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1. Introduction

1.1. The Bergman projection on Lp

Given a domain Ω ⊂ Cn, the Bergman projection BΩ is the orthogonal projec-
tion from L2(Ω) onto the Bergman space A2(Ω) = L2(Ω) ∩ O(Ω), the subspace of 
square-integrable holomorphic functions. The Bergman projection can be represented 
by integration against the Bergman kernel BΩ:

BΩf(z) =
∫
Ω

BΩ(z, w)f(w)dV (w), f ∈ L2(Ω), (1.1)

where dV is Lebesgue measure. The Bergman kernel enjoys remarkable reproducing, 
invariance and extremal properties and is closely related to the ∂̄-Neumann problem 
(see e.g. [7,21,27]).

Bergman spaces can be naturally defined on all complex manifolds, in contrast with 
Hardy spaces, whose construction is tied to distinguished measures on the boundary of 
a domain, e.g., the Haar measure on the unit circle in the case of the classical Hardy 
space Hp(D) of Lp boundary values of holomorphic functions.

Inspired by Hardy spaces, it is natural to consider the space of p-th power integrable 
holomorphic functions Ap(Ω) of a domain Ω ⊂ Cn. These have been known as (Lp-) 
Bergman spaces since the 1970s, though S. Bergman only studied the square integrable 
setting. In view of M. Riesz’s classical result on the Lp-boundedness of the Szegő pro-
jection for 1 < p < ∞, it is also natural to ask whether the Bergman projection extends 
to a bounded linear projection from Lp(Ω) onto Ap(Ω) via the integral formula (1.1). 
When Ω is a ball in Cn, this turns out to be the case (see [46,24]); the same remains 
true in many classes of smoothly bounded pseudoconvex domains ([36,35,32,30] etc.) In 
these cases, the extended operator turns out to be even absolutely bounded, in the sense 
that the associated “absolute” operator (BΩ)+ is bounded on Lp(Ω), where

(BΩ)+f(z) =
∫
Ω

∣∣BΩ(z, w)
∣∣ f(w)dV (w), f ∈ Lp(Ω).

On the other hand, there are examples of domains for which the extended Bergman 
projection fails to define a bounded projection from Lp(Ω) onto Ap(Ω) for some (and 
sometimes for all) p �= 2; see [1,2,22,23,40,19] and the survey [41]. Recent studies of 
the Bergman projection in certain classes of Reinhardt domains ([14,17,18,12,10,20,25,
42,43,31,4] etc.) shed more light on this phenomenon, revealing that the Lp-behavior of 
the Bergman projection that one sees on, e.g., smooth bounded strongly pseudoconvex 
domains breaks down on bounded Reinhardt domains whose boundary passes through 
the center of rotational symmetry, a simple example being the Hartogs triangle {|z1| <
|z2| < 1} ⊂ C2. On such a domain it is possible that there are indices 1 < p1 < p2 < ∞
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such that the linear subspace Ap2(Ω) is not dense in the Bergman space Ap1(Ω). This 
phenomenon can never occur on smoothly bounded pseudoconvex domains (see [8]), and 
may constitute a glimpse of an Lp-function theory where the Banach geometry of Lp

replaces the Hilbert space idea of orthogonality. In the Reinhardt domains studied in 
this paper, Laurent representations are used to clarify some of these phenomena. For 
example, the fact that Ap2(Ω) is not necessarily dense in Ap1(Ω) is a manifestation of 
the fact that there may be monomials whose p1-th power is integrable but not the p2-th 
power.

1.2. Projection operators associated to bases

Let L be a separable Hilbert space, A a closed subspace of L and {ej} a complete 
orthogonal set in A. The orthogonal projection P from L to A may be represented by 
the following series (convergent in the norm of L):

P f =
∑
j

〈f, ej〉
‖ej‖2 ej , f ∈ L. (1.2)

Since P f is defined geometrically as the point in A nearest to f , this representation is 
independent of the choice of complete orthogonal set {ej}. When L = L2(Ω), A = A2(Ω), 
(1.2) coincides with the Bergman projection formula given by (1.1).

In a general Banach space, the analog of a complete orthogonal set is a Schauder 
basis: a sequence {ej}∞j=1 in a complex Banach space A is a Schauder basis if for each 
f ∈ A, there is a unique sequence {cj}∞j=1 of complex numbers such that f =

∑∞
j=1 cjej , 

where the series converges in the norm-topology of A (see [28]). In this case, there exist 
bounded linear functionals aj : A → C such that cj = aj(f), generalizing the Fourier 
coefficients aj(f) = 〈f,ej〉

‖ej‖2 seen in the Hilbert setting.
When L is a Banach space, A a closed subspace, and {ej}∞j=1 a Schauder basis of A, 

one might attempt to define a projection operator from L onto A by emulating (1.2):

P f =
∑
j

ãj(f)ej , f ∈ L, (1.3)

where ãj : L → C is a Hahn-Banach (norm-preserving) extension of aj : A → C. 
When it exists, an operator of type (1.3) will be called a basis projection determined by 
the Schauder basis; this notion encapsulates the orthogonal projection (1.2) when L is 
Hilbert. A less obvious example of a basis projection is seen by considering the unit circle 
T with the Haar measure and 1 < p < ∞. The classical Szegő projection from Lp(T )
onto the Hardy space Hp(D) is a basis projection; see Proposition 2.7. In contrast, we 
show in Proposition 3.15 that for p �= 2, the attempt to extend the Bergman projection 
to Lp by continuity – even if successful – is never a basis projection. This is an underlying 
reason for the deficiencies of the Bergman projection in Lp spaces, and our goal in this 
paper is to construct basis projections from Lp(Ω) to Ap(Ω).
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1.3. The monomial basis projection

Formula (1.3) is purely formal, as there is no guarantee that a basis projection onto 
the subspace determined by a given basis exists. Several technical points must first be 
addressed:

(1) A basis projection depends on both the range subspace A and on the choice of 
Schauder basis – or the slightly more general notion of a Banach-space basis (see 
Section 2.1) – determining the projection. A Banach space need not have such a 
basis, but in the Bergman space Ap(Ω) of a Reinhardt domain Ω ⊂ Cn, there is a 
distinguished basis tied to geometry and function theory. This is the collection of 
Laurent monomials in Ap(Ω), functions z �→ zα1

1 zα2
2 . . . zαn

n where αj ∈ Z, 1 ≤ j ≤ n. 
The fact that these monomials under an appropriate partial ordering give a Banach-
space basis of Ap(Ω) was first proved in [10], and is recalled in a slightly more general 
form in Theorem 2.12 below. The projection operator from Lp(Ω) to Ap(Ω) defined 
in terms of this monomial basis by formula (1.3) is the main topic of this paper: the 
Monomial Basis Projection (MBP).

(2) A Hahn-Banach extension of a linear functional in general is far from unique, but in 
our application, where we extend coefficient functionals defined on Ap(Ω) to Lp(Ω), 
we do have uniqueness; see Propositions 2.3 and 2.4 below. This means the MBP 
can be unambiguously defined by (1.3), since the summation procedure is specified 
by the partial ordering of our Banach-space basis mentioned in item (1).

(3) None of the above guarantees that the formal series (1.3) converges for f ∈ L. 
Showing that (1.3) defines a bounded operator on L requires direct estimation to 
show that the partial summation operators are uniformly bounded in the operator 
norm of L. In our application to Bergman spaces Ap(Ω), the problem is simplified 
because of the availability of an integral kernel representation of the MBP.

1.4. Notation, definitions and conventions

(1) Unless otherwise indicated, Ω will denote a bounded Reinhardt domain in Cn with 
center of symmetry at 0, i.e., whenever z ∈ Ω, for every tuple (θ1, . . . , θn) ∈ Rn, we 
have (eiθ1z1, . . . , eiθnzn) ∈ Ω. Let |Ω| ⊂ Rn denote its Reinhardt Shadow, i.e.,

|Ω| = {(|z1| , . . . , |zn|) ∈ Rn : z ∈ Ω}.

(2) The index p satisfies 1 < p < ∞, and denote by q the index Hölder-conjugate to p, 
i.e., 1

p + 1
q = 1.

(3) For a domain U ⊂ Cn and a measurable function λ : U → [0, ∞] which is positive 
a.e. (the weight), we set for a measurable function f ,

‖f‖pLp(U,λ) = ‖f‖pp,λ =
∫

|f |p λ dV, (1.4)

U
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where dV denotes Lebesgue measure, and functions equal a.e. are identified. We let 
Lp(U, λ) be the space of functions f for which ‖f‖p,λ < ∞, which is a Banach space.
Let Ap(U, λ) be the subspace of Lp(U, λ) consisting of holomorphic functions:

Ap(U, λ) = Lp(U, λ) ∩ O(U).

