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1. Introduction
1.1. The Bergman projection on LP

Given a domain Q C C*, the Bergman projection B is the orthogonal projec-
tion from L?(Q) onto the Bergman space A?(Q2) = L?(Q) N O(Q), the subspace of
square-integrable holomorphic functions. The Bergman projection can be represented
by integration against the Bergman kernel B:

BQf(z):/BQ(z,w)f(w)dV(w), e L(Q), (1.1)

where dV is Lebesgue measure. The Bergman kernel enjoys remarkable reproducing,
invariance and extremal properties and is closely related to the d-Neumann problem
(see e.g. [7,21,27]).

Bergman spaces can be naturally defined on all complex manifolds, in contrast with
Hardy spaces, whose construction is tied to distinguished measures on the boundary of
a domain, e.g., the Haar measure on the unit circle in the case of the classical Hardy
space H?(D) of L? boundary values of holomorphic functions.

Inspired by Hardy spaces, it is natural to consider the space of p-th power integrable
holomorphic functions AP(2) of a domain  C C™. These have been known as (L?-)
Bergman spaces since the 1970s, though S. Bergman only studied the square integrable
setting. In view of M. Riesz’s classical result on the LP-boundedness of the Szegd pro-
jection for 1 < p < o0, it is also natural to ask whether the Bergman projection extends
to a bounded linear projection from LP(Q2) onto AP(Q)) via the integral formula (1.1).
When  is a ball in C™, this turns out to be the case (see [46,24]); the same remains
true in many classes of smoothly bounded pseudoconvex domains ([36,35,32,30] etc.) In
these cases, the extended operator turns out to be even absolutely bounded, in the sense
that the associated “absolute” operator (BQ)+ is bounded on LP(f2), where

(BY)*f(2) = / B (z,w)| fw)dV(w),  f € L),

Q

On the other hand, there are examples of domains for which the extended Bergman
projection fails to define a bounded projection from LP(Q2) onto AP(Q) for some (and
sometimes for all) p # 2; see [1,2,22,23,40,19] and the survey [41]. Recent studies of
the Bergman projection in certain classes of Reinhardt domains ([14,17,18,12,10,20,25,
42,43,31,4] etc.) shed more light on this phenomenon, revealing that the LP-behavior of
the Bergman projection that one sees on, e.g., smooth bounded strongly pseudoconvex
domains breaks down on bounded Reinhardt domains whose boundary passes through
the center of rotational symmetry, a simple example being the Hartogs triangle {|z1| <
|z2] < 1} € C2. On such a domain it is possible that there are indices 1 < p; < pa < 00
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such that the linear subspace AP2(Q) is not dense in the Bergman space AP (). This
phenomenon can never occur on smoothly bounded pseudoconvex domains (see [8]), and
may constitute a glimpse of an LP-function theory where the Banach geometry of LP
replaces the Hilbert space idea of orthogonality. In the Reinhardt domains studied in
this paper, Laurent representations are used to clarify some of these phenomena. For
example, the fact that AP2(Q) is not necessarily dense in AP*(2) is a manifestation of
the fact that there may be monomials whose p;-th power is integrable but not the po-th
power.

1.2. Projection operators associated to bases
Let L be a separable Hilbert space, A a closed subspace of L and {e;} a complete

orthogonal set in A. The orthogonal projection P from L to A may be represented by
the following series (convergent in the norm of L):

Pf= lef’elg 5, feL (1.2)
J

Since Pf is defined geometrically as the point in A nearest to f, this representation is
independent of the choice of complete orthogonal set {e;}. When L = L?(), A = A%(Q),
(1.2) coincides with the Bergman projection formula given by (1.1).

In a general Banach space, the analog of a complete orthogonal set is a Schauder
basis: a sequence {ej °, in a complex Banach space A is a Schauder basis if for each
[ € A, there is a unique sequence {c;}32; of complex numbers such that f = Z 1 Cj€5,
where the series converges in the norm-topology of A (see [28]). In this case, there exist
bounded linear functionals a; : A — C such that ¢; = a;(f), generalizing the Fourier
coefficients a;(f) = Tlfeﬁg

When L is a Banach space, A a closed subspace, and {e;}32; a Schauder basis of A4,

seen in the Hilbert setting.

one might attempt to define a projection operator from L onto A by emulating (1.2):

Pf=> aj(fle;, [feL, (1.3)
J

where @; : L — C is a Hahn-Banach (norm-preserving) extension of a; : A — C.
When it exists, an operator of type (1.3) will be called a basis projection determined by
the Schauder basis; this notion encapsulates the orthogonal projection (1.2) when L is
Hilbert. A less obvious example of a basis projection is seen by considering the unit circle
T with the Haar measure and 1 < p < co. The classical Szeg6 projection from LP(T)
onto the Hardy space HP(DD) is a basis projection; see Proposition 2.7. In contrast, we
show in Proposition 3.15 that for p # 2, the attempt to extend the Bergman projection
to LP by continuity — even if successful — is never a basis projection. This is an underlying
reason for the deficiencies of the Bergman projection in LP spaces, and our goal in this
paper is to construct basis projections from LP(Q2) to AP(2).
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1.3. The monomial basis projection

Formula (1.3) is purely formal, as there is no guarantee that a basis projection onto

the subspace determined by a given basis exists. Several technical points must first be
addressed:

(1)

A basis projection depends on both the range subspace A and on the choice of
Schauder basis — or the slightly more general notion of a Banach-space basis (see
Section 2.1) — determining the projection. A Banach space need not have such a
basis, but in the Bergman space AP(Q) of a Reinhardt domain @ C C™, there is a
distinguished basis tied to geometry and function theory. This is the collection of
Laurent monomials in AP(Q2), functions z — 27" 25% ... 20" where a; € Z,1 < j < n.
The fact that these monomials under an appropriate partial ordering give a Banach-
space basis of AP(§2) was first proved in [10], and is recalled in a slightly more general
form in Theorem 2.12 below. The projection operator from LP(Q) to AP(Q) defined
in terms of this monomial basis by formula (1.3) is the main topic of this paper: the
Monomial Basis Projection (MBP).

A Hahn-Banach extension of a linear functional in general is far from unique, but in
our application, where we extend coefficient functionals defined on AP(2) to LP(Q),
we do have uniqueness; see Propositions 2.3 and 2.4 below. This means the MBP
can be unambiguously defined by (1.3), since the summation procedure is specified
by the partial ordering of our Banach-space basis mentioned in item (1).

None of the above guarantees that the formal series (1.3) converges for f € L.
Showing that (1.3) defines a bounded operator on L requires direct estimation to
show that the partial summation operators are uniformly bounded in the operator
norm of L. In our application to Bergman spaces AP({2), the problem is simplified
because of the availability of an integral kernel representation of the MBP.

1.4. Notation, definitions and conventions

(1)

(2)
3)

Unless otherwise indicated, €2 will denote a bounded Reinhardt domain in C™ with
center of symmetry at 0, i.e., whenever z € Q, for every tuple (61,...,6,) € R, we
have (€%121,...,e"%2,) € Q. Let || C R™ denote its Reinhardt Shadow, i.e.,

9 = {(J21],. .-, J2a]) €R" : 2 € Q).
The index p satisfies 1 < p < oo, and denote by ¢ the index Holder-conjugate to p,
1,1
ie, 4+ Lt =
P

For a domain U C C™ and a measurable function A : U — [0, co] which is positive
a.e. (the weight), we set for a measurable function f,

£ = 1120 = [ 167 20V, (1.4
U
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where dV' denotes Lebesgue measure, and functions equal a.e. are identified. We let
LP(U, ) be the space of functions f for which || f[|, , < oo, which is a Banach space.
Let AP(U, A) be the subspace of LP(U, \) consisting of holomorphic functions:

AP(U,\) = LP(U,\) N O(U).

We will only consider weights A : U — [0, oo] which are admissible in the sense that
Bergman’s inequality holds in AP(U, \), i.e., for each compact set K C U, there is a
constant C' > 0 such that for each f € AP(U,\) we have

Sl}ip 1< Cr lfllpoqon) - (1.5)

It is easy to see that if A is a positive continuous function on U then it is an admissible
weight on U. We treat a class of more general admissible weights in Section 3.2.

If X\ is an admissible weight on U, a standard argument shows that AP(U, \) is a
closed subspace of LP(U, \), and therefore a Banach space. It is called a weighted
Bergman space.

We are interested in Reinhardt domains €2 and phenomena which are invariant under
rotational symmetry. Therefore, we consider only weights A on 2 which are both
admissible and multi-radial, in the sense that there is a function ¢ on the Reinhardt
shadow |Q] such that A(z1,...,2,) = £(|z1], ..., ]|2nl)-

For a € Z™, we denote by e, the Laurent monomial of exponent «:

ea(z) = 271 ... z0m. (1.6)

We define the set of p-allowable indices to be the collection
Sp(LA) ={a€eZ"”: e, € AP(QN)}. (1.7)

If A =1, we abbreviate S,(€2,1) by S,(£2).
The map x, : C* — C" defined by

Q) = (Glal ™ Galeal”) (1.8)
will be referred to as the twisting map. It appears in the definition of the Monomial

Basis Kernel in (1.10), and arises also in the duality pairing (7.5). Given a function
J we denote by x; f its pullback under x:

Xpf = o Xxp- (1.9)
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1.5. The monomial basis kernel

When it exists, the MBP of AP(Q, ) is (by construction) a bounded surjective projec-
tion, which we write Pi}, 5y LP(Q, ) — AP(Q, \). To obtain an integral formula analogous
to (1.1), we define the Monomial Basis Kernel of AP(Q,\) (abbreviated MBK), as the
formal series on 2 x 2 given by

eq(2)xieq(w
K% (zw) = Y ()Xipp() (1.10)
€S, (Q,N) lleal pA

When p = 2, the MBK coincides with the Bergman kernel of A%(,\), in which
case the above series is known to converge locally normally on € x €. For a general
1 < p < 00, we show in Theorem 3.3 that when € is pseudoconvex, the series (1.10) also
converges locally normally on 2 x €. In Theorem 3.13 we prove that the MBP admits
the representation

Ppa(f)(z) = /Kﬁx(z,w)f(W)/\(w)dV(w)v feLP(Q,N). (1.11)
Q

1.6. Improved LP-mapping behavior

The main theme of this paper is that the Monomial Basis Projection can have better
mapping properties in LP spaces than the Bergman projection. In Section 6 we illustrate
this on nonsmooth pseudoconvex Reinhardt domains called monomial polyhedra (see
[33,4]). A bounded domain %7 C C™ is a monomial polyhedron in our sense, if there are
exactly n monomials e,1,...,eq4n such that

U ={2€C":leqi(2)] <1,...,lean(2)] <1}.
We recall the LP-mapping behavior of the Bergman projection on %:

Proposition 1.12 ([/]). There is a positive integer k(% ) such that the Bergman projection
on % is bounded in the LP-norm if and only if

26(%) 26(%)

Examples of monomial polyhedra in C? are the (rational) generalized Hartogs tri-

angles studied in [18,19]. Define H, = {|z1|7 < |22 < 1}, v > 0. If v = T is
rational, gcd(m,n) = 1, this domain is a monomial polyhedron with o' = (m, —n),a? =
(0,1). In this case it can be shown that x(H,,;,) = m + n, yielding the interval

2m-+2n  2m+2n
p € (m+n+1’ m+n—1

) from (1.13) on which the Bergman projection is LP-bounded. We
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also note the case of Hl,, +y irrational — which is not a monomial polyhedron by our defi-
nition. On these domains, it is shown in [19] that the Bergman projection is LP-bounded
if and only if p = 2.

