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1. Introduction

Let v be a simple closed oriented Lipschitz curve in the Riemann sphere C bounding
a domain Q4 to the left and Q_ to the right. Each domain admits a Hardy space,
denoted respectively by H3 (y) and H2(v), consisting of holomorphic functions with
square integrable boundary values. (Precise definitions are given in Section 2.1.) In this
paper we investigate the interaction between the Hardy spaces on €2, and £2_ and use
our findings to deduce norm estimates and prove invariance and rigidity theorems related
to two classical projection operators: the Szego projection, S, and the Cauchy transform,
C.

These operators and the connections between them are well studied. Of particular
importance is a breakthrough made by Kerzman and Stein in [18] where it was shown
that for smooth «, their eponymously named operator A := C — C* is compact. This
observation led to the formula C' = S(I+ A) relating the Cauchy and Szegd projections,
making it possible to use known information about S to study C, and vice versa. The
Kerzman-Stein operator established an alternative foundation upon which both Hardy
space theory and much of classical complex analysis could be developed; this is the theme
of Bell’s book [5].

One aim of the present paper is to investigate the function

. /|c O do(¢) /\S OPdo(c)] (+)

N[=

where C' is the Cauchy kernel, S is the Szegd kernel and o is arc length measure. This
function has a number of remarkable properties and, unsurprisingly, encodes detailed
information about the Cauchy transform, the Szegd projection and how the two operators
interact. A close relationship between (x) and A (or more precisely A o A) via the
Berezin transform is shown to hold (see Proposition 4.19), and there are situations
(e.g. Corollary 3.30) where direct analysis of (%) recaptures and even strengthens results
previously obtained from the Kerzman-Stein operator.

The following theme pervades the paper: it is natural and informative to consider the
pieces of (%) on Q4 and Q_ together as a single object. With this in mind, several pairs
of objects associated to a simple closed Lipschitz curve v will be considered in tandem:

(1) Domains and function spaces. The interior and exterior domains €4 and 2_, along
with the associated Hardy spaces H2 (v) and H2 (7).

(2) Projection operators and kernel functions. The Cauchy transforms (C; and C_)
and Szegd projections (S and S_) on the interior and exterior domains, together
with the representative kernel functions (C;, C_, S; and S_).

(3) Two pairings of functions in L?(vy). The usual inner product (f, g), along with a C-
bilinear pairing ((f, g)) defined in (1.4) below. The second pairing yields an alternative
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characterization of the Hardy dual spaces that underlies much of the theory we
develop.

1.1. Interior and exterior projections

Throughout the paper, many arguments can be carried out simultaneously in the
interior (Q4, H (), Sy, etc.) and exterior (Q—, H2 (), S_, etc.) settings. Whenever
possible our notation will reflect this, as we now demonstrate.

One way to construct holomorphic functions on Q with L?(y) boundary values is
the Szegd projection S, the orthogonal projection from L2(v) onto its holomorphic
subspace H3 (). Given h € L?(v),

S, h(z) = / S, (5 OO do(¢),  ze9y, (11)

where S (z,() is the Szegd kernel of HZ (v) and do is arc length measure. This kernel is
conjugate symmetric, i.e., S;(z,¢) = S4(¢, 2), and for fixed z € Qy, Sy (-,2) € HA (7).
Since S is an orthogonal projection onto 73 (), we immediately obtain the reproducing
property that S, f = f for f € H3 (v), as well as the fact that ST = 5.

There is a corresponding Szegd projection S_ from L?(y) onto H2 () given by a
formula & la (1.1), but now using S_(z,(¢), the Szegé kernel of H? (vy), as the represen-
tative kernel. The same basic properties of S; and Sy mentioned above hold for S_
and S_, though in general the kernel functions Sy and S_ themselves bear no obvious
resemblance.

When we meet situations as described above, where parallel facts hold in the interior
and exterior settings, the presentation will be streamlined as follows:

”

“The Szegd projection Sy is an orthogonal projection from L*(vy) onto HZ (7).

is a condensed way of writing two statements at once. The original string is meant to be
read ezxactly twice, once using only the top signs, and once using only the bottom signs:

o The Szegd projection S is an orthogonal projection from L*(v) onto H3 (7).
o The Szegd projection S_ is an orthogonal projection from L*(vy) onto HZ (7).

A second way to construct holomorphic functions from L? boundary data is the
Cauchy transform. Let v be a simple closed Lipschitz curve in the plane and let T be
the (a.e. defined) unit tangent vector pointing in the counterclockwise direction. Given
h € L?(v), interior and exterior holomorphic functions C1h € O(£21) are generated via
the Cauchy integral
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Cuh(z 22%(_2@,*/ LEOMO o), sef, ()

where, upon noting that d¢ = +£7(¢) do(¢), the Cauchy kernel is defined as

£T(¢)

Ci(z,¢) = ImilC—2)

(1.2b)
The choice of + specifies orientation so that holomorphic functions are reproduced.

When z € «, the integral (1.2a) no longer converges in the ordinary sense. But if
non-tangential limits (see Section 2.1) of the holomorphic function C1h € O(21) are
taken, we obtain the following principal value integral for a.e. z € :

h(z)

Cih(z) = =+ %P.V./C’i(z, Oh(C) do(0). (1.3)

Y

The notion of a principal value — where the integral is calculated over the curve with
a small symmetric portion of v about z excised, and a limit is taken as the endpoints
of the excision are sent to z at the same rate — makes sense when v is a C' curve
and h € C'(v). But the scope of this notion extends to a wider setting thanks to a
deep result of Coifman, McIntosh and Meyer [13], which says that when + is a Lipschitz
curve, the principal value integral in (1.3) both exists for almost every z € v and defines
a bounded operator on LP(vy,0), 1 < p < co. Our main concern in this paper is to obtain
quantitative information in the p = 2 case. Unless otherwise noted, unscripted norms |||
of functions and operators refer to L? norms taken with respect to arc length measure.

1.2. Duals of Hardy spaces

Let v be a simple closed oriented Lipschitz curve. Consider two related pairings of
f,9 € L?(7): the usual inner product (-,-) and a (C-)bilinear pairing ((-,-)) given by

- / F(O5(0) do(©), (f.g) = 74 F(O)g(¢) d. (1.4)

Since d¢ = T(¢)do((), these pairings are related by (f,g) <<f, gT>> and (f,g)) =
(f,gT), where T is the unit tangent agreeing with the orientation of +.

Since H3 (v) is a Hilbert space, the inner product (-,-) facilitates the canonical iso-
metric duality self-identification H3 (v)’ = HZ (7). The bilinear pairing (-, -)) facilitates
a quasi-isometric dual space identification of the interior and exterior Hardy spaces:

HI() >~ HE(7), (1.5)

see Section 2.2, and in particular, Proposition 2.4.
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1.8. The Cauchy-Szegd A-function

Let v be a simple closed bounded Lipschitz curve oriented counterclockwise in the
plane. Define two real-valued functions

B HC+(Z7')HL2(7)

A+(7az)*ﬁv z €y,
+(%, 2

C_(z,)|;2
A_(v,2) = %7 z € Q_\{o0}.

Now combine them to form the Cauchy-Szegd A-function, a real-valued function de-
fined on the Riemann sphere by:

A:I:(’%Z)v S Q:t\{oo}7
A(y,2) =4 b z €, (1.7)

(1) _
Vomtyr 2T

where o(7) denotes arc length and () denotes analytic capacity (see Section 3.1).

1.3.1. Basic properties
The assigned values for z € v and z = oo are very natural:

Theorem 1.8. Let v be a simple closed Lipschitz curve in the plane. Then

(1) A(v,z) is continuous as z — co.
(2) If v is C' smooth and (y € 7y, then A(v, z) is continuous as z — (o.
(8) If ® is a Mdbius transformation with pole off of 7, then A(v, z) = A(®(y), P(2)).

Part (1) is proved in Theorem 3.3 after a short discussion of analytic capacity. Part (2)
is proved in Theorem 4.1, with the Berezin transform and compactness of the Kerzman-
Stein operator playing important roles. As A is clearly continuous on C \ v, these first
two parts imply that z — A(v, z) is continuous on the Riemann sphere whenever -~ is
of class C!. Part (3) is shown in Theorem 3.22 after obtaining a M&bius transformation
rule for the Cauchy kernel.

One consequence of Mobius invariance is that it gives a simple way to extend A to
unbounded curves: let v be a simple closed Lipschitz curve in the Riemann sphere passing
through co (see Section 2.1), and ® be a Mobius transformation with its pole lying off of
~. Then the image curve, denoted ®(7), is a simple closed Lipschitz curve in the plane,
and we define

Ay, 2) == AM@(7), B(2))-
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The fact this extension is well-defined is immediate from Theorem 1.8, part (3).
The next result shows that circles form the class of minimizing curves for A:

Theorem 1.9. Let v be a simple closed Lipschitz curve in the Riemann sphere.

