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Abstract. New symmetries, norm computations and spectral information are obtained
for the Leray transform on a class of unbounded hypersurfaces in C2. Emphasis is placed
on certain distinguished measures, with results on operator norm monotonicity established
by proving new polygamma inequalities. Classical techniques of Bernstein-Widder and
Euler-Maclaurin play crucial roles in our analysis. Underpinning this work is a projective
geometric theory of duality, which manifests here in the form of Hölder invariance.

1. Introduction

The Leray transform L is a higher dimensional analogue of the familiar Cauchy transform
on planar domains. A body of recent work [5, 6, 7, 8, 9, 16, 17, 18, 19] has investigated
the mapping and invariance properties of this operator, with the construction of interesting
holomorphic function spaces on domains in Cn and CPn seen as an important application.
Definitions and background information on the Leray transform are provided in Section 2.

In [7], Barrett and Edholm studied the Leray transform on the family of unbounded
C-convex hypersurfaces given by

(1.1) Mγ = {(ζ1, ζ2) ∈ C2 : Im(ζ2) = |ζ1|γ}, γ > 1.

In the present work, further analysis of the Leray transform on Mγ is carried out and
detailed analytic information is obtained. Throughout the paper, we always assume γ > 1.

1.1. Two distinguished measures. Let us parameterize Mγ by (ζ1, ζ2) = (reiθ, s + irγ)

and consider measures of the form µd = rd dr ∧ dθ ∧ ds, d ∈ R. The rotational symmetry
of Mγ in ζ1 yields an orthogonal decomposition of the Leray transform L =

⊕∞
k=0Lk; see

Section 2.3. The behavior of L in the spaces L2(Mγ , µd) can be understood explicitly, with
surprising connections to projective geometry and special function theory. Many precise
results were obtained in [7] for each Lk; this is reviewed in Sections 1.2 and 2.3.

Two measures are of particular importance to higher-dimensional Cauchy-Leray theory:
the pairing measure σ and the preferred measure ν; see [5, 6, 7]. On Mγ , they take the form

σ = rγ−1 dr ∧ dθ ∧ ds,(1.2)

ν = r
γ+1
3 dr ∧ dθ ∧ ds.(1.3)

The pairing measure σ arises as (a constant multiple of) the Leray-Levi measure corre-
sponding to the natural defining function ρ(ζ) = |ζ1|γ − Im(ζ2); see (2.3b). This measure
also appears in an alternative description of the Leray transform, facilitating a natural
bilinear pairing between projectively invariant dual Hardy spaces; see [7, Proposition 6.18].
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The preferred measure ν admits a projective transformation law; see (2.4). This leads to a
corresponding Leray transformation law in (2.6), and to the definition of the aforementioned
Hardy spaces in (2.7). These notions were introduced by Barrett [5, Sections 7 and 8] and
developed further in [6, 7]; see [7, Section 2] for a detailed discussion in the Mγ setting.

Remark 1.4. Note that in the Heisenberg case (γ = 2), the pairing and preferred measures
are equal and coincide with Lebesgue measure µ1 on the parameter space R3. ♢

1.2. Review of past results on Mγ. In [7], Barrett and Edholm completely characterize
those d for which the Leray transform and each of its constituent pieces Lk (sub-Leray
operators) are bounded on L2(Mγ , µd):

Proposition 1.5 (Barrett-Edholm [7]). The Leray transform L is a bounded operator from
L2(Mγ , µd) to itself if and only if d ∈ (−1, 2γ − 1) := I0(γ).

From the forms of (1.2) and (1.3) notice that L is bounded on L2(Mγ , σ) and L
2(Mγ , ν).

We now recall for non-negative integers k the Leray symbol function of L2(Mγ , µd):

(1.6) J(d, γ, k) =
Γ
(
2k+1+d

γ

)
Γ
(
2k + 2− 2k+1+d

γ

)
Γ(k + 1)2

(γ
2

)2k+2
(γ − 1)

−
(
2k+2− 2k+1+d

γ

)
.

Due to the prominence of σ and ν in this work, we often use alternate notation when the
symbol function corresponds to d = γ− 1 and d = γ+1

3 , as indicated by (1.2) and (1.3). Set

Cσ(γ, k) = J(γ − 1, γ, k),(1.7a)

Cν(γ, k) = J
(γ+1

3 , γ, k
)
,(1.7b)

and call Cσ and Cν the pairing symbol and preferred symbol functions, respectively.

The square-root of the Leray symbol function measures the norm of each Lk:

Proposition 1.8 (Barrett-Edholm [7]). Lk is bounded on L2(Mγ , µd) if and only if

(1.9) d ∈ (−2k − 1, (2k + 2)(γ − 1) + 1) := Ik(γ).

When d is taken in this range, the norm

(1.10) ∥Lk∥L2(Mγ ,µd)
=

√
J(d, γ, k).

These intervals satisfy Ik(γ) ⊊ Ik+1(γ), and they exhaust the real line as k → ∞. This
means for any given d, at most a finite number of the Lk are unbounded on L2(Mγ , µd).

It also happens that for every d, the symbol J(d, γ, k) (and thus the corresponding norm
of the sub-Leray operators) stabilizes to the same value at high k-frequencies:

Proposition 1.11 (Barrett-Edholm [7]). For every d ∈ R, the following limit holds

lim
k→∞

∥Lk∥L2(Mγ ,µd)
=

√
γ

2
√
γ − 1

.

See Figure 1 for an illustration when γ = 5. There is an intriguing relationship between
the limit in Proposition 1.11 and a projective geometric invariant on Mγ . This is related
the Leray essential norm conjecture; see [7, Section 2.3].
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1.3. New symmetries, norms and symbol function monotonicity. While the results
summarized in Section 1.2 shed considerable light on the Cauchy-Leray theory ofMγ , many
questions are left open. In particular,

(i) For d ∈ I0(γ), what is the norm in L2(Mγ , µd) of the full Leray transform?

In [7] the L2-norm of L was calculated only in the case of the pairing measure σ
(where d = γ − 1). It is of particular interest to compute this norm with respect

to the preferred measure ν (where d = γ+1
3 ), as this quantifies the efficiency of a

natural duality pairing of projectively invariant Hardy spaces; see Proposition 2.8.

(ii) What is the relationship between the norms of the Lk as k varies? Given γ > 1, are
there conditions on d guaranteeing that the function k 7→ J(d, γ, k) is monotone?

In [7] it is shown that for γ ̸= 2, the pairing symbol function k 7→ Cσ(γ, k) is
strictly decreasing. Monotonicity, however, fails for other choices of d, while yet
other d-values correspond to a strictly increasing symbol function; see Figure 1.

(iii) To what extent is there a relationship between the Cauchy-Leray theories of Mγ and
Mγ∗, where γ∗ = γ

γ−1 is the Hölder conjugate of γ?

In [7] the pairing symbol function is shown to be Hölder symmetric, i.e., Cσ(γ, k) =
Cσ(γ

∗, k). This observation meshes well with our understanding of Cauchy-Leray
theory from a projective dual point of view, as Mγ∗ is known to be the projective
dual hypersurface ofMγ ; see [7, Section 6.1]. But it was not clarified in the previous
work whether a more general version of this correspondence holds, and in particular,
if the preferred symbol function Cν(γ, k) is Hölder invariant.

1.3.1. Norm computations. We answer question (i) above for a wide range of measures.

In the γ = 2 case, we obtain the norm of L in L2(Mγ , µd) for every d for which the
operator is bounded. When γ ̸= 2, our results below include as special cases the explicit
L2-norms with respect to Lebesgue measure µ1 on R3, the pairing measure σ (previously
calculated in [7] by a different argument), and most importantly, the preferred measure ν.

We now summarize these results, emphasizing that in the special case when γ = 2 and
d = 1, the measures µ1 = σ = ν coincide, and the norm of ∥L∥L2(M2,µ1)

= 1. In this setting,

the Leray transform coincides with the Szegő projection.

Theorem 1.12. The norm of the Leray transform is calculated in many settings, including

(a) The norm of the Leray transform on L2(M2, µd) is given by

∥L∥L2(M2,µd)
=

{√
π
2 (1− d) sec

(
dπ
2

)
, d ∈ (−1, 1) ∪ (1, 3)

1, d = 1.

(b) The norm of the Leray transform on L2(Mγ , µ1) is given by

∥L∥L2(Mγ ,µ1)
=

{
(γ − 1)

1
γ
−1

√
π
4 (γ − 2)γ csc

(
2π
γ

)
, γ ∈ (1, 2) ∪ (2,∞)

1, γ = 2.

(c) The norm of the Leray transform on L2(Mγ , σ) is given by

∥L∥L2(Mγ ,σ)
=

γ

2
√
γ − 1

.

(d) The norm of the Leray transform on L2(Mγ , ν) is given by

∥L∥L2(Mγ ,ν)
=

√
γ

2
√
γ − 1

.
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Proofs of the parts of Theorem 1.12 appear throughout the paper. Part (a) is found
in Corollary 3.16. Parts (b) and (c) are found in Section 4, where the Bernstein-Widder
theorem and the notion of complete montonicity play important roles; see Corollaries 4.25
and 4.27, which themselves are “endpoint cases” of the more general Theorem 4.23. The
preferred measure result, part (d), is the most difficult to prove. Starting in Section 5, we
use from the Euler-Maclaurin summation formula to carry out lengthy but precise analysis,
eventually transforming the problem for the preferred measure ν into concrete questions
about two explicit polynomials, one of degree 16, one of degree 22.

Figure 1. Behavior of k 7→ J(d, 5, k) for certain 1 ≤ d ≤ 4.

1.3.2. Monotonicity. Question (ii) above is also answered for a wide range of measures.

Figure 1 illustrates how the behavior of k 7→ J(d, γ, k) = ∥Lk∥2L2(Mγ ,µd)
can change as

d varies within the boundedness interval I0(γ) = (−1, 2γ − 1). In our work below, we see
that for many measures (including µ1 and σ), this function strictly decreases in k, while
for others the function is not monotone. The preferred measure ν, on the other hand,
corresponds to a strictly increasing symbol function. This is now summarized.