This limited LP-regularity is one of several deficiencies that can arise when the
Bergman projection acts on LP spaces of nonsmooth domains; other possible defects
such as a lack of surjectivity onto AP are discussed in Section 8. The Monomial Ba-
sis Projection avoids these defects and is shown to have far more favorable mapping
behavior. Define for 1 < p < oo the corresponding “absolute” operator of A?(%) by

(P (f)(z) = / K (2 w)| f(w) dV (w). (1.14)
w

Theorem 1.15. Let 1 < p < oo and let % C C™ be a monomial polyhedron. Then the
operator (PZ{l)"r is bounded from LP (%) to itself.

After setting the stage in Sections 4 and 5, the proof of Theorem 1.15 is finally carried
out in Section 6. An application of this result is given in Section 7, where we represent
the dual space AP(%) as a weighted Bergman space on % ; see Theorem 7.17.

Corollary 1.16. The Monomial Basis Projection is a bounded surjective projection oper-
ator Pyt LP(U) — AP(U).

Proof. It is clear that the boundedness of the operator (PZ{l)"r on LP(%) implies the
boundedness on LP(% ) of the integral operator in (1.11). However, in Proposition 3.22,
we will show that whenever this integral operator satisfies LP estimates, it coincides
with the Monomial Basis Projection Pp%’1 : LP(%) — AP(%). The MBP is a surjective
projection operator whenever its defining series (2.15) converges. O

1.7. Acknowledgments

The authors thank Zeljko Cuckovié, Bernhard Lamel, Laszl6 Lempert, Jeff McNeal
and Brett Wick for their comments and suggestions, which led to mathematical and
organizational improvements in this paper. We also thank the referee for carefully reading
the paper and providing constructive feedback.
2. Basis projections
2.1. Bases in Banach spaces

Since our application uses bases indexed by multi-indices, we need a slightly more

general notion of a basis in a Banach space than that of a Schauder basis described in
Section 1.2. For a multi-index o € Z™, let |a|_ = maxi<j<p |a; ]
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Definition 2.1. Let A be a Banach space, n a positive integer and 20 C Z" a set of multi-
indices. A collection {e, : a € A} of elements of A is said to form a Banach-space basis
of A if for each f € A, there are unique complex numbers {c, : a € 2} such that

f= A}gnoo Z Calas (2.2)
|a| <N
ac
where the sequence of partial sums converges to f in the norm-topology of A. The sums

on the right hand side of (2.2) whose limit is taken are called square partial sums.

Schauder bases are special cases of this definition corresponding to taking n = 1
and 2 the set of positive integers. A related notion is that of a finite dimensional
Schauder decomposition (see [28]). A Banach-space basis in our sense determines a
Schauder decomposition of the Banach space A into the finite-dimensional subspaces
A, =spanfe, : || =n}, n>0.

Adapting a classical proof ([28, Proposition 1.a.2]), is not difficult to see that for each
a € 2, the map a, : A — C assigning to an element x € A the coefficient ¢, of the series
(2.2) is a bounded linear functional on A. The collection of functionals {a, : @ € A} is
called the set of coefficient functionals dual to the basis {eq : o € A}.

2.2. Unique Hahn-Banach extension

Recall that a normed linear space is said to be strictly convez, if for distinct vectors
f,g of unit norm, we have || f + g| < 2.

Proposition 2.3 (/39]). If L is a Banach space such that its normed dual L' is strictly
convezx, and f : A — C is a bounded linear functional on a subspace A C L, then f
admits a unique norm-preserving extension as a linear functional on L.

Proof. That at least one functional extending f and having the same norm exists is the
content of the Hahn-Banach theorem. Without loss of generality, the norm of f as an
element of A’ is 1. Suppose that f admits two distinct extensions f1, fo € L’ such that
I fill, = [If2ll,, = 1. Then g = 3(f1 + f2) is yet another extension of f to an element
of L, so ||g|l,, > || fll 4+ = 1. On the other hand, thanks to the strict convexity of L', we
have ||g||;, < 3 -2 = 1. This contradiction shows that f; = fo. O

The examples of unique Hahn-Banach extensions in this paper arise from the following;:

Proposition 2.4. Let (X, F, 1) be a measure space, and 1 < p < oco. The dual of LP(u) is
strictly convez.

Proof. Since the dual of LP(u) can be isometrically identified with L?(u) where ¢ is the
exponent conjugate to p, it suffices to check that LI(u) is strictly convex. Let f,g be
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distinct elements of L?(x) such that || f||, = [lg]l, = 1. Suppose we have | f +g[|, =2 =
11l + llgll,» so that we have equality in the Minkowski triangle inequality for L9(y). It
is well-known that equality occurs in the Minkowski triangle inequality only if f = cg
for some ¢ > 0. But since || f[|, = [|gl[, = 1 this gives that ¢ = 1, which is a contradiction
since f # g. Therefore || f + g||, < 2 showing that L?(x) is strictly convex. O

2.3. Basis projections

Let L be a Banach space such that its dual is strictly convex, A be a closed subspace,
the collection {e, : o € 2} a Banach-space basis of A in the sense of Definition 2.1, and
let {aq : o € A} be the coefficient functionals dual to this basis. Let a, : L — C be the
unique Hahn-Banach extension of the functional a,, : A — C, where uniqueness follows
by Proposition 2.3.

Definition 2.5. A bounded linear projection operator P from L onto A is called the basis
projection determined by {e, : « € A}, if for each f € L, we have a series representation
convergent in the norm of L given by

Pf:]\}l—rfloo Z 6a(f)€oz~ (26)
laf o SN
ael

2.4. The Szegd projection

Let 1 < p < oo, L = LP(T), the LP-space of the circle with the normalized Haar
measure %d@, and A = HP(D), the Hardy space of the unit disc, the subspace of LP(T)
consisting of those elements of LP(T') which are boundary values of holomorphic functions
in the disc. Let 7,(e?) = €% a € Z, denote the a-th trigonometric monomial on T.
It is well-known that {7, : @ > 0} is a (normalized) Schauder basis of H?(D), i.e., the
partial sums of the Fourier series of a function in H?(D) converge in the norm LP(T).
Notice that Schauder bases are simply Banach-space bases in the sense of Definition 2.1
where 2( is the set of positive integers.

Proposition 2.7. For 1 < p < oo, the basis projection from LP(T') onto HP (D) determined
by the Schauder basis {74}32, exists, and coincides with the Szegd projection.

Proof. The coefficient functionals on H?(D) dual to the Schauder basis {7, : @ > 0} are
precisely the Fourier coefficient functionals {aq 32 4:

wolf) = [ e e D). (2.9

Notice that for f € HP(D), we have
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27
gvy 4O
laa(f)l < / | F(e)] 20 S M llzeery Il zacry = Ifllzocr) » (2.9)
0

where ¢ is the Holder conjugate of p, and we use Hoélder’s inequality along with the fact
that the measure is a probability measure. Therefore [|aq|| < 1. But since ||7a |1y = 1,
and aq(7,) = 1, it follows that |jas || = 1. We now claim that the Hahn-Banach extension
Gq @ LP(T) — C of the coefficient functional a, : HP(D) — C is still the Fourier
coefficient functional:

- ; 00 40
Wulf) = [ e 05 pern),
0
Indeed, @, is an extension of a,, and repeating the argument of (2.9) shows ||a,| = 1,

and thus it is a Hahn-Banach extension. Uniqueness follows from Propositions 2.3 and
2.4.

Let S denote the basis projection from LP(T) onto H?(D) and let f € LP(T) be a
trigonometric polynomial. Then formula (2.6) in this case becomes:

Sf(e / fle)e oo / Je) L

This shows that on the trigonometric polynomials, the basis projection coincides with
the Szegd projection, which is known to be represented by the singular integral at the
end of the above chain of equalities. But as the Szegé projection is bounded from LP(T)

onto HP(D), it follows that the basis projection exists and equals the Szegd projection
on LP(T). O

2.5. The monomial basis projection

On a Reinhardt domain © C C™ each holomorphic function f € O(2) has a unique
Laurent expansion

f=> cata (2.10)
acZn™

where ¢, € C and the series converges locally normally, i.e., for each compact K C €2,
the sum ) [caeallx < 00, where |||, = supg || is the sup norm (see e.g. [37]). It
follows that (2.10) converges uniformly on compact subsets of 2. Define

aq, : 0(Q) = C, ao(f) = ca (2.11)

where ¢, is as above in (2.10). The functional a, is called the a-th Laurent coefficient
functional of the domain ).



D. Chakrabarti, L.D. Edholm / Advances in Mathematics 451 (2024) 109790 11

The following result shows that the Laurent monomials (under an appropriate order-
ing) form a basis of the Bergman space AP(€2, ), where A is an admissible multi-radial
weight. The unweighted version of this result (the case A = 1) was proved in [10], inspired
by the case of the disc considered in [44]. The more general Theorem 2.12 is proved in
exactly the same way, by replacing the implicit weight A = 1 in [10, Theorem 3.11] with a
general multi-radial weight A. A key ingredient of the proof, the density of Laurent poly-
nomials in AP(), A), can also be proved using Cesaro summability of power series (see
[9, Theorem 2.5]). Recall that the notation and conventions established in Section 1.4
are in force throughout the paper.

Theorem 2.12. The collection of Laurent monomials {eq : o« € S,(2, A)} forms a Banach-
space basis of AP(Q, \). The functionals dual to this basis are the coefficient functionals
{aa : @ € S§,(Q,N)}, and the norm of ay : AP(Q, ) — C is given by

1

- . (2.13)
lleall,

Haa”AP(Q,)\)’

Thus, if f € AP(Q, \), the Laurent series of f written as ) 7. aa(f)eqs consists only
of terms corresponding to monomials e, € AP(Q2, A), i.e., if a & S,(Q, A), then an(f) = 0.
We are ready to formally define the main object of this paper:

Definition 2.14. A bounded linear projection P]?))\ from LP(92, \) onto AP(Q, \) is called
the Monomial Basis Projection of AP(2,\), if for f € LP(Q,\) it admits the series
representation convergent in the norm of LP (), \) given by

PUA(f) = lim Y7 da(f)ea (2.15)
loe| (o <N
a€S,(2,))

where @, : LP(2,\) — C is the unique Hahn-Banach extension of the coefficient func-
tional a, : AP(2,\) — C.

