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1. Introduction

Let γ be a simple closed oriented Lipschitz curve in the Riemann sphere Ĉ bounding 
a domain Ω+ to the left and Ω− to the right. Each domain admits a Hardy space, 
denoted respectively by H2

+(γ) and H2
−(γ), consisting of holomorphic functions with 

square integrable boundary values. (Precise definitions are given in Section 2.1.) In this 
paper we investigate the interaction between the Hardy spaces on Ω+ and Ω− and use 
our findings to deduce norm estimates and prove invariance and rigidity theorems related 
to two classical projection operators: the Szegő projection, S, and the Cauchy transform, 
C.

These operators and the connections between them are well studied. Of particular 
importance is a breakthrough made by Kerzman and Stein in [18] where it was shown 
that for smooth γ, their eponymously named operator A := C − C∗ is compact. This 
observation led to the formula C = S(I+A) relating the Cauchy and Szegő projections, 
making it possible to use known information about S to study C, and vice versa. The 
Kerzman-Stein operator established an alternative foundation upon which both Hardy 
space theory and much of classical complex analysis could be developed; this is the theme 
of Bell’s book [5].

One aim of the present paper is to investigate the function

z �→

⎛⎝∫
γ

|C(z, ζ)|2 dσ(ζ)

⎞⎠
1
2
⎛⎝∫

γ

|S(z, ζ)|2 dσ(ζ)

⎞⎠− 1
2

, (∗)

where C is the Cauchy kernel, S is the Szegő kernel and σ is arc length measure. This 
function has a number of remarkable properties and, unsurprisingly, encodes detailed 
information about the Cauchy transform, the Szegő projection and how the two operators 
interact. A close relationship between (∗) and A (or more precisely A ◦ A) via the 
Berezin transform is shown to hold (see Proposition 4.19), and there are situations 
(e.g. Corollary 3.30) where direct analysis of (∗) recaptures and even strengthens results 
previously obtained from the Kerzman-Stein operator.

The following theme pervades the paper: it is natural and informative to consider the 
pieces of (∗) on Ω+ and Ω− together as a single object. With this in mind, several pairs 
of objects associated to a simple closed Lipschitz curve γ will be considered in tandem:

(1) Domains and function spaces. The interior and exterior domains Ω+ and Ω−, along 
with the associated Hardy spaces H2

+(γ) and H2
−(γ).

(2) Projection operators and kernel functions. The Cauchy transforms (C+ and C−) 
and Szegő projections (S+ and S−) on the interior and exterior domains, together 
with the representative kernel functions (C+, C−, S+ and S−).

(3) Two pairings of functions in L2(γ). The usual inner product 〈f, g〉, along with a C
bilinear pairing 〈〈f, g〉〉 defined in (1.4) below. The second pairing yields an alternative 
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characterization of the Hardy dual spaces that underlies much of the theory we 
develop.

1.1. Interior and exterior projections

Throughout the paper, many arguments can be carried out simultaneously in the 
interior (Ω+, H2

+(γ), S+, etc.) and exterior (Ω−, H2
−(γ), S−, etc.) settings. Whenever 

possible our notation will reflect this, as we now demonstrate.
One way to construct holomorphic functions on Ω+ with L2(γ) boundary values is 

the Szegő projection S+, the orthogonal projection from L2(γ) onto its holomorphic 
subspace H2

+(γ). Given h ∈ L2(γ),

S+h(z) =
∫
γ

S+(z, ζ)h(ζ) dσ(ζ), z ∈ Ω+, (1.1)

where S+(z, ζ) is the Szegő kernel of H2
+(γ) and dσ is arc length measure. This kernel is 

conjugate symmetric, i.e., S+(z, ζ) = S+(ζ, z), and for fixed z ∈ Ω+, S+(·, z) ∈ H2
+(γ). 

Since S+ is an orthogonal projection onto H2
+(γ), we immediately obtain the reproducing 

property that S+f = f for f ∈ H2
+(γ), as well as the fact that S∗

+ = S+.
There is a corresponding Szegő projection S− from L2(γ) onto H2

−(γ) given by a 
formula à la (1.1), but now using S−(z, ζ), the Szegő kernel of H2

−(γ), as the represen
tative kernel. The same basic properties of S+ and S+ mentioned above hold for S−
and S−, though in general the kernel functions S+ and S− themselves bear no obvious 
resemblance.

When we meet situations as described above, where parallel facts hold in the interior 
and exterior settings, the presentation will be streamlined as follows:

``The Szegő projection S± is an orthogonal projection from L2(γ) onto H2
±(γ).''

is a condensed way of writing two statements at once. The original string is meant to be 
read exactly twice, once using only the top signs, and once using only the bottom signs:

• The Szegő projection S+ is an orthogonal projection from L2(γ) onto H2
+(γ).

• The Szegő projection S− is an orthogonal projection from L2(γ) onto H2
−(γ).

A second way to construct holomorphic functions from L2 boundary data is the 
Cauchy transform. Let γ be a simple closed Lipschitz curve in the plane and let T be 
the (a.e. defined) unit tangent vector pointing in the counterclockwise direction. Given 
h ∈ L2(γ), interior and exterior holomorphic functions C±h ∈ O(Ω±) are generated via 
the Cauchy integral
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C±h(z) = 1 
2πi

∮
γ

h(ζ) 
ζ − z

dζ,=
∫
γ

C±(z, ζ)h(ζ) dσ(ζ), z ∈ Ω±, (1.2a)

where, upon noting that dζ = ±T (ζ) dσ(ζ), the Cauchy kernel is defined as

C±(z, ζ) = ±T (ζ) 
2πi(ζ − z) . (1.2b)

The choice of ± specifies orientation so that holomorphic functions are reproduced.
When z ∈ γ, the integral (1.2a) no longer converges in the ordinary sense. But if 

non-tangential limits (see Section 2.1) of the holomorphic function C±h ∈ O(Ω±) are 
taken, we obtain the following principal value integral for a.e. z ∈ γ:

C±h(z) = h(z)
2 

+ 1
2 P.V.

∫
γ

C±(z, ζ)h(ζ) dσ(ζ). (1.3)

The notion of a principal value -- where the integral is calculated over the curve with 
a small symmetric portion of γ about z excised, and a limit is taken as the endpoints 
of the excision are sent to z at the same rate -- makes sense when γ is a C1 curve 
and h ∈ C1(γ). But the scope of this notion extends to a wider setting thanks to a 
deep result of Coifman, McIntosh and Meyer [13], which says that when γ is a Lipschitz 
curve, the principal value integral in (1.3) both exists for almost every z ∈ γ and defines 
a bounded operator on Lp(γ, σ), 1 < p < ∞. Our main concern in this paper is to obtain 
quantitative information in the p = 2 case. Unless otherwise noted, unscripted norms ‖·‖
of functions and operators refer to L2 norms taken with respect to arc length measure.

1.2. Duals of Hardy spaces

Let γ be a simple closed oriented Lipschitz curve. Consider two related pairings of 
f, g ∈ L2(γ): the usual inner product 〈·, ·〉 and a (C-)bilinear pairing 〈〈·, ·〉〉 given by

〈f, g〉 =
∫
γ

f(ζ)g(ζ) dσ(ζ), 〈〈f, g〉〉 =
∮
γ

f(ζ)g(ζ) dζ. (1.4)

Since dζ = T (ζ) dσ(ζ), these pairings are related by 〈f, g〉 =
〈〈
f, gT

〉〉
and 〈〈f, g〉〉 =

〈f, gT 〉, where T is the unit tangent agreeing with the orientation of γ.
Since H2

±(γ) is a Hilbert space, the inner product 〈·, ·〉 facilitates the canonical iso
metric duality self-identification H2

±(γ)′ ∼ = H2
±(γ). The bilinear pairing 〈〈·, ·〉〉 facilitates 

a quasi-isometric dual space identification of the interior and exterior Hardy spaces:

H2
±(γ)′ � H2

∓(γ), (1.5)

see Section 2.2, and in particular, Proposition 2.4.
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1.3. The Cauchy-Szegő Λ-function

Let γ be a simple closed bounded Lipschitz curve oriented counterclockwise in the 
plane. Define two real-valued functions

Λ+(γ, z) =
‖C+(z, ·)‖L2(γ)√

S+(z, z)
, z ∈ Ω+,

Λ−(γ, z) =
‖C−(z, ·)‖L2(γ)√

S−(z, z)
, z ∈ Ω−\{∞}.

Now combine them to form the Cauchy-Szegő Λ-function, a real-valued function de
fined on the Riemann sphere by:

Λ(γ, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Λ±(γ, z), z ∈ Ω±\{∞},
1, z ∈ γ,√

σ(γ) 
2πκ(γ) , z = ∞,

(1.7)

where σ(γ) denotes arc length and κ(γ) denotes analytic capacity (see Section 3.1).

1.3.1. Basic properties
The assigned values for z ∈ γ and z = ∞ are very natural:

Theorem 1.8. Let γ be a simple closed Lipschitz curve in the plane. Then

(1) Λ(γ, z) is continuous as z → ∞. 
(2) If γ is C1 smooth and ζ0 ∈ γ, then Λ(γ, z) is continuous as z → ζ0. 
(3) If Φ is a Möbius transformation with pole off of γ, then Λ(γ, z) = Λ(Φ(γ),Φ(z)). 

Part (1) is proved in Theorem 3.3 after a short discussion of analytic capacity. Part (2)
is proved in Theorem 4.1, with the Berezin transform and compactness of the Kerzman
Stein operator playing important roles. As Λ is clearly continuous on C \ γ, these first 
two parts imply that z �→ Λ(γ, z) is continuous on the Riemann sphere whenever γ is 
of class C1. Part (3) is shown in Theorem 3.22 after obtaining a Möbius transformation 
rule for the Cauchy kernel.

One consequence of Möbius invariance is that it gives a simple way to extend Λ to 
unbounded curves: let γ be a simple closed Lipschitz curve in the Riemann sphere passing 
through ∞ (see Section 2.1), and Φ be a Möbius transformation with its pole lying off of 
γ. Then the image curve, denoted Φ(γ), is a simple closed Lipschitz curve in the plane, 
and we define

Λ(γ, z) := Λ(Φ(γ),Φ(z)).
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The fact this extension is well-defined is immediate from Theorem 1.8, part (3).
The next result shows that circles form the class of minimizing curves for Λ:

Theorem 1.9. Let γ be a simple closed Lipschitz curve in the Riemann sphere.

(1) Λ(γ, z) ≥ 1, for all z ∈ Ω±.
(2) If there is a single z ∈ Ω± such that Λ(γ, z) = 1, then Λ(γ, ·) ≡ 1 and γ is a circle 

(or a line, including the point at ∞).

This theorem and its consequences are presented in Sections 3.3 and 3.4.
In [18] Kerzman and Stein gave a clever geometric interpretation of their operator 

A and deduced that if the Cauchy and Szegő kernels of a smoothly bounded domain 
coincide, the underlying domain must be a disc. Theorem 1.9 implies a significantly 
strengthened version of this result. The proof of the following result (see Corollary 3.30) 
uses the Λ-function and makes no reference to the geometry of the Kerzman-Stein oper
ator:

Corollary 1.10. Let Ω be a bounded simply connected planar domain with Lipschitz bound
ary. If there exists a single z ∈ Ω such that the Cauchy and Szegő kernels satisfy

|C(z, ζ)| ≤ |S(z, ζ)|

for almost every ζ ∈ γ, then Ω is a disc (so actually C(z, ζ) = S(z, ζ) for all z ∈ Ω, ζ ∈
Ω).