We again highlight the case γ = 2 and d = 1: by (1.6), for each k, ∥Lk∥2L2(M2,µ1)
= 1.

Theorem 1.13. The sub-Leray operators Lk exhibit the following monotone behavior.

(a) If γ = 2 and d ∈ (−1, 1) ∪ (1, 3), the function k 7→ J(d, γ, k) is strictly decreasing
on the non-negative integers. Thus

∥Lk∥L2(M2,µd)
> ∥Lk+1∥L2(M2,µd)

.

(b) If γ > 2 and d ∈ (−1, 1] ∪ [γ − 1, 2γ − 1), the function k 7→ J(d, γ, k) is strictly
decreasing on the non-negative integers. Thus

∥Lk∥L2(Mγ ,µd)
> ∥Lk+1∥L2(Mγ ,µd)

.

(c) If γ < 2 and d ∈ (−1, γ − 1] ∪ [1, 2γ − 1), the function k 7→ J(d, γ, k) is strictly
decreasing on the non-negative integers. Thus

∥Lk∥L2(Mγ ,µd)
> ∥Lk+1∥L2(Mγ ,µd)

.

(d) Let γ ̸= 2. The preferred symbol function k 7→ Cν(γ, k) = J
(γ+1

3 , γ, k
)
is strictly

increasing on the non-negative integers. Thus,

∥Lk∥L2(Mγ ,ν)
< ∥Lk+1∥L2(Mγ ,ν)

.
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Theorems 1.12 and 1.13 are closely related. The monotonicity result in part (a) is shown
in Theorem 3.13, parts (b) and (c) are shown in Theorem 4.23, and part (d) in Theorem
5.22. The results here depend on careful analysis of certain polygamma functions, previewed
in Section 1.4 below. The montonicity and norm results above have immediate implications
for the spectra of the related self-adjoint and anti-self-adjoint operators L∗L, LL∗ and
L∗ −L; see [7, Section 5.3].

1.3.3. Hölder invariance. We answer question (iii) above by proving that a form of Hölder
invariance holds for every pair γ ̸= 2, d ∈ R. Let γ∗ = γ

γ−1 be the Hölder conjugate of γ.

In [7] it was shown that the pairing symbol function (d = γ − 1) remains the same when
γ is replaced with γ∗. To obtain a corresponding symmetry for more general measures, we
parameterize the exponent of µd by setting d to be equal to

(1.14) δa(γ) = a(γ − 2) + 1, a ∈ R.

Theorem 1.15. The symbol function J(δa(γ), γ, k) is Hölder symmetric, in that

J(δa(γ), γ, k) = J(δa(γ
∗), γ∗, k).

This theorem is proved in Section 3.1. Taking a = 1
3 corresponds to d = γ+1

3 , implying
the Hölder symmetry of the preferred symbol function, i.e., Cν(γ, k) = Cν(γ

∗, k). Taking
a = 0 shows that J(1, γ, k) = J(1, γ∗, k), verifying the analogous invariance property holds
for the symbol functions assigned to Lebesgue measure µ1. Hölder invariance plays an
important role in the proofs of both Theorems 1.12 and 1.13 above and can be viewed as a
manifestation of the projective dual nature of Cauchy-Leray theory; see Section 2.1.

1.4. Polygamma inequalities and complete monotonicity. Recall the digamma func-
tion ψ, which is the logarithmic derivative of the familiar Γ-function:

(1.16) ψ(r) =
Γ′(r)

Γ(r)
.

Further derivatives of ψ are called polygamma functions. They satisfy interesting functional
identities and naturally arise in many analytic and number theoretic problems; see [1].
The polygamma functions admit practical representations, both in series form (3.17) and
integral form (4.5).

The following combination of polygamma functions plays a central role in this paper.

Φ(r, q) := r2ψ′′(r + 1− q) + 2rψ′(r + 1− q).

Figure 2 shows the function r 7→ Φ(r, q) for certain fixed q. In Lemma 3.21, we show the
behavior of the Leray symbol function is closely tied to the behavior of Φ(r, q):

• if Φ(r, q) < 1 for r > q, then k 7→ J(δ1−q(γ), γ, k) is strictly decreasing.
• if Φ(r, q) > 1 for r > q, then k 7→ J(δ1−q(γ), γ, k) is strictly increasing.

Here δ1−q(γ) is given by (1.14) upon setting a = 1− q.

Theorem 1.17. Sharp polygamma inequalities related to the symbol function are obtained.

(a) If q ∈ (−∞, 0] ∪ [1,∞), the following holds for r > q

Φ(r, q) = r2ψ′′(r + 1− q) + 2rψ′(r + 1− q) < 1.

(b) When q = 2
3 , the following holds for r > 2

3

Φ
(
r, 23

)
= r2ψ′′(r + 1

3) + 2rψ′(r + 1
3) > 1.
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Figure 2. Behavior of r 7→ Φ(r, q) for certain 0 ≤ q ≤ 1

The proof of Theorem 1.17 part (a) is found in Corollary 4.21, where the inequality
follows by proving the complete monotonicity of a closely related function in Theorem 4.15.
The q = 2

3 result in part (b) corresponds directly to the preferred symbol function. We

prove this inequality in Theorem 5.5 using a series representation for Φ(r, 23).

There is a large body of literature on inequalities involving combinations of polygamma
functions; see, e.g., [2, 3, 11, 12, 13, 14, 15, 20] and the references therein. The inequalities
in Theorem 1.17 appear to be new and we suspect that mathematicians working in special
function theory will take interest in results found in Sections 4, 5, and the Appendix.

The paper is organized as follows. Section 2 provides background material on the Leray
transform. In Section 3 we establish new symmetries for the symbol function, which is
then related to Φ(r, q). In Section 4 we introduce the Bernstein-Widder theorem and prove
several polygamma and symbol function inequalities. In Section 5 the Euler-Maclaurin
formula is used to study the preferred symbol function and the corresponding Φ(r, 23). The
proof of one especially difficult estimate used in Section 5 is postponed until the Appendix.

2. The Leray transform

Recall that a domain is C-convex if every (non-empty) intersection with a complex line
is both connected and simply connected; see [4]. Let Ω be a C-convex domain in Cn (or
CPn), with C2-smooth boundary bΩ := S, and let ρ be a defining function for Ω. The Leray
transform L of a function f defined on S is a higher dimensional analogue of the Cauchy
transform in the complex plane. Given z ∈ Ω, it assumes the form

Lf(z) =

∫
ζ∈S

f(ζ)L (z, ζ),(2.1a)

L (z, ζ) =
1

(2πi)n
∂ρ(ζ) ∧ (∂∂ρ(ζ))n−1

⟨∂ρ(ζ), ζ − z⟩n
.(2.1b)

The (n, n − 1)-form L is called the Leray kernel and ⟨·, ·⟩ denotes the bilinear pairing of
(1, 0)-forms and vectors. The Leray transform reproduces holomorphic functions from their
boundary values, and generates holomorphic functions from more general boundary data.

Remark 2.2. It is straightforward to check that the formula for the Leray transform is
independent of the choice of defining function ρ; see [21, Section IV.3.2]. ♢
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It is often useful to decompose the Leray kernel L into two pieces:

ℓ(z, ζ) = ⟨∂ρ(ζ), ζ − z⟩−n,(2.3a)

λρ(ζ) =
1

(2πi)n
∂ρ(ζ) ∧ (∂∂ρ(ζ))n−1.(2.3b)

We refer to λρ as the Leray-Levi measure. By itself, λρ clearly depends on the choice of
defining function, though natural choices of ρ often correspond to important measures. See
[16] for a survey on L and related operators within the Cauchy-Fantappiè framework.

Barrett and Lanzani [8] study the L2-theory of L on smoothly bounded, strongly convex
Reinhardt domains in C2. They obtain detailed spectral information on L∗L, LL∗ and
L∗ −L, and relate the essential norm of L to a geometric invariant of the domain. Several
articles by Lanzani and Stein have investigated other aspects the Leray transform. In [17]
they prove that L preserves Lp spaces (1 < p <∞) whenever the hypersurface S is bounded,
strongly C-linearly convex and C1,1 smooth. In [18, 19] they show that counter-examples
to Lp-boundedness can exist when the smoothness or convexity hypotheses are dropped.

2.1. Projective invariance. In [5, Section 5], Barrett defines a projective geometric in-
variant associated to any smoothly bounded, strongly C-convex hypersurface S. He uses it
[5, Section 8] to construct a projectively invariant measure νS : If Φ is an automorphism of
CPn, the measure transforms as

(2.4) Φ∗(νΦ(S)
)
= |detΦ′|

2n
n+1 νS .

We refer to νS as the preferred measure. Equation (2.4) shows that the operator

(2.5) f 7→ (detΦ′)
n

n+1 · (f ◦ Φ)

maps L2
(
Φ(S), νΦ(S)

)
isometrically to L2(S, νS). If we use the Radon-Nikodym Theorem

to re-express the Leray kernel (2.1b) in terms of the preferred measure, then the Leray
transform admits the transformation law

(2.6) LS

(
(detΦ′)

n
n+1 (f ◦ Φ)

)
= (detΦ′)

n
n+1

(
LΦ(S)(f) ◦ Φ

)
;

see [5, Section 9] and [9, Section 5]. When the Leray transform is bounded on L2(S, νS)
(e.g., when Lanzani-Stein conditions of [17] hold), it can be used to define projectively
invariant Hardy spaces consisting of the boundary values of holomorphic functions:

(2.7) H2(S, νS) = LS
(
L2(S, νS)

)
.

2.2. Projective duality. Given a smooth strongly C-convex hypersurface S ⊂ CPn, there
is a unique complex tangent hyperplane at each ζ ∈ S. This determines a unique point in
a dual copy of CPn; the set of all such points form the dual hypersurface S∗.

In [5, Section 6], Barrett shows that S∗ is smoothly bounded and strongly C-convex
whenever S is, and further, that S and S∗ are diffeomorphic. If w : S → S∗ is a such a
diffeomorphism, it can be used to pull back the space H2(S∗, νS∗) by setting

H2
dual(S, ν∗S) = w∗ (H2(S∗, νS∗)

)
, where ν∗S = w∗(νS∗).