Remark 2.16. The surjectivity onto the space AP(€), \) is built in to the definition of the
Monomial Basis Projection, since it acts as the identity operator there. Notice that the
MBP is a basis projection in the sense of Definition 2.5, when L = LP(Q2), A = AP(Q)
and {e,} is the monomial basis of A?(Q,A). ¢

3. The monomial basis kernel

3.1. Ezistence of the kernel function

The Monomial Basis Kernel of AP(2, ) was introduced as a formal series in (1.10).
Using (1.8) and (1.9), we can write
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Xpea(w) = ea(w) [ea(w)["~?, (3.1)
which allows for the re-expression of the MBK as

"

K;})’)\(27 w) — Z ea(z)ea(w) |€C¥(w) (32)

lleallyx
a€S,(2,N) P,
A sufficient condition for the convergence of this series is now given.

Theorem 3.3. Let Q2 be a pseudoconvex Reinhardt domain in C™ and A be an admissible
multi-radial weight function on Q. The series (3.2) defining K;fA(z,w) converges locally
normally on € x €.

We need two lemmas for the proof of this result. The first is an analog for Laurent
series of Abel’s lemma on the domain of convergence of a Taylor series ([37, p. 14]):

Lemma 3.4. Let Q C C™ be a Reinhardt domain, define S(Q) = {a € Z™ : e, € O(Q)},
and for coefficients a, € C, a € §(Q), let

Z (aCo (3.5)

aeS(Q)

be a formal Laurent series on €. Suppose that for each z € Q there is a C > 0 such that
for each o € S(Q) we have |ageq(z)| < C. Then (3.5) converges locally normally on Q.

Proof. See Lemma 1.6.3 and Proposition 1.6.5 of [26, Section 1.6]. O

Given a Reinhardt domain 2 C C™ and a number m > 0, define the m-th Reinhardt
power of ) to be the Reinhardt domain

Q<m>:{ze<cn;(\zlﬁ,...,m\%) eQ}. (3.6)

If Q is pseudoconvex, then for each m > 0 the domain Q™) is pseudoconvex. Indeed,
recall the logarithmic shadow of €2, the subset log(Q2) of R™ given by

log(Q2) = {(log|z1],...,log|z,|) : z € Q}. (3.7

Recall also that € is pseudoconvex if and only if the set log(£2) is convex, and € is
“weakly relatively complete” ([26, Theorem 1.11.13 and Proposition 1.11.6]). It is easily
seen that the condition of weak relative completeness is preserved by the construction
of Reinhardt powers, and

log (Q(m)) = {(mlog|z1|,...,mlog|z,|) : z € 0} = mlog(f)
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is itself convex, if log(€2) is convex. So Q") is pseudoconvex if and only if Q is pseudo-
convex.
The second result needed in the proof of Theorem 3.3 is the following:

Lemma 3.8. Let A be a Banach space of holomorphic functions on Q and suppose that
for each z € Q the evaluation functional ¢, : A — C given by ¢.(f) = f(2) for f € A is
continuous. Then for m > 0, the following series converges locally normally on QU™ :

Ca

VAL ||ea||ZL .
eq €A

Proof. Let z € Q0™ so that there is ¢ €  such that |z;| = |¢;|™ for each j. If ¢ : A — C
is the evaluation functional, there is a constant C' > 0 such that |¢¢(f)| < C| f]|, for
each f € A. Then for each o € Z" such that e, € A we have

leal2)] _ (I%(C)I)m _ <¢<(6a)>m <om

lealls — \llealls leall o

The result now follows by Lemma 3.4. 0O

Proof of Theorem 3.3. Let t; = z;w; |wj|p_2, 1<j<mn,and t = (t1,...,t,). Then the
series for the MBK given in (3.2) assumes the form

KO (w) = Y L (3.9)

P
wcaan leallp

Since Bergman’s inequality (1.5) holds for admissible weights by definition, point eval-
uations are bounded on AP(Q,\). Lemma 3.8 therefore guarantees the series in (3.9)
above converges locally normally on Q) defined in (3.6). It thus suffices to show that
the image of the map Q x Q@ — C™ given by

(z,w) — (t1,...,1n)

coincides with Q) since then the image of a compact set K C € x Q is a compact
subset of Q®), on which the series (3.9) is known to converge normally.

Now consider the logarithmic shadow log(2 x Q) = log(€2) x log(§2) defined in (3.7).
Due to the log-convexity of pseudoconvex Reinhardt domains, what we want to prove is
equivalent to saying that the map from log(Q2) x log(€2) — R"™ given by

En)r—E&+(—1)n (3.10)

has image exactly plog(€) = {pf : 6 € log(Q)} = log (). But since log((2) is convex,
the map on log(€2) x log(§2) given by
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(&) — €+ (1—3)n

has image contained in log(Q2). Taking & = n we see that the image is exactly log(f2).
Therefore the image of (3.10) is precisely plog(€2) and we have proved that the series
(3.2) converges locally normally on 2 x Q. O

3.2. More general admissible weights

Continuous positive functions A are always admissible weights in the sense of Sec-
tion 1.4, item (3). In Sections 4, 5, 6 and 7 below, we encounter more general multi-radial
weights which vanish or blow up along the axes. Let Z C C™ denote the union of the
coordinate hyperplanes

Z={2€C":z; =0 for some 1 < j <n}.

Proposition 3.11. Let U be a domain in C™ and let U* = U \ Z. Suppose that X : U —
[0,00] is a measurable function on U such that the restriction A|y- is an admissible
weight on U*. Then X is an admissible weight on U.

Proof. Assume that U N Z # &, since otherwise there is nothing to show, and set
A = My If f € AP(U,\), then since \* is admissible on U*, if a compact K is
contained in U*, there exists a Cx > 0 such that

S?{P |f] < Ck HfHAp(U*,A*) =Ck Hf”Ap(U,A) :

To complete the proof, we need to show that for each ( € U N Z, there is a compact
neighborhood K of ¢ in U such that (1.5) holds for each f € AP(U, A). Now, there is a
polydisc P centered at ¢ given by P = {z € C" : |z; — (;| < r, 1 < j < n} such that
the closure P is contained in U. We can assume further that the radius r > 0 is chosen
so that it is distinct from each of the nonnegative numbers |(;|, 1 < j < n. Then the
“distinguished boundary”

T={ze€C":|z;—(|=r,1<j<n}

of this polydisc satisfies the condition that T' C U*. Therefore for each f € O(U) and
each w € P, we have the Cauchy representation:

1 f(z1,- 0y 2n)
flw) = - / dzy...dz 3.12

(w) (2mi)™ J (z1 —w1) ... (2n — wy) " (3.12)
where the integral is an n-times repeated contour integral on 7. Now suppose that K is
a compact subset of P containing the center ¢, and let p > 0 be such that |z; — w;| > p
for each z € T and w € K. Then for w € K, a sup-norm estimate on (3.12) gives
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1 supy | f| n r\" r\"
7)< g - 22 mn < (1) Wl = (2) Wlarinn

where we used the fact that A\* is admissible on U*. The result follows. 0O

3.8. Integral representation of the monomial basis projection

Theorem 3.13. If the Monomial Basis Projection PﬁA : LP(Q,N) — AP(Q, \) exists, then
PEANG) = [ Ko f@i@idv),  fe@y, ()
Q

and for each z € 2, we have KI?,A(Z’ ) € LI(Q, ).

When p = 2, this is simply the representation of the Bergman projection Bg\2 of
A%(Q, \) by its Bergman kernel. But the existence of the MBP of AP(2,\) for p # 2
is not guaranteed by abstract Hilbert-space theory. We note a related consequence of
Theorem 3.13, which should be contrasted with Proposition 2.7:

Corollary 3.15. Suppose the Bergman projection Bg\l s L2(Q,\) — A2(Q,\) eatends by
continuity to a bounded operator Bg} s LP(Q, ) — AP(Q, N\), p # 2. The extension is not
the basis projection determined by the monomial basis {eq : @ € Sp(2, N)}.

Proof. This is immediate, since the Bergman kernel is distinct from the MBK for p #
2. 0O

By Proposition 2.4, the dual space of LP(Q, A) is strictly convex. Proposition 2.3 thus
guarantees that each coefficient functional in the set {a : @ € Sp(©2,A)} dual to the
monomial basis {eq : @ € S,(€2, A)} has a unique Hahn-Banach extension to a functional
Qo : LP(Q,\) = C. We now identify this extension:

Proposition 3.16. For o € S,(2, \), let go be the function defined on Q by

Xp€a _ eq |eO¢|p_2

- . (3.17)
leallpn lleallya

Ja =

Then the unique Hahn-Banach extension aq : LP(Q,A) — C of the coefficient functional
aq : AP(Q,X) = C is given by

aa(f) = /f-g_a)\dV, ferP(,N). (3.18)
Q



16 D. Chakrabarti, L.D. Edholm / Advances in Mathematics 451 (2024) 109790

Proof. First we compute the norm of g, in L7(€, A):

1 1
9ol / eal "N = el =
ol = e | e e, el = oo = Tl

It follows that g, € L?(€2, A) and the linear functional in (3.18) satisfies a, € LP(£2, \)’
with norm given by

1

@allzeo,ny = I9allyx = (3.19)

leallp
By (2.13), we have [laa|[ 405y = ll@allps(q,r)y- To complete the proof it remains to
show that a, is an extension of a,,.

By Theorem 2.12, the linear span of {eg : 8 € S,(2, )} is dense in AP(£2, ). There-
fore we only need to show that for each 8 € S,(2,A), we have an(eg) = aa(es).
Since A is multi-radial, there is a function ¢ on the Reinhardt shadow |Q] such that
Mz) = £(Jz1],---,|2n])- And since g, € LI(Q,A) and eg € LP(2,A), the product
es0a € L'(2, )\). Fubini’s theorem therefore implies

1 )
/egg_aAdV = 7|| & /rﬁ(r(x)p_1 / e840 | riry . rpldry .. drn,  (3.20)
Callp,A
Q Tn

where df = df, ...d0,, is the natural volume element of the unit torus T". First suppose
that 8 # «, so that the integral over T™ on the right hand side of (3.20) vanishes. Then
we have [, eggaXdV =0 = aq(ep). If f = a, (3.20) gives

2m)" 1
/eag_a)\dV = ( W)p . /(ra)prlrg coorpldry dry = - [leall) \ = 1 = aal(ea).
& ”ea”p,)\ & ”eaHp,)\ ’

It follows that a, is a norm preserving extension of a,. Since this extension is unique,
the result follows. O

Observe that by combining (3.2) and (3.17), the MBK of AP(Q, \) can be written as

Kgf)\(&w) = Z ea(2)ga(w). (3.21)

@ESH(Q,N)

We now establish our necessary and sufficient condition for the existence of the MBP:

Proposition 3.22. Define an integral operator on C.(92) by

- / K2, (2, w) fw)\w)dV(w), | € CulS). (3.23)
Q
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The MBP of AP(Q, \) exists if and only if Q satisfies a weighted LP-estimate, i.e., there
is a constant C' > 0 such that for each f € C.(Q2) we have the inequality

1QFllpn < ClIfllp - (3.24)

Proof. Recall that 2 C C"” is a pseudoconvex Reinhardt domain and A is an admissible
multi-radial weight. The function K & ) is continuous on €2 x €2 by Theorem 3.3, so the
integral in (3.23) exists for each z € Q Since the function z — K '\ (2, w) is holomorphic
for each w € , Qf is holomorphic for f € C.(f2), for 1nstance by applying Morera’s
theorem in each variable, or equivalently, by applying 0 to both sides.