1.3.2. Estimating Cauchy norms
The maximum value attained by Λ(γ, ·) on the Riemann sphere bounds the norm of 

the Cauchy transform from below:

Theorem 1.11. Let γ be a simple closed Lipschitz curve in the Riemann sphere. The 
norms of the interior and exterior Cauchy transforms are equal and further, satisfy the 
estimate

sup
z∈Ĉ Λ(γ, z) ≤ ‖C±‖ . (1.12)

Proof. That ‖C+‖ = ‖C−‖ is shown in Theorem 2.6. In Theorem 2.19 it is shown that 
Λ(γ, z) ≤ ‖C±‖ for every z ∈ C. The continuity of Λ(γ, ·) at ∞ finishes the proof. �

Concrete examples of Λ are also given. Let Wθ = {reiϕ : r > 0, |ϕ| < θ} be the 
unbounded wedge with aperture 2θ ∈ (0, 2π), and boundary denoted by bWθ. In Sec
tion 5.1 (Theorem 5.9) we produce an explicit formula for Λ(bWθ, z). Several conclusions 
are then drawn, including the observation that Λ(bWθ, z) is discontinuous at the origin 
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(a corner point), breaking from the continuous behavior on C1 curves guaranteed by 
Theorem 1.8.

In Section 5.2, a second family of curves is considered. Let Er = {(x, y) : x2

r2 +y2 = 1}, 
an ellipse with major-to-minor axis ratio r > 1. We compute Λ(Er, z) and use it to 
produce the best known lower estimate on the norm of the Cauchy transform.

Theorem 1.13. Let r > 1. The L2-norm of the Cauchy transform on Er satisfies

‖C‖L2(Er) ≥

√√√√√ 2 
π

√
1 − 1 

r2 ·
(r2 + 1) · Π

(
1 − r2,

√
1 − 1 

r2

)
−K

(√
1 − 1 

r2

)
ϑ2

(
0,
(
r−1
r+1 

)2)
ϑ3

(
0,
(
r−1
r+1 

)2) . (1.14)

See Section 5.2.1 for conventions regarding elliptic integrals and theta functions in 
(1.14), along with detailed information about the asymptotics and other properties of 
the right-hand side. This bound is shown to be asymptotically sharp as r → 1.

1.4. Motivation from higher dimensions

This paper grew out of an ongoing project on the Leray transform L, a higher di
mensional analogue of the Cauchy transform. Given a C-convex hypersurface S ⊂ CPn, 
recent work of the authors (see [2--4]) uncovers an intriguing connection between analytic 
quantities tied to L (norms, essential norms, spectral data) and projective-geometric in
variants associated to S and its projective dual hypersurface S∗. A natural construction 
yields a pair of projectively-invariant dual Hardy spaces on S and S∗, and a generalized 
version of Λ(γ, ·) can be defined using Leray and Szegő kernels. The higher dimensional 
theory simplifies considerably in one dimension, serving to motivate the present paper.

The function Λ can be related to Fredholm eigenvalue problems studied by Bergman
Schiffer [6] and Singh [30]. Burbea previously connected the Kerzman-Stein operator A
to these same eigenvalue problems in [11], then went on to reprove key properties of A
(e.g. compactness) using the theory of Garabedean anti-symmetric l kernels. Similarly, 
some basic properties of Λ in Section 1.3.1 can be obtained using the same approach 
– at least when γ is smooth enough. But here we have opted to avoid the Garabedean 
machinery entirely and the reason for this is two-fold. Firstly, in minimally smooth 
settings (γ being C1 or less), analysis becomes significantly harder and the Garabedean 
approach is rendered untenable. For example, while the compactness of A continues to 
hold when γ is only assumed to be C1, Burbea’s argument breaks down and the proof 
requires much more delicacy; see [21]. Secondly, the theory of the Garabedean kernel 
depends critically on a particular orthogonal decomposition of L2(γ) (see [5, Theorem 
4.3]), one that no longer holds for L2(S). As we are motivated by the higher dimensional 
problem, many of our proofs have been written so as to mirror that setting.
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2. Interior and exterior Hardy spaces

2.1. Lipschitz curves

A function ϕ : R → R is called Lipschitz if there exists a constant K > 0 (the Lipschitz 
constant) so that |ϕ(x1) − ϕ(x2)| ≤ K|x1 − x2| for all x1, x2 ∈ R. Such a function is 
differentiable almost everywhere with an L∞ derivative.

A simple closed curve γ in the plane is called Lipschitz if there exists a finite num
ber rectangles {Rj}nj=1 with sides parallel to the coordinate axes, angles {θj}nj=1 and 
Lipschitz functions ϕj : R → R, such that the union ∪n

j=1{e−iθjRj} covers γ and the 
intersection {eiθj (γ)} ∩Rj = {x+ iϕj(x) : x ∈ (aj , bj)}, for some aj < bj < ∞. If γ is a 
simple closed curve in the Riemann sphere passing through ∞, say that γ is Lipschitz if 
there is a Möbius transformation Φ mapping γ to a simple closed Lipschitz curve in the 
plane.

Each simple closed oriented curve γ ⊂ Ĉ bounds two simply connected domains: write 
Ω+ for the domain lying to the left and Ω− for the domain to the right. When γ is a 
planar curve, it is assumed to have counterclockwise orientation unless explicitly stated 
otherwise; we refer to Ω+ and Ω− as interior and exterior domains, respectively. Ω+

and Ω− are called Lipschitz domains when their boundary γ is Lipschitz. Note that if γ
is an oriented curve in the Riemann sphere and Φ is a Möbius transformation with its 
pole in Ω−, the image curve Φ(γ) is a planar curve oriented counterclockwise. When the 
pole is in Ω+, the orientation is reversed.

Let γ be a simple closed planar curve oriented counterclockwise. For β > 0 and ζ ∈ γ, 
define a set called a non-tangential approach region to ζ by

Γ(ζ) = {z ∈ C : |z − ζ| ≤ (1 + β) dist(z, γ), z �= ζ}.

Lipschitz curves are well-known to satisfy the uniform interior and exterior cone condi
tion, meaning there exists β, r > 0 such that for each ζ ∈ γ, one of the two components 
of Γ(ζ) ∩ D(ζ, r) is contained in Ω+ and the other contained in Ω− (here D(ζ, r) is 
the open disc of radius r centered at ζ). Write the interior and exterior non-tangential 
approach regions by Γ±(ζ) = Γ(ζ) ∩ Ω±. An important technical tool for work on Lip
schitz domains is a Neças exhaustion, a method of approximation by C∞ subdomains 
with uniformly bounded Lipschitz constants; see [21,22] for details.

Given a function g : Ω± → C and ζ ∈ γ, its non-tangential maximal function g∗ and 
non-tangential limit ġ (when it exists) are defined to be
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g∗(ζ) = sup 
z∈Γ±(ζ)

|g(z)|, ġ(ζ) = lim 
Γ±(ζ)�z→ζ

g(z).

Given f ∈ L2(γ), its Cauchy transform (1.3) arises as the non-tangential limit of the 
Cauchy integral in (1.2a). A deep and highly non-trivial result in [13] shows that this 
limit exists a.e. for Lipschitz γ, and further, defines an L2(γ) function. We slightly abuse 
notation by denoting both the Cauchy integral of f and its boundary values by C±f , 
but our intended meaning should always be clear from context.

We now define the Hardy space H2
±(γ) as the image of L2(γ) under C±:

H2
±(γ) = {C±f : f ∈ L2(γ)}; (2.1)

since γ is always assumed to be Lipschitz, this definition is equivalent to several other 
characterizations of the Hardy space used in the literature; see [22]. We have been in
tentionally flexible with our definition so that Hardy space functions can be at times 
thought of as holomorphic functions with L2 boundary values and at other times as the 
boundary values themselves. Observe from (1.2a) that functions in H2

−(γ) necessarily 
vanish at ∞.

The results in [13] along with the Plemelj jump formula (see [23,24,29]) allow rigorous 
justification of the following ``intuitive'' statements for Lipschitz γ: if f ∈ H2

±(γ), then 
C±f = f (Cauchy’s integral formula), while C∓f ≡ 0 (Cauchy’s theorem).

Remark 2.2. Given α ∈ (0, 1), define the space of α-Hölder continuous functions on γ to 
be

Cα(γ) := {f : |f(x) − f(y)| < |x− y|α, x, y ∈ γ},

and denote by Aα(Ω±) the space of holomorphic functions on Ω± with Cα boundary 
values. If γ is Lipschitz and f ∈ Cα(γ), then C±f ∈ Aα(Ω±); see [23]. The regularity of 
C± in Cα together with its boundedness in L2(γ) imply that Aα(Ω±) is a dense subspace 
of the Hardy space H2

±(γ). ♦

2.2. Dual space characterization

A duality paradigm of Grothendieck [17], Köthe [19] and Sebastião e Silva [28] iden
tifies duals of holomorphic function spaces on simply connected domains with spaces of 
holomorphic functions on their complements: Let O(Ω+) denote the space of all holo
morphic functions on Ω+ under the standard Frechét topology. Under this paradigm, 
the dual can be identified with O0(Ω−), the space of functions holomorphic in a neigh
borhood of Ω− which vanish at ∞. The functionals themselves are represented using 
bilinear pairings 〈〈·, ·〉〉 à la (1.4) to pair f ∈ O(Ω+) and g ∈ O0(Ω−), where the path of 
integration is taken inside Ω+ and sufficiently close to γ.

We follow this paradigm and identify the dual space of H2
±(γ) with H2

∓(γ).
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Since C± is bounded on L2(γ) whenever γ is Lipschitz, a bounded adjoint exists 
(with respect to the standard inner product), characterized by 〈C±f, g〉 = 〈f,C∗

±g〉. 
Explicitly,

C∗
±g(z) = g(z)

2 
± 1 

2πiT (z) P.V.

∫
γ

g(ζ) 
ζ − z

dσ(ζ),

where the formula is understood to hold for almost every z ∈ γ.

Proposition 2.3. The Cauchy transforms C+ and C− can be viewed as ``adjoints'' with 
respect to the bilinear pairing (1.4). Indeed,

〈〈C±f, g〉〉 = 〈〈f,C∓g〉〉 = 〈〈C±f,C∓g〉〉 .

Proof. Since C± is a projection operator, it will suffice to prove the first equality. We 
claim that if g ∈ L2(γ) and T is the almost everywhere defined unit tangent vector for 
γ, then C∗

±(gT ) = C∓(g)T . Indeed, for a.e. z ∈ γ, we have

C∗
±(gT )(z) = g(z)T (z)

2 
± 1 

2πiT (z) P.V.

∫
γ

g(ζ)T (ζ)
ζ − z

dσ(ζ)

=

⎛⎝g(z)
2 

± 1 
2πi P.V.

∫
γ

g(ζ)T (ζ)
ζ − z

dσ(ζ)

⎞⎠T (z)

=

⎛⎝g(z)
2 

∓ 1 
2πi P.V.

∮
γ

g(ζ) 
ζ − z

dζ

⎞⎠T (z) = C∓(g)(z)T (z).