We will only consider weights λ : U → [0, ∞] which are admissible in the sense that 
Bergman’s inequality holds in Ap(U, λ), i.e., for each compact set K ⊂ U , there is a 
constant CK > 0 such that for each f ∈ Ap(U, λ) we have

sup
K

|f | ≤ CK ‖f‖Lp(U,λ) . (1.5)

It is easy to see that if λ is a positive continuous function on U then it is an admissible 
weight on U . We treat a class of more general admissible weights in Section 3.2.
If λ is an admissible weight on U , a standard argument shows that Ap(U, λ) is a 
closed subspace of Lp(U, λ), and therefore a Banach space. It is called a weighted 
Bergman space.

(4) We are interested in Reinhardt domains Ω and phenomena which are invariant under 
rotational symmetry. Therefore, we consider only weights λ on Ω which are both 
admissible and multi-radial, in the sense that there is a function � on the Reinhardt 
shadow |Ω| such that λ(z1, . . . , zn) = �(|z1| , . . . , |zn|).

(5) For α ∈ Zn, we denote by eα the Laurent monomial of exponent α:

eα(z) = zα1
1 . . . zαn

n . (1.6)

(6) We define the set of p-allowable indices to be the collection

Sp(Ω, λ) = {α ∈ Zn : eα ∈ Ap(Ω, λ)} . (1.7)

If λ ≡ 1, we abbreviate Sp(Ω, 1) by Sp(Ω).
(7) The map χp : Cn → Cn defined by

χp(ζ) =
(
ζ1 |ζ1|p−2

, · · · , ζn |ζn|p−2
)

(1.8)

will be referred to as the twisting map. It appears in the definition of the Monomial 
Basis Kernel in (1.10), and arises also in the duality pairing (7.5). Given a function 
f we denote by χ∗

pf its pullback under χp:

χ∗
pf = f ◦ χp. (1.9)
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1.5. The monomial basis kernel

When it exists, the MBP of Ap(Ω, λ) is (by construction) a bounded surjective projec-
tion, which we write PΩ

p,λ : Lp(Ω, λ) → Ap(Ω, λ). To obtain an integral formula analogous 
to (1.1), we define the Monomial Basis Kernel of Ap(Ω, λ) (abbreviated MBK ), as the 
formal series on Ω × Ω given by

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

eα(z)χ∗
peα(w)

‖eα‖pp,λ
. (1.10)

When p = 2, the MBK coincides with the Bergman kernel of A2(Ω, λ), in which 
case the above series is known to converge locally normally on Ω × Ω. For a general 
1 < p < ∞, we show in Theorem 3.3 that when Ω is pseudoconvex, the series (1.10) also 
converges locally normally on Ω × Ω. In Theorem 3.13 we prove that the MBP admits 
the representation

PΩ
p,λ(f)(z) =

∫
Ω

KΩ
p,λ(z, w)f(w)λ(w)dV (w), f ∈ Lp(Ω, λ). (1.11)

1.6. Improved Lp-mapping behavior

The main theme of this paper is that the Monomial Basis Projection can have better 
mapping properties in Lp spaces than the Bergman projection. In Section 6 we illustrate 
this on nonsmooth pseudoconvex Reinhardt domains called monomial polyhedra (see 
[33,4]). A bounded domain U ⊂ Cn is a monomial polyhedron in our sense, if there are 
exactly n monomials eα1 , . . . , eαn such that

U = {z ∈ Cn : |eα1(z)| < 1, . . . , |eαn(z)| < 1} .

We recall the Lp-mapping behavior of the Bergman projection on U :

Proposition 1.12 ([4]). There is a positive integer κ(U ) such that the Bergman projection 
on U is bounded in the Lp-norm if and only if

2κ(U )
κ(U ) + 1 < p <

2κ(U )
κ(U ) − 1 . (1.13)

Examples of monomial polyhedra in C2 are the (rational) generalized Hartogs tri-
angles studied in [18,19]. Define Hγ = {|z1|γ < |z2| < 1}, γ > 0. If γ = m

n is 
rational, gcd(m, n) = 1, this domain is a monomial polyhedron with α1 = (m, −n), α2 =
(0, 1). In this case it can be shown that κ(Hm/n) = m + n, yielding the interval 
p ∈
( 2m+2n , 2m+2n ) from (1.13) on which the Bergman projection is Lp-bounded. We 
m+n+1 m+n−1
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also note the case of Hγ , γ irrational – which is not a monomial polyhedron by our defi-
nition. On these domains, it is shown in [19] that the Bergman projection is Lp-bounded 
if and only if p = 2.

This limited Lp-regularity is one of several deficiencies that can arise when the 
Bergman projection acts on Lp spaces of nonsmooth domains; other possible defects 
such as a lack of surjectivity onto Ap are discussed in Section 8. The Monomial Ba-
sis Projection avoids these defects and is shown to have far more favorable mapping 
behavior. Define for 1 < p < ∞ the corresponding “absolute” operator of Ap(U ) by

(PU
p,1)+(f)(z) =

∫
U

∣∣KU
p,1(z, w)

∣∣ f(w) dV (w). (1.14)

Theorem 1.15. Let 1 < p < ∞ and let U ⊂ Cn be a monomial polyhedron. Then the 
operator (PU

p,1)+ is bounded from Lp(U ) to itself.

After setting the stage in Sections 4 and 5, the proof of Theorem 1.15 is finally carried 
out in Section 6. An application of this result is given in Section 7, where we represent 
the dual space Ap(U )′ as a weighted Bergman space on U ; see Theorem 7.17.

Corollary 1.16. The Monomial Basis Projection is a bounded surjective projection oper-
ator PU

p,1 : Lp(U ) → Ap(U ).

Proof. It is clear that the boundedness of the operator (PU
p,1)+ on Lp(U ) implies the 

boundedness on Lp(U ) of the integral operator in (1.11). However, in Proposition 3.22, 
we will show that whenever this integral operator satisfies Lp estimates, it coincides 
with the Monomial Basis Projection PU

p,1 : Lp(U ) → Ap(U ). The MBP is a surjective 
projection operator whenever its defining series (2.15) converges. �
1.7. Acknowledgments
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2. Basis projections

2.1. Bases in Banach spaces

Since our application uses bases indexed by multi-indices, we need a slightly more 
general notion of a basis in a Banach space than that of a Schauder basis described in 
Section 1.2. For a multi-index α ∈ Zn, let |α|∞ = max1≤j≤n |αj |.
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Definition 2.1. Let A be a Banach space, n a positive integer and A ⊂ Zn a set of multi-
indices. A collection {eα : α ∈ A} of elements of A is said to form a Banach-space basis
of A if for each f ∈ A, there are unique complex numbers {cα : α ∈ A} such that

f = lim
N→∞

∑
|α|∞≤N

α∈A

cαeα, (2.2)

where the sequence of partial sums converges to f in the norm-topology of A. The sums 
on the right hand side of (2.2) whose limit is taken are called square partial sums.

Schauder bases are special cases of this definition corresponding to taking n = 1
and A the set of positive integers. A related notion is that of a finite dimensional 
Schauder decomposition (see [28]). A Banach-space basis in our sense determines a 
Schauder decomposition of the Banach space A into the finite-dimensional subspaces 
An = span{eα : |α|∞ = n}, n ≥ 0.

Adapting a classical proof ([28, Proposition 1.a.2]), is not difficult to see that for each 
α ∈ A, the map aα : A → C assigning to an element x ∈ A the coefficient cα of the series 
(2.2) is a bounded linear functional on A. The collection of functionals {aα : α ∈ A} is 
called the set of coefficient functionals dual to the basis {eα : α ∈ A}.

2.2. Unique Hahn-Banach extension

Recall that a normed linear space is said to be strictly convex, if for distinct vectors 
f, g of unit norm, we have ‖f + g‖ < 2.

Proposition 2.3 ([39]). If L is a Banach space such that its normed dual L′ is strictly 
convex, and f : A → C is a bounded linear functional on a subspace A ⊂ L, then f
admits a unique norm-preserving extension as a linear functional on L.