Let f € C.(f2). Since the series for Kg  converges absolutely and uniformly on the
compact subset {z} x supp(f) C Q x £, equation (3.21) gives

Qo= [( X el fwaw)aviv)

o Naes,(N)

- /f 0)ga(@)A(w) dV (w) | €a(2)

€S, (Q N\

= Y dalf)eal?). (3.25)

a€S,(Q,N)

The series (3.25) converges unconditionally and is the Laurent series of the holomorphic
function Qf. It is therefore uniformly convergent for z in compact subsets of 2.

Suppose now that the MBP P;ZJ\ o LP(Q,A) — AP(Q,\) exists, which by Defini-
tion 2.14 is a bounded, surjective, linear projection given by the following limit of partial
sums, convergent in AP(, \):

Q . ~
Ppyf=lm Y Ga(flea,  fELP(QN). (3.26)
la| o <N
a€S,(Q,N)

Since convergence in AP(2, \) implies uniform convergence on compact subsets, it follows
that for f € C.(Q), Qf = PQ/\f Therefore @Q satisfies LP-estimates, i.e. (3.24) holds.

Conversely, suppose that (3.24) holds. Then @ can then be extended by continuity to
an operator Q on LP(Q, A) with the same norm. We claim that Q is the MBP.

If f € LP(Q,)), we can find a sequence {f;} C C.(€2) such that f; — f in LP(Q,A).
Each Qf; € AP(Q,\) and (by definition) Qf; — Qf in LP(Q, A). But this implies
Qfi — Qf umformly on compact subsets, so the limit Q fis holomorphlc and thus
the range of @ is contained in AP (©,)). A direct computation now shows Qe, = e, for
a € Sp(Q2, ), and it follows that é is a surjective projection from LP(€, \) to AP(€, ).

If f € C.(Q), then Qf = Qf € AP(Q, ) and by Theorem 2.12 the Laurent series
expansion of Qf given by (3.25) converges (as a sequence of square partial sums) in
AP(Q, N):
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Qf = lim_ > Galfea- (3.27)
ol SN
a€SH(Q,N)

For a general g € LP(2, \), Qg € AP(Q, \) and so again by Theorem 2.12,

Qg:]\}iinoo Z a0 (Qg)eq. (3.28)
la| o <N
a€8,(2,0)

It follows that on C.(Q2) we have the identity a, o Q@ = @,. This relation extends by

continuity to give a, 0 Q = @, as functionals on LP(Q, A). Then (3.28) becomes

Qg = 1\}13100 Z aa(g)ea-
laf <N

€S, (2,2)
In other words, é is the MBP, as we wanted to show. O

Proof of Theorem 3.13. Since the MBP exists, by Proposition 3.22 the operator Q of
(3.23) satisfies LP-estimates. Then, by the continuity of point-evaluation in AP(£2, ), for
each z € 2 the map g — Qg(z) is a bounded linear functional on LP (€, \). Formula (3.23)
representing this functional now shows that Kz?, A (z,-) € LYQ, A). Standard techniques
of real analysis (cutting off and mollification) gives us a sequence {f;} C C.(2) such that
fj = fin LP(Q, X). Therefore for each z € Q, the sequence {K}\(z,-)f;(-)} C Ce()
converges in L'(Q, \) to the limit K;,%A(z, -)f(+). Since integration against the weight A
is a bounded linear functional on L(£2, \), we obtain (3.14) in the limit. O

4. The one dimensional case

In this section we compute Monomial Basis Kernels on the unit disc D and punctured
unit disc D* — specifically, the MBKs of the spaces AP(D, 1) and AP(D*, ) where
t~(2) = |z|7. From these formulas it is shown that the corresponding Monomial Basis
Projections are absolutely bounded integral operators. We begin with a more general
computation of certain subkernels that are needed in Section 6.

4.1. Arithmetic progression subkernels on D and D*

Let a,b € Z with b positive, U = D or D*, 1 < p < oo and u,(2) = |27, v € R.
Consider the set of integers

AU, p,v,a,b) ={a € Z:a=a mod b} NS, (U, ), (4.1)

where as usual, S,(U, p1y) C Z is the set of a such that e, € AP(U, u,). Notice that a is
determined only modulo b, so we can always assume that 0 < a < b— 1. Notice also that
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if b =1 and a = 0 we have A(U,p,7,0,1) = Sp(U, ity). We now identify A(U, p,~,a,b)
with an arithmetic progression:

Proposition 4.2. Let U, p, v, a,b be as above. There is an integer 6 such that
AU, p,v,a,b) ={0+vb:v>0,veZ} (4.3)

Proof. Let U = D*. We claim that a € S,(D*, i) if and only if pac+ v+ 2 > 0. Indeed,

2

_ 4.4
pa+y+2 (44)

My

1
leall? = / (2[Po 4V = 27 / ppoctr1 g, _
D* 0

as long as pa + v 4+ 2 > 0, otherwise the integral diverges. Now let 6 be the smallest
integer such that (i) # = a mod b, and (ii) pf + v + 2 > 0. Clearly (4.3) holds.

The case U = D is nearly identical, but the condition that e, belongs to AP(ID, u.,)
means that o must be nonnegative. If 6 is the smallest integer in the set S,(ID, ), it
is determined now by three conditions: (i) § = a mod b, (ii) pf + v+ 2 > 0, and (iii)
0>0. O

Remark 4.5. For U, p,~, a,b as above (with 0 < a < b—1), we can determine 6 explicitly:

9:{a+b£, U =D*

v+2 a J o
max{a + bl,a}, U =D, .

where (= {—T—E—i—l

Now define for z,w € U the arithmetic progression subkernel

prap(zw) = Y %p;a(zu) = > t4ap (4.6)

k
a€A(U,p,v,a,b) HeaHp’””’ acA(U,p,v,a,b) ||€a Pty

where x3 is defined by (1.9) and t = 2w |w|’~?. Notice that ki 0.1 is the MBK of
AP(U, ).

Proposition 4.7. For z,w € U and other notation as specified above, we have

Z,w)zﬁ.(p9+’}/+2)7(’y+2+p(97b))tb. (4.8)

U
K 27 (1 —tb)2

p777a7b(

Proof. The calculation in (4.4) shows that if a € S,(U, 1), then

» 21

||€a||p,#7 = m~

Now combining (4.6) with Proposition 4.2, we see that
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tCE
kgmayb(z’ w) = Z

acA(U,p,v,a,b) H aHp“"f

0 &
=5 (p(0 + bv) 4 + 2)t*
g v=0
10 0 0
=5 pZ(by—l— Dt + (p@—i—v—l—Q—p)th” .
v=0 v=0

Writing this in closed form yields (4.8). O
Corollary 4.9. The arithmetic progression subkernel kgma’b admits the bound

(l2][wlP~1)°

U
<
|kp7'y7a7b(z’w)| = C|1 _ meb|w|(p—2)b‘2’

where C' > 0 is independent of z,w € U.
Proof. This follows from (4.8), on noting that (pf + 7 + 2) is necessarily positive. O
Setting a = 0, b = 1 in Proposition 4.7 yields the MBKs of A?(D*, j1) and AP(D, p.,):

Corollary 4.10. Let v € R, py(2) = |2|” andt = 2w |w|P~2. The Monomial Basis Kernels
of AP(D*, p1y) and AP(D, ) are given, respectively, by

D* 1 (pl+~y+2)t8 — (v + 2+ p(f — 1))t
= . B B
(1) Kp)m(z,w)—2 1—1? , where ¢ L > +1J.
1 .(pL+7—|—2)tL—(7+2+p(L—1))tL !

(2) KBM(’Z’M) = , where L = max{¢,0}.

o 11— 1)

4.2. Two tools

We now recall two important results.

Proposition 4.11. For 1 < j < N, let D; be a domain in R, let K; : D; x D; — [0, 00)
be a positive kernel on D;, and let N be an a.e. positive weight on D;. Suppose that
for each j, there exist a.e. positive measurable functions ¢;,v; on D; and constants
C1,C) > 0 such that the following two estimates hold:

(1) For every z € D, /Kj (2, )b, (w)IN (w) dV (w) < Cf¢j(z)q.
D,

(2) For every w € Dy, /(;5] Kj(z,w)N (2) dV (z) < O (w)P.

D;
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Now let D = D; X --- x Dy be the product of the domains, let K(z,w)
Hévzl K;(zj,wj), where zj,w; € Dj, z = (z1,...,28) € D, w = (w1,...,wy) € D,
and let A(w) = Hj\;l N (w;). Then the following operator is bounded on LP(D,\):

/sz IA(w)dV ().

Proof. When N = 1, this is the classical Schur’s test for boundedness of integral opera-
tors on LP- spaces (see [45, Theorem 3.6]). The case N > 2 reduces to the case N =1, if
we let ¢(z) = HFl ¢i(z;) and ¢Y(z) = vazl 1;(2;) and use the Tonelli-Fubini theorem
to represent integrals over D as repeated integrals over the product representations. O

Proposition 4.12 (Lemma 3.4 of [18]; also see [2]] for B = 0). Let U = D or D*,
0<e<1landp > —2. There exists C > 0 such that

/%'wﬂdv(w <O )7 (4.13)
U

4.3. LP-boundedness of operators

We now prove that arithmetic progression subkernels represent absolutely bounded
operators. In particular, the existence and absolute boundedness of the Monomial Basis
Projections of AP(D*, u,) and AP(D, p.,) are established.

Proposition 4.14. Define the following auxiliary functions on U :
_ 1.2 26\ — L _ & 2b(p—1)\— &
¢(2) = |2e (1= [2[7) 72, P(w) = |w|e (1 — |w]| )
There exist constants C1,Co > 0, such that the following estimates hold:
(1) Forz €U, / K azw)] )y () AV () < Crgo(2)".

(2) ForweU, /gzb p,y’ayb(z w)| p1y(2) AV (2) < Catp(w)P.

Proof. Throughout this proof, C' will denote a positive number depending on p,~,a,b
but independent of z,w € U. Its value will change from step to step.
From the kernel bound in Corollary 4.9, we obtain

(l2l[wlP~1)°

/|kmabzw|w 1y () dV (w <0/|1 g () ) aV )
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1 _ ‘,w|2b(p 1)
=Cle |9/|1 !

2570 |w | (P—2)|2

1
P

|w|PP*Y dV (w).

(4.15)

Set ¢ = w!lw| 2P, s0[¢| = [w|P=D?, |w| = [¢| 7 and dV(w) = (454) || 2V ().
This change of variable shows

— 2 _% q9 ~+2)(g—1
(15 < cll? [ %lc R av (). (4.16)
U

This integral converges if and only if ¢6 + (y+2)(¢ — 1) > 0. Multiplying by the positive
number %, we see this condition is equivalent to requiring that pf 4+ v + 2 > 0, which is
guaranteed to hold. Indeed, in the proof of Proposition 4.2, § was shown to be the smallest
integer such that (i) § = a mod b, and (ii) pf + v+ 2 > 0. Now apply Proposition 4.12:

1 1\ 4
(4.16) < Clo’(1 = o) "7 = C (|z|%(1 - |Z|2b)7ﬁ) = Co(2)7,
giving us estimate (1) upon taking the final constant C' to be Cy. Now consider

(lellwP~)?