The pairing measure σS is defined as the geometric mean of νS and ν∗S .

Given functions f ∈ H2(S, νS) and g ∈ H2
dual(S, ν∗S), define their bilinear pairing as

⟨⟨f, g⟩⟩ =
∫
S
f(ζ)g(ζ)σS(ζ).
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The map χ̂γ : g 7→ ⟨⟨·, g⟩⟩ gives a quasi-isometric identification of H2
dual(S, ν∗S) with function

theoretic dual space H2(S, νS)′. In the Mγ setting, we have the following result.

Proposition 2.8 (Barrett-Edholm [7]). The operator χ̂γ : H2
dual(Mγ , ν) 7→ H2(Mγ , ν)

′ is
an invertible map with ∥∥χ̂−1

γ

∥∥
H2(Mγ ,ν)′

= ∥L∥L2(Mγ ,ν)
.

In light of Theorem 1.12 part (d) we can now express this as a concrete number:

Theorem 2.9. The operator χ̂γ : H2
dual(Mγ , ν) 7→ H2(Mγ , ν)

′ is an invertible map with

(2.10)
∥∥χ̂−1

γ

∥∥
H2(Mγ ,ν)′

=

√
γ

2
√
γ − 1

.

2.3. Leray theory on Mγ. The following material is found in [7, Sections 3, 5]. Parame-

terize Mγ by (ζ1, ζ2) = (reiθ, s+ irγ) and consider the measures

(2.11) µd = rd dr ∧ dθ ∧ ds, d ∈ R.

The pairing measure σ (d = γ−1) arises as (a constant multiple of) the Leray-Levi measure
corresponding to the defining function ρ(ζ) = |ζ1|γ − Im(ζ2).

Rotational symmetry in ζ1 yields a decomposition of L2(Mγ , µd) into an orthogonal sum

of subspaces L2
k(Mγ , µd), each consisting of functions of the form fk(r, θ)e

ikθ. Likewise,
the Leray transform decomposes into orthogonal sub-Leray operators Lk, each mapping
L2(Mγ , µd) to L

2
k(Mγ , µd) whenever it is bounded: L =

⊕∞
k=0Lk. Given f ∈ L2(Mγ , µd),

the following inequality holds; see [7, Theorem 5.13]:

(2.12) ∥Lkf∥L2(Mγ ,µd)
≤

√
J(d, γ, k) · ∥f∥L2(Mγ ,µd)

,

where J(d, γ, k) is the symbol function defined in (1.6). It turns out there always exist
functions fk(r, s)e

ikθ ∈ L2
k(Mγ , µd) achieving equality in the relation (2.12) above.

If f =
∑

k fke
ikθ, orthogonality implies the following estimate; see [7, Corollary 5.28]:

∥Lf∥2 =
∞∑
k=0

∥Lkf∥2 =
∞∑
k=0

∥∥∥Lkfk e
ikθ

∥∥∥2 ≤ ∞∑
k=0

J(d, γ, k) ∥fk∥2 ≤M
∞∑
k=0

∥fk∥2 =M ∥f∥2 ,

where M denotes the supremum of J(d, γ, k) as k ranges over the non-negative integers.
But since the norm of each Lk is achieved by a function in L2

k(Mγ , µd), it follows that

(2.13) ∥L∥L2(Mγ ,µd)
= sup

{√
J(d, γ, k) : k = 0, 1, 2, . . .

}
.

3. Symmetries and Monotonicity

3.1. Hölder symmetry, γ ̸= 2. Proposition 1.8 says Lk is bounded on L2(Mγ , µd) if and
only if d ∈ Ik(γ). Here, it is shown that for each d there is a unique d∗ ∈ R such that
the behavior of Lk in L2(Mγ , µd) closely parallels its behavior in L2(Mγ∗ , µd∗). For a ∈ R,
define

(3.1) δa(γ) = a(γ − 2) + 1.

Theorem 3.2. The symbol function J(δa(γ), γ, k) is Hölder symmetric, in that

J(δa(γ), γ, k) = J(δa(γ
∗), γ∗, k).
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Proof. From (1.6) we have

J(δa(γ), γ, k) =
Γ
(2k+2+(γ−2)a

γ

)
Γ
(
2k + 2− 2k+2+(γ−2)a

γ

)
Γ(k + 1)2

(γ
2

)2k+2
(γ−1)

(
2k+2+(γ−2)a

γ
−2k−2

)
.

But notice that

2k + 2 + (γ∗ − 2)a

γ∗
=

2k + 2− 2a

γ∗
+ a =

(
1− 1

γ

)
(2k + 2− 2a) + a

= 2k + 2− a− 2k + 2− 2a

γ

= 2k + 2− 2k + 2 + (γ − 2)a

γ
.(3.3)

Thus, we have both

Γ

(
2k + 2 + (γ∗ − 2)a

γ∗

)
= Γ

(
2k + 2− 2k + 2 + (γ − 2)a

γ

)
,(3.4a)

Γ

(
2k + 2 + (γ − 2)a

γ

)
= Γ

(
2k + 2− 2k + 2 + (γ∗ − 2)a

γ∗

)
.(3.4b)

It is also easily seen that (γ∗
2

)2k+2
=

(γ
2

)2k+2
(γ − 1)−2k−2,

and so from (3.3) we are able to deduce

(γ∗ − 1)

(
2k+2+(γ∗−2)a

γ∗ −2k−2
)
= (γ − 1)

(
2k+2− 2k+2+(γ∗−2)a

γ∗

)
= (γ − 1)

(
2k+2+(γ−2)a

γ

)
.

Combining the previous two equations we have

(3.5)
(γ∗
2

)2k+2
(γ∗ − 1)

(
2k+2+(γ∗−2)a

γ∗ −2k−2
)
=

(γ
2

)2k+2
(γ − 1)

(
2k+2+(γ−2)a

γ
−2k−2

)
.

Putting together the equations in (3.4) with (3.5) gives the result. □

Remark 3.6. The computations in the theorem above yield a Hölder symmetric reformula-
tion of the symbol function whenever γ ̸= 2:

J(δa(γ), γ, k) =
Γ
(2k+2+(γ−2)a

γ

)
Γ
(2k+2+(γ∗−2)a

γ∗

)
Γ(k + 1)2

(γ
2

)( 2k+2+(γ−2)a
γ

) (γ∗
2

)( 2k+2+(γ∗−2)a
γ∗

)
.

♢

Corollary 3.7. The pairing symbol function and the preferred symbol function are both
Hölder symmetric, i.e., Cσ(γ, k) = Cσ(γ

∗, k) and Cν(γ, k) = Cν(γ
∗, k).

Proof. The pairing measure σ = µd with d = γ − 1. This d value coincides with δa(γ) with

a = 1, so Theorem 3.2 applies. The preferred measure ν = µd with d = γ+1
3 . This d value

coincides with δa(γ) with a = 1
3 , so Theorem 3.2 again applies. □

Remark 3.8. In addition to σ and ν, Barrett and Edholm [7, Section 6.2.2] also introduce
the dual preferred measure ν∗ on a C-convex hypersurface S as the pullback of the preferred
measure on the dual hypersurface S∗. (Recall the discussion in Section 2.1 above, where
these three measures are related by the property

√
νν∗ = σ.)

When S =Mγ ,

ν∗ = r
5γ−7

3 dr ∧ dθ ∧ ds,
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so ν∗ = µd with d = 5γ−7
3 . It follows from (1.9) that 5γ−7

3 ∈ I0(γ), meaning that L is

bounded on L2(Mγ , ν
∗). Since this d value equals δa(γ) with a = 5

3 , Theorem 3.2 implies

Hölder symmetry: if we set Cν∗(γ, k) := J
(5γ−7

3 , γ, k
)
, then Cν∗(γ, k) = Cν∗(γ

∗, k). ♢

Remark 3.9. When γ = 2, the function δa(γ) = a(γ − 2) + 1 ≡ 1 for every a. Thus each
pair of function spaces L2(Mγ , µd) and L

2(Mγ∗ , µd∗) with parallel symbol function behavior
reduces to a pairing of L2(M2, µ1) with itself when γ = 2. We note that on this space, the
Leray transform coincides with the Szegő projection. ♢

3.2. Heisenberg monotonicity. From (1.6), observe that the symbol function greatly
simplifies when γ = 2:

(3.10) J(d, 2, k) =
Γ
(
k + 1+d

2

)
Γ
(
k + 3−d

2

)
Γ(k + 1)2

.

A fraction involving Γ-functions in this form is sometimes called Gurland’s ratio; see [20].

Proposition 3.11. For each non-negative integer k,

∥Lk∥L2(M2,µd)
= ∥Lk∥L2(M2,µ2−d)

.

Proof. From (3.10) it is immediate that J(d, 2, k) = J(2− d, 2, k). Now use (1.10). □

Remark 3.12. When γ = 2 and d = 1, we see that ∥Lk∥L2(M2,µ1)
= 1 for every k. This of

course is unsurprising, since the Leray transform is the Szegő projection on L2(M2, µ1). ♢

Theorem 3.13. Let d be any real number. The function k 7→ J(d, 2, k) is decreasing
whenever it is finite. Consequently,

∥Lk∥L2(M2,µd)
≥ ∥Lk+1∥L2(M2,µd)

.

The inequality is strict for d ̸= 1.

Proof. When d = 1, Remark 3.12 says that the norm of Lk is equal to 1 for all k.

When d ̸= 1, we see from (1.9) that J(d, 2, k) is finite if and only if

d ∈ Ik(2) = (−2k − 1, 2k + 3).

Since Ik(2) ⊂ Ik+1(2) and these intervals exhaust the real line, it is clear that J(d, 2, γ) can
be infinite for at most a finite number of integers k.

Observe that d ∈ Ik(2) if and only if 2− d ∈ Ik(2). Proposition 3.11 says it is sufficient
to consider the case when d > 1, which we now assume for the rest of the proof.

Taking logarithms, (3.10) becomes

log J(d, 2, k) = log Γ
(
k + 1+d

2

)
+ log Γ

(
k + 3−d

2

)
− 2 log Γ(k + 1).