Proof. That at least one functional extending f and having the same norm exists is the 
content of the Hahn-Banach theorem. Without loss of generality, the norm of f as an 
element of A′ is 1. Suppose that f admits two distinct extensions f1, f2 ∈ L′ such that 
‖f1‖L′ = ‖f2‖L′ = 1. Then g = 1

2 (f1 + f2) is yet another extension of f to an element 
of L′, so ‖g‖L′ ≥ ‖f‖A′ = 1. On the other hand, thanks to the strict convexity of L′, we 
have ‖g‖L′ < 1

2 · 2 = 1. This contradiction shows that f1 = f2. �
The examples of unique Hahn-Banach extensions in this paper arise from the following:

Proposition 2.4. Let (X, F , μ) be a measure space, and 1 < p < ∞. The dual of Lp(μ) is 
strictly convex.

Proof. Since the dual of Lp(μ) can be isometrically identified with Lq(μ) where q is the 
exponent conjugate to p, it suffices to check that Lq(μ) is strictly convex. Let f, g be 
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distinct elements of Lq(μ) such that ‖f‖q = ‖g‖q = 1. Suppose we have ‖f + g‖q = 2 =
‖f‖q + ‖g‖q, so that we have equality in the Minkowski triangle inequality for Lq(μ). It 
is well-known that equality occurs in the Minkowski triangle inequality only if f = cg

for some c > 0. But since ‖f‖q = ‖g‖q = 1 this gives that c = 1, which is a contradiction 
since f �= g. Therefore ‖f + g‖q < 2 showing that Lq(μ) is strictly convex. �
2.3. Basis projections

Let L be a Banach space such that its dual is strictly convex, A be a closed subspace, 
the collection {eα : α ∈ A} a Banach-space basis of A in the sense of Definition 2.1, and 
let {aα : α ∈ A} be the coefficient functionals dual to this basis. Let ãα : L → C be the 
unique Hahn-Banach extension of the functional aα : A → C, where uniqueness follows 
by Proposition 2.3.

Definition 2.5. A bounded linear projection operator P from L onto A is called the basis 
projection determined by {eα : α ∈ A}, if for each f ∈ L, we have a series representation 
convergent in the norm of L given by

P f = lim
N→∞

∑
|α|∞≤N

α∈A

ãα(f)eα. (2.6)

2.4. The Szegő projection

Let 1 < p < ∞, L = Lp(T ), the Lp-space of the circle with the normalized Haar 
measure 1

2πdθ, and A = Hp(D), the Hardy space of the unit disc, the subspace of Lp(T )
consisting of those elements of Lp(T ) which are boundary values of holomorphic functions 
in the disc. Let τα(eiθ) = eiαθ, α ∈ Z, denote the α-th trigonometric monomial on T . 
It is well-known that {τα : α ≥ 0} is a (normalized) Schauder basis of Hp(D), i.e., the 
partial sums of the Fourier series of a function in Hp(D) converge in the norm Lp(T ). 
Notice that Schauder bases are simply Banach-space bases in the sense of Definition 2.1
where A is the set of positive integers.

Proposition 2.7. For 1 < p < ∞, the basis projection from Lp(T ) onto Hp(D) determined 
by the Schauder basis {τα}∞α=0 exists, and coincides with the Szegő projection.

Proof. The coefficient functionals on Hp(D) dual to the Schauder basis {τα : α ≥ 0} are 
precisely the Fourier coefficient functionals {aα}∞α=0:

aα(f) =
2π∫
0

f(eiθ)e−iαθ dθ

2π , f ∈ Hp(D). (2.8)

Notice that for f ∈ Hp(D), we have
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|aα(f)| ≤
2π∫
0

∣∣f(eiθ)
∣∣ dθ
2π ≤ ‖f‖Lp(T) ‖1‖Lq(T) = ‖f‖Lp(T) , (2.9)

where q is the Hölder conjugate of p, and we use Hölder’s inequality along with the fact 
that the measure is a probability measure. Therefore ‖aα‖ ≤ 1. But since ‖τα‖Lp(T) = 1, 
and aα(τα) = 1, it follows that ‖aα‖ = 1. We now claim that the Hahn-Banach extension 
ãα : Lp(T ) → C of the coefficient functional aα : Hp(D) → C is still the Fourier 
coefficient functional:

ãα(f) =
2π∫
0

f(eiθ)e−iαθ dθ

2π , f ∈ Lp(T ).

Indeed, ãα is an extension of aα, and repeating the argument of (2.9) shows ‖ãα‖ = 1, 
and thus it is a Hahn-Banach extension. Uniqueness follows from Propositions 2.3 and 
2.4.

Let S denote the basis projection from Lp(T ) onto Hp(D) and let f ∈ Lp(T ) be a 
trigonometric polynomial. Then formula (2.6) in this case becomes:

Sf(eiφ) =
∞∑

α=0

⎛⎝ 2π∫
0

f(eiθ)e−iαθ dθ

2π

⎞⎠ eiαφ =
2π∫
0

f(eiθ)
1 − ei(φ−θ) · dθ2π .

This shows that on the trigonometric polynomials, the basis projection coincides with 
the Szegő projection, which is known to be represented by the singular integral at the 
end of the above chain of equalities. But as the Szegő projection is bounded from Lp(T )
onto Hp(D), it follows that the basis projection exists and equals the Szegő projection 
on Lp(T ). �
2.5. The monomial basis projection

On a Reinhardt domain Ω ⊂ Cn each holomorphic function f ∈ O(Ω) has a unique 
Laurent expansion

f =
∑
α∈Zn

cαeα, (2.10)

where cα ∈ C and the series converges locally normally, i.e., for each compact K ⊂ Ω, 
the sum 

∑
α ‖cαeα‖K < ∞, where ‖·‖K = supK |·| is the sup norm (see e.g. [37]). It 

follows that (2.10) converges uniformly on compact subsets of Ω. Define

aα : O(Ω) → C, aα(f) = cα (2.11)

where cα is as above in (2.10). The functional aα is called the α-th Laurent coefficient 
functional of the domain Ω.



D. Chakrabarti, L.D. Edholm / Advances in Mathematics 451 (2024) 109790 11
The following result shows that the Laurent monomials (under an appropriate order-
ing) form a basis of the Bergman space Ap(Ω, λ), where λ is an admissible multi-radial 
weight. The unweighted version of this result (the case λ ≡ 1) was proved in [10], inspired 
by the case of the disc considered in [44]. The more general Theorem 2.12 is proved in 
exactly the same way, by replacing the implicit weight λ ≡ 1 in [10, Theorem 3.11] with a 
general multi-radial weight λ. A key ingredient of the proof, the density of Laurent poly-
nomials in Ap(Ω, λ), can also be proved using Cesàro summability of power series (see 
[9, Theorem 2.5]). Recall that the notation and conventions established in Section 1.4
are in force throughout the paper.

Theorem 2.12. The collection of Laurent monomials {eα : α ∈ Sp(Ω, λ)} forms a Banach-
space basis of Ap(Ω, λ). The functionals dual to this basis are the coefficient functionals 
{aα : α ∈ Sp(Ω, λ)}, and the norm of aα : Ap(Ω, λ) → C is given by

‖aα‖Ap(Ω,λ)′ = 1
‖eα‖p,λ

. (2.13)

Thus, if f ∈ Ap(Ω, λ), the Laurent series of f written as 
∑

α∈Zn aα(f)eα consists only 
of terms corresponding to monomials eα ∈ Ap(Ω, λ), i.e., if α �∈ Sp(Ω, λ), then aα(f) = 0.

We are ready to formally define the main object of this paper:

Definition 2.14. A bounded linear projection PΩ
p,λ from Lp(Ω, λ) onto Ap(Ω, λ) is called 

the Monomial Basis Projection of Ap(Ω, λ), if for f ∈ Lp(Ω, λ) it admits the series 
representation convergent in the norm of Lp(Ω, λ) given by

PΩ
p,λ(f) = lim

N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(f)eα, (2.15)

where ãα : Lp(Ω, λ) → C is the unique Hahn-Banach extension of the coefficient func-
tional aα : Ap(Ω, λ) → C.

Remark 2.16. The surjectivity onto the space Ap(Ω, λ) is built in to the definition of the 
Monomial Basis Projection, since it acts as the identity operator there. Notice that the 
MBP is a basis projection in the sense of Definition 2.5, when L = Lp(Ω), A = Ap(Ω)
and {eα} is the monomial basis of Ap(Ω, λ). ♦

3. The monomial basis kernel

3.1. Existence of the kernel function

The Monomial Basis Kernel of Ap(Ω, λ) was introduced as a formal series in (1.10). 
Using (1.8) and (1.9), we can write
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χ∗
peα(w) = eα(w) |eα(w)|p−2

, (3.1)

which allows for the re-expression of the MBK as

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

eα(z)eα(w) |eα(w)|p−2

‖eα‖pp,λ
. (3.2)

A sufficient condition for the convergence of this series is now given.