/|kp,7ab Z,w |¢ Py (2)dV (2 <C/ T — 2w 2)l)‘2<25(2«’)p117(z)dV(,z)

—C (p—1)0 1 — |Z|2b (1+E2)0+~ dv 4.17

Set ¢ = zb, which says that |z| = |¢|% and dV (z) = b~2|¢|2~2dV/(€). This shows that

_ 1—[¢?) s 0 2
R e = A G RNC

This integral converges since pf + v + 2 > 0 (this is the same condition as before). Now
apply Proposition 4.12 again to see

(4.18) < Cl|® (1~ [wP@0) "4 = € (Jul% (1~ [wP*e=)75 )" = Cu(a)r,
giving estimate (2) upon taking the final constant C' to be Co. O

Corollary 4.19. The following operator is bounded on LP(U, p):

Ty a0(f)(2) :/|k37,a,b(2,w)!f(w)uw(w)dV(w)- (4.20)
U
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Proof. Estimates (1) and (2) in Proposition 4.14 allow for immediate application of
Proposition 4.11 with N = 1, proving the result. O

Corollary 4.21. The Monomial Basis Projections of the spaces AP(D, ju) and AP(D*, ji)
exist and are absolutely bounded.

Proof. Absolute boundedness (which by Theorem 3.13 implies existence) follows from
Corollary 4.19 on noting that the MBK of AP(U,p.) coincides with the subkernel
kY. o1 O

p,7,0,1

5. Transformation formula
5.1. The canonical-bundle pullback

If ¢ : Q1 — Qs is a finite-sheeted holomorphic map of domains in C™, and f is a
function on 25, we define a function on ; by setting

¢(f) = fod-detd, (5.1)

where ¢'(z) : C" — C™ is the complex derivative of the map ¢ at z € Q. If we
think of Q;,Q, as subsets of R?” and ¢ as a smooth mapping, we can also consider
the 2n x 2n real Jacobian D¢ of ¢. Using the well-known relation det D¢ = |det ¢/|?
between the two Jacobians, we see that ¢! is a continuous linear mapping of Hilbert
spaces ¢f : L2(Qy) — L%(Q4), and restricts to a map A?(Q2) — A2(Q). We will refer
to ¢* as the canonical-bundle pullback induced by ¢, or informally as the -pullback, in
order to distinguish it from a second pullback to be introduced in Section 5.3. If ¢ is a
biholomorphism, then ¢ is an isometric isomorphism of Hilbert spaces L?(23) = L?(£2;)
that restricts to an isometric isomorphism A4%(Q2) = A2().

5.2. Proper maps of quotient type

In the classical theory of holomorphic mappings, one considers proper holomorphic
mappings, and extends the biholomorphic invariance of Bergman spaces to such map-
pings via Bell’s transformation formula (see [5,6,16,3]). In our applications, we are
concerned with a specific class of proper holomorphic mappings. We begin with the
following definition (see [4]):

Definition 5.2. Let 21,09 C C™ be domains, let @ : ; — Q3 be a proper holomorphic
mapping and I' C Aut(2;) a finite group of biholomorphic automorphisms of ;. We
say ® is of quotient type with respect to I if

(1) there exist closed lower-dimensional complex-analytic subvarieties Z; C Q;, j = 1,2,
such that ® restricts to a covering map ® : Oy \ Z1 — Qg \ Z3, and
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(2) for each z € Qg \ Za, the action of I' on € restricts to a transitive action on the
fiber ®~1(z).

The group T is called the group of deck transformations of ®@.

The restricted map ® : Q1 \ Z1 — Q2 \ Z3 is a regular covering map (see [29, page 135
ff.]); i.e., it gives rise to a biholomorphism between Qs \ Z5 and the quotient (€4 \ Z1)/T,
where it can be shown that T" acts properly and discontinuously on £\ Z;. It follows that
T is the full group of deck transformations of the covering map ® : Q1 \ Z; — Qo \ Zo,

and that this covering map has exactly |I'| sheets, where |I'| is the size of the group T
By analytic continuation, the relation ® o 0 = ® holds for each ¢ in I" on all of €.

Definition 5.3. Given a domain  C C™, a group I' C Aut(f2) and a space § of functions
on {2, we define

3" ={feF:f=0cl(f) forall o €T}, (5.4)

where o# is the canonical-bundle pullback induced by ¢ as in (5.1). We say that functions
in this space are said to be I'-invariant in the f§ sense, or simply f-invariant.

If L, M are Banach spaces, by a homothetic isomorphism T : L — M we mean a
bijection such that there is a C' > 0 satisfying

ITfllar = C AL for every f € L. (5.5)

Fix 1 < p < oo and consider a proper holomorphic mapping ® : 2; — s of quotient
type with respect to group I'. Define the function

Ay = | det @277, (5.6)

This function arises as a weight in naturally occurring LP-spaces. Indeed, in Proposition
4.5 of [4] it was shown that the map

F : LP(Qa) — [LP (1, Mp)]F (5.7)
is a homothetic isomorphism with

H(I)u(f)Hip(Qh,\p) = ‘F| ! Hf”ip(gz?) i (58)

which restricts to a homothetic isomorphism of the holomorphic subspaces

D AP () — [AP(Q, \,)]F. (5.9)
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5.3. Density-bundle pullbacks

Let €1, be open sets in R?, and ¢ : Q; — Q5 a smooth map. Given a function f
on s, define the density-bundle pullback, or b-pullback, of f to be the function on
given by

¢of = fod-|det Dg|? (5.10)

where as before, D¢ denotes the d x d Jacobian matrix of ¢. From the change of variables
formula, it follows that if ¢ : Q1 — s is a diffeomorphism, then the induced map
¢, + L?(Q2) — L2(£2) is an isometric isomorphism of Hilbert spaces. When Q1, )y are
domains in a complex Euclidean space C™ and the map ¢ : 21 — )5 is holomorphic,
then

G f = fo¢-|det ], (5.11)
where as before, ¢’ denotes the complex derivative.

Definition 5.12. Given a domain  C C™, group I' C Aut(Q) and function space §
consisting of functions on 2, define the subspace

Slp={fef: f=0,(f) foral o €T}, (5.13)

where o, is the density-bundle pullback in (5.11). Functions in [§], are said to be I'-
invariant in the b sense, or simply b-invariant when T is clear from context.

The behavior of the b-pullback regarding LP-spaces and b-invariant functions is anal-
ogous to the f-pullback regarding LP-spaces and f-invariant functions:

Proposition 5.14. Let 1 < p < 00, 21,9 be domains in C™ and ® : Q1 — Qs be a proper
holomorphic map of quotient type with respect to the group T' C Aut(€Qy). Then

Dy, 2 LP(Q2) — [LP (1, A\p)] - (5.15)
is a homothetic isomorphism.

Proof. Let f € LP(Q2). By Definition 5.2, there exist varieties Z; C 1, Z3 C Q9 such
that @ : Q;\Z7 — Q2\Zs is a regular covering map of order |I'|. Using the change of
variables formula (accounting for the fact that ® is a |I'|-to-one mapping), we see

Oy =01 [ 1PV = [ £ 0 0PIdet@’?aV = |2, )
Q2\ 22 n\Zy
(5.16)
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which shows ®,(f) € LP(Q, Ap). Observe also that for any o € T,
gy(fod |det®'|)= fo(Poo) |det(Poo)|=fod-|detd]

showing that ®,(f) € [LP(21,Ap)]. This shows ®, is a homothetic isomorphism of
LP(Q3) onto a subspace of [LP(Qq, Ap)]p-

It remains to show that this image is the full space. By a partition of unity argument,
it is sufficient to show that a function g € [LP(21, Ap)]. is in the range of ®,, provided
the support of g is contained in a set of the form ®~1(U), where U is an connected open
subset of 23\ Z5 evenly covered by the covering map ®. Notice that ®~1(U) is a disjoint
collection of connected open components each biholomorphic to U, and if Uy is one of
them, ®~*(U) is the disjoint union |J, . o(Up). Let ¥ : U — Uy be the local inverse of
® onto Uy. Define fy on U by fo = U, (g]v, ). We claim that fy is defined independently
of the choice of the component Uy of ®~1(U). Indeed, any other choice is of the form
o(Up) for some o € T and the corresponding local inverse is o o ¥. But we have

(000, (glowy)) = Vs 005 (9lowy)) = Y (9luy) = fo,

where we have used the fact that o,g = g since g € [LP(€21, Ap)]. A partition of unity
argument completes the proof. O

5.4. Monomial maps
Consider an n X n integer matrix A whose element in the j-th row and k-th column

of Ais ai. Let @’ denote the j-th row of A4, and ay, the k-th column. Letting the rows of
A correspond to monomials e,;, define for z € C™ the matriz power

eq1(2) zf%z;é e z;?‘
A = : = : : (5.17)
ean(2) Z;l’f’ Z;S . zfi:’

provided each component is defined. Define the monomial map ®4 to be the rational
map on C" given by

Py(z) = 24 (5.18)

The following properties of monomial maps are known in the literature and refer-
ences to their proofs are given at the end of the list. Three pieces of notation must
first be explained: The element-wise exponential map exp : C* — (C*)™ is given by
exp(z) = (e*,...,e™); if 2 = (21,...,24), w = (w1,...,w,) are points in C™, define
their component-wise product to be z ® w = (z1w1, 20wa, . . ., Z,wy); 1 € ZYX™ is a row
vector with 1 in each component.
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(1) The following formula generalizes the familiar power-rule:
det®’y =det A-eqa_1. (5.19a)

(2) If A is an invertible n X n matrix of nonnegative integers, then &4 : C* — C" is a
proper holomorphic map of quotient type with respect to the group

Iy ={0o,:0,(z) =exp (2miA~'v) © 2, v € Z"'}. (5.19b)

(3) The group I'4 has exactly | det A| elements.
(4) The canonical-bundle pullback of the monomial e,, via the element o, € T'4 is

of(eq) = 2rilat DA™y o (5.19¢)
(5) The set of monomials that are T 4-invariant in the f sense as defined by (5.4) is
{ea:a=pA-1, 37"} (5.19d)

Proof. Property (1) is proved in both [33, Lemma 4.2] and [4, Lemma 3.8]. Properties (2)
and (3) can be found in [4, Theorem 3.12]. See also [47,34] for related results. Properties
(4) and (5) are found in [4, Proposition 6.12]. O

5.5. Conditions for the transformation formula

For the remainder of Section 5, we assume the following conditions in the statements
of our results:

The domain Qo C C™ is pseudoconvex and Reinhardt, A is an n X n matriz of non-
negative integers such that det A # 0, and Q1 = @Zl(Qg), the inverse image of Qo under
the monomial map ®4 : C™ — C™ defined in (5.18).