Thus we see that 〈〈C±f, g〉〉 = 〈C±f, gT 〉 = 〈f,C∗
±(gT )〉 = 〈f,C∓(g)T 〉 = 〈〈f,C∓g〉〉. �

Proposition 2.4. The dual space of H2
±(γ) can be identified with H2

∓(γ) via functionals 
ψg : H2

±(γ) → C, g ∈ H2
∓(γ), given by ψg(f) = 〈〈f, g〉〉. Moreover,

‖C±‖−1 ‖g‖ ≤ ‖ψg‖op ≤ ‖g‖ . (2.5)

Proof. Since H2
±(γ) is a Hilbert space, it is self dual in the ordinary inner product. Thus, 

given a bounded linear functional φ : H2
±(γ) → C, there is a unique h ∈ H2

±(γ) so that 
for any f ∈ H2

±(γ),

φ(f) = 〈f, h〉 =
〈〈
f, hT

〉〉
=
〈〈
C±f, hT

〉〉
=
〈〈
f,C∓(hT )

〉〉
.

Now set g = C∓(hT ) ∈ H2
∓(γ), so that φ = ψg = 〈〈·, g〉〉 ∈ H2

±(γ)′.
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Given distinct g1, g2 ∈ H2
∓(γ), we now show the functionals ψg1 �= ψg2 . It will suffice 

to exhibit an f ∈ H2
±(γ) with ψg1(f) �= ψg2(f). Set f = C±

(
(g1 − g2)T

)
, which is clearly 

in H2
±(γ). Then

(ψg1 − ψg2)(f) = 〈〈f, g1 − g2〉〉

=
〈〈

C±
(
(g1 − g2)T

)
, g1 − g2

〉〉
=
〈〈

(g1 − g2)T ,C∓(g1 − g2)
〉〉

=
〈〈

(g1 − g2)T , g1 − g2

〉〉
= ‖g1 − g2‖2

> 0.

We now prove (2.5). The right-hand inequality follows from Cauchy-Schwarz. For the 
left-hand inequality, note that for g ∈ H2

∓(γ)

‖g‖ = sup
{
| 〈〈h, g〉〉 | : h ∈ L2(γ), ‖h‖ = 1

}
= sup

{
| 〈〈h,C∓g〉〉 | : h ∈ L2(γ), ‖h‖ = 1

}
= sup

{
| 〈〈C±h, g〉〉 | : h ∈ L2(γ), ‖h‖ = 1

}
≤ sup

{
| 〈〈f, g〉〉 | : f ∈ H2

±(γ), ‖f‖ ≤ ‖C±‖
}

= ‖C±‖ · sup
{
| 〈〈f, g〉〉 | : f ∈ H2

±(γ), ‖f‖ = 1
}

= ‖C±‖ · ‖ψg‖op . �
Theorem 2.6. Let γ be a simple closed Lipschitz curve in the plane. The norms of the 
Cauchy transforms C± : L2(γ) → H2

±(γ) are given by

1 
‖C+‖

= inf 
g∈H2

+(γ)
g 	=0

{
sup 

f∈H2
−(γ)

f 	=0

| 〈〈f, g〉〉 |
‖f‖ ‖g‖

}
= inf 

g∈H2
−(γ)

g 	=0

{
sup 

f∈H2
+(γ)

f 	=0

| 〈〈f, g〉〉 |
‖f‖ ‖g‖

}
= 1 

‖C−‖
. (2.7)

Proof. Given a nonzero g ∈ H2
∓(γ), the lower bound in (2.5) says

‖C±‖−1 ‖g‖ ≤ ‖ψg‖op = sup
{
| 〈〈f, g〉〉 | : f ∈ H2

±(γ), ‖f‖ = 1
}
.

As this holds for every such g, we obtain

1 
‖C±‖

≤ inf 
g∈H2

∓(γ)
g 	=0

{
sup 

f∈H2
±(γ)

f 	=0

|〈〈f, g〉〉|
‖f‖ ‖g‖

}
. (2.8)

On the other hand, given (a sufficiently small) ε > 0, there exists hε ∈ L2(γ) such that 
‖C±hε‖ = 1 and ‖hε‖ < (‖C±‖ − ε)−1. Now observe that
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sup 
f∈H2

∓(γ)
‖f‖=1

|〈〈C±hε, f〉〉| = sup 
f∈H2

∓(γ)
‖f‖=1

|〈〈hε,C∓f〉〉| = sup 
f∈H2

∓(γ)
‖f‖=1

|〈〈hε, f〉〉| ≤ ‖hε‖ <
1 

‖C±‖ − ε
.

Taking gε = C±hε ∈ H2
±(γ) and letting ε → 0 we obtain

inf 
g∈H2

±(γ)
g 	=0

{
sup 

f∈H2
∓(γ)

f 	=0

|〈〈g, f〉〉|
‖g‖ ‖f‖

}
≤ 1 

‖C±‖
. (2.9)

Now combine all four individual inequalities in (2.8) and (2.9) to obtain

1 
‖C+‖

≤ inf 
g∈H2

−(γ)
g 	=0

{
sup 

f∈H2
+(γ)

f 	=0

|〈〈f, g〉〉|
‖f‖ ‖g‖

}
≤ 1 

‖C−‖

≤ inf 
g∈H2

+(γ)
g 	=0

{
sup 

f∈H2
−(γ)

f 	=0

|〈〈f, g〉〉|
‖f‖ ‖g‖

}
≤ 1 

‖C+‖
,

forcing equality to hold at every step. �
2.3. The Szegő kernel

Several elementary properties are collected here for later use.

Proposition 2.10 ([5], Chapter 7). The Szegő kernel on the unit disc D is

SD(z, ζ) = 1 

2π(1 − zζ)
, z ∈ D, ζ ∈ D. (2.11)

The Szegő kernel admits a biholomorphic transformation law; see [5, Theorem 12.2] 
in the C∞ setting, and [21, Lemma 5.3] for the Lipschitz setting:

Proposition 2.12. Let Φ : Ω1 → Ω2 be a biholomorphism of simply connected domains in 
the Riemann sphere with Lipschitz boundaries. The Szegő kernels are related by formula

S1(z, ζ) =
√

Φ′(z) · S2(Φ(z),Φ(ζ)) ·
√

Φ′(ζ). (2.13)

The Szegő kernel admits a well-known extremal property; see [20, Sections 1.4, 1.5]:

Proposition 2.14. Given a simple closed Lipschitz curve γ in the Riemann sphere and a 
point z ∈ Ω±, the Szegő kernel satisfies

S±(z, z) = sup{|f(z)| : f ∈ H2
±(γ), ‖f‖L2(γ) = 1}. (2.15)
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Remark 2.16. In the setting of Proposition 2.14, the Riemann mapping theorem together 
with formulas (2.11) and (2.13) show that S±(z, z) > 0 for any z ∈ Ω± \ {∞}. On the 
other hand, the condition that functions in the Hardy space must vanish at infinity shows 
that if ∞ ∈ Ω±, then S±(∞,∞) = 0. ♦

The following monotonicity property is known, but a short proof is included since the 
authors had difficulty locating a reference.

Proposition 2.17. Let Ω1 ⊊ Ω2 ⊊ Ĉ be simply connected domains with Lipschitz bound
aries properly contained in the Riemann sphere, and let z ∈ Ω1 \ {∞}. Letting S1, S2

denote the respective Szegő kernels, we have

0 < S2(z, z) < S1(z, z). (2.18)

Proof. Let Φj : Ωj → D denote the Riemann map, j = 1, 2, with Φj(z) = 0 and 
Φ′

j(z) > 0. Using the transformation law in (2.13) and the kernel formula for D in (2.11), 
we see

2πSj(z, z) = Φ′
j(z).

By the proof of the Riemann mapping theorem (see, e.g., [1, Chapter 6]), of all maps 
from Ω1 into the disc D satisfying Φ(z) = 0 and Φ′(z) positive, the Riemann map Φ1 is 
uniquely determined by the property that Φ′(z) is maximal. Since the restriction of Φ2

to Ω1 is also a map with these properties, we conclude that Φ′
2(z) < Φ′

1(z). �
2.4. A lower estimate on the norm of the Cauchy transform

Theorem 2.19. Let γ be a simple closed Lipschitz curve in the plane and z ∈ C. Then

Λ(γ, z) ≤ ‖C±‖ .

Proof. For z ∈ Ω±\{∞}, define hz ∈ H2
∓(γ) by hz(ζ) = (2πi(ζ − z))−1. By Cauchy’s 

integral formula we have

〈〈f, hz〉〉 = 1 
2πi

∮
γ

f(ζ) 
ζ − z

dζ = f(z), f ∈ H2
±(γ).

Now apply the Cauchy norm characterization in (2.7) with g = hz to obtain

1 
‖C±‖

≤ sup 
f∈H2

±(γ)

| 〈〈f, hz〉〉 |
‖f‖ ‖hz‖

= 1 
‖C(z, ·)‖ sup 

f∈H2
±(γ)

|f(z)|
‖f‖ =

√
S±(z, z)

‖C(z, ·)‖ = 1 
Λ(γ, z) ,
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where we used the extremal property of (2.15). This estimate holds for all z ∈ C \ γ. 
Since Λ(γ, ·) ≡ 1 for z ∈ γ, the result follows for these z from the fact that C± is a 
projection onto H2

±(γ) and thus ‖C±‖ ≥ 1. �
3. Invariance and rigidity properties

3.1. Analytic capacity and behavior at infinity

Let γ be a simple closed Lipschitz curve in the plane oriented counterclockwise. If g is 
holomorphic on the exterior domain Ω−, it admits a Laurent expansion in a neighborhood 
of ∞:

g(z) = a0 + a1z
−1 + a2z

−2 + · · ·

The coefficient a1 is important to what comes below; it can be obtained by calculating 
the derivative of g at infinity with respect to the local coordinate 1 

z . Define

D(g,∞) := lim 
z→∞

z(g(z) − g(∞)) = a1. (3.1)

(In the literature, D(g,∞) is often denoted by g′(∞), but the authors find this notation 
misleading since limz→∞ g′(z) �= D(g,∞) unless a1 = 0.)

Let A∞(Ω−) be the space of bounded holomorphic functions on Ω−, with norm given 
by ‖g‖∞ := sup{|g(z)| : z ∈ Ω−}. Define the analytic capacity of the curve γ to be

κ(γ) := sup{|D(g,∞)| : g ∈ A∞(Ω−), g(∞) = 0, ‖g‖∞ ≤ 1}. (3.2)

This notion helps formulate generalizations of Riemann’s removable singularity theorem 
by measuring how large bounded holomorphic functions on Ω− can become; see [16,27].

Theorem 3.3. Let γ be a simple closed Lipschitz curve in the plane. Then

lim 
z→∞

Λ−(γ, z) =

√
σ(γ) 

2πκ(γ) , (3.4)

where σ(γ) and κ(γ) denote the arc length and analytic capacity of γ, respectively. Thus 
Λ(γ, ·) is continuous at ∞ (by definition).

