more general settings.

For later convenience, we re-frame the finiteness of the symbol function in terms of 
δ1−q. (Setting a = 1 − q in (3.1) yields a symmetric formulation of the following result):

Lemma 3.19. Let γ �= 2. The symbol function J(δ1−q(γ), γ, k) is finite for all non-negative 
integers k if and only if

|q| < γ

|γ − 2| .

Proof. By Proposition 1.8, J(δ1−q(γ), γ, k) is finite for all k if and only if

δ1−q(γ) ∈
∞⋂

Ik(γ) = I0(γ) = (−1, 2γ − 1).

k=0
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For γ > 2 this means

−1 < (1 − q)(γ − 2) + 1 < 2γ − 1 ⇐⇒ − γ

γ − 2 < q <
γ

γ − 2 ,

confirming the inequality. When γ < 2,

−1 < (1 − q)(γ − 2) + 1 < 2γ − 1 ⇐⇒ − γ

2 − γ
< q <

γ

2 − γ
,

confirming the inequality. �
Remark 3.20. Observe that the estimate appearing in Lemma 3.19 is Hölder symmetric, 
i.e., invariant under the change of variable γ 
→ γ∗. ♦

Lemma 3.21. Let γ �= 2 and |q| < γ

|γ − 2| , so that J(δ1−q(γ), γ, k) is finite for k ≥ 0.

(1) If Φ(r, q) < 1 for r > q, then k 
→ J(δ1−q(γ), γ, k) is strictly decreasing on the 
non-negative integers.

(2) If Φ(r, q) > 1 for r > q, then k 
→ J(δ1−q(γ), γ, k) is strictly increasing on the 
non-negative integers.

Proof. Strict increasing (resp. decreasing) behavior of the function k 
→ J(δ1−q(γ), γ, k)
would follow by showing the below ratio is strictly greater than 1 (resp. strictly less than 
1) for non-negative integers k. Throughout the proof, set a = 1 − q:

J(δa(γ), γ, k + 1)
J(δa(γ), γ, k) =

Γ
(

2k+4+(γ−2)a
γ

)
Γ
(
2k + 4 − 2k+4+(γ−2)a

γ

)
Γ
(

2k+2+(γ−2)a
γ

)
Γ
(
2k + 2 − 2k+2+(γ−2)a

γ

) (
γ

2k + 2

)2

(γ − 1)
2
γ −2

By the Hölder symmetry of the symbol function (Theorem 3.2), it is sufficient to 
restrict analysis to γ ∈ (1, 2); upon making the substitution x = 2

γ , this is equivalent to 
analyzing the behavior of the following function for x ∈ (1, 2):

Γ ((k + 2 − a)x + a) Γ ((k + 2 − a)(2 − x) + a)
Γ ((k + 1 − a)x + a) Γ ((k + 1 − a)(2 − x) + a) · x

−x(2 − x)x−2

(k + 1)2 := eA(k,x)

Upon taking a logarithm, observe that A(k, 1) ≡ 0, and further that A(k, x) can be 
written

A(k, x) = B(k, x) + B(k, 2 − x),

where

B(k, x) := log
[
Γ ((k + 2 − a)x + a)

]
− x log x− log(k + 1). (3.22)
Γ ((k + 1 − a)x + a)
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For the remainder of the proof we focus on case (2), noting that the same argument 
with trivial modifications in appropriate places will prove case (1).

We have just seen that the statement

J(δa(γ), γ, k + 1)
J(δa(γ), γ, k) > 1 (3.23)

for all non-negative integers k and γ ∈ (1, 2) is equivalent to the statement that A(k, x) >
0 for all non-negative integers k and x ∈ (1, 2).

Since A(k, 1) ≡ 0 for all non-negative integers k, the desired positivity of A(k, x) will 
follow by establishing a stronger condition, namely, that for x ∈ (1, 2)

∂A

∂x
(k, x) = ∂B

∂x
(k, x) − ∂B

∂x
(k, 2 − x) > 0. (3.24)

Estimate (3.24) will in turn follow if it can be established that ∂B
∂x (k, x) is strictly 

increasing for x ∈ (1, 2), since 0 < 2 − x < x for such x. It would thus suffice to show

∂2B

∂x2 (k, x) > 0. (3.25)

Recalling the representation (3.17) of ψ′ by a series, calculation now shows

∂2B

∂x2 (k, x) = (k + 2 − a)2ψ′((k + 2 − a)x + a) − (k + 1 − a)2ψ′((k + 1 − a)x + a) − 1
x

=
∞∑
j=1

(k + 2 − a)2

(j + (k + 2 − a)x + (a− 1))2 −
∞∑
j=1

(k + 1 − a)2

(j + (k + 1 − a)x + (a− 1))2 − 1
x

= D(k + 1, x) −D(k, x), (3.26)

where

D(k, x) :=
∞∑
j=1

(k + 1 − a)2

(j + (k + 1 − a)x + (a− 1))2 − k

x
. (3.27)

Temporarily regard k as a continuous variable. By (3.26), it would now be sufficient 
to show that D(k, x) increases as a function of k ∈ [0, ∞) in order to conclude that 
estimate (3.25) holds. We claim that for x ∈ (1, 2),

∂D

∂k
(k, x) =

∞∑
j=1

∂

∂k

[
(k + 1 − a)2

(j + (k + 1 − a)x + (a− 1))2

]
− 1

x

=
∞∑
j=1

2(k + 1 − a)(j + a− 1)
(j + (k + 1 − a)x + (a− 1))3 − 1

x
> 0. (3.28)
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The inequality in (3.28) is equivalent to saying that, for k ∈ [0, ∞) and x ∈ (1, 2),

∞∑
j=1

2x(k + 1 − a)(j + a− 1)
(j + (k + 1 − a)x + (a− 1))3 > 1. (3.29)

Now substituting q = 1 −a and r = x(k+1 −a) = x(k+ q). The inequality (3.29) would 
follow by showing that, for r > q,

∞∑
j=1

2r(j − q)
(j + r − q)3 = Φ(r, q) > 1. (3.30)

This is the condition listed in case (2) of the theorem. Retracing our steps, we see that 
inequality (3.30) implies inequality (3.28). Now, by (3.26), this implies inequality (3.25). 
This implies (3.24), which in turn shows (3.23), meaning that k 
→ J(δ1−q(γ), γ, k) is an 
increasing function on the non-negative integers.