This set-up has several immediate consequences:

(1) We obtain by restriction a proper holomorphic map
(I)A : Ql — QQ,

which is of quotient type with respect to the group I' 4 defined in (5.19b).
(2) The domain € is pseudoconvex and Reinhardt.
(3) The weight A, from (5.6) is given by

Ap(Q) = [det @ (P77 = [ det AP T IguHer—DEP), (5.20)
k=1

where as before 1 € Z'™™ has 1 in each component and ay, is the k-th column of A.
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(4) By Proposition 3.11, the weight A, is admissible in the sense of Section 1.4.
(5) By (5.7) the canonical-bundle pullback gives a homothetic isomorphism

B 1 LP () = [LP(2, 2],
which by (5.9) restricts to a homothetic isomorphism of the holomorphic subspaces
@ 1 AP(Qy) — [AP(Q, \)]F4.
5.6. T'-invariant subkernel
Assuming the conditions and set-up established in Section 5.5, define the following
subset of p-allowable indices which are I'-invariant in the # sense. (We often suppress
reference to the matrix A in our notation, writing ®4 = ®, 'y =T, etc.)
811:(91, Ap) = {a €8,(,),) : 0¥ (eq) = eq for all ¢ € T'}. (5.21)

We use this to define the “I'-invariant subkernel” of the Monomial Basis Kernel:

K5 p(zw)= Y W (5.22)

a€SL(Q1,2,)
Proposition 5.23. The following sets are equal
{eg B e S (Q1,Ap } {d tA@ﬁ(ea) a € S,,(Qg)}.

Proof. Thinking of @ as an element of Z'*", a computation shows that e, 0 ®4 = eq4.
Thus ®*(eq) = (det A)e(ai1)a—1, SO we have

{ﬁ@u(ea) ta €8,(0)} = {e(atr1ya—1 @ € Sp(M2)} (5.24)
Since the image of AP(Q2) under ®* is the space [AP(Qy, \,)]", we see
{earna—1 @ €Sy()} C{eg: B €Sy, Ny), o%(eg) =ep forall o € T'}.

But since the map ®F : AP(Qy) — [AP(Qy, \,)]! is linear, ®*(f) must have more than
one term in its Laurent expansion if f has more than one term in its Laurent expansion.
Thus

{e(a41)a-1 1 @ € Sp(Q)} = {ep : B € Sp(Q1, Ap), of(eg) = eg for all 0 € T}
={eg:BeS, (U, A},

completing the proof. O
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5.7. Transforming operators with positive kernels

We prove here a transformation law for the “absolute” operator involving the MBK:

(P / (K23 (ew)| fw) aViw), € Cule2a) (5.25)
Qo

This operator is defined on C.(22), but can be extended to L?({2) when LP-estimates
are shown to hold. Define a related operator using the I'-invariant subkernel from (5.22):

(P, 0" /’ v, r (W) | f(w)Ap(w)dV (w),  f € Ce(). (5.26)

These operators are closely related via the b-pullback of Section 5.3:

Theorem 5.27. The following statements are equivalent:

22Vt extends to a bounded operator (Pi}ﬁ"‘l)Jr s LP(Q) — LP(Qs).
(2) (Pgl,\p,r)+ extends to a bounded operator (P;l71/\p7F)Jr C[LP(Q, Ap)]e — [LP(Q1, Ap)]r-

When these equivalent statements hold,

®,0 (P2)* —(Pj}jA ) ed, (5.28)

as operators on LP(Qs), which is to say, that the following diagram commutes

LP(Qs) —2s LP(Q1, Ap)r

|ePgnr |0 (5.29)
LP QQ 4) Lp(Ql, p) .

The following kernel transformation formula can be thought of as a generalization of
the classical biholomorphic transformation formula for the Bergman kernel.

Proposition 5.30. The Monomial Basis Kernel admits the transformation law

| det @' (w)[?

det ®’(w) (5:31)

K3 oz w) = |1|det@’(z)-Ki?i(@(z),@(w))-
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Proof. Starting from the series representation for K (z w) in (3.2), we have

ea(P(2))ea(P(w))]eq(P(w)) ‘p_2

K3(2(2), 2(w)) = )

a€S, () leallZe (o,
-y €a(®(2))ea(P(w))lea(@(w))[P~ (5.32)
€S, (22) H‘I)u(eoz)H[[),p(Ql,)\p)

since by (5.8), the homothetic isomorphism ®* scales norms uniformly for each f €
LP () by |T| - ||f||’L7,,(Q2) = H(I)ﬁ(f)Hip(Q1 N Now use the definition of ®¢ to write
2P

o det @' (w) D% (eq) (2) PF (ea) (w)|PF (e )(w)lp’2
05 =N g e p | 2o [ By,
B det &' (w) eﬁ(z)eﬂ(w)|eﬂ(w)|p_2
= M5 @' (2)| det @ (w)|P ﬁes;;%,m lesllzr o a,) (53
—Ir| det &' (w) KN (zw). (5.34)

det @' (z)| det @' (w)|P

Equation (5.33) follows from Proposition 5.23, and (5.34) follows from the definition of
the T-invariant MBK given in (5.22). This completes the proof. O

Proof of Theorem 5.27. Proposition 5.14 and (5.16) show that ®, : LP(Qy) —
LP(Qu, Ap)r is a homothetic isomorphism with [|®,f[|7,q, \ ) = [TIIfII7s(q,)- Now
for f € Ce($22),

By o (PS3)Tf(2) = | det @' (2 |/‘KQ ]f(w)dV(w)
'd‘“" [det &'(2)] / K2 (@ (=), ®w)| F(@(w)) - | det # (w) ? dV (w)
- / K2 1 (ew0)] B, ()2 () dV () (5.35)
Q1

= (P )t o®,f(2).

Equality in (5.35) uses the kernel transformation law (5.31), and the final line makes
sense since the properness of ® guarantees ®,f € [C.(1)]p. The fact that C.(Qs) is
dense in LP(Q3), along with the fact that its image ®;, (C.(22)) = [C.(21)]r is dense in
[LP(Q1, A\p)];- shows that statements (1) and (2) are equivalent. When these statements
hold, equation (5.28) and Diagram (5.29) follow immediately. O
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6. Monomial polyhedra

In this section we prove Theorem 1.15, which says that if % is a monomial polyhedron
and 1 < p < oo, the Monomial Basis Projection of AP(%/) is absolutely bounded. As
discussed in Section 1.6, this stands in contrast with the limited LP-regularity of the
Bergman projection.

6.1. Matriz representation

We denote the spaces of row and column vectors with integer entries by Z'*" and
Z™*1, respectively. Suppose B= (b)) € Myxn(Z) is a matrix of integers with det B # 0,
with rows written as ' = (b],...,b)) € Z'*". Define

Ug ={z€C":|epi(2)| <1, 1<j<n}, (6.1)

and call it the monomial polyhedron associated to the matrix B, provided it is bounded.
This gives a compact notation for the domains defined in Section 1.6

The matrix B in (6.1) is far from unique. If B’ is obtained from B by permuting rows
or by multiplying any row by a positive integer, then %5 = %p/. We recall the following
observation, originally proved in [4, Proposition 3.2]:

Proposition 6.2. Suppose that % is a bounded monomial polyhedron as in (6.1), where
det B # 0. Without loss of generality we may assume

(1) det B > 0.
(2) each entry in the inverse matriz B! is nonnegative.

Given the monomial polyhedron %p, we will assume for the rest of the paper that
B satisfies both properties (1) and (2) of Proposition 6.2. Observe that Cramer’s rule
combined with property (2) says that the adjugate A = (det B)B~! is a matrix of
nonnegative integers.

The following representation of monomial polyhedra as quotients was first proved in

[4, Theorem 3.12].

Proposition 6.3. Let A = (det B)B™! € M,,xn(Z). There exists a product domain
Q=U; x---xU, CC", (6.4)

each factor U; either a unit disc D or a unit punctured disc D*, such that the monomial

map ®4 : C™ — C™ of (5.18) restricts to a proper holomorphic map ®4 : Q@ — Up. This
map is of quotient type with respect to group T a, which is given in (5.19b).
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The conditions of Section 5.5 are satisfied, if we take 2y = Q, Qo = g, and A, P 4,1 4
as above in Proposition 6.3. In the present situation, the source domain €, = € is a
product and the weight A, = |det (1)24‘2717 of (5.20) admits a tensor product structure:

9 B n
Ap(€) = |det @4 ()" = (det A)* P T 1 (), (6.5)
j=1
where p., is the weight on U; given by
Hey; (Z) = |Z|’Yj7 where Vi = (1 tay — 1)(2 _p)a (66)

1 € Z'*™ is the row vector with 1 in each component and a; € Z"*! the j-th column
of A. We can remove the absolute value from det A since det A = (det B)" - .45 =
det B"~1 > 0.

6.2. Absolute boundedness of the monomial basis projection
We now give a decomposition of the I'-invariant subkernel defined in (5.22).

Proposition 6.7. Let d = det A (a positive integer). The T-invariant subkernel defined in
(5.22) admits the decomposition

dnfl
Kg/\p,r(z,w) = Z Ki(z,w), (6.8)
i=1
where each K; is a tensor product of n arithmetic progression subkernels defined in (4.6):
—_ - U;
K’i(’z, ’LU) = dp 2 H kp,{yj,aiyj,d(zj7 w])’ (69)
j=1

where the v; is determined by (6.6) and «; ; € Z/dZ is determined by the group I'.

Proof. Following (5.22), the I'-invariant subkernel Kg)\mr(z,w) is found by summing
over the p-allowable indices, I'-invariant in the f sense. From (5.21), this set can be
written as

SL(Q ) = {a € Sp(Np) 1 0 (ea) = €q for all 0 € T} = S, (2, \,) N [Z"]",(6.10)

where [Z"]" is defined to be the subset of Z!*™ consisting of exactly those indices for
which the corresponding monomials are I'-invariant, i.e.,

[ZMY = {a € ZY" : oF(ey) = e, for all o € T'}.
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By (5.19d), we see that [Z"]' = {a € Z'*" : a = BA—1, B € Z1*"}, so0 after translating
by 1, we have

[Zn]l" +1= lenA _ {BA . 5 c len} C len'

We make two observations: first, it is known (see Lemma 3.3 of [34]) that Z'*"A is a
sublattice of Z'*" with index

|Z" /(2" A)| = det A = d.