(1) A(y,2) > 1, forall z € Q4.
(2) If there is a single z € Q4 such that A(v,z) = 1, then A(y,-) =1 and v is a circle
(or a line, including the point at co).

This theorem and its consequences are presented in Sections 3.3 and 3.4.

In [18] Kerzman and Stein gave a clever geometric interpretation of their operator
A and deduced that if the Cauchy and Szegd kernels of a smoothly bounded domain
coincide, the underlying domain must be a disc. Theorem 1.9 implies a significantly
strengthened version of this result. The proof of the following result (see Corollary 3.30)
uses the A-function and makes no reference to the geometry of the Kerzman-Stein oper-
ator:

Corollary 1.10. Let Q be a bounded simply connected planar domain with Lipschitz bound-
ary. If there exists a single z € Q such that the Cauchy and Szegd kernels satisfy

1C(z, Ol < 15(2,0)]

for almost every ¢ € v, then Q is a disc (so actually C(z,() = S(z,() for all z € Q,¢ €

1.8.2. Estimating Cauchy norms
The maximum value attained by A(7,-) on the Riemann sphere bounds the norm of
the Cauchy transform from below:

Theorem 1.11. Let v be a simple closed Lipschitz curve in the Riemann sphere. The
norms of the interior and exterior Cauchy transforms are equal and further, satisfy the
estimate

sup, ¢ A(7,2) < [|CL]l. (1.12)

Proof. That ||C | = ||C -] is shown in Theorem 2.6. In Theorem 2.19 it is shown that
A(7,z) <||C4]| for every z € C. The continuity of A(v,-) at co finishes the proof. O

Concrete examples of A are also given. Let Wy = {re’? : v > 0, |p| < 0} be the
unbounded wedge with aperture 20 € (0,27), and boundary denoted by bWj. In Sec-
tion 5.1 (Theorem 5.9) we produce an explicit formula for A(bWy, z). Several conclusions
are then drawn, including the observation that A(bWp, z) is discontinuous at the origin
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(a corner point), breaking from the continuous behavior on C! curves guaranteed by
Theorem 1.8.

In Section 5.2, a second family of curves is considered. Let &, = {(x,y) : f—z +y* =1},
an ellipse with major-to-minor axis ratio » > 1. We compute A(&,, z) and use it to
produce the best known lower estimate on the norm of the Cauchy transform.

Theorem 1.13. Let r > 1. The L?-norm of the Cauchy transform on &, satisfies

) 2+ 1) 1(1=r2 /1= %) = K (/1- %)
Cllaey 2 | /1 = (1.1

T a0 0o ())

See Section 5.2.1 for conventions regarding elliptic integrals and theta functions in
(1.14), along with detailed information about the asymptotics and other properties of
the right-hand side. This bound is shown to be asymptotically sharp as r — 1.

1.4. Motivation from higher dimensions

This paper grew out of an ongoing project on the Leray transform L, a higher di-
mensional analogue of the Cauchy transform. Given a C-convex hypersurface S C CP",
recent work of the authors (see [2—4]) uncovers an intriguing connection between analytic
quantities tied to L (norms, essential norms, spectral data) and projective-geometric in-
variants associated to S and its projective dual hypersurface S*. A natural construction
yields a pair of projectively-invariant dual Hardy spaces on S and §*, and a generalized
version of A(7,-) can be defined using Leray and Szegd kernels. The higher dimensional
theory simplifies considerably in one dimension, serving to motivate the present paper.

The function A can be related to Fredholm eigenvalue problems studied by Bergman-
Schiffer [6] and Singh [30]. Burbea previously connected the Kerzman-Stein operator A
to these same eigenvalue problems in [11], then went on to reprove key properties of A
(e.g. compactness) using the theory of Garabedean anti-symmetric ! kernels. Similarly,
some basic properties of A in Section 1.3.1 can be obtained using the same approach
— at least when + is smooth enough. But here we have opted to avoid the Garabedean
machinery entirely and the reason for this is two-fold. Firstly, in minimally smooth
settings (v being O or less), analysis becomes significantly harder and the Garabedean
approach is rendered untenable. For example, while the compactness of A continues to
hold when ~ is only assumed to be C', Burbea’s argument breaks down and the proof
requires much more delicacy; see [21]. Secondly, the theory of the Garabedean kernel
depends critically on a particular orthogonal decomposition of L?(y) (see [5, Theorem
4.3]), one that no longer holds for L?(S). As we are motivated by the higher dimensional
problem, many of our proofs have been written so as to mirror that setting.
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2. Interior and exterior Hardy spaces
2.1. Lipschitz curves

A function ¢ : R — R is called Lipschitz if there exists a constant K > 0 (the Lipschitz
constant) so that |p(z1) — w(z2)| < K|x; — a2 for all x1,22 € R. Such a function is
differentiable almost everywhere with an L°° derivative.

A simple closed curve v in the plane is called Lipschitz if there exists a finite num-
ber rectangles {R;}7_; with sides parallel to the coordinate axes, angles {0;}_; and
Lipschitz functions ¢; : R — R, such that the union U};l{e*wi R;} covers y and the
intersection {e¥% (v)} N R; = {z +ip;(z) : x € (aj,b;)}, for some a; < b; < cc. If v is a
simple closed curve in the Riemann sphere passing through oo, say that « is Lipschitz if
there is a Mobius transformation ® mapping v to a simple closed Lipschitz curve in the
plane.

Each simple closed oriented curve v C C bounds two simply connected domains: write
Q, for the domain lying to the left and €2_ for the domain to the right. When ~ is a
planar curve, it is assumed to have counterclockwise orientation unless explicitly stated
otherwise; we refer to 24 and €2_ as interior and exterior domains, respectively. 24
and ©_ are called Lipschitz domains when their boundary -y is Lipschitz. Note that if ~
is an oriented curve in the Riemann sphere and ® is a Mobius transformation with its
pole in _, the image curve ®(v) is a planar curve oriented counterclockwise. When the
pole is in Q, the orientation is reversed.

Let v be a simple closed planar curve oriented counterclockwise. For > 0 and ¢ € v,
define a set called a non-tangential approach region to ¢ by

I(() ={z€C: |z = (| <(1+p)dist(z,7), z# (}.

Lipschitz curves are well-known to satisfy the uniform interior and exterior cone condi-
tion, meaning there exists 5, > 0 such that for each { € v, one of the two components
of T'(¢) N D(¢,r) is contained in Q4 and the other contained in Q_ (here D((,r) is
the open disc of radius r centered at ¢). Write the interior and exterior non-tangential
approach regions by T'£(¢) =T'(¢) N Q4. An important technical tool for work on Lip-
schitz domains is a Negas ezhaustion, a method of approximation by C* subdomains
with uniformly bounded Lipschitz constants; see [21,22] for details.

Given a function g : Q1 — C and ( € v, its non-tangential maximal function ¢g* and
non-tangential limit ¢ (when it exists) are defined to be
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*(¢) = su 2)|, 7(¢) =  lim z).
9"(¢) L l9(2)] 9(¢) Fi(QBHCQ( )

Given f € L?(v), its Cauchy transform (1.3) arises as the non-tangential limit of the
Cauchy integral in (1.2a). A deep and highly non-trivial result in [13] shows that this
limit exists a.e. for Lipschitz v, and further, defines an L?(7y) function. We slightly abuse
notation by denoting both the Cauchy integral of f and its boundary values by C.f,
but our intended meaning should always be clear from context.

We now define the Hardy space HZ (7) as the image of L?(7) under Cy:

HI() ={C+f: fe L’ (M} (2.1)

since v is always assumed to be Lipschitz, this definition is equivalent to several other
characterizations of the Hardy space used in the literature; see [22]. We have been in-
tentionally flexible with our definition so that Hardy space functions can be at times
thought of as holomorphic functions with L? boundary values and at other times as the
boundary values themselves. Observe from (1.2a) that functions in H2 () necessarily
vanish at co.

The results in [13] along with the Plemelj jump formula (see [23,24,29]) allow rigorous
justification of the following “intuitive” statements for Lipschitz v: if f € H3 (7), then
C. f = f (Cauchy’s integral formula), while C+ f = 0 (Cauchy’s theorem).

Remark 2.2. Given « € (0, 1), define the space of a-Hélder continuous functions on v to
be

C0y) = A (@) = F)l <z —yl%, z,y €7},

and denote by A%(Q.) the space of holomorphic functions on Q. with C® boundary
values. If 7 is Lipschitz and f € C%(y), then C1f € A%(Q4); see [23]. The regularity of
C in C* together with its boundedness in L?(v) imply that A%(Q) is a dense subspace
of the Hardy space HZ (7). O

2.2. Dual space characterization

A duality paradigm of Grothendieck [17], K6the [19] and Sebastido e Silva [28] iden-
tifies duals of holomorphic function spaces on simply connected domains with spaces of
holomorphic functions on their complements: Let O(£2;) denote the space of all holo-
morphic functions on 24 under the standard Frechét topology. Under this paradigm,
the dual can be identified with Oy(Q_), the space of functions holomorphic in a neigh-
borhood of Q_ which vanish at co. The functionals themselves are represented using
bilinear pairings {(-,-)) a la (1.4) to pair f € O(Q4) and g € Oy(Q-), where the path of
integration is taken inside €24 and sufficiently close to 7.