Theorem 3.3. Let Ω be a pseudoconvex Reinhardt domain in Cn and λ be an admissible 
multi-radial weight function on Ω. The series (3.2) defining KΩ

p,λ(z, w) converges locally 
normally on Ω × Ω.

We need two lemmas for the proof of this result. The first is an analog for Laurent 
series of Abel’s lemma on the domain of convergence of a Taylor series ([37, p. 14]):

Lemma 3.4. Let Ω ⊂ Cn be a Reinhardt domain, define S(Ω) = {α ∈ Zn : eα ∈ O(Ω)}, 
and for coefficients aα ∈ C, α ∈ S(Ω), let∑

α∈S(Ω)

aαeα (3.5)

be a formal Laurent series on Ω. Suppose that for each z ∈ Ω there is a C > 0 such that 
for each α ∈ S(Ω) we have |aαeα(z)| ≤ C. Then (3.5) converges locally normally on Ω.

Proof. See Lemma 1.6.3 and Proposition 1.6.5 of [26, Section 1.6]. �
Given a Reinhardt domain Ω ⊂ Cn and a number m > 0, define the m-th Reinhardt 

power of Ω to be the Reinhardt domain

Ω(m) =
{
z ∈ Cn :

(
|z1|

1
m , . . . , |zn|

1
m

)
∈ Ω
}
. (3.6)

If Ω is pseudoconvex, then for each m > 0 the domain Ω(m) is pseudoconvex. Indeed, 
recall the logarithmic shadow of Ω, the subset log(Ω) of Rn given by

log(Ω) = {(log |z1| , . . . , log |zn|) : z ∈ Ω}. (3.7)

Recall also that Ω is pseudoconvex if and only if the set log(Ω) is convex, and Ω is 
“weakly relatively complete” ([26, Theorem 1.11.13 and Proposition 1.11.6]). It is easily 
seen that the condition of weak relative completeness is preserved by the construction 
of Reinhardt powers, and

log
(
Ω(m)
)

= {(m log |z1| , . . . ,m log |zn|) : z ∈ Ω} = m log(Ω)
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is itself convex, if log(Ω) is convex. So Ω(m) is pseudoconvex if and only if Ω is pseudo-
convex.

The second result needed in the proof of Theorem 3.3 is the following:

Lemma 3.8. Let A be a Banach space of holomorphic functions on Ω and suppose that 
for each z ∈ Ω the evaluation functional φz : A → C given by φz(f) = f(z) for f ∈ A is 
continuous. Then for m > 0, the following series converges locally normally on Ω(m):∑

α∈Zn

eα∈A

eα
‖eα‖mA

.

Proof. Let z ∈ Ω(m) so that there is ζ ∈ Ω such that |zj | = |ζj |m for each j. If φζ : A → C

is the evaluation functional, there is a constant C > 0 such that |φζ(f)| ≤ C ‖f‖A for 
each f ∈ A. Then for each α ∈ Zn such that eα ∈ A we have

|eα(z)|
‖eα‖mA

=
(
|eα(ζ)|
‖eα‖A

)m
=
(
φζ(eα)
‖eα‖A

)m
≤ Cm.

The result now follows by Lemma 3.4. �
Proof of Theorem 3.3. Let tj = zjwj |wj |p−2, 1 ≤ j ≤ n, and t = (t1, . . . , tn). Then the 
series for the MBK given in (3.2) assumes the form

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

tα

‖eα‖pp,λ
. (3.9)

Since Bergman’s inequality (1.5) holds for admissible weights by definition, point eval-
uations are bounded on Ap(Ω, λ). Lemma 3.8 therefore guarantees the series in (3.9)
above converges locally normally on Ω(p) defined in (3.6). It thus suffices to show that 
the image of the map Ω × Ω → Cn given by

(z, w) �−→ (t1, . . . , tn)

coincides with Ω(p), since then the image of a compact set K ⊂ Ω × Ω is a compact 
subset of Ω(p), on which the series (3.9) is known to converge normally.

Now consider the logarithmic shadow log(Ω × Ω) = log(Ω) × log(Ω) defined in (3.7). 
Due to the log-convexity of pseudoconvex Reinhardt domains, what we want to prove is 
equivalent to saying that the map from log(Ω) × log(Ω) → Rn given by

(ξ, η) �−→ ξ + (p− 1)η (3.10)

has image exactly p log(Ω) = {pθ : θ ∈ log(Ω)} = log
(
Ω(p)). But since log(Ω) is convex, 

the map on log(Ω) × log(Ω) given by
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(ξ, η) �−→ 1
pξ +
(
1 − 1

p

)
η

has image contained in log(Ω). Taking ξ = η we see that the image is exactly log(Ω). 
Therefore the image of (3.10) is precisely p log(Ω) and we have proved that the series 
(3.2) converges locally normally on Ω × Ω. �
3.2. More general admissible weights

Continuous positive functions λ are always admissible weights in the sense of Sec-
tion 1.4, item (3). In Sections 4, 5, 6 and 7 below, we encounter more general multi-radial 
weights which vanish or blow up along the axes. Let Z ⊂ Cn denote the union of the 
coordinate hyperplanes

Z = {z ∈ Cn : zj = 0 for some 1 ≤ j ≤ n}.

Proposition 3.11. Let U be a domain in Cn and let U∗ = U \ Z. Suppose that λ : U →
[0, ∞] is a measurable function on U such that the restriction λ|U∗ is an admissible 
weight on U∗. Then λ is an admissible weight on U .

Proof. Assume that U ∩ Z �= ∅, since otherwise there is nothing to show, and set 
λ∗ = λ|U∗ . If f ∈ Ap(U, λ), then since λ∗ is admissible on U∗, if a compact K is 
contained in U∗, there exists a CK > 0 such that

sup
K

|f | ≤ CK ‖f‖Ap(U∗,λ∗) = CK ‖f‖Ap(U,λ) .

To complete the proof, we need to show that for each ζ ∈ U ∩ Z, there is a compact 
neighborhood K of ζ in U such that (1.5) holds for each f ∈ Ap(U, λ). Now, there is a 
polydisc P centered at ζ given by P = {z ∈ Cn : |zj − ζj | < r, 1 ≤ j ≤ n} such that 
the closure P is contained in U . We can assume further that the radius r > 0 is chosen 
so that it is distinct from each of the nonnegative numbers |ζj | , 1 ≤ j ≤ n. Then the 
“distinguished boundary”

T = {z ∈ Cn : |zj − ζj | = r, 1 ≤ j ≤ n}

of this polydisc satisfies the condition that T ⊂ U∗. Therefore for each f ∈ O(U) and 
each w ∈ P , we have the Cauchy representation:

f(w) = 1
(2πi)n

∫
T

f(z1, . . . , zn)
(z1 − w1) . . . (zn − wn) dz1 . . . dzn (3.12)

where the integral is an n-times repeated contour integral on T . Now suppose that K is 
a compact subset of P containing the center ζ, and let ρ > 0 be such that |zj − wj | ≥ ρ

for each z ∈ T and w ∈ K. Then for w ∈ K, a sup-norm estimate on (3.12) gives
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|f(w)| ≤ 1
(2π)n · supT |f |

ρn
(2πr)n ≤

(
r

ρ

)n
· ‖f‖Ap(U∗,λ∗) =

(
r

ρ

)n
· ‖f‖Ap(U,λ)

where we used the fact that λ∗ is admissible on U∗. The result follows. �
3.3. Integral representation of the monomial basis projection

Theorem 3.13. If the Monomial Basis Projection PΩ
p,λ : Lp(Ω, λ) → Ap(Ω, λ) exists, then

PΩ
p,λ(f)(z) =

∫
Ω

KΩ
p,λ(z, w)f(w)λ(w)dV (w), f ∈ Lp(Ω, λ), (3.14)

and for each z ∈ Ω, we have KΩ
p,λ(z, ·) ∈ Lq(Ω, λ).

When p = 2, this is simply the representation of the Bergman projection BΩ
λ of 

A2(Ω, λ) by its Bergman kernel. But the existence of the MBP of Ap(Ω, λ) for p �= 2
is not guaranteed by abstract Hilbert-space theory. We note a related consequence of 
Theorem 3.13, which should be contrasted with Proposition 2.7:

Corollary 3.15. Suppose the Bergman projection BΩ
λ : L2(Ω, λ) → A2(Ω, λ) extends by 

continuity to a bounded operator BΩ
λ : Lp(Ω, λ) → Ap(Ω, λ), p �= 2. The extension is not 

the basis projection determined by the monomial basis {eα : α ∈ Sp(Ω, λ)}.