Second, we claim that Z'*"A contains dZ'*" = {dB : B € Z'*"} as a sublattice.
Consider a vector v = dy, for some y € Z'*™ and check that v € Z'*"A. Since A is
invertible, there is a solution z € Q%" with v = dy = 2 A. Write A in terms of its rows

at,---,a" € Z1*" as A =[a', - ,a"]T. Cramer’s rule shows the j-th component of x is
. det ([a', -+ ,a?7 ! dy,a? T, a™]T)
J det A
— det ([0,17 . ,ajfl,y,a]#l, R 7an]T) €z,

confirming that x € Z'*", and therefore that d Z'*™ is a sublattice of Z'*™A.
Since the index |ZlX” /d ZIX”| = d", the Third Isomorphism Theorem for groups says

‘len/dzlxn|

e =d"
|Zl><n/Zl><nA‘

|Zl><nA/dZ1><n| _

It now follows that we have a representation of the group Z'*"A as a disjoint union of
d” ! cosets of the subgroup d Z'*", i.e., there are ¢! € Z'*™ A, such that we have

n—1
lenA _ [Zn]F +1= |_| (dZIXn +€i)v
i=1
where || denotes disjoint union. Therefore, we have
dan! ) A )
2" = (I_l <dZ1X"+m> —1= ] (@2 (¢ - 1)).
i=1 =1
Fix an 4,1 <i < d"" and write £* = (¢1,...,4;,) with (% € Z. Then we have
dZV" 4+ (0 = 1) ={(d-vi+ 0 —1,....d-v, + 0 —1):v1,...,v, €T}
:H{aelzazfé-—l mod d}, (6.11)
j=1

where in the last line we have the Cartesian product of n sets of integers.



34 D. Chakrabarti, L.D. Edholm / Advances in Mathematics 451 (2024) 109790

We now analyze the other intersecting set S,(£2, Ap) in (6.10). Let o € Z™. Combining
the representation of A\, from (6.5) with the fact that e, (2) = H;LZI €a,(2j), we can write
the norm of e, on € in terms of the norms of the €q, ON the factors U;:

||60é||LP(Q Ap) dzi H Heoe, HLP(UJ,/M )* (612)
j=1

The left-hand side is finite, i.e., &« € S,(£2, A,), if and only if each factor on the right-hand
side is finite, i.e., for each 1 < j < n we have a; € S,(Uj, 14, ). Consequently we obtain
a Cartesian product representation of the set

=[S (U, 11r,)- (6.13)

Jj=

=

Therefore by (6.10), we have

where

L =Sp(0) N ((dZH™ + £;) — 1) by definition

(HSP Uj, y;) ﬂ H{aEZ:aE@—l mod d} by (6.11) and (6.13)

Jj=1 Jj=1

(Sp(Uj, iy, ) N{a €Z :a =1, —1 mod d})

—.

1

J

= H Uy, p.yj, 05 — 1, d), (6.14)

and the last equality follows from the definition (4.1). We now define
eql2)xzeq(w
Ki(,z’w) = Z M’ (6.15)
2 el

which immediately gives (6.8), since absolute convergence permits rearrangement of the
series defining KZS}}AP’F. Now from (6.12), we see that for a € .%; we have
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€a ( )X;ea _dp 2H €a; Z] XpeozJ (wj) (6.16)

feall, ewll,
7 ’Y]‘

where for each j, we have a; € A(Uj,p, vj,ﬂj 1,d), and on the right hand side x, :
C — C is the one-dimensional version of the map (1.8). Using (6.14) and (6.16), we can

rearrange the sum (6.15) as

Ki(z,w) =2 ] 3 Ca, (2))X5Ca, (05) (6.17)

J=1 \ a; €A(U;,p,y; L —1,d) H Caj Hp Hoyj
n
—2 U;
=d’ H kp,{yj,ééfl,d(zﬁ wj)
j=1

where the rearrangement in (6.17) is justified since each of the n factor series on the right
hand side is absolutely convergent. The final line is just the definition given in (4.6). O

Proof of Theorem 1.15. Theorem 5.27 says (P:f{l)+ : LP(%) — LP(%) is a bounded
operator if and only if (PS! oo, r) T [LP(QA)]r — [LP(2, Ap)]r is bounded. From (6.8),

we see that

dnl

K;}A r(z,w) ‘ Z |Ki(z,w) (6.18)

From formula (5.26) defining the operator (Pg),\p,r)ﬂ it would be sufficient to prove
that for each 1 <1 < n, the operator

S / K w)] () (w)dV ()
Q

is bounded on (the full space) LP(€, A,). Formula (6.9) now gives

pf\/waz j»d Z],wj) .

\K(=H

Proposition 4.14 now says that for each 1 < j < n, there exist functions ¢;,7; and
constants C7, Cj such that
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/ ’kzi/j,ai,j’d(z’w>’ wj(w)qu%' (w) dV(w) < C{qu(z)q,
U.

[oser
i

Proposition 4.11 now finishes the proof. O

B2 a2 0) 11, (2) AV (2) < O ()"

7. Duality theory of Bergman spaces
7.1. Properties of the twisting map

In this section, 2 will denote an arbitrary Reinhardt domain in C". We return now
to the twisting map x, introduced in (1.8), and use it to present a duality theory for
Bergman spaces on Reinhardt domains. This leads to a concrete description for all 1 <
p < oo of the duals of the AP-Bergman spaces when the Monomial Basis Projection
is absolutely bounded; this is new on all monomial polyhedral domains (including the
Hartogs triangle), and even new in the case of the punctured disc.

Proposition 7.1. The twisting map x, : C* — C" has the following properties.

(1) It is a homeomorphism of C™ with itself, and its inverse is the map x,-
(2) It is a diffeomorphism away from the set U?:l{zj = 0} and its Jacobian determinant
(as a mapping of the real vector space C™) is given by

mp(¢) = det(Dxp) = (p—1)" [Cr- -+ Gl (7.2)

(3) It restricts to a homeomorphism x, : Q — Q=1 with inverse Xq Q-1
where QP~Y) is a Reinhardt power of Q as in (3.6).

Proof. For item (1), notice that if w = x,(2), then for each j we have

-2 -2 —219—2 —2+(p—1)(g—2
wj w777 = 2y [P [zl PR = PR =
since p—2+(p—1)(¢—2) = pg—p—gq = 0. So Xx40X, is the identity, and similarly x,ox, is
also the identity. Item (2) follows from direct computation. Item (3) follows upon noting
that in each coordinate, the map z — z|z|" 2 s represented in polar coordinates as

ret? s P11 The claim follows from the definition of Q®~1. o

Proposition 7.3. The Monomial Basis Kernels of AP(Q) and A7(QP~Y n,) are related
via the twisting map in the following way:

K (Xg(2),w) = K@U (xp(w), 2),  2€ QP D weq. (7.4)
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This “twisted” symmetry generalizes the conjugate symmetry of the Bergman kernel on

Q.
Proof. Recalling equation (3.1) above, observe that

IGea(Q)]” = lealxq(©)” = leal)]“™ P = lea(¢)] .

Now using x, to change of variables, we have
”ea”ip(g) = / lea(Xq(O)IF ng(C) AV () = Heall%q(mp—l),nq) )
Qr—1)

which in particular shows the equality of the sets S,(Q2) = S, (Q(pfl),nq) of allowable
indices. Thus, for z € Q®~1 and w € Q, we have

Z ea(Xq (z>)XZea (w)

P
a€8,(Q) leallze o)

K (xa(2),w) =

ea(Xp(w))X;ea(2) —
= 2 el =K 00w, 2)
a€SG(QP=1) ny) allLa(Qr=1) n,)

By setting p = 2, (7.4) recaptures the conjugate symmetry of the Bergman kernel. 0O
7.2. Adjoints and duality

We now use the map x, to give a “twisted” L?-style pairing of the spaces LP(£2) and
Lq (Q(P*l), 77q)¢

(.0} = / foa@dv,  feIr(Q), geLiQPD ). (7.5)
Q

Proposition 7.6. The map (f,g) — {f,g}p, is an isometric duality pairing of LP(S2) and
L1 (Q(pfl), nq). In other words, through {-,-}, we obtain the dual space identification

LP(Q) =~ L1(QP~1 p,),

where the operator norm of the functional {-,g}, € LP(Q) is equal to the norm of its

representative function g € L1 (Q(p_1)7 77q)-

Proof. It is a classical fact that the ordinary L2-style pairing of LP(Q) with L4(Q) given
by
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(F) = [ 1RV, fer@), geri)

is an isometric duality pairing. Proposition 7.1 says that x4 : Q=1 - Q is a diffeomor-
phism outside a set of measure zero, with inverse x, : 2 — Q@—1 itself a diffeomorphism
outside a set of measure zero. It therefore suffices to show that

X o LUQ) = LYQP™Y py) (7.7)

is an isometric isomorphism of Banach spaces. Calculation shows

ey = [ 1hoxa@)” (V) = |x;
Qp—1)

HLQ(Q(p Dong) " (78)

Since the inverse map x;, of xj exists, it is surjective and the result follows by the
closed-graph theorem. 0O

Proposition 7.9. Suppose the Monomial Basis Projection of AP(QQ) is absolutely bounded
on LP(Q). Then under the pairing {-,-}, defined in (7.5), its adjoint is the Monomial
Basis Projection of AY(Q®=Y n,), which is itself absolutely bounded in LI(QP~1 n.);
i.e.,

(p—1) _
{Plira) ={r.P0 "} . forail ferr(@. geLyQ0.m,).

Proof. Suppose that f € LP(2) and g € L¢(Q®~Y p,):

{Poira} = [Pour-zgav = [ | [ K& G f@avw) | o)
Q Q Q (710)
/ / S0 @AV (=) | flw) dv(w),

(7.11)

where the change in order of integration can be justified as follows. By the assumption
that Pﬁl is absolutely bounded on LP(2), we see that the function on §2 given by

f(w)]dV (w)

N
|
—
3
&

is in LP(Q). Since g € LI(QP~1) 7,), using Tonelli’s theorem we see that
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| k2 (o2 f ()] AV (2, w)

QxQ
= [ [ 1wl wlave) | lataEav) < .
Q Q

by Proposition 7.6. Fubini’s theorem gives that (7.10) = (7.11). Now change variables in
the inner integral of (7.11) by setting z = x,(¢), where ¢ € Q=Y to obtain

(7.11) = / / K (g0, 0)g(0) 1(C) dV(Q) | F(w)dV (w)

Q Qp—1)

= / [ 8 o). 00 Om©av Q) | swave) (712

Qr-1)

/ F(0) P27 g (w) dV (1) (7.13)
= [ (P a)av = {5.P2 "},

The second equality above follows from (7.4). The fact that (7.13) = (7.12) can be
justified as follows. For g € L4 (Q(pfl),nq), the quantity in (7.12) is finite for each
f € LP(Q), since by the above computations it is equal to the finite quantity {Pﬁlf, Gtp-
Therefore we see that for each g € LI(QP~Y 1,), we have that the function

Wi / K2 (3, (w), Og(Ong(Q) dV(Q) | € La(9),

Qlp—1)

so that the linear map

Q(p—1)

is bounded from L4(Q®~1) n,) to LI(Q) by the closed graph theorem (since the integral
operator is easily seen to be closed). Composing with the (isometric) bounded linear map
Xy o L) — LI(QP=1 n.), we see that the operator on LI(Q®P~1) n,) given by

g / K27 (. 0g(Cma(€) AV (Q)
Q(p—1)

is bounded on LI(QP~1 1.). Now Proposition 3.22 shows (7.13) = (7.12). O
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Proposition 7.14. Suppose the Monomial Basis Projection of AP(2) is absolutely bounded
on LP(Q). Then the duality pairing of LP(Q2) and LI(QP~Y n,) by {-,-}, restricts to a
duality pairing of the holomorphic subspaces. In other words, we can identify the dual
space

AP(Q) ~ A1(QP=D ).