We follow this paradigm and identify the dual space of H3 () with H%(v).
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Since C1 is bounded on L?(y) whenever v is Lipschitz, a bounded adjoint exists
(with respect to the standard inner product), characterized by (Cyf,g) = (f,C%g).
Explicitly,

Cg) = L2 LRy, [ 2L 4o,

where the formula is understood to hold for almost every z € ~.

Proposition 2.3. The Cauchy transforms C1 and C_ can be viewed as “adjoints” with
respect to the bilinear pairing (1.4). Indeed,

(Cif.9) = ([, Cxg) = (C+f,Czg) .

Proof. Since C'1 is a projection operator, it will suffice to prove the first equality. We
claim that if g € L?(y) and T is the almost everywhere defined unit tangent vector for
7, then C7 (¢T) = C+(g)T. Indeed, for a.e. z € v, we have

LT = 1 & Lagyey. [ST0) o

2 211 Z z
(e 1 GG
- (s Ly / e | TG

~

_ @;%P.v.j{é’%dg T(2) = C+(9) ()T ().

Thus we see that (C+f, g)) = (C+f, gT) = (f,C1(9T)) = (/. Cx(9)T) = (},C=g). O

Proposition 2.4. The dual space of H3(Y) can be identified with 'H?F('y) via functionals
by HL(7) = C, g € HA(v), given by ¥y(f) = (f. g)). Moreover,

IC£1 gl < 1gllop < llgll- (2.5)

Proof. Since H3 (v) is a Hilbert space, it is self dual in the ordinary inner product. Thus,
given a bounded linear functional ¢ : H3 (y) — C, there is a unique h € H3 () so that
for any f € H2(7),

o(f) = (f.h) = (/. hT)) = (C=/.hT)) = (,C+(IT)))

Now set g = C+(hT) € H%(7), so that ¢ = ¢, = (-, g)) € HL(7)".
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Given distinct g1, g2 € HEF (7), we now show the functionals 14, # 1g,. It will suffice
to exhibit an f € H3 () with ¢g, (f) # g, (f). Set f = C+((g1 — g2)T), which is clearly
in H2 (7). Then

(wgl - 1/}92)< ) <<f7 >>

(oaar=so )
<< 91— 92)T, Cx(g1 — gz)>>
=

We now prove (2.5). The right-hand inequality follows from Cauchy-Schwarz. For the
left-hand inequality, note that for g € /H?F ()

2
(g1 —92)T, 01 — 92>> = [lg1 — g2||” > 0.

lgll = sup {| {h,g) | + h € L2(7), |h]| = 1}
=sup {| (h,Cg)) |- h € L*(7), [In] =1}
=sup {| (Ch,g) | h e L(), |h] = 1}
<sup {| (£, o) | : f € HL (0, If] < ICxll}
= Cll-sup {| (f.9) | : f € HI (), Ifll =1}
= 1Cxll - ¥gllop- O

Theorem 2.6. Let v be a simple closed Lipschitz curve in the plane. The norms of the
Cauchy transforms Cy : L*(y) — HL(y) are given by

LI inf sup 164.9) | inf sup | 44,9) | -1 . (2.7)
ICHT ™~ serzn \ semz oy IFNNIgN [~ ser ) Fert o) I£1Hgl 1C-|
g9#0 f#0 g#0 f#

Proof. Given a nonzero g € HZ (), the lower bound in (2.5) says
:F

ICLI™ gl < gl = sup {| (£, 90 | : £ € HE (). IIf =1}

As this holds for every such g, we obtain

1
L wp LS9 28)
ICll = genion | renz iy IF1 114
£
970 f#0

On the other hand, given (a sufficiently small) € > 0, there exists h, € L?(7y) such that
|Cshe|| =1 and ||h < (]|[C+| — €)~!. Now observe that
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1
sup  |[(Cxhe, f)l = sup |(he, Cxf)l = sup |(he, AN < el < 7m—7—
FEHE () FEHE () FEHE () IOl
[IFl=1 llfl1=1 llrl=1
Taking g. = C+he € H% () and letting € — 0 we obtain
1
geH (7) fe’}-[z ) gl 11/ 1C|l
970
Now combine all four individual inequalities in (2.8) and (2.9) to obtain
1 1
e s )
1CIl ~ gerz () 11 o) £ IHlgl |l
g#0 f#
1
< inf sup {5,901 | ,
gEHL () fe’H2 ) £ IHgl 1C ]l
g#0
forcing equality to hold at every step. O
2.8. The Szegd kernel
Several elementary properties are collected here for later use.
Proposition 2.10 (/5], Chapter 7). The Szegd kernel on the unit disc D is
S(ZC)—; zeD, (€D (2.11)
D\~ - 27'('(1 _ ZZ) ’ ) . .

The Szeg6 kernel admits a biholomorphic transformation law; see [5, Theorem 12.2]
in the C'* setting, and [21, Lemma 5.3] for the Lipschitz setting:

Proposition 2.12. Let ® : Q1 — Qo be a biholomorphism of simply connected domains in
the Riemann sphere with Lipschitz boundaries. The Szegd kernels are related by formula

Q) = V¥(2) 52(2(2),2(¢)) - V¥ (C) (2.13)
The Szegd kernel admits a well-known extremal property; see [20, Sections 1.4, 1.5]:

Proposition 2.14. Given a simple closed Lipschitz curve «y in the Riemann sphere and a
point z € Q4 , the Szegd kernel satisfies

Si(z,2) = sup{|f(2)] : f € HE (), [Iflla(y) =1} (2.15)
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Remark 2.16. In the setting of Proposition 2.14, the Riemann mapping theorem together
with formulas (2.11) and (2.13) show that Si(z,z) > 0 for any z € Q4 \ {oo}. On the
other hand, the condition that functions in the Hardy space must vanish at infinity shows
that if oo € Q4 then Sy (00, 00) =0. O

The following monotonicity property is known, but a short proof is included since the
authors had difficulty locating a reference.

Proposition 2.17. Let 3 C Qo C C be simply connected domains with Lipschitz bound-

aries properly contained in the Riemann sphere, and let z € Q \ {oo}. Letting S1,So
denote the respective Szegd kernels, we have

0 < Sa(z,2) < S1(z, 2). (2.18)
Proof. Let ®; : Q; — D denote the Riemann map, j = 1,2, with ®;(z) = 0 and

®’(z) > 0. Using the transformation law in (2.13) and the kernel formula for D in (2.11),
we see

218j(z,2) = ®(2).
By the proof of the Riemann mapping theorem (see, e.g., [1, Chapter 6]), of all maps
from € into the disc D satisfying ®(z) = 0 and ®’(z) positive, the Riemann map ®; is

uniquely determined by the property that ®'(z) is maximal. Since the restriction of ®
to Q; is also a map with these properties, we conclude that ®4(2) < ®{(z). O

2.4. A lower estimate on the norm of the Cauchy transform
Theorem 2.19. Let v be a simple closed Lipschitz curve in the plane and z € C. Then
A(y,2) <O«

Proof. For z € Qi\{oo}, define h. € HZ(y) by h.(¢) = (2mi(¢ — 2))~". By Cauchy’s
integral formula we have

() = g § 2 =g semo.

Now apply the Cauchy norm characterization in (2.7) with g = h, to obtain

| (S, e | 1 f()] _ V5+(22) 1

sup = =

< sup - = = :
ICLll ™ rewzyy ISR NCGEI fenzny I ICGE Ay, 2)
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where we used the extremal property of (2.15). This estimate holds for all z € C \ .
Since A(y,-) = 1 for z € , the result follows for these z from the fact that Cy is a
projection onto HZ () and thus [|[C+| > 1. O

3. Invariance and rigidity properties
3.1. Analytic capacity and behavior at infinity

Let v be a simple closed Lipschitz curve in the plane oriented counterclockwise. If g is
holomorphic on the exterior domain {2_, it admits a Laurent expansion in a neighborhood
of oo:

9(2) = a0+ a1z +agz 2 4 -

The coefficient a; is important to what comes below; it can be obtained by calculating
the derivative of g at infinity with respect to the local coordinate % Define

D(g.0¢) i= lim *(g(:) - g(e0)) = ar. (3.1)
(In the literature, D(g, 00) is often denoted by g¢’(00), but the authors find this notation
misleading since lim,_ o, ¢'(2) # D(g, o) unless a; = 0.)
Let A°°(Q2_) be the space of bounded holomorphic functions on Q_, with norm given
by |9l = sup{|g(z)| : z € Q_}. Define the analytic capacity of the curve y to be

k(7) = sup{|D(g,00)| : g € A (Q-), g(0) =0, gl <1} (3-2)

This notion helps formulate generalizations of Riemann’s removable singularity theorem
by measuring how large bounded holomorphic functions on Q_ can become; see [16,27].