Proof. Set E := {z ∈ C : z−1 ∈ Ω−}, which is a bounded domain containing the origin.
Define a holomorphic and univalent function G : E → D with the following properties: 

(i) ‖G‖∞ ≤ 1; (ii) G(0) = 0; (iii) G′(0) is positive and maximal, i.e., given another map 
H : E → D satisfying (i) and (ii) with H ′(0) positive, then necessarily G′(0) > H ′(0). 
Such a G always exists and is the Riemann map (see [1, Section 6.1]) from E to D
satisfying G(0) = 0 with G′(0) > 0. Now write G as a Taylor expansion about 0:
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G(z) = a1z + a2z
2 + · · ·

Now define a biholomorphic map g : Ω− → D by g(z) = G( 1 
z ). Clearly (i′)

‖g‖∞ ≤ 1; and (ii′) g(∞) = 0. We claim the positive number D(g,∞) defined by 
(3.1) is maximal out of all functions in A∞(Ω−) satisfying (i′) and (ii′). If D(g,∞)
weren’t maximal, there would exist an h ∈ A∞(Ω−) with D(h,∞) > D(g,∞) = a1. 
But then the function H(z) := h( 1 

z ) would satisfy (i) and (ii) from the previous para
graph, and H ′(0) > a1 = G′(0), contradicting the maximality of G′(0). Therefore, 
κ(γ) = D(g,∞) = limz→∞ zg(z) = a1 = G′(0).

Now use Proposition 2.12 and (2.11) to write the Szegő kernel of Ω−:

S−(z, z) = |g′(z)|SD(g(z), g(z)) = 1 
2π · |g′(z)| 

1 − |g(z)|2 .

Thus,

Λ−(γ, z)2 =
‖C(z, ·)‖2

L2(γ)

S−(z, z) =

⎛⎝|z|2
∫
γ

|C(z, ζ)|2 dσ(ζ)

⎞⎠( 1 
2π · |z|2|g′(z)| 

1 − |g(z)|2
)−1

,

where the term |z|2 has been inserted in both the numerator and denominator. Now,

lim 
z→∞

|z|2
∫
γ

|C(z, ζ)|2 dσ(ζ) = lim 
z→∞

1 
4π2

∫
γ

dσ(ζ) 
| ζz − 1|2

= σ(γ)
4π2 . (3.5)

On the other hand,

lim 
z→∞

1 
2π · |z|2|g′(z)| 

1 − |g(z)|2 = 1 
2π lim 

z→∞
|z2g′(z)| 

1 − |g(z)|2 = a1

2π = κ(γ)
2π . (3.6)

Dividing (3.5) by (3.6) gives the result. �
Remark 3.7. In [8, Theorem 1] Bolt carries out a similar computation, obtaining a lower 
bound of the norm of the Kerzman-Stein operator. ♦

3.2. Möbius invariance

Recall that the holomorphic automorphisms of the Riemann sphere are precisely the 
Möbius transformations

Φ(z) = az + b

cz + d 
, (3.8)

where a, b, c, d ∈ C with ad − bc �= 0. The Cauchy kernel and transform admit trans
formation laws under these maps. See [7, Theorem 3] for an analogous result in Cn (or 
more accurately CPn) on the projective invariance of the Leray kernel.
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Theorem 3.9. Let γ1 be a simple closed Lipschitz curve in the complex plane oriented 
counterclockwise and let Φ be a Möbius transformation whose pole lies off of γ1. Define 
the curve γ2 = Φ(γ1) with orientation induced from the orientation of γ1 by Φ; thus γ2
will be oriented counterclockwise if and only if the pole of Φ lies in Ω−. Let C1

± and C2
±

denote the Cauchy transforms of γ1 and γ2, respectively. Then

C1
±

(√
Φ′ · (f ◦ Φ)

)
=

√
Φ′ ·

(
(C2

±f) ◦ Φ
)
, f ∈ L2(γ2). (3.10)

Proof. Differentiate (3.8) and observe that Φ′ is the square of a meromorphic function 
defined on the Riemann sphere. Now choose a value of 

√
ad− bc and then set

√
Φ′(ζ) =

√
ad− bc

cζ + d 
. (3.11)

Observe that the map f �→
√

Φ′ · (f ◦ Φ) is a linear isomorphism from L2(γ2) to 
L2(γ1). Now let f ∈ L2(γ2), ζ ∈ γ1 and ξ = Φ(ζ) ∈ γ2. If z ∈ Ω1

±, then the image point 
Φ(z) ∈ Φ(Ω1

±) = Ω2
± and

(C2
±f) ◦ Φ(z) = 1 

2πi

∮
γ2

f(ξ) 
ξ − Φ(z) dξ = 1 

2πi

∮
γ1

f(Φ(ζ)) 
Φ(ζ) − Φ(z) · Φ′(ζ) dζ (3.12)

= 1 
2πi

∮
γ1

f(Φ(ζ)) 
aζ+b
cζ+d −

az+b
cz+d 

· ad− bc 
(cζ + d)2 dζ. (3.13)

Rearranging,

(3.13) = 1 
2πi

∮
γ1

(cz + d)(cζ + d)(ad− bc) 
(ad− bc)(ζ − z)(cζ + d)2 f(Φ(ζ)) dζ

= 1 
2πi

cz + d √
ad− bc

∮
γ1

√
ad− bc

(cζ + d) 
f(Φ(ζ))
(ζ − z) dζ

= 1 

2πi
√

Φ′(z)

∮
γ1

√
Φ′(ζ)f(Φ(ζ))

ζ − z 
dζ = 1 √

Φ′(z)
C1

±

(√
Φ′(f ◦ Φ)

)
(z), (3.14)

giving the result when z ∈ Ω±.
The argument when z ∈ γ1 follows the same lines except that the integrals must 

be interpreted in the principal value sense. For ε > 0 let γ1,ε := γ1 \ D(z, ε), i.e., the 
original curve with all points within ε of z removed. Now start from the integral in (3.14)
evaluated over the truncated curve γ1,ε, and work backwards to (3.12):

1 
2πi P.V.

∮
γ1

√
Φ′(ζ)f(Φ(ζ))

ζ − z 
dζ = lim 

ε→0

1 
2πi

∮
γ1,ε

√
Φ′(ζ)f(Φ(ζ))

ζ − z 
dζ (3.15)
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= lim 
ε→0

√
Φ′(z)
2πi 

∮
Φ(γ1,ε)

f(ξ) 
ξ − Φ(z) dξ. (3.16)

We claim that the integral in (3.16) is also a principal value integral in the ordinary 
sense. Indeed, the two endpoints of the truncated curve Φ(γ1,ε) approach the point Φ(z)
at the same rate as ε → 0 as a consequence of the fact that the image of the disc D(z, ε)
under Φ tends asymptotically to the disc D(Φ(z), |Φ′(z)|ε) as ε → 0. This means that 
by setting γ2,δ := γ2 \D(Φ(z), δ) with δ := |Φ′(z)|ε,

(3.16) = lim 
ε→0

√
Φ′(z)
2πi 

∮
Φ(γ1,ε)

f(ξ) 
ξ − Φ(z) dξ = lim 

δ→0

√
Φ′(z)
2πi 

∮
γ2,δ

f(ξ) 
ξ − Φ(z) dξ

=
√

Φ′(z)
2πi P.V.

∮
γ2

f(ξ) 
ξ − Φ(z) dξ. (3.17)

Thus, the string of equalities from (3.15) to (3.17) shows

C1
±

(√
Φ′ · (f ◦ Φ)

)
(z) =

√
Φ′(z) · f(Φ(z))

2 
± 1 

2πi P.V.

∮
γ1

√
Φ′(ζ)f(Φ(ζ))

ζ − z 
dζ

=
√

Φ′(z) · f(Φ(z))
2 

±
√

Φ′(z)
2πi P.V.

∮
γ2

f(ξ) 
ξ − Φ(z) dξ

=
√

Φ′(z) ·
(
(C2

±f) ◦ Φ
)
(z). �

Theorem 3.18. Suppose γ1 is simple closed Lipschitz curve in the plane oriented coun
terclockwise and that Φ is a Möbius transformation whose pole lies off of γ1. Define the 
curve γ2 = Φ(γ1) (oriented as in Theorem 3.9) and let C1

±(z, ζ) and C2
±(z, ζ) denote the 

Cauchy kernels of γ1 and γ2, respectively. Then

C1
±(z, ζ) =

√
Φ′(z) · C2

±(Φ(z),Φ(ζ)) ·
√

Φ′(ζ). (3.19)

Proof. Since both curves are Lipschitz, tangent vectors exist almost everywhere. If ζ(t)
parameterizes γ1, then Φ(ζ(t)) parameterizes γ2. The unit tangent to γ1 can be written 
as T1(ζ(t)) = ζ ′(t)/|ζ ′(t)|, and so the unit tangent to γ2 can be written

T2(Φ(ζ(t))) = Φ′(ζ(t)) · ζ ′(t) 
|Φ′(ζ(t)) · ζ ′(t)| = Φ′(ζ(t)) 

|Φ′(ζ(t))|T1(ζ(t)).

Going forward, we omit reference to the parameter t.
Assume Φ takes the form (3.8), with ad−bc �= 0, and choose a value of 

√
ad− bc as in 

(3.11) to obtain a meromorphic square root of Φ defined on all of the Riemann sphere. 
From the definition of the Cauchy kernel in (1.2b), we have



18 D.E. Barrett, L.D. Edholm / Journal of Functional Analysis 289 (2025) 110980 

√
Φ′(z) · C2

±(Φ(z),Φ(ζ)) ·
√

Φ′(ζ) = ±
√

Φ′(z) · T2(Φ(ζ)) 
Φ(ζ) − Φ(z) ·

√
Φ′(ζ)

= ±
√

Φ′(z)
√

Φ′(ζ)
Φ(ζ) − Φ(z) T1(ζ). (3.20)

A simple computation now shows√
Φ′(z)

√
Φ′(ζ)

Φ(ζ) − Φ(z) = (ad− bc) 
(cζ + d)(cz + d)

(
aζ + b

cζ + d 
− az + b

cz + d 

)−1

= 1 
ζ − z

. � (3.21)

We now prove that Λ(γ, z) is Möbius invariant. This in particular shows that Λ(γ, z) is 
well-defined when γ is an unbounded Lipschitz curve (recall the discussion of extending 
Λ to unbounded curves following Theorem 1.8).

Theorem 3.22. Suppose γ is a simple closed Lipschitz curve in the plane and Φ is a 
Möbius transformation whose pole lies off of γ. Then for z in the Riemann sphere,

Λ(γ, z) = Λ(Φ(γ),Φ(z)).

Proof. Under the assumption on Φ, observe that the image curve Φ(γ) is also a simple 
closed Lipschitz curve in the plane. Now write γ1 := γ and γ2 := Φ(γ1).

If z ∈ γ1, then Φ(z) ∈ γ2, so by definition Λ(γ1, z) = 1 = Λ(γ2,Φ(z)).
Let Ωj

± be the domains bounded by γj and suppose z ∈ Ω1
±. By Theorem 3.18,

∥∥C1
±(z, ·)

∥∥2
L2(γ1)

= |Φ′(z)|
∫
γ1

|C2
±(Φ(z),Φ(ζ))|2|Φ′(ζ)| dσ(ζ)

= |Φ′(z)|
∫
γ2

|C2
±(Φ(z), ξ)|2 dσ(ξ) = |Φ′(z)| ·

∥∥C2
±(Φ(z), ·)

∥∥2
L2(γ2)

.