Now treat k as a continuous variable and differentiate:

(3.14)
∂

∂k
log J(d, 2, k) = ψ(k + 1+d

2 ) + ψ(k + 3−d
2 )− 2ψ(k + 1),

where ψ is the digamma function defined in (1.16). Now consider the right-hand side of
(3.14) in two separate pieces. By the mean value theorem,

(3.15a) ψ
(
k + 1+d

2

)
− ψ(k + 1) = ψ′(ξ1)

(
d−1
2

)
,

for some ξ1 ∈
(
k + 1, k + 1+d

2

)
. Similarly,

(3.15b) ψ
(
k + 3−d

2

)
− ψ(k + 1) = −ψ′(ξ2)

(
d−1
2

)
,
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for some ξ2 ∈
(
k + 3−d

2 , k + 1
)
.

Combining (3.15a), (3.15b) and (3.14) we use the mean value theorem again,

∂

∂k
log J(d, 2, k) =

(
d−1
2

)
(ψ′(ξ1)− ψ′(ξ2)) =

(
d−1
2

)
ψ′′(ξ3)(ξ1 − ξ2),

for some ξ3 ∈ (ξ2, ξ1). It is well-known that ψ′′ < 0 on the positive reals (see, e.g., formula
(3.17) below). This means that k 7→ log J(d, 2, k) is strictly decreasing for k ∈ [0,∞),
which implies that k 7→ J(d, 2, k) is strictly decreasing for k ∈ [0,∞). Now restrict k to the
non-negative integers and recall (1.10) to complete the proof. □

By Proposition 1.5, the Leray transform is bounded on L2(M2, µd) if and only if d ∈
I0(2) = (−1, 3). When this holds, the norm of the full Leray transform can be computed:

Corollary 3.16. Let d ∈ (−1, 3). The norm of the Leray transform on L2(M2, µd) is

∥L∥L2(M2,µd)
=

{√
π
2 (1− d) sec

(
dπ
2

)
, d ∈ (−1, 1) ∪ (1, 3)

1, d = 1.

This formula is continuous at d = 1.

Proof. The d = 1 case can be seen directly from (3.10) (also see Remark 3.12) and L’Hôpital’s
rule shows continuity at d = 1. When d ̸= 1, Theorem 3.13 says k 7→ J(d, γ, k) is strictly
decreasing in k. Thus by (2.13),

∥L∥L2(M2,µd)
=

√
J(d, 2, 0).

Now compute:

J(d, 2, 0) =
(
1−d
2

)
Γ
(
1− 1−d

2

)
Γ
(
1−d
2

)
=

(
1−d
2

)
π csc

(
π
2 − dπ

2

)
= π

2 (1− d) sec
(
dπ
2

)
.

In this computation we have used the factorial property of the Γ-function along with Euler’s
reflection formula: Γ(z)Γ(1− z) = π csc(πz). □

3.3. Polygamma functions and ratios of successive symbols. In this section, once
again consider γ ̸= 2 and set δa(γ) = a(γ − 2) + 1.

The polygamma functions are the successive derivatives of the digamma function ψ,
defined in (1.16). For integers m ≥ 1, these functions admit the following series represen-
tations; see [1, Equation 6.4.10]:

(3.17) ψ(m)(r) = (−1)m+1m!

∞∑
j=1

1

(r + j − 1)m+1
.

The following polygamma combination is closely tied to Leray symbol function and is
prominently featured throughout the paper (recall Figure 2 in Section 1):

(3.18a) Φ(r, q) = 2rψ′(r + 1− q) + r2ψ′′(r + 1− q).

In light of (3.17), it is often useful to write this function as a series

(3.18b) Φ(r, q) =

∞∑
j=1

2r(j − q)

(r + j − q)3
.

The establishment of new inequalities related to the polygamma functions has been an
active area of research for decades; see [2, 3, 11, 12, 13, 14, 15, 20] for results with similar
flavor to those we prove below. A typical way in which new polygamma inequalities are
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obtained is to show that some auxiliary function is completely monotone (see Section 4.2), a
checkable condition thanks to the celebrated Bernstein-Widder theorem (see Theorem 4.7).

In Sections 4 and 5, we prove inequalities involving Φ(r, q) and related functions, both by
use of Bernstein-Widder and in situations where it fails to apply. Our inequalities appear
to be new and the methods are likely adaptable to more general settings.

For later convenience, we re-frame the finiteness of the symbol function in terms of δ1−q.
(Setting a = 1− q in (3.1) yields a symmetric formulation of the following result):

Lemma 3.19. Let γ ̸= 2. The symbol function J(δ1−q(γ), γ, k) is finite for all non-negative
integers k if and only if

|q| < γ

|γ − 2|
.

Proof. By Proposition 1.8, J(δ1−q(γ), γ, k) is finite for all k if and only if

δ1−q(γ) ∈
∞⋂
k=0

Ik(γ) = I0(γ) = (−1, 2γ − 1).

For γ > 2 this means

−1 < (1− q)(γ − 2) + 1 < 2γ − 1 ⇐⇒ − γ

γ − 2
< q <

γ

γ − 2
,

confirming the inequality. When γ < 2,

−1 < (1− q)(γ − 2) + 1 < 2γ − 1 ⇐⇒ − γ

2− γ
< q <

γ

2− γ
,

confirming the inequality. □

Remark 3.20. Observe that the estimate appearing in Lemma 3.19 is Hölder symmetric,
i.e., invariant under the change of variable γ 7→ γ∗. ♢

Lemma 3.21. Let γ ̸= 2 and |q| < γ

|γ − 2|
, so that J(δ1−q(γ), γ, k) is finite for k ≥ 0.

(1) If Φ(r, q) < 1 for r > q, then k 7→ J(δ1−q(γ), γ, k) is strictly decreasing on the
non-negative integers.

(2) If Φ(r, q) > 1 for r > q, then k 7→ J(δ1−q(γ), γ, k) is strictly increasing on the
non-negative integers.

Proof. Strict increasing (resp. decreasing) behavior of the function k 7→ J(δ1−q(γ), γ, k)
would follow by showing the below ratio is strictly greater than 1 (resp. strictly less than
1) for non-negative integers k. Throughout the proof, set a = 1− q:

J(δa(γ), γ, k + 1)

J(δa(γ), γ, k)
=

Γ
(
2k+4+(γ−2)a

γ

)
Γ
(
2k + 4− 2k+4+(γ−2)a

γ

)
Γ
(
2k+2+(γ−2)a

γ

)
Γ
(
2k + 2− 2k+2+(γ−2)a

γ

) (
γ

2k + 2

)2

(γ − 1)
2
γ
−2

By the Hölder symmetry of the symbol function (Theorem 3.2), it is sufficient to restrict
analysis to γ ∈ (1, 2); upon making the substitution x = 2

γ , this is equivalent to analyzing

the behavior of the following function for x ∈ (1, 2):

Γ ((k + 2− a)x+ a) Γ ((k + 2− a)(2− x) + a)

Γ ((k + 1− a)x+ a) Γ ((k + 1− a)(2− x) + a)
· x

−x(2− x)x−2

(k + 1)2
:= eA(k,x)

Upon taking a logarithm, observe that A(k, 1) ≡ 0, and further that A(k, x) can be written

A(k, x) = B(k, x) +B(k, 2− x),
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where

(3.22) B(k, x) := log

[
Γ ((k + 2− a)x+ a)

Γ ((k + 1− a)x+ a)

]
− x log x− log(k + 1).

For the remainder of the proof we focus on case (2), noting that the same argument with
trivial modifications in appropriate places will prove case (1).

We have just seen that the statement

(3.23)
J(δa(γ), γ, k + 1)

J(δa(γ), γ, k)
> 1

for all non-negative integers k and γ ∈ (1, 2) is equivalent to the statement that A(k, x) > 0
for all non-negative integers k and x ∈ (1, 2).

Since A(k, 1) ≡ 0 for all non-negative integers k, the desired positivity of A(k, x) will
follow by establishing a stronger condition, namely, that for x ∈ (1, 2)

(3.24)
∂A

∂x
(k, x) =

∂B

∂x
(k, x)− ∂B

∂x
(k, 2− x) > 0.

Estimate (3.24) will in turn follow if it can be established that ∂B
∂x (k, x) is strictly in-

creasing for x ∈ (1, 2), since 0 < 2− x < x for such x. It would thus suffice to show

(3.25)
∂2B

∂x2
(k, x) > 0.

Recalling the representation (3.17) of ψ′ by a series, calculation now shows

∂2B

∂x2
(k, x) = (k + 2− a)2ψ′((k + 2− a)x+ a)− (k + 1− a)2ψ′((k + 1− a)x+ a)− 1

x

=
∞∑
j=1

(k + 2− a)2

(j + (k + 2− a)x+ (a− 1))2
−

∞∑
j=1

(k + 1− a)2

(j + (k + 1− a)x+ (a− 1))2
− 1

x

= D(k + 1, x)−D(k, x),(3.26)

where

(3.27) D(k, x) :=

∞∑
j=1

(k + 1− a)2

(j + (k + 1− a)x+ (a− 1))2
− k

x
.

Temporarily regard k as a continuous variable. By (3.26), it would now be sufficient to
show that D(k, x) increases as a function of k ∈ [0,∞) in order to conclude that estimate
(3.25) holds. We claim that for x ∈ (1, 2),

∂D

∂k
(k, x) =

∞∑
j=1

∂

∂k

[
(k + 1− a)2

(j + (k + 1− a)x+ (a− 1))2

]
− 1

x

=

∞∑
j=1

2(k + 1− a)(j + a− 1)

(j + (k + 1− a)x+ (a− 1))3
− 1

x
> 0.(3.28)

The inequality in (3.28) is equivalent to saying that, for k ∈ [0,∞) and x ∈ (1, 2),

(3.29)

∞∑
j=1

2x(k + 1− a)(j + a− 1)

(j + (k + 1− a)x+ (a− 1))3
> 1.
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Now substituting q = 1− a and r = x(k + 1− a) = x(k + q). The inequality (3.29) would
follow by showing that, for r > q,

(3.30)

∞∑
j=1

2r(j − q)

(j + r − q)3
= Φ(r, q) > 1.