Theorem 3.3. Let v be a simple closed Lipschitz curve in the plane. Then

Jim A-(v,2) = 2;%) (34)

where o(y) and k() denote the arc length and analytic capacity of v, respectively. Thus
A(y,+) is continuous at oo (by definition).

Proof. Set F:={z € C: 27! € Q_}, which is a bounded domain containing the origin.
Define a holomorphic and univalent function G : E — D with the following properties:
(1) |Gl £ 1; (13) G(0) = 0; (i43) G'(0) is positive and maximal, i.e., given another map
H : E — D satisfying (i) and (i7) with H’(0) positive, then necessarily G’'(0) > H'(0).
Such a G always exists and is the Riemann map (see [1, Section 6.1]) from E to D
satisfying G(0) = 0 with G’(0) > 0. Now write G as a Taylor expansion about 0:
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G(2) = a1z + agz® + -+

Now define a biholomorphic map g : Q- — D by g(z) = G(1). Clearly (i)
l9llo < 1; and (ii') g(oco) = 0. We claim the positive number D(g,00) defined by
(3.1) is maximal out of all functions in A*(Q_) satisfying (¢') and (i7). If D(g,o0)
weren’t maximal, there would exist an h € A>®(Q_) with D(h,00) > D(g,00) = ay.
But then the function H(z) := h(L) would satisfy (i) and (ii) from the previous para-
graph, and H'(0) > a; = G’'(0), contradicting the maximality of G’(0). Therefore,
k(y) = D(g,00) = lim,_, 29(2) = a1 = G'(0).

Now use Proposition 2.12 and (2.11) to write the Szeg6 kernel of Q_:

119Gl

S-(2,2) =19'(2)I9p(9(2), 9(2)) = o T lg(2)]2

Thus,

C(z 2 22 /(5 -1

where the term |z|? has been inserted in both the numerator and denominator. Now,

hm |z|2/|C O do(¢) = _’7) (3.5)

z—>oo 47r2 | 1|2 472

On the other hand,

1 2|,/ 2/
S N O N N = O I ] .
200 2 1 —|g(2)]2 2w 2o 1—|g(2)]2 27 27

Dividing (3.5) by (3.6) gives the result. O

Remark 3.7. In [8, Theorem 1] Bolt carries out a similar computation, obtaining a lower
bound of the norm of the Kerzman-Stein operator. ¢

3.2. Moébius invariance

Recall that the holomorphic automorphisms of the Riemann sphere are precisely the
Moébius transformations

az+b

e d (3.8)

O(z) =
where a,b,c,d € C with ad — bc # 0. The Cauchy kernel and transform admit trans-
formation laws under these maps. See [7, Theorem 3] for an analogous result in C™ (or
more accurately CP™) on the projective invariance of the Leray kernel.
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Theorem 3.9. Let v be a simple closed Lipschitz curve in the complex plane oriented
counterclockwise and let ® be a Mdbius transformation whose pole lies off of v1. Define
the curve vo = ®(v1) with orientation induced from the orientation of v1 by ®; thus o
will be oriented counterclockwise if and only if the pole of ® lies in Q1_. Let Cli and Czi
denote the Cauchy transforms of y1 and 7y, respectively. Then

CL (VO (fo®)) = Vo' ((CLf) o),  fel?(n). (3.10)

Proof. Differentiate (3.8) and observe that ® is the square of a meromorphic function
defined on the Riemann sphere. Now choose a value of vad — bc and then set

vad — b
V(0 =YX (3.11)
cC+d
Observe that the map f + /@ - (f o ®) is a linear isomorphism from L?(v;) to
L2(y1). Now let f € L%(y2), ¢ € y1 and € = ®(() € 72. If 2 € QL then the image point
B(2) € ®(QL) =02 and

L)
(C21) 0z szg S5 % 3 s e PO B

7

1 f(@()  ad—be

~ 5 al+b Ib 2
2mi gy oectd T g§+d (e +d)

dc. (3.13)

Rearranging,

s

¢

cz+d %\/adfbcf ())d
Vad=be ] (cC+d) (C—=2)

e 7{\/‘1” QF®E) 4o 1 C;(\/@(focp))(z), (3.14)

giving the result when z € Q.

The argument when z € ~; follows the same lines except that the integrals must
be interpreted in the principal value sense. For € > 0 let 71 ¢ := 71 \ D(z,¢€), i.e., the
original curve with all points within € of z removed. Now start from the integral in (3.14)
evaluated over the truncated curve 7 ¢, and work backwards to (3.12):

]{Wf ) ¢ = tim

6—)0 27m

]{ V(I)/ f ¢ (3.15)
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o V(2) f©)
= lim ¥ a0 de. (3.16)
D(71,e)

We claim that the integral in (3.16) is also a principal value integral in the ordinary
sense. Indeed, the two endpoints of the truncated curve ®(7; ) approach the point ®(z)
at the same rate as e — 0 as a consequence of the fact that the image of the disc D(z,¢€)
under ® tends asymptotically to the disc D(®(z),|®’(z)|e) as e — 0. This means that
by setting y2,5 := v2 \ D(®(2),0) with ¢ := |®'(2)]e,

(3.16) = n Y¥G) ]{ e @ j dé = lim \/@/7745 3G

e—>o 21 5§—0 2m1
'“1)(’71 e)

P.V. ¢ (317
271'1 j{ & — tID ( )
Thus, the string of equalities from (3.15) to (3.17) shows

CL (Vo (fod)) () = Vq)'(z)'zf(q)(z) 5PV 7{ Vq)' f dc

VG S@R) |
2

271'@ PV%& D(z

D/(z) - ((Cif) 0®)(2). O

Theorem 3.18. Suppose vy is simple closed Lipschitz curve in the plane oriented coun-
terclockwise and that ® is a Mébius transformation whose pole lies off of v1. Define the
curve yo = ®(vy1) (oriented as in Theorem 5.9) and let CL(z,¢) and C3(z,() denote the
Cauchy kernels of y1 and 2, respectively. Then

CL(2,Q) = V() - CL(8(), 8(0)) - V(- (3.19)

Proof. Since both curves are Lipschitz, tangent vectors exist almost everywhere. If {(¢)
parameterizes 71, then ®({(t)) parameterizes 2. The unit tangent to ; can be written
as T1(C(¥)) = ¢'(t)/|¢'(t)], and so the unit tangent to 72 can be written

) -1 _ P
[@/(C(t)) - ¢ @)t

Going forward, we omit reference to the parameter t.
Assume @ takes the form (3.8), with ad —be # 0, and choose a value of v/ad — be as in
(3.11) to obtain a meromorphic square root of ® defined on all of the Riemann sphere.

Tr(2(¢(1) =

(€(®))-

From the definition of the Cauchy kernel in (1.2b), we have
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V) - CR(0(2), 9(0)) V(O = £/ () - g o)

Ti(0). (3.20)
A simple computation now shows

VO (2)/P(C) (ad — be) <a§—|—b az+b

1
®(C) - ®(2)  (cC+d)(cz+d) CC+d_cz+d> ==z o (3.21)

We now prove that A(vy, z) is Mobius invariant. This in particular shows that A(v, z) is
well-defined when v is an unbounded Lipschitz curve (recall the discussion of extending
A to unbounded curves following Theorem 1.8).

Theorem 3.22. Suppose v is a simple closed Lipschitz curve in the plane and ® is a
Mobius transformation whose pole lies off of v. Then for z in the Riemann sphere,

A(y,2) = M2(7), ®(2)).

Proof. Under the assumption on ®, observe that the image curve ®(y) is also a simple
closed Lipschitz curve in the plane. Now write v1 := v and 75 := ®(77).

If z € 41, then ®(z) € 2, so by definition A(y1, 2) =1 = A(y2, D(2)).

Let jS be the domains bounded by 7; and suppose z € QL. By Theorem 3.18,

ICL e, = 1#(2) / C3(2(2), Q)P |2 (¢)| dor(¢)

) / C2(@(2), )P do(€) = [9/(2)] - [|C2(®(=), |2 -
(3.23)

Now denote the Szegd kernel of HZ(v;) by S%. Since ® is a biholomorphism from
QL to Q4, Proposition 2.12 shows Si(z,2) = |®/(2)| - S1(®(2), ®(2)). This with (3.23)
shows

1C1 (2 M T2y 127 ()] [Ca(@(2)s T2

As(n,2) = Si(z,z) |9(2)]- S1(®(2), (2))

= As (72, ®(2)).