(3.23)

Now denote the Szegő kernel of H2
±(γj) by Sj

±. Since Φ is a biholomorphism from 
Ω1

± to Ω2
±, Proposition 2.12 shows S1

±(z, z) = |Φ′(z)| · S2
±(Φ(z),Φ(z)). This with (3.23)

shows

Λ±(γ1, z) =
‖C1(z, ·)‖2

L2(γ1)

S1
±(z, z) =

|Φ′(z)| · ‖C2(Φ(z), ·)‖2
L2(γ2)

|Φ′(z)| · S2
±(Φ(z),Φ(z)) = Λ±(γ2,Φ(z)).

The ratio above needs slightly more care in two cases: (i) when z = ∞, meaning 
that Φ′(z) = 0, and (ii) when Φ(z) = ∞, implying that Φ′(z) = ∞. In either case, the 
indeterminate ratio is only problematic at this specific z; in a punctured neighborhood 
of z, the ratio is valid. The result now follows by working nearby and then taking limits, 
in which case we invoke Theorem 3.3 on the continuity of Λ(γ, z) as z → ∞. �
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3.3. Circles and rigidity

Circles are shown to be the unique class of extremal curves which globally minimize 
Λ. This leads to interesting rigidity results, including a strengthened version of a famous 
observation made by Kerzman and Stein; see Section 3.4.

Proposition 3.24. If γ is a circle (or a line, including the point at ∞), then Λ(γ, ·) ≡ 1.

Proof. First let γ = bD be the unit circle. Then (1.7) and (2.11) show

Λ(bD, 0)2 = 1 
4π2SD(0, 0)

∫
γ

dσ(ζ)
|ζ|2 = 1 

2π · 2π = 1.

Given z ∈ C\bD, consider the Möbius transformation ϕz(w) = z−w 
1−zw . If |z| < 1 then ϕz is 

an automorphism of D and if |z| > 1 then ϕz is a biholomorphic map from D onto Ĉ\D. 
In either case ϕz(0) = z. Theorem 3.22 now shows 1 = Λ(bD, 0) = Λ(ϕz(bD), ϕz(0)) =
Λ(bD, z). For z = ∞, use the map φ∞(w) = w−1 and repeat the argument above to see 
Λ(bD,∞) = 1.

Now let γ ⊂ Ĉ be any circle and z ∈ Ω±. Then there is a Möbius transformation 
taking γ to bD; see [1, Section 3.3]. Theorem 3.22 implies Λ(γ, z) = Λ(bD,Φ(z)) = 1. 
Since z was chosen arbitrarily, we conclude Λ(γ, ·) ≡ 1. �
Theorem 3.25. Let γ be a simple closed Lipschitz curve in the Riemann sphere.

(1) Λ(γ, z) ≥ 1, for all z ∈ Ω±.
(2) If there is a single z ∈ Ω± such that Λ(γ, z) = 1, then Λ(γ, ·) ≡ 1 and γ is a circle 

(or a line, including the point at ∞).

Proof. First suppose that γ is a planar curve enclosing the bounded domain Ω+. We may 
assume that z ∈ Ω+, thanks to the Möbius invariance of Λ established in Theorem 3.22.

Consider the Riemann map g : D → Ω+ with g(0) = z and g′(0) > 0. Proposition 2.12
and (2.11) show

1 
2π = SD(0, 0) =

√
g′(0)S+(g(0), g(0))

√
g′(0) = g′(0) S+(z, z). (3.26)

Now let Φz(w) = 1 
w−z and define the (unbounded) domain E = {Φz(w) : w ∈ Ω+}, 

along with the map h = Φz ◦ g : D → E. The Riesz-Privalov theorem [26, Section 6.3] 
says that g′ is contained in the Hardy space H1(bD), so in particular, it is integrable on 
the circle. The norm of the Cauchy kernel is thus

‖C(z, ·)‖2
L2(γ) = 1 

4π2

∫
γ

dσ(ζ) 
|ζ − z|2 = 1 

4π2

∫
bD 

|g′(ζ)| 
|g(ζ) − z|2 dσ(ζ) = 1 

4π2

∫
bD 

|h′(ζ)| dσ(ζ).
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Now combine this with (3.26):

Λ(γ, z)2 =
‖C(z, ·)‖2

L2(γ)

S+(z, z) = g′(0)
2π 

∫
bD 

|h′(ζ)| dσ(ζ). (3.27)

The conditions on g show that

1 
h(ζ) = g(ζ) − z = g′(0)ζ + g′′(0)

2 
ζ2 + · · · = g′(0)ζ · F1(ζ),

where F1 is a non-vanishing holomorphic function on D with F1(0) = 1. Thus,

h(ζ) = 1 
g′(0)ζ · F1(ζ)

= 1 
g′(0)ζ + F2(ζ),

where F2 is holomorphic on the unit disc. Consequently,

ζh′(ζ) = − 1 
g′(0)ζ + ζF ′

2(ζ). (3.28)

The residue theorem now shows

1 = −Re

⎛⎝g′(0)
2πi 

∮
bD 

ζh′(ζ) dζ

⎞⎠ = −Re

⎛⎝g′(0)
2π 

2π ∫
0 

e2iθh′(eiθ) dθ

⎞⎠
≤ g′(0)

2π 

2π ∫
0 

|h′(eiθ)| dθ = g′(0)
2π 

∫
bD 

|h′(ζ)| dσ(ζ) = Λ(γ, z)2.

From these computations, Λ(γ, z) = 1 if and only if e2iθh′(eiθ) ≤ 0 for all θ ∈ [0, 2π], 
which happens if and only if φ(ζ) := ζ2h′(ζ) ≤ 0 for all ζ ∈ bD. Equation (3.28) shows φ
extends holomorphically to the origin, with φ(0) = −g′(0)−1. Since φ is real-valued on bD
the Schwarz Reflection Principle applies, yielding a bounded holomorphic extension of φ
to the entire complex plane, which means that φ is necessarily constant (φ ≡ −g′(0)−1).

Thus h′(ζ) = −g′(0)−1ζ−2, meaning that h(ζ) = g′(0)−1ζ−1 +C for some constant C. 
This shows that g(ζ) = z + h(ζ)−1 is a Möbius transformation and therefore γ = g(bD)
is a circle. Proposition 3.24 now shows that Λ(γ, ·) ≡ 1.

Now if γ is a curve passing through ∞ ∈ Ĉ, use a Möbius transformation to send it 
to a bounded planar curve. Theorem 3.22 shows that this is well defined and the result 
now follows from the previous case. �
3.4. A strengthened rigidity result

Using a clever geometric description of their eponymous operator, Kerzman and Stein 
proved the following:
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Proposition 3.29 ([18], Lemma 7.1). Let Ω be a bounded simply connected planar domain 
with smooth boundary. The Cauchy and Szegő kernels coincide if and only if Ω is a disc.

In other words, C(z, ζ) = S(z, ζ) for all z ∈ Ω, ζ ∈ bΩ if and only if Ω is a disc.
Theorem 3.25 implies a much stronger rigidity theorem:

Corollary 3.30. Let Ω be a bounded simply connected planar domain with Lipschitz bound
ary. If there exists a single z ∈ Ω such that the Cauchy and Szegő kernels satisfy

|C(z, ζ)| ≤ |S(z, ζ)|

for almost every ζ ∈ bΩ, then Ω is a disc (so actually C(z, ζ) = S(z, ζ) for all z ∈ Ω, ζ ∈
Ω).

Proof. Suppose there exists a z ∈ Ω so that |C(z, ζ)| ≤ |S(z, ζ)| for almost every ζ ∈ bΩ. 
Then ∫

bΩ 

|C(z, ζ)|2 dσ(ζ) ≤
∫
bΩ 

|S(z, ζ)|2 dσ(ζ) =⇒ Λ(bΩ, z) ≤ 1.

But Theorem 3.25 says that Λ(bΩ, z) ≥ 1, so in fact Λ(bΩ, z) = 1. Now invoke Theo
rem 3.25 again to see that Λ(bΩ, ·) ≡ 1 and that Ω is a disc, which means the Cauchy 
and Szegő kernels coincide, i.e., C(z, ζ) = S(z, ζ) for all z ∈ Ω, ζ ∈ Ω. �
3.5. Capacity and arc length

Corollary 3.31. Let γ be a simple closed Lipschitz curve in the plane. Then its analytic 
capacity κ(γ) and arc length σ(γ) satisfy the following inequality:

2πκ(γ) ≤ σ(γ). (3.32)

Equality holds if and only if γ is a circle.

Proof 1. The following argument was pointed out to the authors by Dmitry Khavinson. 
Let f ∈ A∞(Ω−), f(∞) = 0, and ‖f‖∞ ≤ 1. By the Cauchy integral formula,

−2πi zf(z) =
∮
γ

zf(ζ)
ζ − z 

dζ =
∮
γ

f(ζ) 
ζ
z − 1

dζ, z ∈ Ω−.

Taking absolute values, using the triangle inequality and sending z → ∞, we see that 
2πD(f,∞) ≤ σ(γ). Taking the supremum over all such f gives the result. �
Remark 3.33. See also [16, Theorem II.3.1].
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Proof 2. Combining Theorems 3.3 and 3.25, we see that Λ(γ,∞) =
√

σ(γ) 
2πκ(γ) ≥ 1, and 

that equality holds if and only if γ is a circle. �
Remark 3.34. An estimate due to Ahlfors and Beurling gives a lower bound on the 
analytic capacity of a simple closed curve in terms of area enclosed (see, e.g., [27, Chapter 
5.3]): Let γ be a simple closed planar curve enclosing an area of A(γ). Then

κ(γ) ≥
√

A(γ)/π, (3.35)

with equality holding if and only if γ is a circle. Combining (3.32) with (3.35) yields the 
isoperimetric inequality σ(γ)2 ≥ 4πA(γ). See [15] for another proof of the isoperimetric 
inequality stemming from the Ahlfors-Beurling estimate. ♦

4. The behavior of Λ(γ, z) at the boundary

Our goal here is to prove the following result, which confirms part 2 of Theorem 1.8.

Theorem 4.1. Let γ be a simple closed C1 curve in the Riemann sphere. Then the function 
z �→ Λ(γ, z) is continuous on all of Ĉ. In particular, if ζ0 ∈ γ, then limz→ζ0 Λ(γ, z) = 1.

4.1. Important kernel properties

Let X ⊂ Ĉ be a set and consider f, g : X → [0,∞). We say f and g are comparable 
on X and write f(z) ≈ g(z), z ∈ X, if there exist constants C1, C2 > 0 such that for all 
z ∈ X, C1f(z) ≤ g(z) ≤ C2f(z).

Proposition 4.2. Let γ be a simple closed Lipschitz curve in the complex plane and let 
δ(z) denote the distance of z to γ. Then there exists � > 0 such that

S+(z, z) ≈ δ(z)−1, z ∈ Ω+,

S−(z, z) ≈ δ(z)−1, z ∈ Ω− ∩ {z : δ(z) < �}.