Proof. This is immediate, since the Bergman kernel is distinct from the MBK for p �=
2. �

By Proposition 2.4, the dual space of Lp(Ω, λ) is strictly convex. Proposition 2.3 thus 
guarantees that each coefficient functional in the set {aα : α ∈ Sp(Ω, λ)} dual to the 
monomial basis {eα : α ∈ Sp(Ω, λ)} has a unique Hahn-Banach extension to a functional 
ãα : Lp(Ω, λ) → C. We now identify this extension:

Proposition 3.16. For α ∈ Sp(Ω, λ), let gα be the function defined on Ω by

gα =
χ∗
peα

‖eα‖pp,λ
= eα |eα|p−2

‖eα‖pp,λ
. (3.17)

Then the unique Hahn-Banach extension ãα : Lp(Ω, λ) → C of the coefficient functional 
aα : Ap(Ω, λ) → C is given by

ãα(f) =
∫

f · gα λ dV, f ∈ Lp(Ω, λ). (3.18)

Ω



16 D. Chakrabarti, L.D. Edholm / Advances in Mathematics 451 (2024) 109790
Proof. First we compute the norm of gα in Lq(Ω, λ):

‖gα‖qq,λ = 1
‖eα‖pqp,λ

∫
Ω

|eα|(p−1)q
λ dV = 1

‖eα‖pqp,λ
‖eα‖pp,λ = 1

‖eα‖pq−p
p,λ

= 1
‖eα‖qp,λ

.

It follows that gα ∈ Lq(Ω, λ) and the linear functional in (3.18) satisfies ãα ∈ Lp(Ω, λ)′
with norm given by

‖ãα‖Lp(Ω,λ)′ = ‖gα‖q,λ = 1
‖eα‖p,λ

. (3.19)

By (2.13), we have ‖aα‖Ap(Ω,λ)′ = ‖ãα‖Lp(Ω,λ)′ . To complete the proof it remains to 
show that ãα is an extension of aα.

By Theorem 2.12, the linear span of {eβ : β ∈ Sp(Ω, λ)} is dense in Ap(Ω, λ). There-
fore we only need to show that for each β ∈ Sp(Ω, λ), we have ãα(eβ) = aα(eβ). 
Since λ is multi-radial, there is a function � on the Reinhardt shadow |Ω| such that 
λ(z) = �(|z1| , . . . , |zn|). And since gα ∈ Lq(Ω, λ) and eβ ∈ Lp(Ω, λ), the product 
eβgα ∈ L1(Ω, λ). Fubini’s theorem therefore implies

∫
Ω

eβgαλdV = 1
‖eα‖pp,λ

∫
|Ω|

rβ(rα)p−1

⎛⎝ ∫
Tn

ei〈β−α,θ〉dθ

⎞⎠ r1r2 . . . rn�dr1 . . . drn, (3.20)

where dθ = dθ1 . . . dθn is the natural volume element of the unit torus Tn. First suppose 
that β �= α, so that the integral over Tn on the right hand side of (3.20) vanishes. Then 
we have 

∫
Ω eβgαλdV = 0 = aα(eβ). If β = α, (3.20) gives∫

Ω

eαgαλdV = (2π)n

‖eα‖pp,λ
·
∫
|Ω|

(rα)pr1r2 . . . rn�dr1 . . . drn = 1
‖eα‖pp,λ

· ‖eα‖pp,λ = 1 = aα(eα).

It follows that ãα is a norm preserving extension of aα. Since this extension is unique, 
the result follows. �

Observe that by combining (3.2) and (3.17), the MBK of Ap(Ω, λ) can be written as

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

eα(z)gα(w). (3.21)

We now establish our necessary and sufficient condition for the existence of the MBP:

Proposition 3.22. Define an integral operator on Cc(Ω) by

Qf(z) =
∫

KΩ
p,λ(z, w)f(w)λ(w)dV (w), f ∈ Cc(Ω). (3.23)
Ω
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The MBP of Ap(Ω, λ) exists if and only if Q satisfies a weighted Lp-estimate, i.e., there 
is a constant C > 0 such that for each f ∈ Cc(Ω) we have the inequality

‖Qf‖p,λ ≤ C ‖f‖p,λ . (3.24)

Proof. Recall that Ω ⊂ Cn is a pseudoconvex Reinhardt domain and λ is an admissible 
multi-radial weight. The function KΩ

p,λ is continuous on Ω × Ω by Theorem 3.3, so the 
integral in (3.23) exists for each z ∈ Ω. Since the function z �→ KΩ

p,λ(z, w) is holomorphic 
for each w ∈ Ω, Qf is holomorphic for f ∈ Cc(Ω), for instance, by applying Morera’s 
theorem in each variable, or equivalently, by applying ∂̄ to both sides.

Let f ∈ Cc(Ω). Since the series for KΩ
p,λ converges absolutely and uniformly on the 

compact subset {z} × supp(f) ⊂ Ω × Ω, equation (3.21) gives

Qf(z) =
∫
Ω

( ∑
α∈Sp(Ω,λ)

eα(z)gα(w)
)
f(w)λ(w) dV (w)

=
∑

α∈Sp(Ω,λ)

⎛⎝∫
Ω

f(w)gα(w)λ(w) dV (w)

⎞⎠ eα(z)

=
∑

α∈Sp(Ω,λ)

ãα(f)eα(z). (3.25)

The series (3.25) converges unconditionally and is the Laurent series of the holomorphic 
function Qf . It is therefore uniformly convergent for z in compact subsets of Ω.

Suppose now that the MBP PΩ
p,λ : Lp(Ω, λ) → Ap(Ω, λ) exists, which by Defini-

tion 2.14 is a bounded, surjective, linear projection given by the following limit of partial 
sums, convergent in Ap(Ω, λ):

PΩ
p,λf = lim

N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(f)eα, f ∈ Lp(Ω, λ). (3.26)

Since convergence in Ap(Ω, λ) implies uniform convergence on compact subsets, it follows 
that for f ∈ Cc(Ω), Qf = PΩ

p,λf . Therefore Q satisfies Lp-estimates, i.e. (3.24) holds.
Conversely, suppose that (3.24) holds. Then Q can then be extended by continuity to 

an operator Q̃ on Lp(Ω, λ) with the same norm. We claim that Q̃ is the MBP.
If f ∈ Lp(Ω, λ), we can find a sequence {fj} ⊂ Cc(Ω) such that fj → f in Lp(Ω, λ). 

Each Qfj ∈ Ap(Ω, λ) and (by definition) Qfj → Q̃f in Lp(Ω, λ). But this implies 
Qfj → Q̃f uniformly on compact subsets, so the limit Q̃f is holomorphic, and thus 
the range of Q̃ is contained in Ap(Ω, λ). A direct computation now shows Q̃eα = eα for 
α ∈ Sp(Ω, λ), and it follows that Q̃ is a surjective projection from Lp(Ω, λ) to Ap(Ω, λ).

If f ∈ Cc(Ω), then Qf = Q̃f ∈ Ap(Ω, λ) and by Theorem 2.12 the Laurent series 
expansion of Q̃f given by (3.25) converges (as a sequence of square partial sums) in 
Ap(Ω, λ):
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Q̃f = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(f)eα. (3.27)

For a general g ∈ Lp(Ω, λ), Q̃g ∈ Ap(Ω, λ) and so again by Theorem 2.12,

Q̃g = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

aα(Q̃g)eα. (3.28)

It follows that on Cc(Ω) we have the identity aα ◦ Q = ãα. This relation extends by 
continuity to give aα ◦ Q̃ = ãα as functionals on Lp(Ω, λ). Then (3.28) becomes

Q̃g = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(g)eα.

In other words, Q̃ is the MBP, as we wanted to show. �
Proof of Theorem 3.13. Since the MBP exists, by Proposition 3.22 the operator Q of 
(3.23) satisfies Lp-estimates. Then, by the continuity of point-evaluation in Ap(Ω, λ), for 
each z ∈ Ω the map g �→ Qg(z) is a bounded linear functional on Lp(Ω, λ). Formula (3.23)
representing this functional now shows that KΩ

p,λ(z, ·) ∈ Lq(Ω, λ). Standard techniques 
of real analysis (cutting off and mollification) gives us a sequence {fj} ⊂ Cc(Ω) such that 
fj → f in Lp(Ω, λ). Therefore for each z ∈ Ω, the sequence {KΩ

p,λ(z, ·)fj(·)} ⊂ Cc(Ω)
converges in L1(Ω, λ) to the limit KΩ

p,λ(z, ·)f(·). Since integration against the weight λ
is a bounded linear functional on L1(Ω, λ), we obtain (3.14) in the limit. �
4. The one dimensional case

In this section we compute Monomial Basis Kernels on the unit disc D and punctured 
unit disc D∗ – specifically, the MBKs of the spaces Ap(D, μγ) and Ap(D∗, μγ) where 
μγ(z) = |z|γ . From these formulas it is shown that the corresponding Monomial Basis 
Projections are absolutely bounded integral operators. We begin with a more general 
computation of certain subkernels that are needed in Section 6.