The ratio above needs slightly more care in two cases: (i) when z = oo, meaning
that ®'(z) = 0, and (#4) when ®(z) = oo, implying that ®'(z) = oco. In either case, the
indeterminate ratio is only problematic at this specific z; in a punctured neighborhood
of z, the ratio is valid. The result now follows by working nearby and then taking limits,
in which case we invoke Theorem 3.3 on the continuity of A(v,z) as z = co. O
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3.8. Circles and rigidity

Circles are shown to be the unique class of extremal curves which globally minimize
A. This leads to interesting rigidity results, including a strengthened version of a famous
observation made by Kerzman and Stein; see Section 3.4.

Proposition 3.24. If v is a circle (or a line, including the point at co), then A(y,) = 1.

Proof. First let v = bD be the unit circle. Then (1.7) and (2.11) show

2 _ 1 do(¢) 1 _
A(D,0) _47r2SD(O,O)/ R !
Y

Given z € C\bD, consider the Mébius transformation ¢ (w) = £==. If [z| < 1 then ¢, is
an automorphism of D and if |z| > 1 then ¢, is a biholomorphic map from D onto @\ﬁ
In either case ¢,(0) = z. Theorem 3.22 now shows 1 = A(bD,0) = A(p,(bD), ¢.(0)) =
A(bD, 2). For z = oo, use the map ¢oo(w) = w™! and repeat the argument above to see
A(D, ) = 1.

Now let v C C be any circle and z € Q4. Then there is a Mébius transformation
taking v to bD; see [1, Section 3.3]. Theorem 3.22 implies A(y,z) = A(DD, ®(z)) = 1.
Since z was chosen arbitrarily, we conclude A(y,:) =1. O

Theorem 3.25. Let v be a simple closed Lipschitz curve in the Riemann sphere.

(1) A(y,2) > 1, forall z € Q4.
(2) If there is a single z € Qx such that A(y,z) =1, then A(v,-) =1 and 7 is a circle
(or a line, including the point at o).

Proof. First suppose that « is a planar curve enclosing the bounded domain Q. We may
assume that z € Q, thanks to the Mobius invariance of A established in Theorem 3.22.

Consider the Riemann map g : D — Q. with g(0) = z and ¢’(0) > 0. Proposition 2.12
and (2.11) show

Qi = 5p(0,0) = v/¢'(0) S1(9(0), 9(0))v/¢g'(0) = ¢'(0) S (2, 2). (3.26)

™

Now let ®.(w) = —= and define the (unbounded) domain E = {®.(w) : w € Q4},
along with the map h = ®, o g : D — E. The Riesz-Privalov theorem [26, Section 6.3]
says that ¢’ is contained in the Hardy space H!(bD), so in particular, it is integrable on
the circle. The norm of the Cauchy kernel is thus

2 _ 1 |g _L /
HC(zv)”L?('y) - 4772 ‘C_ZP - 4772 / ‘g —Z|2 )_ A2 /|h (<)|d0(<)
bD
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Now combine this with (3.26):

A(v,z)2:||cé+(i”f“) g1 /\h )| do(¢) (3.27)

The conditions on g show that

L
h(¢)

where F} is a non-vanishing holomorphic function on D with F3(0) = 1. Thus,

9°(0)

T =g (0 Fi(0),

=9(0) —z=4(0)C+

1 1
"O= o R@ o PO

where F5 is holomorphic on the unit disc. Consequently,

1
()= ———— FL(0). 3.28
The residue theorem now shows
27
' 0 / ! 0 107170 1
1=—Re %j{gh (¢)d¢ | = —Re %/e“h (e') db
vD 0

27
<20 [weenyian = 28 [ ol asto) = a2
0 D

From these computations, A(7,z) = 1 if and only if e2?h/(e?) < 0 for all § € [0, 27],
which happens if and only if ¢(¢) := ¢?h/(¢) < 0 for all ¢ € bD. Equation (3.28) shows ¢
extends holomorphically to the origin, with ¢(0) = —¢’(0)~!. Since ¢ is real-valued on bD
the Schwarz Reflection Principle applies, yielding a bounded holomorphic extension of ¢
to the entire complex plane, which means that ¢ is necessarily constant (¢ = —g’(0)71).

Thus 1/ (¢) = —¢’(0)~1¢ =2, meaning that h(¢) = ¢’(0) =1~ +C for some constant C.
This shows that g(¢) = z + h(¢)~! is a M&bius transformation and therefore v = g(bD)
is a circle. Proposition 3.24 now shows that A(y,) = 1.

Now if 7 is a curve passing through oo € @, use a Mobius transformation to send it
to a bounded planar curve. Theorem 3.22 shows that this is well defined and the result
now follows from the previous case. O

3.4. A strengthened rigidity result

Using a clever geometric description of their eponymous operator, Kerzman and Stein
proved the following:
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Proposition 3.29 ([18], Lemma 7.1). Let Q be a bounded simply connected planar domain
with smooth boundary. The Cauchy and Szegd kernels coincide if and only if Q0 is a disc.

In other words, C(z,() = S(z,() for all z € Q, ¢ € b2 if and only if Q is a disc.
Theorem 3.25 implies a much stronger rigidity theorem:

Corollary 3.30. Let Q be a bounded simply connected planar domain with Lipschitz bound-
ary. If there exists a single z € Q such that the Cauchy and Szegd kernels satisfy

1C(z, Q] < [5(2 )

for almost every ¢ € bS), then  is a disc (so actually C(z,() = S(z,¢) forallz € Q,C €

Proof. Suppose there exists a z € Q so that |C(z, ()| < |S5(z, ()| for almost every ¢ € bS).
Then

/ C(z O do () < / S(2, Q)P do(¢) = A(DQ,2) <1
b b

But Theorem 3.25 says that A(bS2,z) > 1, so in fact A(bS2, z) = 1. Now invoke Theo-
rem 3.25 again to see that A(b€2,-) = 1 and that Q is a disc, which means the Cauchy
and Szegé kernels coincide, i.e., O(z,¢) = S(z,() forall z € Q,( € Q. O

3.5. Capacity and arc length

Corollary 3.31. Let v be a simple closed Lipschitz curve in the plane. Then its analytic
capacity k() and arc length o(v) satisfy the following inequality:

2rk(y) < o(7). (3.32)
Equality holds if and only if v is a circle.

Proof 1. The following argument was pointed out to the authors by Dmitry Khavinson.
Let f € A>®(Q2_), f(o0) =0, and || f]|,, < 1. By the Cauchy integral formula,

—2mizf(z) = %@dc:%éﬂ—oldg z€ef_.
~ z

Taking absolute values, using the triangle inequality and sending z — oo, we see that
27 D(f,00) < o(v). Taking the supremum over all such f gives the result. O

Remark 3.33. Sec also [16, Theorem II.3.1].
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Proof 2. Combining Theorems 3.3 and 3.25, we see that A(y,00) = 2;:,(;{,)” > 1, and

that equality holds if and only if « is a circle. O

Remark 3.34. An estimate due to Ahlfors and Beurling gives a lower bound on the
analytic capacity of a simple closed curve in terms of area enclosed (see, e.g., [27, Chapter
5.3]): Let v be a simple closed planar curve enclosing an area of A(vy). Then

k(v) > VAM) /7, (3.35)

with equality holding if and only if 7 is a circle. Combining (3.32) with (3.35) yields the
isoperimetric inequality o(v)? > 4w A(y). See [15] for another proof of the isoperimetric
inequality stemming from the Ahlfors-Beurling estimate. ¢

4. The behavior of A(~, z) at the boundary

Our goal here is to prove the following result, which confirms part 2 of Theorem 1.8.

Theorem 4.1. Let «y be a simple closed C* curve in the Riemann sphere. Then the function
2+ A(v, 2) is continuous on all of C. In particular, if (o € 7, then lim, ¢, A(7y, z) = 1.

4.1. Important kernel properties

Let X C C be a set and consider frg: X —[0,00). We say f and g are comparable
on X and write f(z) = g(z), z € X, if there exist constants Cy,Cs > 0 such that for all
z€ X, C1f(z) <g(z) < Caf(2).

Proposition 4.2. Let v be a simple closed Lipschitz curve in the complex plane and let
d(2) denote the distance of z to v. Then there exists £ > 0 such that

Si(z,2) = 8(2)7", z € Qy,
S_(z,2) = 6(2)7 L, ze€Q_nN{z:4(z) <}

Proof. Let D(z,0) be the disc centered at z of radius d(z) = 0. The Szeg6 kernel of this
disc is calculated using the unit disc formula (2.11) and an appropriate affine map in the
transformation law (2.13). From Szegd kernel monotonicity in Proposition 2.17 we now
obtain

1
276(2)

Si(z,2) < Speasy(2,2) = (4.3)

For the other direction, consider first a point z € 2 and the Riemann map ¢ : QO —

D with ®(z) = 0, ®'(z) > 0. Using (2.11) and (2.13) again we have S;(z,2) = q);f).