To prove case (1), return to (3.23) and retrace the same steps, changing “>” to “<” 
and “increases” to “decreases” in all necessary places. �
4. Polygamma inequalities and complete monotonicity

4.1. An initial estimate

We now examine the properties of

Φ(r, q) = 2rψ′(r + 1 − q) + r2ψ′′(r + 1 − q).

We start from well-known upper and lower estimates on the polygamma functions; see 
[16, Theorem 3]. If x > 0 and m is a positive integer, then

(m− 1)!
xm

+ m!
2xm+1 < (−1)m+1ψ(m)(x) < (m− 1)!

xm
+ m!

xm+1 . (4.1)

We use this to describe the behavior of Φ(r, q) as r → ∞. (Compare with Fig. 2.)

Proposition 4.2. Let q be a fixed real number. Then

lim
r→∞

Φ(r, q) = 1.

Proof. Directly from (4.1), we have for r > max{q − 1, 0},

2r2 − 2rq + 3r
(r + 1 − q)2 < 2rψ′(r + 1 − q) < 2r2 − 2rq + 4r

(r + 1 − q)2 ,

and
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− (r − q + 3)r2

(r + 1 − q)3 < r2ψ′′(r + 1 − q) < − (r − q + 2)r2

(r + 1 − q)3 .

Now combine these:

r3 + (2 − 3q)r2 + (3 − 5q + 2q2)r
(r + 1 − q)3 < Φ(r, q) < r3 + (4 − 3q)r2 + (4 − 6q + 2q2)r

(r + 1 − q)3 . (4.3)

Taking the limit as r → ∞ gives the result. �
Remark 4.4. Given q, we must show either Φ(r, q) > 1 for r > q, or Φ(r, q) < 1 for r > q

in order to apply Lemma 3.21. This requires better estimates than those obtained in 
(4.3). This is easily seen when q = 0, in which case

r3 + 2r2 + 3r
r3 + 3r2 + 3r + 1 < Φ(r, 0) < r3 + 4r2 + 4r

r3 + 3r2 + 3r + 1 .

This lower bound is always less than 1, while the upper bound is eventually greater than 
1. Similarly, neither the upper nor lower bound in (4.3) is strong enough to warrant 
application of Lemma 3.21 for any q. Our goal is now to improve the estimates on Φ(r,
q). ♦

4.2. The Bernstein-Widder theorem

Let us recall another well-known formula for the polygamma functions ψ(m); see [1, 
Equation 6.4.1]:

ψ(m)(r) = (−1)m+1
∞∫
0

tme−rt

1 − e−t
dt. (4.5)

Let f be a real-valued function defined on (c, ∞), for some c ∈ R. We say that f is 
strictly completely monotone on (c, ∞) if it is of class C∞ and

(−1)m dm

drm
f(r) > 0 (4.6)

for all non-negative integers m and r > c.
Strictly completely monotone functions are characterized by the following theorem, 

which can be found in [25, page 161].

Theorem 4.7 (Bernstein-Widder). A function f is strictly completely monotone on (c, ∞)
if and only if f(r − c) is the Laplace transform of a finite positive Borel measure μ on 
(c, ∞). In other words,

f(r − c) =
∞∫
e−rt dμ(t).
0
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Our goal is to use Bernstein-Widder to analyze Φ(r, q) and closely related functions.
Let us define

Θ(r, q) = r2ψ′(r + 1 − q) (4.8a)

and observe that

∂Θ
∂r

(r, q) = Φ(r, q). (4.8b)

Lemma 4.9. For x > 0 we have the following

Θ(x + q, q) = x + 2q − 1
2 +

∞∫
0

M(t, q)
(et − 1)3 e

−xt dt, (4.10)

where

M(t, q) = g0(t) − g1(t)q + g2(t)q2, (4.11)

and g0, g1, g2 are positive functions on (0, ∞). Explicitly,

g0(t) = et(2 − 2et + t + tet), (4.12a)

g1(t) = 2(et − 1)(1 − et + tet), (4.12b)

g2(t) = t(et − 1)2. (4.12c)

Proof. From definition (4.8a) and (4.5) we have

Θ(x + q, q) = (x + q)2
∞∫
0

te−(x+1)t

1 − e−t
dt =

∞∫
0

teqt

et − 1(x + q)2e−(x+q)t dt.

Integrate by parts twice, setting

u1 = teqt

et − 1 , dv1 = (x + q)2e−(x+q)t dt,

for the first application, and u2 = du1
dt and dv2 = v1 dt for the second. This means that

u2 = et − 1 − tet − (t− tet)q
(et − 1)2 eqt, v1 = −(x + q)e−(x+q)t,

and consequently,

du2 = g0(t) − g1(t)q + g2(t)q2

t 3 eqt dt, v2 = e−(x+q)t,
(e − 1)
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where g0, g1, g2 are given in the statement of the theorem. Now,

Θ(x + q, q) =
∞∫
0

u1 dv1 = u1v1

∣∣∣∞
0

−
∞∫
0

v1 du1

= u1v1

∣∣∣∞
0

− u2v2

∣∣∣∞
0

+
∞∫
0

v2 du2

= (x + q) −
( 1

2 − q
)

+
∞∫
0

M(t, q)
(et − 1)3 e−xt dt. (4.13)

Using the definitions of M(t, q) and the gj(t) given above, we see that for t near 0,

M(t, q) =
(
q2 − q + 1

6

)
t3 +

(
q2 − 7q

6 + 1
4

)
t4 + O

(
t5
)

On the other hand, if t is large enough (say, t > 1), there is a constant Cq such that

|M(t, q)| ≤ Cq te
2t.