This is the condition listed in case (2) of the theorem. Retracing our steps, we see that
inequality (3.30) implies inequality (3.28). Now, by (3.26), this implies inequality (3.25).
This implies (3.24), which in turn shows (3.23), meaning that k 7→ J(δ1−q(γ), γ, k) is an
increasing function on the non-negative integers.

To prove case (1), return to (3.23) and retrace the same steps, changing “>” to “<” and
“increases” to “decreases” in all necessary places. □

4. Polygamma inequalities and complete monotonicity

4.1. An initial estimate. We now examine the properties of

Φ(r, q) = 2rψ′(r + 1− q) + r2ψ′′(r + 1− q).

We start from well-known upper and lower estimates on the polygamma functions; see [15,
Theorem 3]. If x > 0 and m is a positive integer, then

(4.1)
(m− 1)!

xm
+

m!

2xm+1
< (−1)m+1ψ(m)(x) <

(m− 1)!

xm
+

m!

xm+1
.

We use this to describe the behavior of Φ(r, q) as r → ∞. (Compare with Figure 2.)

Proposition 4.2. Let q be a fixed real number. Then

lim
r→∞

Φ(r, q) = 1.

Proof. Directly from (4.1), we have for r > max{q − 1, 0},

2r2 − 2rq + 3r

(r + 1− q)2
< 2rψ′(r + 1− q) <

2r2 − 2rq + 4r

(r + 1− q)2
,

and

−(r − q + 3)r2

(r + 1− q)3
< r2ψ′′(r + 1− q) < −(r − q + 2)r2

(r + 1− q)3
.

Now combine these:

(4.3)
r3 + (2− 3q)r2 + (3− 5q + 2q2)r

(r + 1− q)3
< Φ(r, q) <

r3 + (4− 3q)r2 + (4− 6q + 2q2)r

(r + 1− q)3
.

Taking the limit as r → ∞ gives the result. □

Remark 4.4. Given q, we must show either Φ(r, q) > 1 for r > q, or Φ(r, q) < 1 for r > q
in order to apply Lemma 3.21. This requires better estimates than those obtained in (4.3).
This is easily seen when q = 0, in which case

r3 + 2r2 + 3r

r3 + 3r2 + 3r + 1
< Φ(r, 0) <

r3 + 4r2 + 4r

r3 + 3r2 + 3r + 1
.

This lower bound is always less than 1, while the upper bound is eventually greater than 1.
Similarly, neither the upper nor lower bound in (4.3) is strong enough to warrant application
of Lemma 3.21 for any q. Our goal is now to improve the estimates on Φ(r, q). ♢
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4.2. The Bernstein-Widder theorem. Let us recall another well-known formula for the
polygamma functions ψ(m); see [1, Equation 6.4.1]:

(4.5) ψ(m)(r) = (−1)m+1

∫ ∞

0

tme−rt

1− e−t
dt.

Let f be a real-valued function defined on (c,∞), for some c ∈ R. We say that f is
strictly completely monotone on (c,∞) if it is of class C∞ and

(4.6) (−1)m
dm

drm
f(r) > 0

for all non-negative integers m and r > c.

Strictly completely monotone functions are characterized by the following theorem, which
can be found in [23, page 161].

Theorem 4.7 (Bernstein-Widder). A function f is strictly completely monotone on (c,∞)
if and only if f(r−c) is the Laplace transform of a finite positive Borel measure µ on (c,∞).
In other words,

f(r − c) =

∫ ∞

0
e−rt dµ(t).

Our goal is to use Bernstein-Widder to analyze Φ(r, q) and closely related functions.

Let us define

(4.8a) Θ(r, q) = r2ψ′(r + 1− q)

and observe that

(4.8b)
∂Θ

∂r
(r, q) = Φ(r, q).

Lemma 4.9. For x > 0 we have the following

(4.10) Θ(x+ q, q) = x+ 2q − 1

2
+

∫ ∞

0

M(t, q)

(et − 1)3
e−xt dt,

where

(4.11) M(t, q) = g0(t)− g1(t)q + g2(t)q
2,

and g0, g1, g2 are positive functions on (0,∞). Explicitly,

g0(t) = et(2− 2et + t+ tet),(4.12a)

g1(t) = 2(et − 1)(1− et + tet),(4.12b)

g2(t) = t(et − 1)2.(4.12c)

Proof. From definition (4.8a) and (4.5) we have

Θ(x+ q, q) = (x+ q)2
∫ ∞

0

te−(x+1)t

1− e−t
dt =

∫ ∞

0

teqt

et − 1
(x+ q)2e−(x+q)t dt.

Integrate by parts twice, setting

u1 =
teqt

et − 1
, dv1 = (x+ q)2e−(x+q)t dt,

for the first application, and u2 =
du1
dt and dv2 = v1 dt for the second. This means that

u2 =
et − 1− tet − (t− tet)q

(et − 1)2
eqt, v1 = −(x+ q)e−(x+q)t,
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and consequently,

du2 =
g0(t)− g1(t)q + g2(t)q

2

(et − 1)3
eqt dt, v2 = e−(x+q)t,

where g0, g1, g2 are given in the statement of the theorem. Now,

Θ(x+ q, q) =

∫ ∞

0
u1 dv1 = u1v1

∣∣∣∞
0

−
∫ ∞

0
v1 du1

= u1v1

∣∣∣∞
0

− u2v2

∣∣∣∞
0

+

∫ ∞

0
v2 du2

= (x+ q)−
(
1
2 − q

)
+

∫ ∞

0

M(t, q)

(et − 1)3
e−xt dt.(4.13)

Using the definitions of M(t, q) and the gj(t) given above, we see that for t near 0,

M(t, q) =
(
q2 − q +

1

6

)
t3 +

(
q2 − 7q

6
+

1

4

)
t4 +O

(
t5
)

On the other hand, if t is large enough (say, t > 1), there is a constant Cq such that

|M(t, q)| ≤ Cq te
2t.

From these estimates on M(t, q) we see that the integral appearing in (4.13) converges for
x > 0. It now only remains to show the positivity of the gj(t) for t > 0.

Let us first set h0(t) = 2− 2et + t+ tet, so that g0(t) = eth0(t). Calculating derivatives,

h′0(t) = 1 + (t− 1)et, h′′0(t) = tet,

and so 0 = h0(0) = h′0(0) = h′′(0). Also, clearly h′′0(t) > 0, for t > 0 which now implies that
h′0(t) > 0, which in turn implies h0(t) > 0. Thus g0(t) > 0 for t > 0.

Now let h1(t) = 1− et + tet, so that g1(t) = 2(et − 1)h1(t). We see that

h′1(t) = tet,

and so 0 = h1(0) = h′1(0). Clearly h
′
1(t) > 0 for t > 0, which implies h1(t) > 0 and therefore

g1(t) > 0 for t > 0.

Finally, it is immediate from the formula that g2(t) > 0 for t > 0. □

4.3. Completely monotone functions. We show that, for real q values outside the open
unit interval, the following function is strictly completely monotone on x > 0:

(4.14) Fq(x) = Θ(x+ q, q)− x− 2q +
1

2
.

Theorem 4.15. Let q ∈ (−∞, 0] ∪ [1,∞). The function x 7→ Fq(x) is strictly completely
monotone on x > 0.

Proof. From Lemma 4.9, we have

(4.16) Fq(x) =

∫ ∞

0

M(t, q)

(et − 1)3
e−xt dt,

where M(t, q) = g0(t)− g1(t)q + g2(t)q
2, and the gj are given in (4.12).
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Regarding M(t, q) as a quadratic in the q variable, the discriminant is

∆(t) = g1(t)
2 − 4g0(t)g2(t)

= 4− 16et + 24e2t − 16e3t + 4e4t + (−4et + 8e2t − 4e3t)t2

= 4(et − 1)2(1− 2et + e2t − ett2).(4.17)

The roots to M(t, q) = 0 are therefore given by taking

q =
g1(t)±

√
∆(t)

2g2(t)
;

we now label these roots as

s1(t) =
tet + 1− et +

√
1− 2et + e2t − t2et

t(et − 1)
,(4.18a)

s2(t) =
tet + 1− et −

√
1− 2et + e2t − t2et

t(et − 1)
.(4.18b)

Observe that the term under the square root is positive for t > 0:

1− 2et + e2t − t2et > 0 ⇐⇒ cosh t > 1 +
t2

2
⇐⇒

∞∑
j=2

t2j

(2j)!
> 0.

We now claim for t > 0 that

(4.19) 0 < s2(t) < s1(t) < 1.

The fact that s2(t) < s1(t) is immediate. The inequality s2(t) > 0 follows from the fact
that M(t, q) > 0 for all q ≤ 0 and t > 0 (since each gj(t) > 0 for t > 0).

For the remaining inequality we show that it is both true and sharp. Indeed,

s1(t) < 1 ⇐⇒ tet − t > tet + 1− et +
√
1− 2et + e2t − t2et

⇐⇒ et − 1− t >
√

1− 2et + e2t − t2et

⇐⇒ (et − 1)2 − 2t(et − 1) + t2 > (et − 1)2 − t2et

⇐⇒ (t− 2)et + t+ 2 > 0.

Now set E(t) := (t− 2)et + t+ 2. Then

E′(t) = (t− 1)et + 1, E′′(t) = tet,

and so 0 = E(0) = E′(0) = E′′(0). Since E′′(t) > 0 for t > 0, we have that E′(t) > 0 which
in turn implies that E(t) > 0, thus confirming that s1(t) < 1. (Notice that the function
E, along with the same line of reasoning given here, appeared in Lemma 4.9, where the
function was called h0.)

For the sharpness of this inequality, observe that

lim
t→∞

s1(t) = lim
t→∞

tet

tet
·
1 + t−1(e−t − 1) +

√
t−2(1− e−t)2 − e−t)

1− e−t
= 1.

Now since 0 < s2(t) < s1(t) < 1 for all t > 0, we conclude that M(t, q) > 0 for t > 0
and q ∈ (−∞, 0] ∪ [1,∞). The Bernstein-Widder theorem now shows that Fq(x) is strictly
completely monotone for q in this range. □
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Remark 4.20. The proof of Theorem 4.15 shows the right endpoint q = 1 of the interval
0 < s2(t) < s1(t) < 1 is sharp. No claim of sharpness is made for the left endpoint,
however. Numerical evidence suggests that s2(t) is a strictly increasing function on t > 0,
which would imply that the left endpoint can be slightly improved from q = 0 to

q = lim
t↘0

s2(t) =
3−

√
3

6
≈ 0.211325.