4.1. Arithmetic progression subkernels on D and D∗

Let a, b ∈ Z with b positive, U = D or D∗, 1 < p < ∞ and μγ(z) = |z|γ , γ ∈ R. 
Consider the set of integers

A(U, p, γ, a, b) = {α ∈ Z : α ≡ a mod b} ∩ Sp(U, μγ), (4.1)

where as usual, Sp(U, μγ) ⊂ Z is the set of α such that eα ∈ Ap(U, μγ). Notice that a is 
determined only modulo b, so we can always assume that 0 ≤ a ≤ b − 1. Notice also that 
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if b = 1 and a = 0 we have A(U, p, γ, 0, 1) = Sp(U, μγ). We now identify A(U, p, γ, a, b)
with an arithmetic progression:

Proposition 4.2. Let U, p, γ, a, b be as above. There is an integer θ such that

A(U, p, γ, a, b) = {θ + νb : ν ≥ 0, ν ∈ Z}. (4.3)

Proof. Let U = D∗. We claim that α ∈ Sp(D∗, μγ) if and only if pα+ γ + 2 > 0. Indeed,

‖eα‖pp,μγ
=
∫
D∗

|z|pα+γ dV = 2π
1∫

0

rpα+γ+1 dr = 2π
pα + γ + 2 , (4.4)

as long as pα + γ + 2 > 0, otherwise the integral diverges. Now let θ be the smallest 
integer such that (i) θ ≡ a mod b, and (ii) pθ + γ + 2 > 0. Clearly (4.3) holds.

The case U = D is nearly identical, but the condition that eα belongs to Ap(D, μγ)
means that α must be nonnegative. If θ is the smallest integer in the set Sp(D, μγ), it 
is determined now by three conditions: (i) θ ≡ a mod b, (ii) pθ + γ + 2 > 0, and (iii) 
θ ≥ 0. �
Remark 4.5. For U, p, γ, a, b as above (with 0 ≤ a ≤ b −1), we can determine θ explicitly:

θ =
{
a + b�, U = D∗

max{a + b�, a}, U = D,
where � =

⌊
−γ + 2

pb
− a

b
+ 1
⌋
. ♦

Now define for z, w ∈ U the arithmetic progression subkernel

kUp,γ,a,b(z, w) =
∑

α∈A(U,p,γ,a,b)

eα(z)χ∗
peα(w)

‖eα‖pp,μγ

=
∑

α∈A(U,p,γ,a,b)

tα

‖eα‖pp,μγ

, (4.6)

where χ∗
p is defined by (1.9) and t = zw |w|p−2. Notice that kUp,γ,0,1 is the MBK of 

Ap(U, μγ).

Proposition 4.7. For z, w ∈ U and other notation as specified above, we have

kUp,γ,a,b(z, w) = tθ

2π · (pθ + γ + 2) − (γ + 2 + p(θ − b))tb

(1 − tb)2 . (4.8)

Proof. The calculation in (4.4) shows that if α ∈ Sp(U, μγ), then

‖eα‖pp,μγ
= 2π

pα + γ + 2 .

Now combining (4.6) with Proposition 4.2, we see that
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kUp,γ,a,b(z, w) =
∑

α∈A(U,p,γ,a,b)

tα

‖eα‖pp,μγ

= tθ

2π

∞∑
ν=0

(p(θ + bν) + γ + 2)tbν

= tθ

2π

(
p

∞∑
ν=0

(bν + 1)tbν + (pθ + γ + 2 − p)
∞∑
ν=0

tbν

)
.

Writing this in closed form yields (4.8). �
Corollary 4.9. The arithmetic progression subkernel kUp,γ,a,b admits the bound

∣∣kUp,γ,a,b(z, w)
∣∣ ≤ C

(|z||w|p−1)θ

|1 − zbwb|w|(p−2)b|2
,

where C > 0 is independent of z, w ∈ U .

Proof. This follows from (4.8), on noting that (pθ + γ + 2) is necessarily positive. �
Setting a = 0, b = 1 in Proposition 4.7 yields the MBKs of Ap(D∗, μγ) and Ap(D, μγ):

Corollary 4.10. Let γ ∈ R, μγ(z) = |z|γ and t = zw |w|p−2. The Monomial Basis Kernels 
of Ap(D∗, μγ) and Ap(D, μγ) are given, respectively, by

(1) KD∗

p,μγ
(z, w) = 1

2π · (p� + γ + 2)t� − (γ + 2 + p(�− 1))t�+1

(1 − t)2 , where � =
⌊
−γ+2

p + 1
⌋
.

(2) KD
p,μγ

(z, w) = 1
2π · (pL + γ + 2)tL − (γ + 2 + p(L− 1))tL+1

(1 − t)2 , where L = max{�, 0}.

4.2. Two tools

We now recall two important results.

Proposition 4.11. For 1 ≤ j ≤ N , let Dj be a domain in Rnj , let Kj : Dj ×Dj → [0, ∞)
be a positive kernel on Dj, and let λj be an a.e. positive weight on Dj. Suppose that 
for each j, there exist a.e. positive measurable functions φj , ψj on Dj and constants 
Cj

1 , C
j
2 > 0 such that the following two estimates hold:

(1) For every z ∈ Dj, 
∫
Dj

Kj(z, w)ψj(w)qλj(w) dV (w) ≤ Cj
1φj(z)q.

(2) For every w ∈ Dj, 
∫

φj(z)pKj(z, w)λj(z) dV (z) ≤ Cj
2ψj(w)p.
Dj
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Now let D = D1 × · · · × DN be the product of the domains, let K(z, w) =∏N
j=1 Kj(zj , wj), where zj , wj ∈ Dj, z = (z1, . . . , zN ) ∈ D, w = (w1, . . . , wN ) ∈ D, 

and let λ(w) =
∏N

j=1 λ
j(wj). Then the following operator is bounded on Lp(D, λ):

T f(z) =
∫
D

K(z, w)f(w)λ(w)dV (w).

Proof. When N = 1, this is the classical Schur’s test for boundedness of integral opera-
tors on Lp-spaces (see [45, Theorem 3.6]). The case N ≥ 2 reduces to the case N = 1, if 
we let φ(z) =

∏N
j=1 φj(zj) and ψ(z) =

∏N
j=1 ψj(zj) and use the Tonelli-Fubini theorem 

to represent integrals over D as repeated integrals over the product representations. �
Proposition 4.12 (Lemma 3.4 of [18]; also see [24] for β = 0). Let U = D or D∗, 
0 < ε < 1 and β > −2. There exists C > 0 such that

∫
U

(1 − |w|2)−ε

|1 − zw|2 |w|β dV (w) ≤ C(1 − |z|2)−ε. (4.13)

4.3. Lp-boundedness of operators

We now prove that arithmetic progression subkernels represent absolutely bounded 
operators. In particular, the existence and absolute boundedness of the Monomial Basis 
Projections of Ap(D∗, μγ) and Ap(D, μγ) are established.

Proposition 4.14. Define the following auxiliary functions on U :

φ(z) = |z| θq (1 − |z|2b)− 1
pq , ψ(w) = |w| θq (1 − |w|2b(p−1))−

1
pq .

There exist constants C1, C2 > 0, such that the following estimates hold:

(1) For z ∈ U , 
∫
U

∣∣kUp,γ,a,b(z, w)
∣∣ψ(w)qμγ(w) dV (w) ≤ C1φ(z)q.

(2) For w ∈ U , 
∫
U

φ(z)p
∣∣kUp,γ,a,b(z, w)

∣∣μγ(z) dV (z) ≤ C2ψ(w)p.

Proof. Throughout this proof, C will denote a positive number depending on p, γ, a, b
but independent of z, w ∈ U . Its value will change from step to step.

From the kernel bound in Corollary 4.9, we obtain

∫ ∣∣kUp,γ,a,b(z, w)
∣∣ψ(w)qμγ(w) dV (w) ≤ C

∫ (|z||w|p−1)θ

|1 − zbwb|w|(p−2)b|2
ψ(w)qμγ(w) dV (w)
U U
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= C|z|θ
∫
U

(
1 − |w|2b(p−1))− 1

p

|1 − zbwb|w|(p−2)b|2
|w|pθ+γ dV (w).