From these estimates on M(t, q) we see that the integral appearing in (4.13) converges 
for x > 0. It now only remains to show the positivity of the gj(t) for t > 0.

Let us first set h0(t) = 2 −2et+t +tet, so that g0(t) = eth0(t). Calculating derivatives,

h′
0(t) = 1 + (t− 1)et, h′′

0(t) = tet,

and so 0 = h0(0) = h′
0(0) = h′′(0). Also, clearly h′′

0(t) > 0, for t > 0 which now implies 
that h′

0(t) > 0, which in turn implies h0(t) > 0. Thus g0(t) > 0 for t > 0.
Now let h1(t) = 1 − et + tet, so that g1(t) = 2(et − 1)h1(t). We see that

h′
1(t) = tet,

and so 0 = h1(0) = h′
1(0). Clearly h′

1(t) > 0 for t > 0, which implies h1(t) > 0 and 
therefore g1(t) > 0 for t > 0.

Finally, it is immediate from the formula that g2(t) > 0 for t > 0. �
4.3. Completely monotone functions

For real q define the following function

Fq(x) = Θ(x + q, q) − x− 2q + 1
. (4.14)
2
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Theorem 4.15. Let q ∈ (−∞, 0] ∪ [1, ∞). The function x 
→ Fq(x) is strictly completely 
monotone on x > 0.

Proof. From Lemma 4.9, we have

Fq(x) =
∞∫
0

M(t, q)
(et − 1)3 e−xt dt, (4.16)

where M(t, q) = g0(t) − g1(t)q + g2(t)q2, and the gj are given in (4.12).
Regarding M(t, q) as a quadratic in the q variable, the discriminant is

Δ(t) = g1(t)2 − 4g0(t)g2(t)

= 4 − 16et + 24e2t − 16e3t + 4e4t + (−4et + 8e2t − 4e3t)t2

= 4(et − 1)2(1 − 2et + e2t − ett2). (4.17)

The roots to M(t, q) = 0 are therefore given by taking

q =
g1(t) ±

√
Δ(t)

2g2(t)
;

we now label these roots as

s1(t) = tet + 1 − et +
√

1 − 2et + e2t − t2et

t(et − 1) , (4.18a)

s2(t) = tet + 1 − et −
√

1 − 2et + e2t − t2et

t(et − 1) . (4.18b)

Observe that the term under the square root is positive for t > 0:

1 − 2et + e2t − t2et > 0 ⇐⇒ cosh t > 1 + t2

2 ⇐⇒
∞∑
j=2

t2j

(2j)! > 0.

We now claim for t > 0 that

0 < s2(t) < s1(t) < 1. (4.19)

The fact that s2(t) < s1(t) is immediate. The inequality s2(t) > 0 follows from the fact 
that M(t, q) > 0 for all q ≤ 0 and t > 0 (since each gj(t) > 0 for t > 0).

For the remaining inequality we show that it is both true and sharp. Indeed,

s1(t) < 1 ⇐⇒ tet − t > tet + 1 − et +
√

1 − 2et + e2t − t2et

⇐⇒ et − 1 − t >
√

1 − 2et + e2t − t2et
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⇐⇒ (et − 1)2 − 2t(et − 1) + t2 > (et − 1)2 − t2et

⇐⇒ (t− 2)et + t + 2 > 0.

Now set E(t) := (t − 2)et + t + 2. Then

E′(t) = (t− 1)et + 1, E′′(t) = tet,

and so 0 = E(0) = E′(0) = E′′(0). Since E′′(t) > 0 for t > 0, we have that E′(t) > 0
which in turn implies that E(t) > 0, thus confirming that s1(t) < 1. (Notice that the 
function E, along with the same line of reasoning given here, appeared in Lemma 4.9, 
where the function was called h0.)

For the sharpness of this inequality, observe that

lim
t→∞

s1(t) = lim
t→∞

tet

tet
· 1 + t−1(e−t − 1) +

√
t−2(1 − e−t)2 − e−t)

1 − e−t
= 1.

Now since 0 < s2(t) < s1(t) < 1 for all t > 0, we conclude that M(t, q) > 0 for 
t > 0 and q ∈ (−∞, 0] ∪ [1, ∞). The Bernstein-Widder theorem now shows that Fq(x) is 
strictly completely monotone for q in this range. �
Remark 4.20. The proof of Theorem 4.15 shows the right endpoint q = 1 of the interval 
0 < s2(t) < s1(t) < 1 is sharp. No claim of sharpness is made for the left endpoint, 
however. Numerical evidence suggests that s2(t) is a strictly increasing function on t > 0, 
which would imply that the left endpoint can be slightly improved from q = 0 to

q = lim
t↘0

s2(t) = 3 −
√

3
6 ≈ 0.211325.

In any case, we can say that Fq(x) fails to be completely monotone for q ∈
( 3−

√
3

6 , 1
)
. ♦

Corollary 4.21. Choose q ∈ (−∞, 0] ∪ [1, ∞). Then Φ(r, q) < 1 for r > q.

Proof. Fix q ∈ (−∞, 0] ∪ [1, ∞) and set x = r − q. Theorem 4.15 now says the function

r 
→ Fq(r − q) = Θ(r, q) − r − q + 1
2

is strictly completely monotone for r > q. Now differentiate in r to see that

∂Θ
∂r

(r, q) − 1 < 0,

for all r > q. Since ∂Θ (r, q) = Φ(r, q) by (4.8b), we obtain the result. �
∂r
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Remark 4.22. Notice that q = 2
3 (the q-value corresponding to the preferred symbol 

function) lies in the interval for which complete monotonicity of Fq(x) is known to fail; 
see Remark 4.20. This means the Bernstein-Widder approach is not applicable, and the 
preferred symbol function must be handled using other means (see Section 5). ♦

4.4. Consequences for the Leray transform

The results in Sections 4.2 and 4.3 are now combined with Lemma 3.21. Recall 
(Corollary 1.12) that the Leray transform is bounded on L2(Mγ , μd) if and only if 
d ∈ (−1, 2γ − 1) = I0(γ). We now see that the norms of the sub-Leray operators Lk are 
strictly decreasing in k for a range of d values with a combined length of more than half 
the length of I0(γ).