Proof. Let D(z, δ) be the disc centered at z of radius δ(z) = δ. The Szegő kernel of this 
disc is calculated using the unit disc formula (2.11) and an appropriate a˙ine map in the 
transformation law (2.13). From Szegő kernel monotonicity in Proposition 2.17 we now 
obtain

S±(z, z) ≤ SD(z,δ)(z, z) = 1 
2πδ(z) . (4.3)

For the other direction, consider first a point z ∈ Ω+ and the Riemann map Φ : Ω+ →
D with Φ(z) = 0, Φ′(z) > 0. Using (2.11) and (2.13) again we have S+(z, z) = Φ′(z)

2π . 
Applying the (rescaled) Koebe one-quarter theorem [27, Theorem 5.3.3] to Φ−1 we obtain
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δ(z) ≥ 1
4
(
Φ−1)′ (0) = 1 

4 Φ′(z) ,

and so

S+(z, z) = Φ′(z)
2π ≥ 1 

8πδ(z) . (4.4)

Combining (4.3) with (4.4) we have S+(z, z) ≈ δ(z)−1, z ∈ Ω+.
To treat z ∈ Ω− close to γ, pick z0 ∈ Ω+ and � > 0 so that the map η(z) := 1 

z−z0

satisfies

• η is a bi-Lipschitz map from U� := {z ∈ Ω− : δ(z) < �} to η (U�).
• |η′(z)| ≈ 1 on U�.

Setting δ̃(w) to be the distance from w to η(γ) we have from our work above (with η(Ω−)
replacing Ω+) along with transformation law (2.13) that

S−(z, z) ≈ Sη(Ω−)(η(z), η(z))

≈ δ̃(η(z))−1

≈ δ(z)−1

for z ∈ U�, completing the proof of the proposition. �
Proposition 4.5. Let T 1,T 2 be bounded projection operators from L2(γ) onto H2

±(γ), 
each represented by an integral kernel Kj : Ω± × γ → C, such that for f ∈ L2(γ) and 
z ∈ Ω±,

T jf(z) =
∫
γ

f(ζ)Kj(z, ζ) dσ(ζ).

Additionally, assume Kj(z, ·) ∈ L2(γ) for z ∈ Ω±. Then the following holds for a.e. 
ζ ∈ γ:

T ∗
2

(
K1(z, ·)

)
(ζ) = K2(z, ζ). (4.6)

Proof. Since T 2 is bounded on L2(γ), there is a corresponding bounded adjoint T ∗
2. By 

assumption, K1(z, ·) ∈ L2(γ) and so T ∗
2

(
K1(z, ·)

)
∈ L2(γ). Thus for f ∈ L2(γ),

〈
f,T ∗

2

(
K1(z, ·)

)〉
=
〈
T 2(f),K1(z, ·)

〉
= T 1 ◦ T 2f(z) = T 2f(z), (4.7)

since T 2f ∈ H2
±(γ) and T 1 is a projection onto H2

±(γ). On the other hand,
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〈
f,K2(z, ·)

〉
= T 2f(z), (4.8)

by definition. Equating (4.7) and (4.8) we see that T ∗
2

(
K1(z, ·)

)
− K2(z, ·) ∈ L2(γ) is 

orthogonal to all of L2(γ), and is therefore almost everywhere zero. �
Corollary 4.9. The Cauchy and Szegő kernels of H2

±(γ) are related as follows:

C∗
± (S±(·, z)) (ζ) = C±(z, ζ), z ∈ Ω±, ζ ∈ γ, (4.10a)

S±
(
C±(z, ·)

)
(ζ) = S±(ζ, z), z ∈ Ω±, ζ ∈ γ. (4.10b)

Proof. Apply Proposition 4.5 with T 1 = S± and T 2 = C± for (4.10a). Switch the 
roles of the operators and use the self-adjointness of the Szegő projection to deduce 
(4.10b). �
4.2. Berezin transforms

Let γ be a simple closed Lipschitz curve in the plane oriented counterclockwise. Given 
z ∈ Ω± \ {∞}, define the unit vector s±z ∈ H2

±(γ) ⊂ L2(γ) by normalizing the Szegő 
kernel as follows:

s±z (ζ) := S±(ζ, z) √
S±(z, z)

. (4.11)

Lemma 4.12. Let γ be a simple closed Lipschitz curve in the plane and z ∈ C\{γ}. The 
unit vectors s±z ∈ H2

±(γ) tend weakly to 0 as z approaches γ.

Proof. If f ∈ L2(γ) is perpendicular to H2
±(γ), observe that

〈f, s±z 〉 = S±(z, z)−1/2S±f(z) = 0.

It is therefore sufficient to test only against functions f in the Hardy space.
If f ∈ H2

±(γ) and z ∈ Ω±\{∞}, the Szegő reproducing property gives

〈f, s±z 〉 = S±(z, z)−1/2f(z). (4.13)

By Remark 2.2 the subspace Aα(Ω±) = O(Ω±)∩Cα(Ω±) is dense in H2
±(γ), so we may 

choose a sequence of functions {fn} ⊂ Aα(Ω±) tending to f in the L2(γ)-norm. Then

|f(z) − fn(z)| =

∣∣∣∣∣∣
∫
γ

S±(z, ζ)(f(ζ) − fn(ζ)) dσ(ζ)

∣∣∣∣∣∣ ≤ S±(z, z)1/2 ‖f − fn‖ ,

which implies |S±(z, z)−1/2f(z) − S±(z, z)−1/2fn(z)| ≤ ‖f − fn‖. Thus,
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|S±(z, z)−1/2f(z)| ≤ |S±(z, z)−1/2f(z) − S±(z, z)−1/2fn(z)| + |S±(z, z)−1/2fn(z)|
≤ ‖f − fn‖ + S±(z, z)−1/2|fn(z)|.

Now given ε > 0, we may choose N large enough so that ‖f − fN‖ < ε 
2 . Since fN ∈

Cα(Ω±), |fN | assumes a maximum value on the closure. And since S±(z, z) ≈ δ(z)−1

(Proposition 4.2), z can be taken sufficiently close to γ to ensure that

S±(z, z)−1/2|fN (z)| ≤ S±(z, z)−1/2 sup |fN | < ε 
2 .

Now combining the above inequalities with (4.13), we have

|〈f, s±z 〉| = |S±(z, z)−1/2f(z)| < ε

for z sufficiently close to γ. Since ε was arbitrary, we conclude that s±z tends weakly to 
0 as z is sent to γ. �

Suppose T is a bounded operator on L2(γ). We define its Berezin transform to be the 
function T̃ : Ω±\{∞} → C given by the formula

T̃ (z) :=
〈
T s±z , s

±
z

〉
, z ∈ Ω±\{∞}. (4.14)

The Berezin transform is important in the study of Toeplitz and Hankel operators 
in Bergman and Hardy space settings. There is an extensive body of literature on this 
topic; see, e.g., the survey [33] and the references therein.

Lemma 4.15. Let γ be a simple closed Lipschitz curve and T a compact operator on 
L2(γ). Then the Berezin transform T̃ (z) tends to 0 as z is sent to γ.

Proof. Since compact operators are completely continuous and s±z tends weakly to 0 as 
z is sent to γ, we have that ‖T s±z ‖ → 0. Now observe that∣∣T̃ (z)

∣∣ = |〈T s±z , s
±
z 〉| ≤

∥∥T s±z
∥∥∥∥s±z ∥∥ ≤

∥∥T s±z
∥∥ ,

which completes the proof. �
Now suppose that T 1 and T 2 are bounded operators on L2(γ). We define a function 

B(γ,T 1,T 2) : C\{γ} → C by the formula

B(γ,T 1,T 2)(z) :=
{〈

T 1s
+
z , s

+
z

〉
, z ∈ Ω+,〈

T 2s
−
z , s

−
z

〉
, z ∈ Ω−\{∞}.

(4.16)

We refer to B(γ,T 1,T 2) as a concatenated Berezin transform. This allows the con
sideration of two different operators on Ω+ and Ω− simultaneously.



26 D.E. Barrett, L.D. Edholm / Journal of Functional Analysis 289 (2025) 110980 

4.3. Kerzman-Stein operators

Define the Kerzman-Stein operator

A± := C± −C∗
±. (4.17)

Kerzman and Stein [18] showed that the singularities of the Cauchy kernel and its ad
joint cancel out as long as the associated curve is smooth. Lanzani [21] improved the 
applicability of this result to C1 curves.

Proposition 4.18. Let γ be a C1 curve in the complex plane. Then A± is a compact 
operator on L2(γ).

Proof. See [18] for the original proof for C∞ domains and Lanzani’s work [21] for the 
proof on C1 curves. Also see Bell’s book [5] for a different perspective on the C∞ set
ting. �
Proposition 4.19. Let γ be a simple closed Lipschitz curve in the complex plane. The 
following computations hold for z ∈ C\{γ}:

B(γ,A+,A−)(z) ≡ 0, (4.20a)

B(γ,A2
+,A

2
−)(z) = 1 − Λ(γ, z)2, (4.20b)

where A2
± = A± ◦A±.

Proof. Let z ∈ Ω±\{∞}. For (4.20a), we need only note that C± fixes sz. Thus,

B(γ,A+,A−)(z) = 〈A±s
±
z , s

±
z 〉 = 〈(C± −C∗

±)s±z , s±z 〉
= 〈C±s

±
z , s

±
z 〉 − 〈s±z ,C±s

±
z 〉 = 〈s±z , s±z 〉 − 〈s±z , s±z 〉 = 0.

For (4.20b), we have that since both C± and C∗
± are projections

B(γ,A2
+,A

2
−)(z) = 〈(C± −C∗

±)2s±z , s±z 〉
= 〈(C2

± −C∗
±C± −C±C

∗
± + (C∗

±)2)s±z , s±z 〉
= 〈C±s

±
z , s

±
z 〉 − 〈C∗

±C±s
±
z , s

±
z 〉 − 〈C±C

∗
±s

±
z , s

±
z 〉 + 〈C∗

±s
±
z , s

±
z 〉

= 〈s±z , s±z 〉 − 〈C±s
±
z ,C±s

±
z 〉 − 〈C±C

∗
±s

±
z , s

±
z 〉 + 〈s±z ,C±s

±
z 〉

= 1 −
∥∥C∗

±s
±
z

∥∥2
. (4.21)

But notice that∥∥C∗
±s

±
z

∥∥2 = 1 
S±(z, z)

∥∥C∗
±
(
S±(·, z)

)∥∥2 = 1 
S±(z, z)

∥∥∥C±(z, ·)
∥∥∥2

= Λ±(γ, z)2, (4.22)
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where the second equality follows from (4.10a) and the last equality is by definition. 
Combining (4.21) and (4.22) gives the result. �
Proof of Theorem 4.1. First assume that γ is a simple closed C1 curve in the plane. It 
is clear from the definition that z �→ Λ(γ, z) is continuous on C\{γ}, while continuity at 
∞ has already been verified in Theorem 3.3. It thus remains to check what happens near 
the curve (by definition, Λ(γ, ζ0) = 1 for ζ0 ∈ γ). Proposition 4.18 says A± is compact, 
so A2

± is also compact. Lemma 4.15 thus implies that

B(γ,A2
+,A

2
−)(z) = 〈A2

±s
±
z , s

±
z 〉 → 0

as z ∈ Ω± tends to any ζ0 ∈ γ. But by Proposition 4.19, this is equivalent to saying 
Λ±(γ, z)2 → 1 as z ∈ Ω± tends to ζ0 ∈ γ. Since Λ±(γ, z) is positive, we conclude that 
limz→ζ0 Λ(γ, z) = 1 = Λ(γ, ζ0).