Applying the (rescaled) Koebe one-quarter theorem [27, Theorem 5.3.3] to ®~! we obtain
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1 / 1
> — -1 =
)= 1 (070 = 15
and so
D'(2) 1

> 4.4
5+(z,2) 2 T 87md(z) (44)

Combining (4.3) with (4.4) we have S (z,2) = §(2)7!, z € Q4.
To treat z € Q_ close to 7, pick zg € Q4 and £ > 0 so that the map n(z) := Z_1ZO

satisfies

o 7 is a bi-Lipschitz map from Uy := {z € Q_ : §(z) < £} to n(Up).
e |7 (2)] =1 on U,.

Setting d(w) to be the distance from w to 7(7) we have from our work above (with 7(Q_)
replacing Q4 ) along with transformation law (2.13) that

S (Zv Z) ~ S’q(Q,)(n(z), 77(2))
~b(n(2)) "
~6(z)7!

for z € Uy, completing the proof of the proposition. O

Proposition 4.5. Let T1, T2 be bounded projection operators from L?*(7y) onto HZ(7),
each represented by an integral kernel K; : Qi x v — C, such that for f € L*(y) and
z € Qy,

/f (2,¢) dor(©).

Additionally, assume K;(z,-) € L?(vy) for = € Q. Then the following holds for a.e.
¢en:

T; (Ki(=,)) (0) = Ka (2. Q). (4.6)

Proof. Since T’ is bounded on L?(v), there is a corresponding bounded adjoint T. By
assumption, K1(z,-) € L*(y) and so T’ (Kl( )) € L?(y). Thus for f € L*(y),

(£.15 (K1) ) = (Tolf) Ki(2)) = T 0 Tof (2) = Tof (), (47)

since Tof € H2 () and T is a projection onto HZ (). On the other hand,
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(£ Kalz)) = Taf (2), (48)

by definition. Equating (4.7) and (4.8) we see that T% (K1 (z, )) — Ks(z,+) € L*(v) is

orthogonal to all of L?(v), and is therefore almost everywhere zero. 0O

Corollary 4.9. The Cauchy and Szegé kernels of H3.(7y) are related as follows:

C%L(S+(2)(()=Cx(2,0), 2€Q, (€9, (4.10a)

S+ (Ce:) (O =S(C.2),  2€Qu Cen (4.10b)

Proof. Apply Proposition 4.5 with Thy = S1 and Ty = Cy for (4.10a). Switch the
roles of the operators and use the self-adjointness of the Szeg6 projection to deduce
(4.10b). O

4.2. Berezin transforms

Let v be a simple closed Lipschitz curve in the plane oriented counterclockwise. Given
z € Q4 \ {c0}, define the unit vector s¥ € H3 (y) C L?(y) by normalizing the Szegd
kernel as follows:

Si(c: Z)

V/S+(z,2)

Lemma 4.12. Let 7y be a simple closed Lipschitz curve in the plane and z € C\{v}. The

s2(¢) = (4.11)

unit vectors st € H3 () tend weakly to 0 as z approaches 7.
Proof. If f € L?(v) is perpendicular to H32 (7), observe that
(f,5%) = 8x(2,2) 71284 f(2) = 0.

It is therefore sufficient to test only against functions f in the Hardy space.
If f€H%(y)and 2z € Q4 \{oo}, the Szegd reproducing property gives

(f,52) = Se(z,2) 72 f(2). (4.13)

By Remark 2.2 the subspace A%(Q1) = O(Q4) N C¥(Q) is dense in H2 (), so we may
choose a sequence of functions {f,} C A%(24) tending to f in the L?(y)-norm. Then

F(2) = ful2)] = / S (2. Q) = £alQ) do(Q)| < S (22 2) V2 |1f = ful

which implies |S+(z,2) "2 f(2) — S+(z,2) Y2 f(2)| < ||f — full. Thus,
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S (2,2) T2 F(2)] < |8 (2,2) V2 f(2) = Sa(2,2) V2 ful2)] + 1S (2,2) T2 fu(2)]
<|If = full + Si(z7z)_1/2|fn(z)|'
Now given € > 0, we may choose N large enough so that [|f — fx|| < §. Since fy €

C*(Q4), | fv| assumes a maximum value on the closure. And since Si(z,2) ~ §(z)~!
(Proposition 4.2), z can be taken sufficiently close to 7 to ensure that

€

Si(z,2) 2 I (2)] < S (z,2) 712 sup |fw] < 5

Now combining the above inequalities with (4.13), we have

[, s3)] = 152(2,2) 2 f(2)] < e

for z sufficiently close to . Since € was arbitrary, we conclude that s* tends weakly to
0as zissent toy. O

Suppose T is a bounded operator on L?(v). We define its Berezin transform to be the
function T : Q1 \{oo} — C given by the formula

T(z):= (Ts*,sF), z € Q3 \{o0}. (4.14)

The Berezin transform is important in the study of Toeplitz and Hankel operators

in Bergman and Hardy space settings. There is an extensive body of literature on this
topic; see, e.g., the survey [33] and the references therein.

Lemma 4.15. Let v be a simple closed Lipschitz curve and T a compact operator on
L2(v). Then the Berezin transform T(z) tends to 0 as z is sent to .

Proof. Since compact operators are completely continuous and s¥ tends weakly to 0 as
z is sent to v, we have that || T's¥| — 0. Now observe that

z1%z )

IT(2)| = (Ts2, )| < ||Ts2|| |52 ]| < || T2
which completes the proof. O

Now suppose that T; and T are bounded operators on L?(y). We define a function
PB(v,T1,T2) : C\{~r} — C by the formula

<T18+ s+>, z €y,

z)%z

(4.16)
(Tys,,s2), z€Q_\{oo}.

%(77’111’ T2)(Z) = {

We refer to Z(v,T1,T2) as a concatenated Berezin transform. This allows the con-
sideration of two different operators on {1} and {2_ simultaneously.
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4.8. Kerzman-Stein operators

Define the Kerzman-Stein operator
Ay =Cy—-CL. (4.17)

Kerzman and Stein [18] showed that the singularities of the Cauchy kernel and its ad-
joint cancel out as long as the associated curve is smooth. Lanzani [21] improved the
applicability of this result to C'! curves.

Proposition 4.18. Let v be a C' curve in the complex plane. Then Ay is a compact
operator on L?(7).

Proof. See [18] for the original proof for C*° domains and Lanzani’s work [21] for the
proof on C! curves. Also see Bell’s book [5] for a different perspective on the O set-
ting. O

Proposition 4.19. Let v be a simple closed Lipschitz curve in the complex plane. The
following computations hold for z € C\{~}:

B(v, Ay, A_)(2) =0, (4.20a)
By, A%, A2)(2) = 1 — A(7,2)%, (4.20b)

where Ai =Aj 0A;.
Proof. Let z € Q4 \{oo}. For (4.20a), we need only note that Cy fixes s,. Thus,

By, A, A)(2) = (Axsy,s7) = (Cx = Cl)sy, s7)
= <Ci8z y Sz > - <Sz 7Ci8z > = <8i’8i> - <82:’82:> =0.

For (4.20b), we have that since both Cy and C} are projections

B(7, AL, A2)(2) = ((Cx — CL)%sT . 57)

z1%z

C3i —CiLCy — CLC% + (CH)%)sE, sT)

Z 1z

(
((
= <Ci8zi’ 2:> <C* Cisz ) Sz > <Cicisz ’ z> <C*i ,:zt7 zl:)

= <$;tv > <Ci8 Cis > <CiCiSz = > + <Sz ’Cisz >
—1-|crs|. (4.21)

But notice that

lCsst | = e IO (S (NI = g [Co|| = Aslr2)”, (422
+°2 Sj:(Z,Z) +\PE Sj:(Z,Z) +\< +\7 ) .
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where the second equality follows from (4.10a) and the last equality is by definition.
Combining (4.21) and (4.22) gives the result. O

Proof of Theorem 4.1. First assume that 7 is a simple closed C! curve in the plane. It
is clear from the definition that z — A(7, 2) is continuous on C\{~}, while continuity at
00 has already been verified in Theorem 3.3. It thus remains to check what happens near
the curve (by definition, A(y, (o) = 1 for (o € 7). Proposition 4.18 says Ay is compact,
SO Ai is also compact. Lemma 4.15 thus implies that

By, AL, AY)(2) = (AlsT,s7) = 0

as z € (4 tends to any (y € . But by Proposition 4.19, this is equivalent to saying
As(vy,2)? = 1 as z € Q4 tends to (o € . Since AL (y, 2) is positive, we conclude that

hmz—)Co A(’Y? Z) =1= A(Va CO)

If v is a C' curve in the Riemann sphere passing through the point at infinity, then we
use a Mébius transformation @ to map it to a bounded C! curve ®(vy). Mobius invariance
combined with the above argument now completes the proof. O

5. Examples
5.1. Wedges

Given 6 € (0,7), define two complementary wedges

Wy ={re?? cC:r>0, |o <086}, (5.1a)
Vo={re?cC:r>0, 0<¢<2r—0}. (5.1b)
It suffices to consider 6 € (0, §), so that W is a convex set and Vj is non-convex. Let
g parameterize the boundary bWy:
—te', t e (—00,0),
Yo(t) = te™™, t€[0,00), (5.1c)
00, t = oo.