Theorem 4.23. Let Lk denote the sub-Leray operator for each non-negative integer k.

(1) If γ > 2 and d ∈ (−1, 1] ∪ [γ − 1, 2γ − 1), then the function k 
→ J(d, γ, k) is strictly 
decreasing on the non-negative integers. Thus

‖Lk‖L2(Mγ ,μd) > ‖Lk+1‖L2(Mγ ,μd) .

(2) If γ < 2 and d ∈ (−1, γ − 1] ∪ [1, 2γ − 1), then the function k 
→ J(d, γ, k) is strictly 
decreasing on the non-negative integers. Thus

‖Lk‖L2(Mγ ,μd) > ‖Lk+1‖L2(Mγ ,μd) .

Consequently, in both settings, the norm of the full Leray transform is

‖L‖L2(Mγ ,μd) = ‖L0‖L2(Mγ ,μd) .

Proof. By Corollary 4.21, Φ(r, q) < 1 for q ∈ (−∞, 0] ∪ [1, ∞) and r > q. On the 
other hand, Lemma 3.19 says that the symbol function J(δ1−q(γ), γ, k) is finite for all 
non-negative integers k if and only if |q| < γ

|γ−2| .
Upon intersecting these two intervals, Lemma 3.21 says that for γ �= 2, the function 

k 
→ J(δ1−q(γ), γ, k) is strictly decreasing on the non-negative integers for

q ∈
(

−γ
|γ−2| , 0

]
∪
[
1, γ

|γ−2|

)
.

Let us write

d = δ1−q(γ) = (1 − q)(γ − 2) + 1 (4.24)

and recall that 
√
J(d, γ, k) = ‖Lk‖L2(Mγ ,μd) by equation (1.10).

Now consider four separate cases:
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When γ > 2 and q ∈
[
1, γ

γ−2
)
, equation (4.24) implies that k 
→ ‖Lk‖L2(Mγ ,μd) is 

strictly decreasing for d ∈ (−1, 1].
When γ > 2 and q ∈

( −γ
γ−2 , 0

]
, equation (4.24) implies that k 
→ ‖Lk‖L2(Mγ ,μd) is 

strictly decreasing for d ∈ [γ − 1, 2γ − 1).
When γ < 2 and q ∈

[
1, γ

2−γ

)
, equation (4.24) implies that k 
→ ‖Lk‖L2(Mγ ,μd) is 

strictly decreasing for d ∈ [1, 2γ − 1).
When γ < 2 and q ∈

( −γ
2−γ , 0

]
, equation (4.24) implies that k 
→ ‖Lk‖L2(Mγ ,μd) is 

strictly decreasing for d ∈ (−1, γ − 1].
This establishes both (1) and (2). In all settings encompassed by these two cases, the 

L2(Mγ , d)-norm of Lk decreases with k, implying that L0 is the sub-Leray operator with 
the biggest norm. Equation (2.10) now says that ‖L‖L2(Mγ ,d) = ‖L0‖L2(Mγ ,d). �

Both the pairing measure σ = rγ−1 dr ∧ dθ ∧ ds (d = γ − 1) and Lebesgue measure 
μ1 = r dr ∧ dθ ∧ ds (d = 1) fall within the range of applicability of Theorem 4.23. We 
now record the norms of the Leray transform in both settings:

Corollary 4.25. Let σ = rγ−1 dr∧dθ∧ds. The Leray transform is bounded on L2(Mγ , σ)
with norm

‖L‖L2(Mγ ,σ) = γ

2
√
γ − 1

.

Proof. Since σ corresponds to d = γ − 1, Theorem 4.23 applies. Thus by (1.7),

‖L‖L2(Mγ ,σ) = ‖L0‖L2(Mγ ,σ) =
√

Cσ(γ, 0) = γ

2
√
γ − 1

.

Recall that the pairing symbol function Cσ(γ, k) = J(γ − 1, γ, k). �
Remark 4.26. Barrett and Edholm calculated ‖L‖L2(Mγ ,σ) in [7, Proposition 4.2] using a 
different approach. The argument given there is tailored to the pairing measure (q = 0) 
and seems not to easily generalize to other measure settings. ♦

Corollary 4.27. Let μ1 = r dr∧dθ∧ds. The Leray transform L is bounded on L2(Mγ , μ1)
with norm

‖L‖L2(Mγ ,μ1) =

⎧⎨
⎩(γ − 1)

1
γ −1

√
π
4 (γ − 2)γ csc

( 2π
γ

)
, γ ∈ (1, 2) ∪ (2,∞)

1, γ = 2.

The formula is continuous at γ = 2.

Proof. Since μ1 corresponds to d = 1, Theorem 4.23 applies once again for γ �= 2:

‖L‖L2(M ,μ ) = ‖L0‖L2(M ,μ ) =
√

J(1, γ, 0) = (γ − 1)
1
γ −1

√(
γ
)2 Γ

( 2 )Γ(2 − 2 )

γ 1 γ 1 2 γ γ
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= (γ − 1)
1
γ −1

√
π
4 (γ − 2)γ csc

( 2π
γ

)
,

where we’ve used the factorial property of the Γ-function as well as Euler’s reflection 
formula.

The γ = 2 case follows from (3.10) and L’Hôpital’s rule confirms continuity. �
5. The preferred symbol function

In this section we prove that the preferred symbol function k 
→ Cν(γ, k), γ �= 2, is 
strictly increasing, in stark contrast with the strictly decreasing symbol function behavior 
seen in the earlier parts of the paper. Our goal is to show

Φ(r, 2
3 ) > 1, for r > 2

3 .