In any case, we can say that Fq(x) fails to be completely monotone for q ∈
(
3−

√
3

6 , 1
)
. ♢

Corollary 4.21. Choose q ∈ (−∞, 0] ∪ [1,∞). Then Φ(r, q) < 1 for r > q.

Proof. Fix q ∈ (−∞, 0] ∪ [1,∞) and set x = r − q. Theorem 4.15 now says the function

r 7→ Fq(r − q) = Θ(r, q)− r − q +
1

2

is strictly completely monotone for r > q. Now differentiate in r to see that

∂Θ

∂r
(r, q)− 1 < 0,

for all r > q. Since ∂Θ
∂r (r, q) = Φ(r, q) by (4.8b), we obtain the result. □

Remark 4.22. Notice that q = 2
3 (the q-value corresponding to the preferred symbol func-

tion) lies in the interval for which complete monotonicity of Fq(x) is known to fail; see
Remark 4.20. This means the Berstein-Widder approach is not applicable, and the pre-
ferred symbol function must be handled using other means (see Section 5). ♢

4.4. Consequences for the Leray transform. The results in Sections 4.2 and 4.3 are
now combined with Lemma 3.21. Recall (Proposition 1.5) that the Leray transform is
bounded on L2(Mγ , µd) if and only if d ∈ (−1, 2γ− 1) = I0(γ). We now see that the norms
of the sub-Leray operators Lk are strictly decreasing in k for a range of d values with a
combined length of more than half the length of I0(γ).

Theorem 4.23. Let Lk denote the sub-Leray operator for each non-negative integer k.

(1) If γ > 2 and d ∈ (−1, 1]∪ [γ − 1, 2γ − 1), then the function k 7→ J(d, γ, k) is strictly
decreasing on the non-negative integers. Thus

∥Lk∥L2(Mγ ,µd)
> ∥Lk+1∥L2(Mγ ,µd)

.

(2) If γ < 2 and d ∈ (−1, γ − 1]∪ [1, 2γ − 1), then the function k 7→ J(d, γ, k) is strictly
decreasing on the non-negative integers. Thus

∥Lk∥L2(Mγ ,µd)
> ∥Lk+1∥L2(Mγ ,µd)

.

Consequently, in both settings, the norm of the full Leray transform is

∥L∥L2(Mγ ,µd)
= ∥L0∥L2(Mγ ,µd)

.

Proof. By Corollary 4.21, Φ(r, q) < 1 for q ∈ (−∞, 0] ∪ [1,∞) and r > q. On the other
hand, Lemma 3.19 says that the symbol function J(δ1−q(γ), γ, k) is finite for all non-negative
integers k if and only if |q| < γ

|γ−2| .

Upon intersecting these two intervals, Lemma 3.21 says that for γ ̸= 2, the function
k 7→ J(δ1−q(γ), γ, k) is strictly decreasing on the non-negative integers for

q ∈
(

−γ
|γ−2| , 0

]
∪
[
1, γ

|γ−2|

)
.



LERAY SYMBOL FUNCTION 19

Let us write

(4.24) d = δ1−q(γ) = (1− q)(γ − 2) + 1

and recall that
√
J(d, γ, k) = ∥Lk∥L2(Mγ ,µd)

by equation (1.10).

Now consider four separate cases:

When γ > 2 and q ∈
[
1, γ

γ−2

)
, equation (4.24) implies that k 7→ ∥Lk∥L2(Mγ ,µd)

is strictly

decreasing for d ∈ (−1, 1].

When γ > 2 and q ∈
( −γ
γ−2 , 0

]
, equation (4.24) implies that k 7→ ∥Lk∥L2(Mγ ,µd)

is strictly

decreasing for d ∈ [γ − 1, 2γ − 1).

When γ < 2 and q ∈
[
1, γ

2−γ

)
, equation (4.24) implies that k 7→ ∥Lk∥L2(Mγ ,µd)

is strictly

decreasing for d ∈ [1, 2γ − 1).

When γ < 2 and q ∈
( −γ
2−γ , 0

]
, equation (4.24) implies that k 7→ ∥Lk∥L2(Mγ ,µd)

is strictly

decreasing for d ∈ (−1, γ − 1].

This establishes both (1) and (2). In all settings encompassed by these two cases, the
L2(Mγ , d)-norm of Lk decreases with k, implying that L0 is the sub-Leray operator with
the biggest norm. Equation (2.13) now says that ∥L∥L2(Mγ ,d)

= ∥L0∥L2(Mγ ,d)
. □

Both the pairing measure σ = rγ−1 dr ∧ dθ ∧ ds (d = γ − 1) and Lebesgue measure
µ1 = r dr ∧ dθ ∧ ds (d = 1) fall within the range of applicability of Theorem 4.23. We now
record the norms of the Leray transform in both settings:

Corollary 4.25. Let σ = rγ−1 dr ∧ dθ ∧ ds. The Leray transform is bounded on L2(Mγ , σ)
with norm

∥L∥L2(Mγ ,σ)
=

γ

2
√
γ − 1

.

Proof. Since σ corresponds to d = γ − 1, Theorem 4.23 applies. Thus by (1.6),

∥L∥L2(Mγ ,σ)
= ∥L0∥L2(Mγ ,σ)

=
√
Cσ(γ, 0) =

γ

2
√
γ − 1

.

Recall that the pairing symbol function Cσ(γ, k) = J(γ − 1, γ, k). □

Remark 4.26. Barrett and Edholm calculated ∥L∥L2(Mγ ,σ)
in [7, Proposition 4.18] using a

different approach. The argument given is tailored to the pairing measure (q = 0) and
seems not to generalize to other measure settings. ♢

Corollary 4.27. Let µ1 = r dr∧dθ∧ds. The Leray transform L is bounded on L2(Mγ , µ1)
with norm

∥L∥L2(Mγ ,µ1)
=

{
(γ − 1)

1
γ
−1

√
π
4 (γ − 2)γ csc

(
2π
γ

)
, γ ∈ (1, 2) ∪ (2,∞)

1, γ = 2.

The formula is continuous at γ = 2.

Proof. Since µ1 corresponds to d = 1, Theorem 4.23 applies once again for γ ̸= 2:

∥L∥L2(Mγ ,µ1)
= ∥L0∥L2(Mγ ,µ1)

=
√
J(1, γ, 0) = (γ − 1)

1
γ
−1

√(γ
2

)2
Γ
(
2
γ

)
Γ
(
2− 2

γ

)
= (γ − 1)

1
γ
−1

√
π
4 (γ − 2)γ csc

(
2π
γ

)
,

where we’ve used the factorial property of the Γ-function as well as Euler’s reflection formula.

The γ = 2 case follows from (3.10) and L’Hôpital’s rule confirms continuity. □
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5. The preferred symbol function

In this section we prove that the preferred symbol function k 7→ Cν(γ, k), γ ̸= 2, is
strictly increasing, in stark contrast with the strictly decreasing symbol function behavior
seen in the eariler parts of the paper. Our goal is to show

Φ(r, 23) > 1, for r > 2
3 .

Unlike the work in Section 4, we are unable to invoke complete monotonicity and the
Berstein-Widder theorem to prove this inequality, since it is known that the related function
Fq is not completely monotone for q = 2

3 ; see Remark 4.20.

In place of the integral representations used in the previous section, we use here the
infinite series description obtained from (3.18b):

(5.1) Φ
(
r, 23

)
=

∞∑
j=1

fr(j), where fr(j) =
18r(3j − 2)

(3r + 3j − 2)3
.

5.1. Two tools. Two classical results are crucial to the subsequent analysis.

The first is Descartes’ Rule of Signs (see [22] for a simple proof):

Proposition 5.2 (Descartes). Let p be a single variable polynomial with real coefficients,
with monomial terms arranged so that exponents appear in ascending order. The number
of positive roots of p (counted with multiplicities) is either (i) equal to the number of sign
changes between consecutive (non-zero) coefficients, or (ii) less than that by an even number.

The second is the Euler-Maclaurin formula relating sums and integrals; see [10, Section
9.5]. For our purposes it is sufficient to use the following first-order version:

Proposition 5.3 (Euler-Maclaurin). Let m < n be integers and f ∈ C1[m,n]. Then

(5.4)

n∑
j=m+1

f(j) =

∫ n

m
f(x) dx+

f(n)− f(m)

2
+

∫ n

m
f ′(x)P1(x) dx,

where P1(x) = B1(x − ⌊x⌋), B1(x) = x − 1
2 is the first Bernoulli polynomial and ⌊x⌋ the

greatest integer less than or equal to x.

We refer to the rightmost integral in (5.4) as the Bernoulli integral.

5.2. Applying Euler-Maclaurin. We use the Euler-Maclaurin formula to re-express the
sum in (5.1), then use carefully chosen bounds to estimate the Bernoulli integral. After a
considerable amount of analysis, the behavior of r 7→ Φ

(
r, 23

)
is reduced to a problem about

the positive real roots of an explicit polynomial of degree 16. This in turn is completely
understood using Descartes’ Rule of Signs and direct evaluation.

Theorem 5.5. If r > 2
3 , then Φ

(
r, 23

)
= 2rψ′(r + 1

3

)
+ r2ψ′′(r + 1

3

)
> 1.

Proof. Start with the function fr from (5.1) and use the first order Euler-Maclaurin formula
(5.4) with m = 0 and sending n→ ∞. Computation yields the first two terms on the right
side of (5.4):

(5.6)

∫ ∞

0
fr(x) dx = 1− 4

(3r − 2)2
,

fr(∞)− fr(0)

2
=

18r

(3r − 2)3
,
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where fr(∞) = limn→∞ fr(n). Computation also shows that

f ′r(x) =
54r(4 + 3r − 6x)

(3x+ 3r − 2)4
,

from which the following expression for the Bernoulli integral in (5.4) is calculated:∫ ∞

0
f ′r(x)P1(x) dx =

∞∑
N=0

∫ 1

0
f ′r(x+N)B1(x) dx =

∞∑
N=0

81r(9N2 − 3N − 9r2 − 2)

(3r + 3N + 1)3(3r + 3N − 2)3
.