We now have a partition of the Riemann sphere C= Wy U Vg U~g. In the notation of
previous sections, we have Wy = Q0 and Vy = Q_. Thus we write

Ay (ye, 7€) = 1 /|gd_a,~(§i)*’l2’ r>0, pe(=0,0), (5.2a)

4728w, (ret?, ret¥)

! a(¢)

A2 Sy, (ret®, rei?) \C - reW\Q’

A_(vp,re'?) = r>0, @€ (6,2r—0). (5.2b)
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5.1.1. Szegd kernels

The Szegd kernels of Wy and Vy, can be computed from their Riemann maps. For a €
(0,7), let W, be the (possibly non-convex) wedge given by (5.1a). It is straightforward
to verify that the Riemann map ¥, : W, — D takes the form

1— 2%a
14 z2a

U,(z) = , (5.3)

where the fractional power z2a refers to the branch preserving the positive real axis.

Setting o = 0 and z = re®®, the transformation law in Proposition 2.12 and (2.11)
show

, , 1

Sw, (re'?,re'?) = g ¢ (mp) , r>0, ¢e(-0,0). (5.4a)
The Szeg6 kernel for Vp is computed similarly. First observe that the map z — —z

sends Vy to W, _g. From here, apply the map ¥,_4 to obtain the Riemann map from Vj

to D.

Sy, (re'® re?) = ﬁ sec (;T E::g;) ) r>0, ¢@e(0,2r—0). (5.4b)

5.1.2. L?>-norm of the Cauchy kernel
Computation of the integrals in (5.2a) and (5.2b) is assisted by the following

Lemma 5.5. Let « € (0,27) and r > 0. Then

o

I(r,«a) ::/|x 7dx. = — ! ; (5.6)

ret®|?2  rsine(r — )

where

Proof. If o = , the fundamental theorem of calculus gives the result. When o € (0, 7),

o0

/x2+r2—2xrcosa r251n a) 14 (2= TCOW)Q

oo
0 ! Tsin @
oo

rsin o 1—|—u2

—cot o
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_ (E + arctan(cot a)) . (5.7)

rsino \2

Elementary trigonometry now confirms that (5.6) holds in this case. For a € (7, 27),
reflection across the horizontal axis reveals that Z(r, o) = Z(r, 2m — «). Combining this
with the earlier result for a € (0, 7] shows that (5.6) holds for « € (0,27). O

Fix € (0,%) and take z = re’? € Wy, with r > 0, ¢ € (—6,6). Using Lemma 5.5 it
is easily verified that (just draw a picture)

; 1
lC0e. ) 3apsy) = 15 @00 = 9) + T(r,0+9))

1 1 1
e (Sinc(ﬂ' — (60— ) + sinc(m — (0 + 90))) . (b.8a)

Similarly, take z = re’? € Vp, with r > 0 and ¢ € (6,27 — 6). Then Lemma 5.5 gives

: 1
HC’(reup’ ')Hiz(,m) = H (I(Ta Y — 9) +I(7‘, 27 — 0 — <»0))

1 1 1
A (sinc(w —(p—190)) i sinc(m — (¢ + 9))) - (5.8b)

5.1.8. The A-function

From Theorem 3.22 we easily see A(vy, re’®) is independent of r > 0. Alternately, by
canceling factors of 7~1 in the quotients of (5.82) and (5.8b) by the corresponding results
from (5.4a) and (5.4b) we obtain the following

Theorem 5.9. For 0 € (0,%), the function re'? — A(yg,re'?)? is computed on Wy = Q4
and Vo = Q_.

(a) Let z=re"¥ € Wy, so that r > 0 and ¢ € (—0,0). Then

ip\2 0 T
Mt et = 25 (sincw —1<e —9) " sinc(x —1<9 - «p») ()

(b) Let z =re'¥ € Vi, so that r > 0 and ¢ € (0,27 — 0). Then

Ayt = 2020 <sinC(7r o e e») (g ((7; - §>)> |

5.1.4. Remarks on the formula
Since A(vg,re'¥) is independent of r > 0, let us define

L(0,¢) = A(yp,€™).
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1.09} B(%)
e N e
B(Z s
1.0 L(Z. o) (%) L(%,¢)
LO3¢ 101}
m T 157r(p s s ‘ 77T(’9
B ™ 3 1 1 ™ i

Fig. 1. Behavior of ¢ +— L(0, ¢) for § = § and § =

k]

Theorem 1.11 tells us that [|Cl| z2(,,) = sup{L(0,¢) : ¢ € [-0,2m — 0)}.

e In [9] Bolt observes that a Mobius transformation maps the wedge Wy onto a lens
with vertices at £1. This lens has boundary length o(y) = 46cscf and capacity
k(y) = m/(2(m—0)), and Bolt uses this information to obtain a lower bound on || Al|; see
Remark 3.7. The closely related lower bound on ||C|| given by A(v,c0) in Theorem 3.3
together with the Mo6bius invariance of A shows

o(7) _2 m™— csc =
Ser(y) 7 ( 0)6 csc := B(0).

ICN L2(vg) 2

e The graphs of L(0,¢) and B(f) for 0 = T, T are displayed in Fig. 1. B(f) agrees with
the maximum value (at ¢ = 0) of L(f,¢) when the angles correspond to the interior
domain Wy, but is strictly less than the maximum value when ¢ is taken from the exterior
Vg.

e When z € Wy U Vy, Theorem 3.25 guarantees that A(vg,2z) > 1. But the formulas in
Theorem 5.9 show that A(vg,2) — 1 as z = re’® tends to any smooth point on the curve
~vo (meaning that » > 0 and ¢ — —0, 6 or 2z — ). This is illustrated in Fig. 1 when
0 = 5, 7, and should be compared with the continuity result given in Theorem 4.1.

e Since the non-smooth boundary points 0,00 € 7y can be approached from any angle
¢ € (0,27 — 0), the function re'? — A(vp,7e’?) is discontinuous at both. In light of
the relationship between A, the Berezin transform and the Kerzman-Stein operator A
in Section 4.3, lack of continuity shows that A is not compact. Bolt and Raich [10] show
that A is never compact when corners are present.

5.2. Ellipses

The next family of curves we consider are ellipses. For r > 1, define

2
5T:{x+iy€(C:°:—2+y2:1}. (5.10)
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As usual &, is oriented counterclockwise, so that €} is the filled in ellipse.

5.2.1. Families of special functions

Elliptic integrals, elliptic functions and Jacobi theta functions comprise a deep and
beautiful area of mathematics. In what follows, the reader is not assumed to have prior
background and all necessary definitions are given. References to properties relevant to
our computations of A(E,, z) are also interspersed as needed.

The elliptic integrals of the first, second and third kinds (K, F, II, respectively) make
up a canonical set to which all other elliptic integrals can be reduced. In what follows,
variables k € (0,1) and n € R are called the elliptic modulus and characteristic, respec-
tively. We follow conventions used by Whittaker and Watson [32, Chapter 22.7], but
the reader is cautioned that other conventions are also in common use (especially in
mathematical software; e.g., Mathematica implements these as functions of k2, not k):

dt
Va=P)1=FP)

/
E(k) :jq/%lffdt, (5.11b)
/

(5.11a)

dt

Mol = o ma e

(5.11c)

Next, recall the Jacobi theta functions, where z € C and |gq| < 1 (see [32, Chapter
21)):

01 (2, q) = 2q% i(—l)jqj(jﬂ) sin[(2j 4+ 1)z], (5.12a)
3=0
92(z,q) = 27 iqj(jﬂ) cos[(25 + 1)z], (5.12b)
3=0
93(z,q) =142 iqu cos(2jz2), (5.12¢)
j=1
Y4(z,q) =14 22 7" cos (252). (5.12d)

Theta functions also admit elegant infinite product expansions; see [32, Chapter 21.3].
Define for k € [0, 1], the elliptic nome ¢(k) by

—wK(m)} .

q(k) = exp [ K (5.13a)
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This function is strictly increasing with ¢(0) = 0 and ¢(1) = 1. The inverse nome k(q) is
defined for ¢ € [0, 1) by an infinite product, or equivalently by a ratio of theta functions:

oo

o[ e e

1+q2] 1

If we allow for a slight abuse of notation, we may write k(¢(k)) = k and ¢(k(¢q)) = g on
[0,1). Also limg_,1 k(¢g) = 1, though neither formula in (5.13b) is valid at ¢ = 1.
Finally, define Jacobi’s elliptic sn function in terms of the above functions