Unlike the work in Section 4, we are unable to invoke complete monotonicity and the 
Bernstein-Widder theorem to prove this inequality, since it is known that the related 
function Fq is not completely monotone for q = 2

3 ; see Remark 4.20.
In place of the integral representations used in the previous section, we use here the 

infinite series description obtained from (3.18b):

Φ
(
r, 2

3
)

=
∞∑
j=1

fr(j), where fr(j) = 18r(3j − 2)
(3r + 3j − 2)3 . (5.1)

5.1. Two tools

Two classical results are crucial to the subsequent analysis.
The first is Descartes’ Rule of Signs (see [24] for a simple proof):

Proposition 5.2 (Descartes). Let p be a single variable polynomial with real coefficients, 
with monomial terms arranged so that exponents appear in ascending order. The number 
of positive roots of p (counted with multiplicities) is either (i) equal to the number of 
sign changes between consecutive (non-zero) coefficients, or (ii) less than that by an 
even number.

The second is the Euler-Maclaurin formula relating sums and integrals; see [11, Sec-
tion 9.5]. For our purposes it is sufficient to use the following first-order version:

Proposition 5.3 (Euler-Maclaurin). Let m < n be integers and f ∈ C1[m, n]. Then

n∑
j=m+1

f(j) =
n∫
f(x) dx + f(n) − f(m)

2 +
n∫
f ′(x)P1(x) dx, (5.4)
m m
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where P1(x) = B1(x − �x�), B1(x) = x − 1
2 is the first Bernoulli polynomial and �x� the 

greatest integer less than or equal to x.

We refer to the rightmost integral in (5.4) as the Bernoulli integral.

5.2. Applying Euler-Maclaurin

We use the Euler-Maclaurin formula to re-express the sum in (5.1), then use carefully 
chosen bounds to estimate the Bernoulli integral. After a considerable amount of analysis, 
the behavior of r 
→ Φ

(
r, 23

)
is reduced to a problem about the positive real roots of an 

explicit polynomial of degree 16. This in turn is completely understood using Descartes’ 
Rule of Signs and direct evaluation.

The computations in Section 5 and the Appendix involve lengthy manipulations of 
polynomials and rational functions. While the reader could (in principle) work these out 
by hand, we highly recommend the use of software when verifying these computations. 
We have made a detailed and heavily notated Mathematica notebook available at the 
Github page of the first author. Please follow the link given in [10].

Theorem 5.5. If r > 2
3 , then Φ

(
r, 23

)
= 2rψ′(r + 1

3
)

+ r2ψ′′(r + 1
3
)
> 1.

Proof. Start with the function fr from (5.1) and use the first order Euler-Maclaurin 
formula (5.4) with m = 0 and n → ∞. Computation yields the first two terms on the 
right side of (5.4):

∞∫
0

fr(x) dx = 1 − 4
(3r − 2)2 ,

fr(∞) − fr(0)
2 = 18r

(3r − 2)3 , (5.6)

where fr(∞) = limn→∞ fr(n). Computation also shows that

f ′
r(x) = 54r(4 + 3r − 6x)

(3x + 3r − 2)4 ,

from which the following expression for the Bernoulli integral in (5.4) is calculated:

∞∫
0

f ′
r(x)P1(x) dx =

∞∑
N=0

1∫
0

f ′
r(x + N)B1(x) dx =

∞∑
N=0

81r(9N2 − 3N − 9r2 − 2)
(3r + 3N + 1)3(3r + 3N − 2)3 .

Denote the rational function appearing in the sum above by

S(r,N) = 81r(9N2 − 3N − 9r2 − 2)
(3r + 3N + 1)3(3r + 3N − 2)3 . (5.7)

Now inserting (5.6) and (5.7) into (5.4), we see by (5.1) that
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Φ
(
r, 2

3
)

=
∞∑
j=1

fr(j) = 1 − 4
(3r − 2)2 + 18r

(3r − 2)3 +
∞∑

N=0
S(r,N)

= 1 + 6r − 1
(3r + 1)3 +

∞∑
N=1

S(r,N). (5.8)

(Note that we have peeled off the N = 0 term from the summation.)
It thus remains to show that

6r − 1
(3r + 1)3 +

∞∑
N=1

S(r,N) (5.9)

is strictly positive for r > 2
3 .

5.2.1. The function S(r, x)
We now show that x 
→ S(r, x) (x is for now regarded as a non-negative real variable) 

has a single local extremum (a maximum) on [0, ∞). Indeed,

∂S

∂x
(r, x)

= 243r[(−4 + 39r − 36r2 + 162r3) + (18 + 18r + 216r2)x + (54 − 54r)x2 − 108x3]
(3r + 3x + 1)4(3r + 3x− 2)4

Write the cubic polynomial in x appearing in the brackets above by

pr(x) := (−4+39r−36r2 +162r3)+(18+18r+216r2)x+(54−54r)x2 −108x3. (5.10)

It is easily checked that for r > 2
3 the coefficients of 1 and x are positive, while the 

coefficient of x2 changes sign at r = 1, and the coefficient of x3 is a negative constant. 
Thus for all r in this range, there is exactly one sign change in consecutive coefficients 
when the monomial terms of pr(x) are considered in ascending order. Descartes’ Rule of 
Signs thus guarantees a unique positive real root of the function x 
→ pr(x), where the 
values of pr(x) change from positive to negative. Denote this root by Qr.

We claim that Qr ∈
( 3r

2 + 1
6 , 

3r
2 + 1

3
)
: Indeed, for r > 2

3 ,

pr
( 3r

2 + 1
6
)

= 81r > 0,

pr
( 3r

2 + 1
3
)

= 4 + 66r − 225
2 r2 < 0.

(A more precise estimate on Qr is obtained in Lemma A.3.)
We see from (5.7) that x 
→ S(r, x) starts negative, then becomes (and remains) 

positive for x large enough, since the function tends to zero as x → ∞ and its deriva-
tive changes signs exactly once. In particular, the global maximum value of S(r, Qr) is 
positive.
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We now trivially re-write the quantity in (5.9) as

6r − 1
(3r + 1)3 + S(r, 1) + S(r, 2) +

∞∑
N=3

S(r,N). (5.11)

(Separating out the N = 1 and N = 2 terms from the rest of the summation simplifies 
the following estimate.) We claim that

∞∑
N=3

S(r,N) >
∞∫
2

S(r, x) dx− S(r,Qr). (5.12)

To see this, set K := �Qr�, the greatest integer less than or equal to Qr. From the 
discussion above, S(r, ·) increases on (1, K) and decreases on (K+1, ∞). We now consider 
two cases: K ≤ 2 and K ≥ 3.