Proof. We claim that the conjugate-linear continuous map A?(Q®P=Y n.) — AP(Q)’
given by h — {-,h},1 is a homeomorphism of Banach spaces. To see surjectivity, let
¢ € AP(Q), let ¢ : LP(Q) — C be its Hahn-Banach extension, and let g € LI(Q®~1), 7q)
be such that gzNS(f) = {f,g}p,1. The existence of g follows from Proposition 7.6. We see
from Proposition 7.9 that for each f € AP(Q)) we have

6(f) = o) = {f.9}p = {P%1 f.9}p = {1, P20 g},

so the surjectivity follows since Pf;::l)g e Al (Q(p_l),nq). Now if h € A4 (Q(p_l)ﬂ?q)
is in the null-space of this map, i.e., for each f € AP(Q?) we have {f,h}, = 0, then for
g € LP(Q):

(p—1)
{gvh}p = {gﬁpg,nq h}p = {P;zgzl,l.%h}p = 0.

This shows that h = 0, so the mapping is injective. 0O
7.8. Dual spaces on monomial polyhedra

The duality pairing in Section 7.2 should be contrasted with the usual Holder duality
pairing of L? and L9. On the disc D, the Holder pairing restricts to a duality pairing of the
holomorphic subspaces, yielding the identification A?(D)" ~ A%(D). On the punctured
disc, the Holder pairing fails to restrict to a holomorphic duality pairing and any attempt
to identify AP(D*)" with A?(D*) fails. This is discussed further in Section 8.3. For similar
results, see [15].

Theorem 7.15. Let U = D* or D. The dual space of AP(U) admits the identification
AP(U)/ = Aq(Ua nq)? nq(C) = (q - 1)|C‘2£1—4,
via the pairing (7.5), sending (f,g) — {f,g}p, where f € AP(U), g € AYU,n,).

Proof. It was shown in Corollary 4.21 that the MBP of AP(U) is absolutely bounded.
Recalling the definition of a Reinhart power in (3.6), it is clear that in our case U™ = U
for every m > 0, so in particular for m = p— 1. Proposition 7.14 now gives the result. O

The same behavior regarding Reinhardt powers seen on the disc and punctured disc
continues to hold on all monomial polyhedra:
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Proposition 7.16. Let 7 C C™ be a monomial polyhedron of the form (6.1). Then for
each m > 0, the Reinhardt power %™ = 9 .

Proof. Write % = %p, where the rows of B are given by b/ = (b!,...,b}) € Z'*". From
the definition of the Reinhardt power of a domain given in (3.6), we see

)€U}
Z{ZE(C”:|ebj(|z1|i,...,\zn|%)| <1l,1<j<n}
z{zeC":|eb]~(z)|% <1,1<j<n}
={zeC":ley(2)|<1,1<j<n}=%. O

L
m
5 a"'a|Zn

U™ ={zeC": (|

Theorem 7.17. Let % be a monomial polyhedron in C™. The dual space of AP(%) admits
the identification

AU = AN U ng)s 1g() = (g = D)[C---Gal? T4,
via the pairing (7.5), sending (f,qg) — {f,g}p, where f € AP(% ), g € AN U ,ng).

Proof. The absolute boundedness of the MBP of AP(%) seen in Theorem 1.15 allows
for the use of Proposition 7.14. In this setting % ®~1 = % by Proposition 7.16, which
yields the result. O

8. Comparing the MBP to the Bergman projection on L?

Let © C C™ be a bounded Reinhardt domain such that the origin lies on its boundary.
In even the simplest example, the punctured disc D* = {z € C : 0 < |z| < 1}, special
features of the holomorphic function theory can be seen in the Riemann removable
singularity theorem. Higher dimensional versions of this phenomenon were noticed by
Sibony in [38] on the Hartogs triangle and later generalized in [11].

8.1. The LP-irreqularity of the Bergman projection

In understanding the L? function theory on €2, it is instructive to consider the behavior
of the sets of p-allowable indices introduced in Section 1.4: S,(2) = {a € Z" : e, €
LP(Q)}, as p traverses the interval (1,00). It is clear that the sets can only shrink as p
increases, as fewer monomials become integrable due to increase in the exponent p in
the integral [, |es|” dV. However, the set S,(£2) is always nonempty, since N C S,(€2),
Q being bounded.

For example on the punctured disc, if p < 2, then S,(D*) = {a € Z : a« > —1},
and if p > 2, then S,(D*) = {o € Z : a > 0}. The exponent p = 2 where the set of
indices shrinks is a threshold. The LP-irregularity of the Bergman projection is closely
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related with these thresholds. It was shown in [4], that on a monomial polyhedron %, the
Bergman projection is bounded in L? if and only if p € (¢*, p*), where p* = p*(%) is the
smallest threshold of % bigger than 2 and ¢* = ¢*(%) is its Holder conjugate. Explicit
values of p* and ¢* are given in the main theorem of [4]; see also Proposition 1.12.
Outside the interval (¢*,p*), the LP-boundedness of the Bergman projection on the
monomial polyhedron % fails in different ways depending on whether p > p* or p < ¢*.
Since % is bounded, we have LP(%) C L*(%) if p > p* > 2, so the integral operator
defining the Bergman projection in (1.1) is defined for each f € LP(%). The failure of
boundedness of the Bergman projection corresponds to the fact that there are functions
f € LP(%) for which the projection B¥ f is not in AP(%). It is easy to give an explicit
example when % = H, the Hartogs triangle. Suppose p > p*(H) = 4 and let f(z) = Za,
which is bounded and therefore in LP(H). A computation shows that there is a constant
C such that BRf(z) = Cz~' ¢ LP(H). This idea can be generalized to an arbitrary
monomial polyhedron % to show that if p > p*, there is a function in LP(%) which
projects to a monomial which is in L?(%) but not in LP(%). In [14] the range of the
map B : LP(H) — L?(H) for p > 4 was identified as a weighted LP-Bergman space
strictly larger than LP(H), and a similar result holds on any monomial polyhedron.
Recent work in [25] shows that B is of weak-type (4,4), and this has been extended to
generalized Hartogs triangles in [13]. For p < ¢*, the situation is even worse:

Proposition 8.1. Let 1 < p < ¢*(%) and z € % . There is a function f € LP(%) such
that the integral

/ B (z,w) f(w) dV ()

U

diverges. Consequently, there is no way to extend the Bergman projection to LP(% ) using
its integral representation.

Proof. Let ¢ denote the Holder conjugate of p so that ¢ > p*. The holomorphic function
on the Reinhardt domain % given by ¢(¢) = B((, z) has Laurent expansion

=

9= > T

¢
2 Teall
Since ¢ > p*, and the set of integrable monomials shrinks at p*, it follows that there
is a monomial e, € A%(% )\ A4(%). Since this non-A? monomial appears in the above
Laurent series with a nonzero coeflicient, and by Theorem 2.12, the Laurent expansion of
a function in A? can only have monomials which are in A%, it follows that g ¢ A%(% ). By
symmetry therefore, B(z,-) € L9(% ). It now follows that there is a function f € LP(%)
such that the integral above does not converge. 0O
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When % = H, one can show by explicit computation that if 1 < p < % = ¢*(H),
we can take f(w) = wy® in the above result for each z € H. Tt was shown in [25] that
B fails to be weak-type (%, %), and this was extended in [13] to generalized Hartogs
triangles. But in light of Proposition 8.1, we see that B does not even exist as an
everywhere defined operator on L*/3(H).

In contrast with the above, Theorem 1.15 guarantees that for 1 < p < oo and %
a monomial polyhedron, that the MBP P;Z{l is a bounded operator from LP(%) onto
AP(% ), and Theorem 3.13 says that for z € %, the function K% (z,-) € LY(% ), where

1,01 _
st =1
8.2. Fuailure of surjectivity

Even if the Bergman projection can be given a bounded extension to LP, it need not
be surjective onto AP for p < 2, as one sees in the case of the punctured disc. Here,
since A%(D*) and A%(D) are identical, the Bergman kernels have the same formula. The
Bergman projection on D* consequently extends to a bounded operator on LP(D*) for
every 1 < p < oo, but fails to be surjective onto A?(D*) for p € (1,2). This happens
because the range of the Bergman projection can be naturally identified with AP(D),
and when 1 < p < 2, the space AP(D) is a strict subspace of AP(D*) (for example the
function g(z) = 2! belongs to A?(D*)\ AP(D)). In particular, B®" is not the identity
on AP(D*) and its nullspace is the one-dimensional span of g(z) = z~1.

On the Hartogs triangle, the Bergman projection is bounded on L?(H) for % <p<4,
but is not surjective onto AP(H) for 3 < p < 2. Let N' C AP(H) be the closed subspace
spanned by the monomials in AP(H) \ A%(H). One sees from a computation that the
monomials in AP(H) \ A?(H) are e, with a3 > 0 and a; + ag = —2. Then one can
verify using orthogonality of LP? and LY? monomials that the nullspace of B restricted
to AP(H) is NV.

In contrast, the MBP of AP(%) accounts for all monomials appearing in the Banach-
space basis {eg : § € S,(% )}, and Corollary 1.16 shows that for 1 < p < oo, PZ/1 is a
bounded surjective projection of LP(% ) onto AP(%).

8.3. The Bergman projection and holomorphic dual spaces

The following is a reformulation of [10, Theorem 2.15]:

Theorem 8.2. Suppose that the following two conditions hold on a domain U C C™.

(1) The absolute Bergman operator (BY)* : LP(U) — LP(U) is bounded.
(2) The Bergman projection acts as the identity operator on both AP(U) and AY(U).
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Then the sesquilinear Holder pairing restricts to a duality pairing of AP(U) with AY(U):

(f.9) = / fgdv,  feAr(U), ge AU), (8.3)
U

providing the dual space identification AP(U) ~ A%(U).

Conditions (1) and (2) both hold, for instance, on smoothly bounded strongly pseudo-
convex domains (see [36] and [8]), thus yielding the dual space identification. But when
one of the conditions (1) or (2) fails, the conclusion can fail.

On the punctured disc D* C C, (1) always holds but (2) fails for all p # 2; it can
be shown that under the pairing (8.3), AP(D*)’ can only be identified with A9(D*) if
p = ¢ = 2. On the Hartogs triangle H, (1) holds if % < p < 4, but (2) never holds for a
p in this range, as we saw in Section 8.2. The pairing (8.3) is not a duality pairing on H
for % < p < 4 unless p = 2. The mapping A?(H) — AP(H)’ given by the pairing is not
injective if 2 < p < 4 and not surjective if % <p<2.

In contrast with the above, the duality theory of Section 7.2 characterizes duals of
Bergman spaces of Reinhardt domains via the pairing (7.5) whenever the MBP is ab-
solutely bounded. We saw that Theorem 7.15 gives a concrete description of the dual
space of AP(D*), and for monomial polyhedra Theorem 7.17 does the same.
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