(4.15)

Set ζ = wb|w|(p−2)b, so |ζ| = |w|(p−1)b, |w| = |ζ| q−1
b and dV (w) =

(
q−1
b2

)
|ζ| 2(q−1)

b −2dV (ζ). 
This change of variable shows

(4.15) ≤ C|z|θ
∫
U

(1 − |ζ|2)− 1
p

|1 − zbζ|2
|ζ| qθb + (γ+2)(q−1)

b −2 dV (ζ). (4.16)

This integral converges if and only if qθ+(γ +2)(q− 1) > 0. Multiplying by the positive 
number pq , we see this condition is equivalent to requiring that pθ + γ + 2 > 0, which is 
guaranteed to hold. Indeed, in the proof of Proposition 4.2, θ was shown to be the smallest 
integer such that (i) θ ≡ a mod b, and (ii) pθ + γ + 2 > 0. Now apply Proposition 4.12:

(4.16) ≤ C|z|θ(1 − |z|2b)− 1
p = C

(
|z| θq (1 − |z|2b)− 1

pq

)q
= Cφ(z)q,

giving us estimate (1) upon taking the final constant C to be C1. Now consider∫
U

∣∣kUp,γ,a,b(z, w)
∣∣φ(z)pμγ(z) dV (z) ≤ C

∫
U

(|z||w|p−1)θ

|1 − zbwb|w|(p−2)b|2
φ(z)pμγ(z) dV (z)

= C|w|(p−1)θ
∫
U

(1 − |z|2b)− 1
q

|1 − wb|w|(p−2)bzb|2
|z|(1+

p
q )θ+γ dV (z). (4.17)

Set ξ = zb, which says that |z| = |ξ| 1b and dV (z) = b−2|ξ| 2b−2dV (ξ). This shows that

(4.17) ≤ C|w|(p−1)θ
∫
U

(1 − |ξ|2)− 1
q

|1 − wb|w|(p−2)bξ|2
|ξ| pθb + γ+2

b −2 dV (ξ). (4.18)

This integral converges since pθ + γ + 2 > 0 (this is the same condition as before). Now 
apply Proposition 4.12 again to see

(4.18) ≤ C|w|(p−1)θ(1 − |w|2b(p−1))− 1
q = C

(
|w| θq (1 − |w|2b(p−1))−

1
pq

)p
= Cψ(z)p,

giving estimate (2) upon taking the final constant C to be C2. �
Corollary 4.19. The following operator is bounded on Lp(U, μγ):

TU
p,γ,a,b(f)(z) =

∫ ∣∣kUp,γ,a,b(z, w)
∣∣ f(w)μγ(w)dV (w). (4.20)
U
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Proof. Estimates (1) and (2) in Proposition 4.14 allow for immediate application of 
Proposition 4.11 with N = 1, proving the result. �
Corollary 4.21. The Monomial Basis Projections of the spaces Ap(D, μγ) and Ap(D∗, μγ)
exist and are absolutely bounded.

Proof. Absolute boundedness (which by Theorem 3.13 implies existence) follows from 
Corollary 4.19 on noting that the MBK of Ap(U, μγ) coincides with the subkernel 
kUp,γ,0,1. �
5. Transformation formula

5.1. The canonical-bundle pullback

If φ : Ω1 → Ω2 is a finite-sheeted holomorphic map of domains in Cn, and f is a 
function on Ω2, we define a function on Ω1 by setting

φ
(f) = f ◦ φ · detφ′, (5.1)

where φ′(z) : Cn → Cn is the complex derivative of the map φ at z ∈ Ω1. If we 
think of Ω1, Ω2 as subsets of R2n and φ as a smooth mapping, we can also consider 
the 2n × 2n real Jacobian Dφ of φ. Using the well-known relation detDφ = |detφ′|2

between the two Jacobians, we see that φ
 is a continuous linear mapping of Hilbert 
spaces φ
 : L2(Ω2) → L2(Ω1), and restricts to a map A2(Ω2) → A2(Ω1). We will refer 
to φ
 as the canonical-bundle pullback induced by φ, or informally as the �-pullback, in 
order to distinguish it from a second pullback to be introduced in Section 5.3. If φ is a 
biholomorphism, then φ
 is an isometric isomorphism of Hilbert spaces L2(Ω2) ∼= L2(Ω1)
that restricts to an isometric isomorphism A2(Ω2) ∼= A2(Ω1).

5.2. Proper maps of quotient type

In the classical theory of holomorphic mappings, one considers proper holomorphic 
mappings, and extends the biholomorphic invariance of Bergman spaces to such map-
pings via Bell’s transformation formula (see [5,6,16,3]). In our applications, we are 
concerned with a specific class of proper holomorphic mappings. We begin with the 
following definition (see [4]):

Definition 5.2. Let Ω1, Ω2 ⊂ Cn be domains, let Φ : Ω1 → Ω2 be a proper holomorphic 
mapping and Γ ⊂ Aut(Ω1) a finite group of biholomorphic automorphisms of Ω1. We 
say Φ is of quotient type with respect to Γ if

(1) there exist closed lower-dimensional complex-analytic subvarieties Zj ⊂ Ωj , j = 1, 2, 
such that Φ restricts to a covering map Φ : Ω1 \ Z1 → Ω2 \ Z2, and
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(2) for each z ∈ Ω2 \ Z2, the action of Γ on Ω1 restricts to a transitive action on the 
fiber Φ−1(z).

The group Γ is called the group of deck transformations of Φ.

The restricted map Φ : Ω1 \Z1 → Ω2 \Z2 is a regular covering map (see [29, page 135 
ff.]); i.e., it gives rise to a biholomorphism between Ω2 \Z2 and the quotient (Ω1 \Z1)/Γ, 
where it can be shown that Γ acts properly and discontinuously on Ω1\Z1. It follows that 
Γ is the full group of deck transformations of the covering map Φ : Ω1 \ Z1 → Ω2 \ Z2, 
and that this covering map has exactly |Γ| sheets, where |Γ| is the size of the group Γ. 
By analytic continuation, the relation Φ ◦ σ = Φ holds for each σ in Γ on all of Ω1.

Definition 5.3. Given a domain Ω ⊂ Cn, a group Γ ⊂ Aut(Ω) and a space F of functions 
on Ω, we define

[F]Γ = {f ∈ F : f = σ
(f) for all σ ∈ Γ}, (5.4)

where σ
 is the canonical-bundle pullback induced by σ as in (5.1). We say that functions 
in this space are said to be Γ-invariant in the � sense, or simply �-invariant.

If L, M are Banach spaces, by a homothetic isomorphism T : L → M we mean a 
bijection such that there is a C > 0 satisfying

‖T f‖M = C ‖f‖L , for every f ∈ L. (5.5)

Fix 1 < p < ∞ and consider a proper holomorphic mapping Φ : Ω1 → Ω2 of quotient 
type with respect to group Γ. Define the function

λp = |detΦ′|2−p. (5.6)

This function arises as a weight in naturally occurring Lp-spaces. Indeed, in Proposition 
4.5 of [4] it was shown that the map

Φ
 : Lp(Ω2) → [Lp(Ω1, λp)]Γ (5.7)

is a homothetic isomorphism with

∥∥Φ
(f)
∥∥p
Lp(Ω1,λp) = |Γ| · ‖f‖pLp(Ω2) , (5.8)

which restricts to a homothetic isomorphism of the holomorphic subspaces

Φ
 : Ap(Ω2) → [Ap(Ω1, λp)]Γ. (5.9)
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5.3. Density-bundle pullbacks

Let Ω1, Ω2 be open sets in Rd, and φ : Ω1 → Ω2 a smooth map. Given a function f
on Ω2, define the density-bundle pullback, or �-pullback, of f to be the function on Ω1
given by

φ�f = f ◦ φ · |detDφ|
1
2 , (5.10)

where as before, Dφ denotes the d ×d Jacobian matrix of φ. From the change of variables 
formula, it follows that if φ : Ω1 → Ω2 is a diffeomorphism, then the induced map 
φ� : L2(Ω2) → L2(Ω1) is an isometric isomorphism of Hilbert spaces. When Ω1, Ω2 are 
domains in a complex Euclidean space Cn and the map φ : Ω1 → Ω2 is holomorphic, 
then

φ�f = f ◦ φ · |detφ′| , (5.11)

where as before, φ′ denotes the complex derivative.

Definition 5.12. Given a domain Ω ⊂ Cn, group Γ ⊂ Aut(Ω) and function space F
consisting of functions on Ω, define the subspace

[F]Γ = {f ∈ F : f = σ�(f) for all σ ∈ Γ}, (5.13)

where σ� is the density-bundle pullback in (5.11). Functions in [F]Γ are said to be Γ-
invariant in the � sense, or simply �-invariant when Γ is clear from context.