Denote the rational function appearing in the sum above by

(5.7) S(r,N) =
81r(9N2 − 3N − 9r2 − 2)

(3r + 3N + 1)3(3r + 3N − 2)3
.

Now inserting (5.6) and (5.7) into (5.4), we see by (5.1) that

Φ
(
r, 23

)
=

∞∑
j=1

fr(j) = 1− 4

(3r − 2)2
+

18r

(3r − 2)3
+

∞∑
N=0

S(r,N)

= 1 +
6r − 1

(3r + 1)3
+

∞∑
N=1

S(r,N).(5.8)

(Note that we have peeled off the N = 0 term from the summation.)

It thus remains to show that

(5.9)
6r − 1

(3r + 1)3
+

∞∑
N=1

S(r,N)

is strictly positive for r > 2
3 .

5.2.1. The function S(r, x). We now show that x 7→ S(r, x) (x is for now regarded as a
non-negative real variable) has a single local extrema (a maximum) on [0,∞). Indeed,

∂S

∂x
(r, x) =

243r[(−4 + 39r − 36r2 + 162r3) + (18 + 18r + 216r2)x+ (54− 54r)x2 − 108x3]

(3r + 3x+ 1)4(3r + 3x− 2)4

Write the cubic polynomial in x appearing in the brackets above by

(5.10) pr(x) := (−4 + 39r − 36r2 + 162r3) + (18 + 18r + 216r2)x+ (54− 54r)x2 − 108x3.

It is easily checked that for r > 2
3 the coefficients of 1 and x are positive, while the

coefficient of x2 changes sign at r = 1, and the coefficient of x3 is a negative constant. Thus
for all r in this range, there is exactly one sign change in consecutive coefficients when the
monomial terms of pr(x) are considered in ascending order. Descartes’ Rule of Signs thus
guarantees a unique positive real root of the function x 7→ pr(x), where the values of pr(x)
change from positive to negative. Denote this root by Qr.

We claim that Qr ∈
(
3r
2 + 1

6 ,
3r
2 + 1

3

)
: Indeed, for r > 2

3 ,

pr
(
3r
2 + 1

6

)
= 81r > 0,

pr
(
3r
2 + 1

3

)
= 4 + 66r − 225

2 r
2 < 0.

(A more precise estimate on Qr is obtained in Lemma A.3.)

We see from (5.7) that x 7→ S(r, x) starts negative, then becomes (and remains) positive
for x large enough, since the function tends to zero as x → ∞ and its derivative changes
signs exactly once. In particular, the global maximum value of S(r,Qr) is positive.
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We now trivially re-write the quantity in (5.9) as

(5.11)
6r − 1

(3r + 1)3
+ S(r, 1) + S(r, 2) +

∞∑
N=3

S(r,N).

(Separating out the N = 1 and N = 2 terms from the rest of the summation simplifies the
following estimate.) We claim that

(5.12)

∞∑
N=3

S(r,N) >

∫ ∞

2
S(r, x) dx− S(r,Qr).

To see this, setK := ⌊Qr⌋, the greatest integer less than or equal to Qr. From the discussion
above, S(r, ·) increases on (1,K) and decreases on (K +1,∞). We now consider two cases:
K ≤ 2 and K ≥ 3.

When K ≤ 2, we have that S(r, ·) decreases on (3,∞), so

(5.13a)
∞∑

N=3

S(r,N) >

∫ ∞

3
S(r, x) dx.

But also note that

(5.13b) 0 >

∫ 3

2
S(r, x) dx− S(r,Qr),

since any integral over an interval of unit length is overestimated by the maximum value of
its integrand. Combining (5.13a) with (5.13b) now yields (5.12) for K ≤ 2.

When K ≥ 3, we are able to write

K∑
N=3

S(r,N) >

∫ K

2
S(r, x) dx,(5.14a)

∞∑
N=K+1

S(r,N) >

∫ ∞

K+1
S(r, x) dx.(5.14b)

Using reasoning identical to what justified (5.13b), we see that

(5.14c) 0 >

∫ K+1

K
S(r, x) dx− S(r,Qr).

Combining (5.14a), (5.14b) and (5.14c) yields (5.12) for K ≥ 3.

From (5.12), the following quantity is a lower bound on (5.9) = (5.11):

(5.15)
6r − 1

(3r + 1)3
+ S(r, 1) + S(r, 2) +

∫ ∞

2
S(r, x) dx− S(r,Qr).

We now show (5.15) is positive by computing the above integral and estimating S(r,Qr).

A partial fraction decomposition of S(r, x) helps to yield the following:

(5.16)

∫ ∞

2
S(r, x) dx =

3r(108r3 + 594r2 + 1035r + 616)

2(3r + 4)2(3r + 7)2
− 2r log

(
3r + 7

3r + 4

)
.

We also have the following estimate on S(r,Qr): for r >
2
3 ,

(5.17) S(r,Qr) <
16

3125r3
.

The proof this estimate is given in Lemma A.4 of the Appendix. (The right hand side of
(5.17) is the leading term in the Taylor expansion of S(r,Qr) at ∞; see Remark A.9.)
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We now use (5.16) and (5.17) to define a new function:

H(r) :=
6r − 1

(3r + 1)3
+ S(r, 1) + S(r, 2) +

∫ ∞

2
S(r, x) dx− 16

3125r3

=
6r − 1

(3r + 1)3
+

81r(4− 9r2)

(3r + 1)3(3r + 4)3
+

81r(28− 9r2)

(3r + 4)3(3r + 7)3
+(5.18)

+
3r(108r3 + 594r2 + 1035r + 616)

2(3r + 4)2(3r + 7)2
− 2r log

(
3r + 7

3r + 4

)
− 16

3125r3

Upon combining (5.16) with the bound (5.17), we see that H(r) is a lower bound for
(5.15). Our goal is now to show H(r) is positive for r > 2

3 . Note that while H is itself not a
rational function, its second derivative is rational. This is crucial to the coming argument.

5.2.2. The function H(r). We now present H in a more digestible fashion. Combining all
of the rational functions in (5.18) yields

(5.19) H(r) =
F1(r)

6250r3(3r + 1)3(3r + 4)3(3r + 7)3
− 2r log

(
3r + 7

3r + 4

)
,

where F1 is a polynomial of degree 12 with integer coefficients, the full formula of which
is included in Table 1 below. The leading coefficient of F1 (written c1,12 in the table) is
246 037 500 = 223955. Note that the denominator of the rational function in (5.19) is also a
polynomial of degree 12, with leading coefficient 123 018 750 = 213955. Thus,

lim
r→∞

H(r) = 2− 2 = 0.

Now differentiate H to obtain

(5.20) H ′(r) =
F2(r)

3125r4(3r + 1)4(3r + 4)4(3r + 7)4
− 2 log

(
3r + 7

3r + 4

)
,

where F2 is a polynomial of degree 15 with integer coefficients (the full formula is also
included in Table 1). Since the denominator polynomial has degree 16, it follows that

lim
r→∞

H ′(r) = 0.

Finally, differentiate H ′ to obtain

(5.21) H ′′(r) =
F3(r)

3125r5(3r + 1)5(3r + 4)5(3r + 7)5
,

where F3 is a polynomial of degree 16 with integer coefficients, the exact expression of which
is included in Table 1. Since the denominator polynomial has degree 20, it follows that

lim
r→∞

H ′′(r) = 0.

The following statements are easily verified from Table 1 below:

(1) The coefficients of the 1, r, · · · , r7 terms in F3 are negative.
(2) The coefficients of the r8, r9, · · · , r16 terms in F3 are positive.
(3) Descartes’ Rule of Signs thus guarantees that F3 has a unique positive real root.

Since the denominator of H ′′(r) is positive for r > 0, we see that H ′′(r) changes
sign exactly once for r > 0.

(4) Evaluation of the rational function H ′′ shows this sign change occurs inside the
interval

(
1
3 ,

2
3

)
:

H ′′ (1
3

)
= −437 616 243

25 600 000
, and H ′′ (2

3

)
=

49 618

2 278 125
.
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(5) We conclude that H ′′ > 0 on the interval
(
2
3 ,∞

)
.

(6) Since H ′′ > 0 on
(
2
3 ,∞

)
, H ′ strictly increases on this interval. Since lim

r→∞
H ′(r) = 0,

we conclude that H ′ < 0 on
(
2
3 ,∞

)
.

(7) Since H ′ < 0 on
(
2
3 ,∞

)
, H strictly decreases on this interval. Since lim

r→∞
H(r) = 0,

we conclude that H > 0 on
(
2
3 ,∞

)
.

Since H(r) is positive for r > 2
3 , the expression in (5.15) is positive for this range of r. This

in turn shows that (5.11) = (5.9) is positive for the same range of r. Thus by (5.8),

Φ
(
r, 23

)
=

∞∑
j=1

fr(j) > 1 +H(r) > 1

for r > 2
3 , completing the proof. □

n c1,n c2,n c3,n

0 −702 464 29 503 488 −3 304 390 656
1 −8 805 888 493 129 728 −69 038 161 920
2 −44 924 544 3 546 063 360 −640 689 315 840
3 −258 414 880 14 430 286 080 −3 491 968 112 640
4 1 018 286 832 77 896 979 088 −12 471 183 325 440
5 4 962 569 148 110 838 411 360 −48 684 386 314 944
6 11 832 384 015 −17 706 703 248 −111 582 268 515 360
7 23 240 472 534 244 982 773 080 −78 421 336 513 920
8 29 834 360 478 1 512 143 688 033 148 629 164 640 120
9 23 154 232 644 2 940 847 647 885 378 180 897 173 910
10 10 449 759 375 3 231 415 617 165 377 142 473 066 319
11 2 501 381 250 2 264 445 221 688 224 889 469 312 590
12 246 037 500 1 025 079 243 543 92 232 089 533 215
13 0 290 262 740 625 25 224 576 030 090
14 0 47 054 671 875 3 414 213 475 245
15 0 3 321 506 250 66 996 641 106
16 0 0 14 946 778 125

Table 1: Exact values of coefficients of polynomials Fj(r) =
∑
cj,nr

n in Section 5.2.2.