93(0.q(k)) ! (g ) |
95(0, 4(k)) m(ﬂg(o;—(k»wq(/ﬁ))

The function u +— sn(u, k) is meromorphic and doubly periodic with quarter periods
K := K(k) and iK' = iK(v/1—k?), ie., sn(u,k) = sn(u + 4K, k) and sn(u, k) =
sn(u + 4K’ k).

sn(u, k) =

(5.14)

5.2.2. The norm of the Cauchy kernel
For z € Q UQL, we write the norm [|C¢(z,")[|12(¢,) as an integral over [—1, 1]. First
parametrize the top and bottom halves of &, by

CE(t) =rt £iv/1— 12, —1<t<1. (5.15)

Writing the arc length differential do(¢) in terms of this parametrization gives

(- e

do(¢) = |d¢(t)] = T (5.16)

If 2=« +i8, with o, 8 € R, then (5.15) implies
CE() — 2 = [(rt — o) £i(V1— 2 F B)|?
=a?+ B2+ 1-2rat+ (r* — )* F26V1 — 2.
Now combine this with (5.16) to see

1 do(Q)
T an? [ ¢ -2
E,

_ |dC(t) |dC(t)
4:7r2/|§+ —a—zﬂ\Q 47r2/|C —a—zﬁ|2

IC(z, )|
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1
r / o+ B2+ 1=2rat + (r? — 1)t? 1—(1-5)
(

272
21

dt.
a2+ B2 +1—-2rat+ (r2 — 1)t?)2 — 452(1 — t?) 1—1t2

(5.17)
In the special case in which a = 8 =0, (5.17) reduces to

1 /1 r? —(r? —1)¢? 1
22y 1+(T2—1)t2 \/(17t2)(1*(1* L)t2)

-1 2

dt

1C(0, )1z (e,) =

1 r?+1 1
_ L+t d
”27"0/<1—<1—’“2>t2 1> V=21 — (1 - L) t

%((TQ—FD a(i- 1= 3) - k(1= %)) 61s)

5.2.3. The Szeqd kernel of the interior domain

The Riemann map of the ellipse ©,. : 7, — D, takes the following form (see, e.g., [25,
Chapter VI] or [31]):

0,(2) = V&, -sn (2K7(rk*) arcsin < T;_ 1) , kr> . (5.19)

Here sn(-, ) is the elliptic function (5.14), K is the elliptic integral (5.11a). The elliptic
modulus k. € [0, 1) is the unique value (determined by (5.13b)) satisfying

q(k,) = <: :L 1)2 (5.20)

The appearance of k, in (5.19) is directly related to the eccentricity of £, while the factor
V/r2 — 1 inside the arcsine accounts for the fact that the foci of &, are at (£(r? — 1),0).
From [32, Example 21.6.5], it can be seen that

2K (k)

= 95(0,q(k))*, \f:%. (5.21)

Equations (5.20), (5.21) and the definition of sn(-,-) in (5.14) let us rewrite (5.19):

0,(2) = %ﬁf;% -sn (03 (o, (%)Z)Qarcsin (%) , k)
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z r—1\?
Al (arcsin( >,< ) )
r2—1 r+1

= £ (5.22)
¥4 | arcsi - r-1
ICS1n
* r2—1) \r+1
The Szegd transformation formula (2.12) gives S (z,z) in terms of 0, and O/,
6/
S, (2.2) = —19-C)I (5.23)

2n(1—On(x)P)

When z = 0, this formula simplifies. Indeed, (5.22) shows that ©,(0) = 0 and (letting
9] denote differentiation in the first slot), the quotient rule gives

T p— (065D

T 10, (0.(2)") 24

In [32, Section 21.4], Whittaker and Watson establish the following “remarkable result”
of Jacobi, adding that “several proofs have been given, but none are simple”:

19/1 (07 Q) =1 (0’ q)193(07 q)194 (07 Q)'

This can be inserted into (5.24) to show

r—1)\2 r—1\2
$,(0,0) = \@’;7(T0)| _ ) (07 (r+2173 )7;93_(107 (r+1) ) ' (5.25)

5.2.4. Calculation of A(E,,0) and A(E,,00)

Theorem 5.26. Let r > 1. The function z — A(E,,2)? assumes the following values.

A(E,00)* = %E(\/ 1- Tiz>7 (5.27a)
AE 02 = 21— 1. (2101 1)~ K1 i> (5.27b)

A 92(0, (1)) ws (0. (251)°)

Proof. The z = oo formula follows from the definition of A in (1.7). (Recall that The-
orem 3.3 shows that A(&,, z) is continuous at z = c0.) It is known (see [27, Table 5.1])
that the capacity  of the ellipse {22/a® + y?/b% = 1} is “E, so k(€,) = “£L. On the
other hand, (5.16) shows the arc length of &, is given by
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2
NG

5 10 15 20 25 30

Fig. 2. Comparison of r — A(E,,0) and r — A(E,, 00) for r > 1.

1
J(Er)z/do(():%/ %dt_m«ﬁ:(,/ i)

& -1

For the z = 0 formula, simply divide (5.18) by (5.25). O

5.2.5. Remarks

We discuss properties of A(E,,0) and A(E,, 00) as r varies, giving special attention to
the endpoint cases of » — 1 and oco. Both values give “asymptotically sharp” estimates
on |C|| as r — 1, though A(&,,0) is larger and thus “sharper” (see Fig. 2). We also
briefly discuss A(E,, z) for other z values.

e Behavior of A(E,,00) and A(E,,0). Using known asymptotic behavior of elliptic inte-
grals and theta functions (see [12]) we expand A(&,, 00) and A(E,,0) near r = 1:

A&, 00) =1+ 5(r—1P2—-L(r—1°+30r-1"+0(r—1°) (5.28a)
AEL0) =14 5(r—1)° = 5(r—1°+ 55— 1D*+0(r —1/°).  (5.28b)

(For the reader interested in working out these details by hand, it is convenient to re-write
A(&,,0) using the so-called Heuman Lambda function; see [12, page 225]).

In [8], Bolt shows that the spectrum of the Kerzman-Stein operator A on an ellipse
consists of eigenvalues +i);, where each +i\; has multiplicity 2 and \; > Ao > --- > 0.
He then provides asymptotics of the eigenvalues as the eccentricity tends to zero. The
largest number on the list is Ay = ||A|| = /||C]|?> — 1, and we deduce from Bolt’s
estimates that, as r — 1,

C|| ~1/1+ 3 (m) =1+ 5 —124+0(r—19). (5.29)

Comparing (5.29) to (5.28a) and (5.28b), we see the expansions for A(E,, c0) and A(E,, 0)
are both asymptotically sharp as 7 — 1. But if we then compare the coefficients of (r—1)4,
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:\ A(827 OO)

Fig. 3. For = € R, the plot of z — A(&2, z) suggests a maximum at z = 0.

we see that A(E,,0) is the better lower bound on ||C|| near r = 1 (since 5o5 > 3<). This
information proves Theorem 1.13.

Known asymptotic expansions of elliptic integrals and theta functions also yield the
behavior of A(E,, 00) and A(E,,0) as r — oo:

. 2 .
Tll)rgo A(E-,0) = N Tll)rglo A(E, 00).
Remark 5.30. The Mathematica generated plot in Fig. 2 suggests A(E,,0) > A(Ey, 00)
for all » > 1, and it would be interesting to prove this. It also appears in the plot that

both functions are strictly increasing in r. This is relatively straightforward to prove in
the case of A(E,, ), but the A(E,,0) case seems to be harder. ¢

Remark 5.31. The above information should be considered together with a known upper
bound on the norm of C. Adapting results by Feldman, Krupnik and Spitkovsky in [14],
we see that for r > 1,

N2
ICII 2,y < Y1+ (557)" (5.32)

In particular, the norm of the Cauchy transform on any ellipse is always less than /2. ¢

o Values of A(E,, z) for z # 0,00. The formulas provided in (5.17), (5.22) and (5.23) are
valid for z € §2',. Numerical evidence for specific r values suggests that z = 0 may in
fact maximize Ay (€., z). This is illustrated in Fig. 3, when » = 2 and z = € R. In this
picture, the interior domain corresponds to x € (—2,2).

To compute A_(&, z), we need the exterior Riemann map. The map from the unit
disc D to 7 (the complement of the solid ellipse) is given by a Joukowski map (see [25,
page 270]). Such maps can be inverted explicitly and the desired ¥,. : 7 — D obtained.
The particular map used to generate Fig. 3 (the r = 2 case) for |z| > 2 is given by
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where the branch of the square root is chosen so that v/22 — 3 — z as 2 — oo. Using the
map Wq, the exterior Szeg6 kernel S_(z, z) can be obtained via (2.12). This can then be
combined with the Cauchy norm computation in (5.17) to yield the exterior A-function.

Data availability
No data was used for the research described in the article.
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