When K ≤ 2, we have that S(r, ·) decreases on (3, ∞), so

∞∑
N=3

S(r,N) >
∞∫
3

S(r, x) dx. (5.13a)

But also note that

0 >

3∫
2

S(r, x) dx− S(r,Qr), (5.13b)

since any integral over an interval of unit length is overestimated by the maximum value 
of its integrand. Combining (5.13a) with (5.13b) now yields (5.12) for K ≤ 2.

When K ≥ 3, we are able to write

K∑
N=3

S(r,N) >
K∫

2

S(r, x) dx, (5.14a)

∞∑
N=K+1

S(r,N) >
∞∫

K+1

S(r, x) dx. (5.14b)

Using reasoning identical to what justified (5.13b), we see that

0 >

K+1∫
K

S(r, x) dx− S(r,Qr). (5.14c)

Combining (5.14a), (5.14b) and (5.14c) yields (5.12) for K ≥ 3.
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From (5.12), the following quantity is a lower bound on (5.9) = (5.11):

6r − 1
(3r + 1)3 + S(r, 1) + S(r, 2) +

∞∫
2

S(r, x) dx− S(r,Qr). (5.15)

We now show (5.15) is positive by computing the above integral and estimating S(r, Qr).
A partial fraction decomposition of S(r, x) helps to yield the following:

∞∫
2

S(r, x) dx = 3r(108r3 + 594r2 + 1035r + 616)
2(3r + 4)2(3r + 7)2 − 2r log

(
3r + 7
3r + 4

)
. (5.16)

We also have the following estimate on S(r, Qr): for r > 2
3 ,

S(r,Qr) <
16

3125r3 . (5.17)

The proof this estimate is given in Lemma A.4 of the Appendix. (The right hand side of 
(5.17) is the leading term in the Taylor expansion of S(r, Qr) at ∞; see Remark A.9.)

We now use (5.16) and (5.17) to define a new function:

H(r) := 6r − 1
(3r + 1)3 + S(r, 1) + S(r, 2) +

∞∫
2

S(r, x) dx− 16
3125r3

= 6r − 1
(3r + 1)3 + 81r(4 − 9r2)

(3r + 1)3(3r + 4)3 + 81r(28 − 9r2)
(3r + 4)3(3r + 7)3 + (5.18)

+ 3r(108r3 + 594r2 + 1035r + 616)
2(3r + 4)2(3r + 7)2 − 2r log

(
3r + 7
3r + 4

)
− 16

3125r3

Upon combining (5.16) with the bound (5.17), we see that H(r) is a lower bound for 
(5.15). Our goal is now to show H(r) is positive for r > 2

3 . Note that while H is itself 
not a rational function, its second derivative is rational. This is crucial to the coming 
argument.

5.2.2. The function H(r)
We now present H in a more digestible fashion. Combining all of the rational functions 

in (5.18) yields

H(r) = F1(r)
6250r3(3r + 1)3(3r + 4)3(3r + 7)3 − 2r log

(
3r + 7
3r + 4

)
, (5.19)

where F1 is a polynomial of degree 12 with integer coefficients, the full formula of which 
is included in Table 1 below. The leading coefficient of F1 (written c1,12 in the table) 
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is 246 037 500 = 223955. Note that the denominator of the rational function in (5.19) is 
also a polynomial of degree 12, with leading coefficient 123 018 750 = 213955. Thus,

lim
r→∞

H(r) = 2 − 2 = 0.

Now differentiate H to obtain

H ′(r) = F2(r)
3125r4(3r + 1)4(3r + 4)4(3r + 7)4 − 2 log

(
3r + 7
3r + 4

)
, (5.20)

where F2 is a polynomial of degree 15 with integer coefficients (the full formula is also 
included in Table 1). Since the denominator polynomial has degree 16, it follows that

lim
r→∞

H ′(r) = 0.

Finally, differentiate H ′ to obtain

H ′′(r) = F3(r)
3125r5(3r + 1)5(3r + 4)5(3r + 7)5 , (5.21)

where F3 is a polynomial of degree 16 with integer coefficients, the exact expression of 
which is included in Table 1. Since the denominator polynomial has degree 20, it follows 
that

lim
r→∞

H ′′(r) = 0.

The following statements are easily verified from Table 1 below:

(1) The coefficients of the 1, r, · · · , r7 terms in F3 are negative.
(2) The coefficients of the r8, r9, · · · , r16 terms in F3 are positive.
(3) Descartes’ Rule of Signs thus guarantees that F3 has a unique positive real root. 

Since the denominator of H ′′(r) is positive for r > 0, we see that H ′′(r) changes sign 
exactly once for r > 0.

(4) Evaluation of the rational function H ′′ shows this sign change occurs inside the 
interval 

( 1
3 , 

2
3
)
:

H ′′ ( 1
3
)

= −437 616 243
25 600 000 , and H ′′ ( 2

3
)

= 49 618
2 278 125 .

(5) We conclude that H ′′ > 0 on the interval 
(2

3 , ∞
)
.

(6) Since H ′′ > 0 on 
(2

3 , ∞
)
, H ′ strictly increases on this interval. Since lim

r→∞
H ′(r) = 0, 

we conclude that H ′ < 0 on 
( 2

3 , ∞
)
.