If γ is a C1 curve in the Riemann sphere passing through the point at infinity, then we 
use a Möbius transformation Φ to map it to a bounded C1 curve Φ(γ). Möbius invariance 
combined with the above argument now completes the proof. �
5. Examples

5.1. Wedges

Given θ ∈ (0, π), define two complementary wedges

Wθ = {reiϕ ∈ C : r > 0, |ϕ| < θ}, (5.1a)

Vθ = {reiϕ ∈ C : r > 0, θ < ϕ < 2π − θ}. (5.1b)

It suffices to consider θ ∈ (0, π
2 ), so that Wθ is a convex set and Vθ is non-convex. Let 

γθ parameterize the boundary bWθ:

γθ(t) =

⎧⎪⎪⎨⎪⎪⎩
−teiθ, t ∈ (−∞, 0),

te−iθ, t ∈ [0,∞),

∞, t = ∞.

(5.1c)

We now have a partition of the Riemann sphere Ĉ = Wθ ∪ Vθ ∪ γθ. In the notation of 
previous sections, we have Wθ = Ω+ and Vθ = Ω−. Thus we write

Λ+(γθ, reiϕ) = 1 
4π2SWθ

(reiϕ, reiϕ)

∫
γθ

dσ(ζ) 
|ζ − reiϕ|2 , r > 0, ϕ ∈ (−θ, θ), (5.2a)

Λ−(γθ, reiϕ) = 1 
4π2SVθ

(reiϕ, reiϕ)

∫
γθ

dσ(ζ) 
|ζ − reiϕ|2 , r > 0, ϕ ∈ (θ, 2π − θ). (5.2b)
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5.1.1. Szegő kernels
The Szegő kernels of Wθ and Vθ, can be computed from their Riemann maps. For α ∈

(0, π), let Wα be the (possibly non-convex) wedge given by (5.1a). It is straightforward 
to verify that the Riemann map Ψα : Wα → D takes the form

Ψα(z) = 1 − z
π
2α

1 + z
π
2α

, (5.3)

where the fractional power z π
2α refers to the branch preserving the positive real axis.

Setting α = θ and z = reiϕ, the transformation law in Proposition 2.12 and (2.11)
show

SWθ
(reiϕ, reiϕ) = 1 

8rθ sec
(πϕ

2θ 

)
, r > 0, ϕ ∈ (−θ, θ). (5.4a)

The Szegő kernel for Vθ is computed similarly. First observe that the map z �→ −z

sends Vθ to Wπ−θ. From here, apply the map Ψπ−θ to obtain the Riemann map from Vθ

to D.

SVθ
(reiϕ, reiϕ) = 1 

8r(π − θ) sec
(
π

2 
(π − ϕ)
(π − θ) 

)
, r > 0, ϕ ∈ (θ, 2π − θ). (5.4b)

5.1.2. L2-norm of the Cauchy kernel
Computation of the integrals in (5.2a) and (5.2b) is assisted by the following

Lemma 5.5. Let α ∈ (0, 2π) and r > 0. Then

I(r, α) :=
∞ ∫
0 

dx 
|x− reiα|2 = 1 

r sinc(π − α) , (5.6)

where

sinc(t) :=

⎧⎪⎨⎪⎩
sin(t)

t 
, t �= 0

1, t = 0.

Proof. If α = π, the fundamental theorem of calculus gives the result. When α ∈ (0, π),

I(r, α) =
∞ ∫
0 

dx 
x2 + r2 − 2xr cosα = 1 

r2 sin2 α

∞ ∫
0 

dx 

1 +
(
x−r cosα
r sinα 

)2
= 1 

r sinα

∞ ∫
− cotα

du 
1 + u2
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= 1 
r sinα

(π
2 

+ arctan(cotα)
)
. (5.7)

Elementary trigonometry now confirms that (5.6) holds in this case. For α ∈ (π, 2π), 
reflection across the horizontal axis reveals that I(r, α) = I(r, 2π − α). Combining this 
with the earlier result for α ∈ (0, π] shows that (5.6) holds for α ∈ (0, 2π). �

Fix θ ∈ (0, π
2 ) and take z = reiϕ ∈ Wθ, with r > 0, ϕ ∈ (−θ, θ). Using Lemma 5.5 it 

is easily verified that (just draw a picture)

∥∥C(reiϕ, ·)
∥∥2
L2(γθ) = 1 

4π2 (I(r, θ − ϕ) + I(r, θ + ϕ))

= 1 
4π2r

(
1 

sinc(π − (θ − ϕ)) + 1 
sinc(π − (θ + ϕ))

)
. (5.8a)

Similarly, take z = reiϕ ∈ Vθ, with r > 0 and ϕ ∈ (θ, 2π − θ). Then Lemma 5.5 gives

∥∥C(reiϕ, ·)
∥∥2
L2(γθ) = 1 

4π2 (I(r, ϕ− θ) + I(r, 2π − θ − ϕ))

= 1 
4π2r

(
1 

sinc(π − (ϕ− θ)) + 1 
sinc(π − (ϕ + θ))

)
. (5.8b)

5.1.3. The Λ-function
From Theorem 3.22 we easily see Λ(γθ, reiϕ) is independent of r > 0. Alternately, by 

canceling factors of r−1 in the quotients of (5.8a) and (5.8b) by the corresponding results 
from (5.4a) and (5.4b) we obtain the following

Theorem 5.9. For θ ∈ (0, π
2 ), the function reiϕ �→ Λ(γθ, reiϕ)2 is computed on Wθ = Ω+

and Vθ = Ω−.

(a) Let z = reiϕ ∈ Wθ, so that r > 0 and ϕ ∈ (−θ, θ). Then

Λ+(γθ, reiϕ)2 = 2θ 
π2

(
1 

sinc(π − (θ − ϕ)) + 1 
sinc(π − (θ + ϕ))

)
cos

(πϕ
2θ 

)
.

(b) Let z = reiϕ ∈ Vθ, so that r > 0 and ϕ ∈ (θ, 2π − θ). Then

Λ−(γθ, reiϕ)2 = 2(π − θ)
π2

(
1 

sinc(π − (ϕ− θ)) + 1 
sinc(π − (ϕ + θ))

)
cos

(
π

2 
(π − ϕ)
(π − θ) 

)
.

5.1.4. Remarks on the formula
Since Λ(γθ, reiϕ) is independent of r > 0, let us define

L(θ, ϕ) := Λ(γθ, eiϕ).
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Fig. 1. Behavior of ϕ �→ L(θ, ϕ) for θ = π
8 and θ = π

4 . 

Theorem 1.11 tells us that ‖C‖L2(γθ) ≥ sup{L(θ, ϕ) : ϕ ∈ [−θ, 2π − θ)}.
• In [9] Bolt observes that a Möbius transformation maps the wedge Wθ onto a lens 
with vertices at ±1. This lens has boundary length σ(γ) = 4θ csc θ and capacity 
κ(γ) = π/(2(π−θ)), and Bolt uses this information to obtain a lower bound on ‖A‖; see 
Remark 3.7. The closely related lower bound on ‖C‖ given by Λ(γ,∞) in Theorem 3.3
together with the Möbius invariance of Λ shows

‖C‖L2(γθ) ≥
√

σ(γ) 
2πκ(γ) = 2 

π

√
(π − θ)θ csc θ := B(θ).

• The graphs of L(θ, ϕ) and B(θ) for θ = π
8 ,

π
4 are displayed in Fig. 1. B(θ) agrees with 

the maximum value (at ϕ = 0) of L(θ, ϕ) when the angles correspond to the interior 
domain Wθ, but is strictly less than the maximum value when ϕ is taken from the exterior 
Vθ.
• When z ∈ Wθ ∪ Vθ, Theorem 3.25 guarantees that Λ(γθ, z) > 1. But the formulas in 
Theorem 5.9 show that Λ(γ0, z) → 1 as z = reiϕ tends to any smooth point on the curve 
γθ (meaning that r > 0 and ϕ → −θ, θ or 2π − θ). This is illustrated in Fig. 1 when 
θ = π

8 ,
π
4 , and should be compared with the continuity result given in Theorem 4.1.

• Since the non-smooth boundary points 0,∞ ∈ γθ can be approached from any angle 
ϕ ∈ (−θ, 2π − θ), the function reiϕ �→ Λ(γθ, reiϕ) is discontinuous at both. In light of 
the relationship between Λ, the Berezin transform and the Kerzman-Stein operator A
in Section 4.3, lack of continuity shows that A is not compact. Bolt and Raich [10] show 
that A is never compact when corners are present.

5.2. Ellipses

The next family of curves we consider are ellipses. For r ≥ 1, define

Er =
{
x + iy ∈ C : x

2

r2 + y2 = 1
}
. (5.10)
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As usual Er is oriented counterclockwise, so that Ωr
+ is the filled in ellipse.

5.2.1. Families of special functions
Elliptic integrals, elliptic functions and Jacobi theta functions comprise a deep and 

beautiful area of mathematics. In what follows, the reader is not assumed to have prior 
background and all necessary definitions are given. References to properties relevant to 
our computations of Λ(Er, z) are also interspersed as needed.

The elliptic integrals of the first, second and third kinds (K,E,Π, respectively) make 
up a canonical set to which all other elliptic integrals can be reduced. In what follows, 
variables k ∈ (0, 1) and n ∈ R are called the elliptic modulus and characteristic, respec
tively. We follow conventions used by Whittaker and Watson [32, Chapter 22.7], but 
the reader is cautioned that other conventions are also in common use (especially in 
mathematical software; e.g., Mathematica implements these as functions of k2, not k):

K(k) =
1 ∫

0 

dt √
(1 − t2)(1 − k2t2)

, (5.11a)

E(k) =
1 ∫

0 

√
1 − k2t2

1 − t2
dt, (5.11b)

Π(n, k) =
1 ∫

0 

dt 

(1 − nt2)
√

(1 − t2)(1 − k2t2)
. (5.11c)

Next, recall the Jacobi theta functions, where z ∈ C and |q| < 1 (see [32, Chapter 
21]):

ϑ1(z, q) = 2q 1
4

∞ ∑
j=0 

(−1)jqj(j+1) sin[(2j + 1)z], (5.12a)

ϑ2(z, q) = 2q 1
4

∞ ∑
j=0 

qj(j+1) cos[(2j + 1)z], (5.12b)

ϑ3(z, q) = 1 + 2
∞ ∑
j=1 

qj
2
cos(2jz), (5.12c)

ϑ4(z, q) = 1 + 2
∞ ∑
j=1 

(−1)jqj
2
cos(2jz). (5.12d)

Theta functions also admit elegant infinite product expansions; see [32, Chapter 21.3].
Define for k ∈ [0, 1], the elliptic nome q(k) by

q(k) = exp
[
−πK(

√
1 − k2)

K(k) 

]
. (5.13a)
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This function is strictly increasing with q(0) = 0 and q(1) = 1. The inverse nome k(q) is 
defined for q ∈ [0, 1) by an infinite product, or equivalently by a ratio of theta functions:

k(q) = 4√q

∞ ∏
j=1

[
1 + q2j

1 + q2j−1

]4

= ϑ2(0, q)2

ϑ3(0, q)2
. (5.13b)

If we allow for a slight abuse of notation, we may write k(q(k)) = k and q(k(q)) = q on 
[0, 1). Also limq→1 k(q) = 1, though neither formula in (5.13b) is valid at q = 1.