5.3. Consequences for Leray transform. We now prove that for γ ̸= 2, the L2(Mγ , ν)
norm of Lk is strictly increasing in k.

Theorem 5.22. Let γ ̸= 2. Then k 7→ Cν(γ, k) is a strictly increasing function on the
non-negative integers. Thus,

∥Lk∥L2(Mγ ,ν)
< ∥Lk+1∥L2(Mγ ,ν)

.

Proof. We have just seen in Theorem 5.5 that Φ
(
r, 23

)
> 1 for r > 2

3 . Lemma 3.21 now
applies, saying the preferred symbol function k 7→ Cν(γ, k) is strictly increasing on the
non-negative integers. Thus, recalling (1.7b) and (1.10), we have

(5.23) ∥Lk∥L2(Mγ ,ν)
=

√
Cν(γ, k) <

√
Cν(γ, k + 1) = ∥Lk+1∥L2(Mγ ,ν)

,

completing the proof. □
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We now easily deduce the L2(Mγ , ν) norm of the full Leray transform.

Theorem 5.24. The norm of the Leray transform on L2(Mγ , ν) is given by

∥L∥L2(Mγ ,ν)
=

√
γ

2
√
γ − 1

.

Proof of Theorem 5.24. The strictly increasing behavior seen in (5.23) combines with (2.13)
and Proposition 1.11 to give

∥L∥L2(Mγ ,ν)
= lim

k→∞
∥Lk∥ =

√
γ

2
√
γ − 1

,

completing the proof. □

Appendix A. Proof of the estimate on S(r,Qr)

In this appendix we prove (5.17), the crucial upper bound on S(r,Qr) that was used in
our proof of Theorem 5.5. Recall the definition of the rational function

S(r, x) =
81r(9x2 − 3x− 9r2 − 2)

(3r + 3x+ 1)3(3r + 3x− 2)3
.

It was shown in Section 5.2.1 that for r > 2
3 , x 7→ S(r, x) has a single local extrema (a

maximum) at x = Qr, where Qr is the unique positive root of the polynomial

(A.1) pr(x) = (−4 + 39r − 36r2 + 162r3) + (18 + 18r + 216r2)x+ (54− 54r)x2 − 108x3.

It was previously demonstrated that Qr ∈
(
3r
2 + 1

6 ,
3r
2 + 1

3

)
, but here sharper precision is

needed; see Remark A.9.

A.1. A sharper estimate on Qr. Let us define

m(r) =
3r

2
+

1

6
+

2

25r
− 21

3125r3
(A.2a)

M(r) =
3r

2
+

1

6
+

2

25r
.(A.2b)

(These functions are truncated Taylor expansions of Qr at ∞; see Remark A.9.)

Lemma A.3. Let m(r) and M(r) be as above. The following inequality holds

m(r) < Qr < M(r).

Proof. This can be seen from direct evaluation. Indeed,

pr(m(r)) =
81(12348 + 125r2(1515625r4 + 21000r2 − 5292))

515 r9
,

and it is easily checked that 1515625r4 + 21000r2 − 5292 > 0 for r > 2
3 . Since all other

terms in the formula are clearly positive, we conclude pr(m(r)) > 0.

Now calculate

pr(M(r)) = −
81

(
36 + 875r2

)
56 r3

,

which is clearly negative for r > 2
3 . Since Qr is the unique positive root of pr, we conclude

it must lie in the interval (m(r),M(r)). □

With these improved bounds on Qr we are ready to prove the desired estimate:
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Lemma A.4. The following estimate holds for r > 2
3

(A.5) S(r,Qr) <
16

3125r3
.

Proof. First define the following two variable polynomial

(A.6) W (r,Q) = 24(3r + 3Q+ 1)3(3r + 3Q− 2)3 − 3455r4(9Q2 − 3Q− 9r2 − 2).

This function is closely tied to the inequality in (A.5). Indeed,

W (r,Qr) > 0 ⇐⇒ S(r,Qr) <
16

3125r3
.

Now expand (A.6) and collect like-terms to express W as

W (r,Q) =
∑

j,k
aj,k r

jQk.

Let H be the Heaviside step function (the indicator function of the positive real numbers)
and define two closely related polynomials with positive integer coefficients:

U(r,Q) =
∑

j,k
H(aj,k) aj,k r

jQk(A.7a)

V (r,Q) = −
∑

j,k
H(−aj,k) aj,k rjQk.(A.7b)

Clearly, we have that

W (r,Q) = U(r,Q)− V (r,Q).

Since both U and V have only positive coefficients in their expansions, Lemma A.3 implies

U(r,Qr) > U(r,m(r)), V (r,M(r)) > V (r,Qr).

Our goal will be to prove that

U(r,m(r)) > V (r,M(r)),

which will imply W (r,Qr) > 0 and thereby give the result.

A.2. Analysis of the polynomials U(r,Q) and V (r,Q). The polynomials U and V are
obtained from W by expanding (A.6) and separating the monomial terms by the signs of
their coefficients. After collecting terms in this way, we may re-write (A.7a) and (A.7b) as
polynomials in the Q variable:

(A.8) U(r,Q) =
6∑

k=0

uk(r)Q
k, V (r,Q) =

5∑
k=0

vk(r)Q
k,

where the coefficient functions uk(r) and vk(r) are given in Table 2.

Now insert m(r) and M(r) into (A.8) and expand U(r,m(r)) − V (r,M(r)) out as a
rational function of the form ∑

bnr
n.

Using Table 2 together with degree considerations, we see that bn = 0 for n < −18 and
n > 6. Some of the remaining bj , including b5 and b6, are also equal to zero; see Table 4,
noting that βn = bn−18. But it is easily checked from (A.8) and Table 2 that b−18 ̸= 0,
which leads to the definition of the related polynomial

P (r) = r18(U(r,m(r))− V (r,M(r))) =
22∑
n=0

βnr
n
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k uk(r) vk(r)

0 2289789r6 + 502362r4 + 4752r3 + 864r2 11664r5 + 576r + 128

1 69984r5 + 701055r4 + 14256r2 + 1728r 15552r3 + 576

2 14256r + 864 2103165r4 + 116640r3 + 23328r2

3 233280r3 + 4752 116640r2 + 15552r

4 174960r2 58320r + 3888

5 69984r 11664

6 11664 0

Table 2: Coefficients polynomials in U(r,Q) and V (r,Q)

The exact values of the βn are listed in Table 4. But we can explain the next step of the
argument just by considering the signs of the βn in Table 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

+ 0 − − + + + − − − − + + + − − − − − − − 0 +

Table 3: Signs of coefficients βn in P (r)

Table 3 shows that the coefficients of P (r) change signs six times when its terms are listed
in ascending order; Descartes’ Rule of Signs thus says that the number of positive real roots
of P is either 0, 2, 4 or 6. This is not precise enough for our purposes, but we can cut down
the number of sign changes by repeatedly differentiating. After fourteen derivatives, Table 3
shows the resulting polynomial has exactly one coefficient sign change when the coefficients
are listed in ascending order. Consequently, P (14) has a unique positive real root.

The remaining computations are nothing more than differentiation and direct polynomial
evaluation: P (r) and its first thirteen derivatives are evaluated at r = 2

3 , while P
(14)(r) is

evaluated at r = 0 and 2
3 . These calculations are tedious by hand, but they can be worked

out in totality from Table 4.

Evaluation shows that the unique root of P (14)(r) lies in the interval (0, 23). Indeed,

P (14)(0) = −2 159 106 379 702 272

57
≈ −2.76366 · 1010,

P (14)
(2
3

)
=

18 441 535 745 869 667 168 145 408

57
≈ 2.36052 · 1020.

We thus conclude that

P (14)(r) > 0, r >
2

3
.

It can also be seen by direct evaluation that for integers 0 ≤ n ≤ 13,

P (n)
(2
3

)
> 0.

Decreasing the number of derivatives one step at a time, we see that for integers 0 ≤ n ≤ 13,
it also holds that

P (n)(r) > 0, r >
2

3
.

In particular, P (r) > 0 for r > 2
3 , so the difference U(r,m(r)) − V (r,M(r)) > 0. This

implies U(r,Qr)− V (r,Qr) =W (r,Qr) > 0, thereby proving (A.5). □
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n βn 7 −162 030 456

517
15 −3 195 801

56

0
1 000 376 035 344

530
8 −3 421 928 916

517
16 −2 065 794 597

59

1 0 9 −84 873 096

514
17 −91 854

52

2 −857 465 173 152

527
10 −922 948 992

515
18 −629 807 157

2256

3 −47 636 954 064

525
11

17 635 968

511
19 −12 267 612

54

4
163 326 699 648

524
12

657 460 071

512
20 −71 827 641

2254

5
6 805 279 152

521
13

10 471 356

59
21 0

6
9 694 822 284

520
14 −619 164

59
22

455 625

2

Table 4: Exact values of coefficients in P (r) =
∑
βnr

n

Remark A.9. Applying the cubic formula to the polynomial pr(x) given in (A.1), we have

Qr =
1

6αr

(
3 + 25r2 + (1− r)αr + α2

r

)
, where

αr =
(
125r3 + 36r − 3

√
375r4 + 69r2 − 3

)1/3
.

The bounds M(r) and m(r) in Lemma A.3 come from the Taylor expansion of Qr at ∞:

Qr =
3r

2
+

1

6
+

3

25r
− 21

3125r3
+O

( 1

r4

)
.

It should be emphasized that the negative degree terms in M(r) and m(r) are crucial to
the proof of Lemma A.4; simply using affine functions to bound Qr is not sufficient to prove
the estimate on S(r,Qr).

Similarly, the bound on S(r,Qr) also comes from its the Taylor expansion at ∞:

S(r,Qr) =
16

3125r3
+O

( 1

r5

)
This method of generating candidates for sufficiently sharp bounds is likely to have appli-
cation for many other polygamma inequalities, and more generally, in other problems in
which the Euler-Maclaurin formula is utilized. ♢
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