(7) Since H ′ < 0 on 
( 2

3 , ∞
)
, H strictly decreases on this interval. Since lim

r→∞
H(r) = 0, 

we conclude that H > 0 on 
( 2 , ∞

)
.
3



L.D. Edholm, Y. Shelah / Journal of Functional Analysis 288 (2025) 110746 33
Table 1
Exact values of coefficients of polynomials Fj(r) =

∑
cj,nr

n in 
Section 5.2.2.

n c1,n c2,n c3,n

0 −702 464 29 503 488 −3 304 390 656
1 −8 805 888 493 129 728 −69 038 161 920
2 −44 924 544 3 546 063 360 −640 689 315 840
3 −258 414 880 14 430 286 080 −3 491 968 112 640
4 1 018 286 832 77 896 979 088 −12 471 183 325 440
5 4 962 569 148 110 838 411 360 −48 684 386 314 944
6 11 832 384 015 −17 706 703 248 −111 582 268 515 360
7 23 240 472 534 244 982 773 080 −78 421 336 513 920
8 29 834 360 478 1 512 143 688 033 148 629 164 640 120
9 23 154 232 644 2 940 847 647 885 378 180 897 173 910
10 10 449 759 375 3 231 415 617 165 377 142 473 066 319
11 2 501 381 250 2 264 445 221 688 224 889 469 312 590
12 246 037 500 1 025 079 243 543 92 232 089 533 215
13 0 290 262 740 625 25 224 576 030 090
14 0 47 054 671 875 3 414 213 475 245
15 0 3 321 506 250 66 996 641 106
16 0 0 14 946 778 125

Since H(r) is positive for r > 2
3 , the expression in (5.15) is positive for this range of r. 

This in turn shows that (5.11) = (5.9) is positive for the same range of r. Thus by (5.8),

Φ
(
r, 2

3
)

=
∞∑
j=1

fr(j) > 1 + H(r) > 1

for r > 2
3 , completing the proof. �

5.3. Consequences for Leray transform

We now prove that for γ �= 2, the L2(Mγ , ν) norm of Lk is strictly increasing in k.

Theorem 5.22. Let γ �= 2. Then k 
→ Cν(γ, k) is a strictly increasing function on the 
non-negative integers. Thus,

‖Lk‖L2(Mγ ,ν) < ‖Lk+1‖L2(Mγ ,ν) .

Proof. We have just seen in Theorem 5.5 that Φ
(
r, 23

)
> 1 for r > 2

3 . Lemma 3.21 now 
applies, saying the preferred symbol function k 
→ Cν(γ, k) is strictly increasing on the 
non-negative integers. Thus, recalling (1.14b) and (1.10), we have

‖Lk‖L2(Mγ ,ν) =
√

Cν(γ, k) <
√

Cν(γ, k + 1) = ‖Lk+1‖L2(Mγ ,ν) , (5.23)

completing the proof. �
We now easily deduce the L2(Mγ , ν) norm of the full Leray transform.
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Theorem 5.24. The norm of the Leray transform on L2(Mγ , ν) is given by

‖L‖L2(Mγ ,ν) =
√

γ

2
√
γ − 1

.

Proof of Theorem 5.24. The strictly increasing behavior seen in (5.23) combines with 
(2.10) and Proposition 1.11 to give

‖L‖L2(Mγ ,ν) = lim
k→∞

‖Lk‖ =
√

γ

2
√
γ − 1

,

completing the proof. �
Appendix A. Proof of the estimate on S(r, Qr)

In this appendix we prove (5.17), the crucial upper bound on S(r, Qr) that was used 
in our proof of Theorem 5.5. Recall the definition of the rational function

S(r, x) = 81r(9x2 − 3x− 9r2 − 2)
(3r + 3x + 1)3(3r + 3x− 2)3 .

It was shown in Section 5.2.1 that for r > 2
3 , x 
→ S(r, x) has a single local extrema (a 

maximum) at x = Qr, where Qr is the unique positive root of the polynomial

pr(x) = (−4 + 39r− 36r2 + 162r3) + (18 + 18r+ 216r2)x+ (54− 54r)x2 − 108x3. (A.1)

It was previously demonstrated that Qr ∈
( 3r

2 + 1
6 , 

3r
2 + 1

3
)
, but here sharper precision 

is needed; see Remark A.9.

A.1. A sharper estimate on Qr

Let us define

m(r) = 3r
2 + 1

6 + 2
25r − 21

3125r3 (A.2a)

M(r) = 3r
2 + 1

6 + 2
25r . (A.2b)

(These functions are truncated Taylor expansions of Qr at ∞; see Remark A.9.)

Lemma A.3. Let m(r) and M(r) be as above. The following inequality holds

m(r) < Qr < M(r).
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Proof. This can be seen from direct evaluation. Indeed,

pr(m(r)) = 81(12348 + 125r2(1515625r4 + 21000r2 − 5292))
515 r9 ,

and it is easily checked that 1515625r4 + 21000r2 − 5292 > 0 for r > 2
3 . Since all other 

terms in the formula are clearly positive, we conclude pr(m(r)) > 0.
Now calculate

pr(M(r)) = −
81

(
36 + 875r2)

56 r3 ,

which is clearly negative for r > 2
3 . Since Qr is the unique positive root of pr, we conclude 

it must lie in the interval (m(r), M(r)). �
With these improved bounds on Qr we are ready to prove the desired estimate:

Lemma A.4. The following estimate holds for r > 2
3

S(r,Qr) <
16

3125r3 . (A.5)

Proof. First define the following two variable polynomial

W (r,Q) = 24(3r + 3Q + 1)3(3r + 3Q− 2)3 − 3455r4(9Q2 − 3Q− 9r2 − 2). (A.6)

This function is closely tied to the inequality in (A.5). Indeed,

W (r,Qr) > 0 ⇐⇒ S(r,Qr) <
16

3125r3 .

Now expand (A.6) and collect like-terms to express W as

W (r,Q) =
∑

j,k
aj,k r

jQk.