Finally, define Jacobi’s elliptic sn function in terms of the above functions

sn(u, k) = ϑ3(0, q(k))
ϑ2(0, q(k)) ·

ϑ1

(
u 

ϑ3(0, q(k))2 , q(k)
)

ϑ4

(
u 

ϑ3(0, q(k))2 , q(k)
) . (5.14)

The function u �→ sn(u, k) is meromorphic and doubly periodic with quarter periods 
K := K(k) and iK ′ := iK(

√
1 − k2), i.e., sn(u, k) = sn(u + 4K, k) and sn(u, k) =

sn(u + 4iK ′, k).

5.2.2. The norm of the Cauchy kernel
For z ∈ Ωr

+ ∪Ωr
−, we write the norm ‖C±(z, ·)‖L2(Er) as an integral over [−1, 1]. First 

parametrize the top and bottom halves of Er by

ζ±(t) = rt± i
√

1 − t2, −1 ≤ t ≤ 1. (5.15)

Writing the arc length differential dσ(ζ) in terms of this parametrization gives

dσ(ζ) = |dζ(t)| = r 

√
1 − (1 − 1 

r2 )t2
1 − t2

dt. (5.16)

If z = α + iβ, with α, β ∈ R, then (5.15) implies

|ζ±(t) − z|2 = |(rt− α) ± i
(√

1 − t2 ∓ β
)
|2

= α2 + β2 + 1 − 2rαt + (r2 − 1)t2 ∓ 2β
√

1 − t2.

Now combine this with (5.16) to see

‖C(z, ·)‖2 = 1 
4π2

∫
Er

dσ(ζ) 
|ζ − z|2

= 1 
4π2

1 ∫
−1

|dζ(t)| 
|ζ+(t) − α− iβ|2 + 1 

4π2

1 ∫
−1

|dζ(t)| 
|ζ−(t) − α− iβ|2
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= r

2π2

1 ∫
−1

α2 + β2 + 1 − 2rαt + (r2 − 1)t2

(α2 + β2 + 1 − 2rαt + (r2 − 1)t2)2 − 4β2(1 − t2)

√
1 − (1 − 1 

r2 )t2
1 − t2

dt.

(5.17)

In the special case in which α = β = 0, (5.17) reduces to

‖C(0, ·)‖2
L2(Er) = 1 

2π2r

1 ∫
−1

r2 − (r2 − 1)t2

1 + (r2 − 1)t2
1 √

(1 − t2)(1 − (1 − 1 
r2 )t2)

dt

= 1 
π2r

1 ∫
0 

(
r2 + 1 

1 − (1 − r2)t2 − 1
)

1 √
(1 − t2)(1 − (1 − 1 

r2 )t2)
dt

= 1 
π2r

(
(r2 + 1) · Π

(
1 − r2,

√
1 − 1 

r2

)
−K

(√
1 − 1 

r2

))
. (5.18)

5.2.3. The Szegő kernel of the interior domain
The Riemann map of the ellipse Θr : Ωr

+ → D, takes the following form (see, e.g., [25, 
Chapter VI] or [31]):

Θr(z) =
√

kr · sn
(

2K(kr)
π

arcsin
(

z√
r2 − 1

)
, kr

)
. (5.19)

Here sn(·, ·) is the elliptic function (5.14), K is the elliptic integral (5.11a). The elliptic 
modulus kr ∈ [0, 1) is the unique value (determined by (5.13b)) satisfying

q(kr) =
(
r − 1 
r + 1

)2

. (5.20)

The appearance of kr in (5.19) is directly related to the eccentricity of Er, while the factor √
r2 − 1 inside the arcsine accounts for the fact that the foci of Er are at (±(r2 − 1), 0).
From [32, Example 21.6.5], it can be seen that

2K(k)
π

= ϑ3
(
0, q(k)

)2
, 

√
k = ϑ2(0, q(k))

ϑ3(0, q(k)) . (5.21)

Equations (5.20), (5.21) and the definition of sn(·, ·) in (5.14) let us rewrite (5.19):

Θr(z) =
ϑ2
(
0,
(
r−1
r+1 

)2)
ϑ3
(
0,
(
r−1
r+1 

)2) · sn
(
ϑ3

(
0,
(
r − 1 
r + 1

)2)2

arcsin
(

z√
r2 − 1

)
, kr

)
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=
ϑ1

(
arcsin

(
z√

r2 − 1

)
,

(
r − 1 
r + 1

)2
)

ϑ4

(
arcsin

(
z√

r2 − 1

)
,

(
r − 1 
r + 1

)2
) . (5.22)

The Szegő transformation formula (2.12) gives S+(z, z) in terms of Θr and Θ′
r

S+(z, z) = |Θ′
r(z)| 

2π(1 − |Θr(z)|2)
. (5.23)

When z = 0, this formula simplifies. Indeed, (5.22) shows that Θr(0) = 0 and (letting 
ϑ′

1 denote differentiation in the first slot), the quotient rule gives

Θ′
r(0) =

ϑ′
1

(
0,
(
r−1
r+1 

)2)
√
r2 − 1 · ϑ4

(
0,
(
r−1
r+1 

)2) . (5.24)

In [32, Section 21.4], Whittaker and Watson establish the following ``remarkable result'' 
of Jacobi, adding that ``several proofs have been given, but none are simple'' :

ϑ′
1(0, q) = ϑ2(0, q)ϑ3(0, q)ϑ4(0, q).

This can be inserted into (5.24) to show

S+(0, 0) = |Θ′
r(0)|
2π =

ϑ2

(
0,
(
r−1
r+1 

)2)
ϑ3

(
0,
(
r−1
r+1 

)2)
2π

√
r2 − 1

. (5.25)

5.2.4. Calculation of Λ(Er, 0) and Λ(Er,∞)

Theorem 5.26. Let r ≥ 1. The function z �→ Λ(Er, z)2 assumes the following values.

Λ(Er,∞)2 = 4r 
π(r + 1)E

(√
1 − 1 

r2

)
, (5.27a)

Λ(Er, 0)2 = 2 
π

√
1 − 1 

r2 ·
(r2 + 1) · Π

(
1 − r2,

√
1 − 1 

r2

)
−K

(√
1 − 1 

r2

)
ϑ2

(
0,
(
r−1
r+1 

)2)
ϑ3

(
0,
(
r−1
r+1 

)2) . (5.27b)

Proof. The z = ∞ formula follows from the definition of Λ in (1.7). (Recall that The
orem 3.3 shows that Λ(Er, z) is continuous at z = ∞.) It is known (see [27, Table 5.1]) 
that the capacity κ of the ellipse {x2/a2 + y2/b2 = 1} is a+b

2 , so κ(Er) = r+1
2 . On the 

other hand, (5.16) shows the arc length of Er is given by
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Fig. 2. Comparison of r �→ Λ(Er, 0) and r �→ Λ(Er,∞) for r ≥ 1. 

σ(Er) =
∫
Er

dσ(ζ) = 2r
1 ∫

−1

√
1 − (1 − 1 

r2 )t2
1 − t2

dt = 4rE
(√

1 − 1 
r2

)
.

For the z = 0 formula, simply divide (5.18) by (5.25). �
5.2.5. Remarks

We discuss properties of Λ(Er, 0) and Λ(Er,∞) as r varies, giving special attention to 
the endpoint cases of r → 1 and ∞. Both values give ``asymptotically sharp'' estimates 
on ‖C‖ as r → 1, though Λ(Er, 0) is larger and thus ``sharper'' (see Fig. 2). We also 
briefly discuss Λ(Er, z) for other z values.
• Behavior of Λ(Er,∞) and Λ(Er, 0). Using known asymptotic behavior of elliptic inte
grals and theta functions (see [12]) we expand Λ(Er,∞) and Λ(Er, 0) near r = 1:

Λ(Er,∞) = 1 + 1 
32 (r − 1)2 − 1 

32 (r − 1)3 + 3 
128 (r − 1)4 + O(|r − 1|5) (5.28a)

Λ(Er, 0) = 1 + 1 
32 (r − 1)2 − 1 

32 (r − 1)3 + 7 
200 (r − 1)4 + O(|r − 1|5). (5.28b)

(For the reader interested in working out these details by hand, it is convenient to re-write 
Λ(Er, 0) using the so-called Heuman Lambda function; see [12, page 225]).

In [8], Bolt shows that the spectrum of the Kerzman-Stein operator A on an ellipse 
consists of eigenvalues ±iλl, where each ±iλl has multiplicity 2 and λ1 ≥ λ2 ≥ · · · ≥ 0. 
He then provides asymptotics of the eigenvalues as the eccentricity tends to zero. The 
largest number on the list is λ1 = ‖A‖ =

√
||C||2 − 1, and we deduce from Bolt’s 

estimates that, as r → 1,

‖C‖ ≈
√

1 + 1
4
(
r−1
r+1 

)2 = 1 + 1 
32 (r − 1)2 + O(|r − 1|3). (5.29)

Comparing (5.29) to (5.28a) and (5.28b), we see the expansions for Λ(Er,∞) and Λ(Er, 0)
are both asymptotically sharp as r → 1. But if we then compare the coefficients of (r−1)4, 
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Fig. 3. For x ∈ R, the plot of x �→ Λ(E2, x) suggests a maximum at x = 0. 

we see that Λ(Er, 0) is the better lower bound on ‖C‖ near r = 1 (since 7 
200 > 3 

128 ). This 
information proves Theorem 1.13.

Known asymptotic expansions of elliptic integrals and theta functions also yield the 
behavior of Λ(Er,∞) and Λ(Er, 0) as r → ∞:

lim 
r→∞

Λ(Er, 0) = 2 √
π

= lim 
r→∞

Λ(Er,∞).

Remark 5.30. The Mathematica generated plot in Fig. 2 suggests Λ(Er, 0) > Λ(Er,∞)
for all r ≥ 1, and it would be interesting to prove this. It also appears in the plot that 
both functions are strictly increasing in r. This is relatively straightforward to prove in 
the case of Λ(Er,∞), but the Λ(Er, 0) case seems to be harder. ♦

Remark 5.31. The above information should be considered together with a known upper 
bound on the norm of C. Adapting results by Feldman, Krupnik and Spitkovsky in [14], 
we see that for r ≥ 1,

‖C‖L2(Er) ≤
√

1 +
(
r−1
r+1 

)2
. (5.32)

In particular, the norm of the Cauchy transform on any ellipse is always less than 
√

2. ♦

• Values of Λ(Er, z) for z �= 0,∞. The formulas provided in (5.17), (5.22) and (5.23) are 
valid for z ∈ Ωr

+. Numerical evidence for specific r values suggests that z = 0 may in 
fact maximize Λ+(Er, z). This is illustrated in Fig. 3, when r = 2 and z = x ∈ R. In this 
picture, the interior domain corresponds to x ∈ (−2, 2).

To compute Λ−(Er, z), we need the exterior Riemann map. The map from the unit 
disc D to Ωr

− (the complement of the solid ellipse) is given by a Joukowski map (see [25, 
page 270]). Such maps can be inverted explicitly and the desired Ψr : Ωr

− → D obtained. 
The particular map used to generate Fig. 3 (the r = 2 case) for |x| > 2 is given by

Ψ2(z) = z −
√

z2 − 3,
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where the branch of the square root is chosen so that 
√
z2 − 3 → z as z → ∞. Using the 

map Ψ2, the exterior Szegő kernel S−(z, z) can be obtained via (2.12). This can then be 
combined with the Cauchy norm computation in (5.17) to yield the exterior Λ-function.
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