Let H be the Heaviside step function (the indicator function of the positive real numbers) 
and define two closely related polynomials with positive integer coefficients:

U(r,Q) =
∑

j,k
H(aj,k) aj,k rjQk (A.7a)

V (r,Q) = −
∑

j,k
H(−aj,k) aj,k rjQk. (A.7b)

Clearly, we have that

W (r,Q) = U(r,Q) − V (r,Q).
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Table 2
Coefficients polynomials in U(r, Q) and V (r, Q).

k uk(r) vk(r)
0 2289789r6 + 502362r4 + 4752r3 + 864r2 11664r5 + 576r + 128
1 69984r5 + 701055r4 + 14256r2 + 1728r 15552r3 + 576
2 14256r + 864 2103165r4 + 116640r3 + 23328r2

3 233280r3 + 4752 116640r2 + 15552r
4 174960r2 58320r + 3888
5 69984r 11664
6 11664 0

Since both U and V have only positive coefficients in their expansions, Lemma A.3
implies

U(r,Qr) > U(r,m(r)), V (r,M(r)) > V (r,Qr).

Our goal will be to prove that

U(r,m(r)) > V (r,M(r)),

which will imply W (r, Qr) > 0 and thereby give the result.

A.2. Analysis of the polynomials U(r, Q) and V (r, Q)

The polynomials U and V are obtained from W by expanding (A.6) and separating 
the monomial terms by the signs of their coefficients. After collecting terms in this way, 
we may re-write (A.7a) and (A.7b) as polynomials in the Q variable:

U(r,Q) =
6∑

k=0

uk(r)Qk, V (r,Q) =
5∑

k=0

vk(r)Qk, (A.8)

where the coefficient functions uk(r) and vk(r) are given in Table 2.
Now insert m(r) and M(r) into (A.8) and expand U(r, m(r)) − V (r, M(r)) out as a 

rational function of the form
∑

bnr
n.

Using Table 2 together with degree considerations, we see that bn = 0 for n < −18 and 
n > 6. Some of the remaining bj , including b5 and b6, are also equal to zero; see Table 4, 
noting that βn = bn−18. But it is easily checked from (A.8) and Table 2 that b−18 �= 0, 
which leads to the definition of the related polynomial

P (r) = r18(U(r,m(r)) − V (r,M(r))) =
22∑

n=0
βnr

n
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Table 3
Signs of coefficients βn in P (r).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
+ 0 − − + + + − − − − + + + − − − − − − − 0 +

The exact values of the βn are listed in Table 4. But we can explain the next step of the 
argument just by considering the signs of the βn in Table 3.

Table 3 shows that the coefficients of P (r) change signs six times when its terms 
are listed in ascending order; Descartes’ Rule of Signs thus says that the number of 
positive real roots of P is either 0, 2, 4 or 6. This is not precise enough for our purposes, 
but we can cut down the number of sign changes by repeatedly differentiating. After 
fourteen derivatives, Table 3 shows the resulting polynomial has exactly one coefficient 
sign change when the coefficients are listed in ascending order. Consequently, P (14) has 
a unique positive real root.

The remaining computations are nothing more than differentiation and direct poly-
nomial evaluation: P (r) and its first thirteen derivatives are evaluated at r = 2

3 , while 
P (14)(r) is evaluated at r = 0 and 2

3 . These calculations are tedious by hand, but they 
can be worked out in totality using Table 4. (See also the supplementary Mathematica 
notebook found by following the link given in [10].)

Evaluation shows that the unique root of P (14)(r) lies in the interval (0, 23 ). Indeed,

P (14)(0) = −2 159 106 379 702 272
57 ≈ −2.76366 · 1010,

P (14)
(2

3

)
= 18 441 535 745 869 667 168 145 408

57 ≈ 2.36052 · 1020.

We thus conclude that

P (14)(r) > 0, r >
2
3 .

It can also be seen by direct evaluation that for integers 0 ≤ n ≤ 13,

P (n)
(2

3

)
> 0.

Decreasing the number of derivatives one step at a time, we see that for integers 0 ≤
n ≤ 13, it also holds that

P (n)(r) > 0, r >
2
3 .

In particular, P (r) > 0 for r > 2
3 , so the difference U(r, m(r)) − V (r, M(r)) > 0. This 

implies U(r, Qr) − V (r, Qr) = W (r, Qr) > 0, thereby proving (A.5). �
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Table 4
Exact values of coefficients in P (r) = ∑

βnr
n.

n βn 7 −
162 030 456

517 15 −
3 195 801

56

0
1 000 376 035 344

530 8 −
3 421 928 916

517 16 −
2 065 794 597

59

1 0 9 −
84 873 096

514 17 −
91 854

52

2 −
857 465 173 152

527 10 −
922 948 992

515 18 −
629 807 157

2256

3 −
47 636 954 064

525 11
17 635 968

511 19 −
12 267 612

54

4
163 326 699 648

524 12
657 460 071

512 20 −
71 827 641

2254

5
6 805 279 152

521 13
10 471 356

59 21 0

6
9 694 822 284

520 14 −
619 164

59 22
455 625

2

Remark A.9. Applying the cubic formula to the polynomial pr(x) given in (A.1), we have

Qr = 1
6αr

(
3 + 25r2 + (1 − r)αr + α2

r

)
, where

αr =
(
125r3 + 36r − 3

√
375r4 + 69r2 − 3

)1/3
.

The bounds M(r) and m(r) in Lemma A.3 come from the Taylor expansion of Qr at 
∞:

Qr = 3r
2 + 1

6 + 3
25r − 21

3125r3 + O
( 1
r4

)
.

It should be emphasized that the negative degree terms in M(r) and m(r) are crucial to 
the proof of Lemma A.4; simply using affine functions to bound Qr is not sufficient to 
prove the estimate on S(r, Qr).

Similarly, the bound on S(r, Qr) also comes from its the Taylor expansion at ∞:

S(r,Qr) = 16
3125r3 + O

( 1
r5

)
This method of generating candidates for sufficiently sharp bounds is likely to have ap-
plication for many other polygamma inequalities, and more generally, in other problems 
in which the Euler-Maclaurin formula is utilized. ♦

Data availability

To help the reader verify polynomial and rational function computations in Section 5
and the Appendix, a link to a detailed Mathematica notebook written by the authors is 
included in the references.
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