The behavior of the �-pullback regarding Lp-spaces and �-invariant functions is anal-
ogous to the �-pullback regarding Lp-spaces and �-invariant functions:

Proposition 5.14. Let 1 < p < ∞, Ω1, Ω2 be domains in Cn and Φ : Ω1 → Ω2 be a proper 
holomorphic map of quotient type with respect to the group Γ ⊂ Aut(Ω1). Then

Φ� : Lp(Ω2) → [Lp(Ω1, λp)]Γ (5.15)

is a homothetic isomorphism.

Proof. Let f ∈ Lp(Ω2). By Definition 5.2, there exist varieties Z1 ⊂ Ω1, Z2 ⊂ Ω2 such 
that Φ : Ω1\Z1 → Ω2\Z2 is a regular covering map of order |Γ|. Using the change of 
variables formula (accounting for the fact that Φ is a |Γ|-to-one mapping), we see

|Γ| ‖f‖pLp(Ω2) = |Γ|
∫

Ω2\Z2

|f |p dV =
∫

Ω1\Z1

|f ◦ Φ|p|detΦ′|2 dV = ‖Φ�(f)‖pLp(Ω1,λp) ,

(5.16)
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which shows Φ�(f) ∈ Lp(Ω1, λp). Observe also that for any σ ∈ Γ,

σ�(f ◦ Φ · |detΦ′|) = f ◦ (Φ ◦ σ) · |det(Φ ◦ σ)′| = f ◦ Φ · |detΦ′|,

showing that Φ�(f) ∈ [Lp(Ω1, λp)]Γ. This shows Φ� is a homothetic isomorphism of 
Lp(Ω2) onto a subspace of [Lp(Ω1, λp)]Γ.

It remains to show that this image is the full space. By a partition of unity argument, 
it is sufficient to show that a function g ∈ [Lp(Ω1, λp)]Γ is in the range of Φ�, provided 
the support of g is contained in a set of the form Φ−1(U), where U is an connected open 
subset of Ω2 \Z2 evenly covered by the covering map Φ. Notice that Φ−1(U) is a disjoint 
collection of connected open components each biholomorphic to U , and if U0 is one of 
them, Φ−1(U) is the disjoint union 

⋃
σ∈Γ σ(U0). Let Ψ : U → U0 be the local inverse of 

Φ onto U0. Define f0 on U by f0 = Ψ� (g|U0). We claim that f0 is defined independently 
of the choice of the component U0 of Φ−1(U). Indeed, any other choice is of the form 
σ(U0) for some σ ∈ Γ and the corresponding local inverse is σ ◦ Ψ. But we have

(σ ◦ Ψ)�
(
g|σ(U0)

)
= Ψ� ◦ σ�

(
g|σ(U0)

)
= Ψ� (g|U0) = f0,

where we have used the fact that σ�g = g since g ∈ [Lp(Ω1, λp)]Γ. A partition of unity 
argument completes the proof. �
5.4. Monomial maps

Consider an n × n integer matrix A whose element in the j-th row and k-th column 
of A is ajk. Let aj denote the j-th row of A, and ak the k-th column. Letting the rows of 
A correspond to monomials eaj , define for z ∈ Cn the matrix power

zA =

⎛⎝ ea1(z)
...

ean(z)

⎞⎠ =

⎛⎜⎜⎝ z
a1
1

1 z
a1
2

2 · · · za
1
n

n

...
z
an
1

1 z
an
2

2 · · · za
n
n

n

⎞⎟⎟⎠ , (5.17)

provided each component is defined. Define the monomial map ΦA to be the rational 
map on Cn given by

ΦA(z) = zA. (5.18)

The following properties of monomial maps are known in the literature and refer-
ences to their proofs are given at the end of the list. Three pieces of notation must 
first be explained: The element-wise exponential map exp : Cn → (C∗)n is given by 
exp(z) = (ez1 , . . . , ezn); if z = (z1, . . . , zn), w = (w1, . . . , wn) are points in Cn, define 
their component-wise product to be z � w = (z1w1, z2w2, . . . , znwn); 1 ∈ Z1×n is a row 
vector with 1 in each component.
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(1) The following formula generalizes the familiar power-rule:

detΦ′
A = detA · e1A−1. (5.19a)

(2) If A is an invertible n × n matrix of nonnegative integers, then ΦA : Cn → Cn is a 
proper holomorphic map of quotient type with respect to the group

ΓA = {σν : σν(z) = exp
(
2πiA−1ν

)
� z, ν ∈ Zn×1}. (5.19b)

(3) The group ΓA has exactly | detA| elements.
(4) The canonical-bundle pullback of the monomial eα via the element σν ∈ ΓA is

σ

ν(eα) = e2πi(α+1)A−1ν · eα. (5.19c)

(5) The set of monomials that are ΓA-invariant in the � sense as defined by (5.4) is

{eα : α = βA− 1, β ∈ Z1×n}. (5.19d)

Proof. Property (1) is proved in both [33, Lemma 4.2] and [4, Lemma 3.8]. Properties (2) 
and (3) can be found in [4, Theorem 3.12]. See also [47,34] for related results. Properties 
(4) and (5) are found in [4, Proposition 6.12]. �
5.5. Conditions for the transformation formula

For the remainder of Section 5, we assume the following conditions in the statements 
of our results:

The domain Ω2 ⊂ Cn is pseudoconvex and Reinhardt, A is an n × n matrix of non-
negative integers such that detA �= 0, and Ω1 = Φ−1

A (Ω2), the inverse image of Ω2 under 
the monomial map ΦA : Cn → Cn defined in (5.18).

This set-up has several immediate consequences:

(1) We obtain by restriction a proper holomorphic map

ΦA : Ω1 → Ω2,

which is of quotient type with respect to the group ΓA defined in (5.19b).
(2) The domain Ω1 is pseudoconvex and Reinhardt.
(3) The weight λp from (5.6) is given by

λp(ζ) = |detΦ′
A(ζ)|2−p = |detA|2−p

n∏
k=1

|ζk|(1·ak−1)(2−p), (5.20)

where as before 1 ∈ Z1×n has 1 in each component and ak is the k-th column of A.
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(4) By Proposition 3.11, the weight λp is admissible in the sense of Section 1.4.
(5) By (5.7) the canonical-bundle pullback gives a homothetic isomorphism

Φ

A : Lp(Ω2) → [Lp(Ω1, λp)]ΓA ,

which by (5.9) restricts to a homothetic isomorphism of the holomorphic subspaces

Φ

A : Ap(Ω2) → [Ap(Ω1, λp)]ΓA .

5.6. Γ-invariant subkernel

Assuming the conditions and set-up established in Section 5.5, define the following 
subset of p-allowable indices which are Γ-invariant in the � sense. (We often suppress 
reference to the matrix A in our notation, writing ΦA = Φ, ΓA = Γ, etc.)

SΓ
p (Ω1, λp) = {α ∈ Sp(Ω1, λp) : σ
(eα) = eα for all σ ∈ Γ}. (5.21)

We use this to define the “Γ-invariant subkernel” of the Monomial Basis Kernel:

KΩ1
p,λp,Γ(z, w) =

∑
α∈SΓ

p (Ω1,λp)

eα(z)χ∗
peα(w)

‖eα‖pp,λp

. (5.22)

Proposition 5.23. The following sets are equal{
eβ : β ∈ SΓ

p (Ω1, λp)
}

=
{ 1

detAΦ
(eα) : α ∈ Sp(Ω2)
}
.

Proof. Thinking of α as an element of Z1×n, a computation shows that eα ◦ ΦA = eαA. 
Thus Φ
(eα) = (detA)e(α+1)A−1, so we have{ 1

detAΦ
(eα) : α ∈ Sp(Ω2)
}

= {e(α+1)A−1 : α ∈ Sp(Ω2)}. (5.24)

Since the image of Ap(Ω2) under Φ
 is the space [Ap(Ω1, λp)]Γ, we see

{e(α+1)A−1 : α ∈ Sp(Ω2)} ⊂ {eβ : β ∈ Sp(Ω1, λp), σ
(eβ) = eβ for all σ ∈ Γ}.

But since the map Φ
 : Ap(Ω2) → [Ap(Ω1, λp)]Γ is linear, Φ
(f) must have more than 
one term in its Laurent expansion if f has more than one term in its Laurent expansion. 
Thus

{e(α+1)A−1 : α ∈ Sp(Ω2)} = {eβ : β ∈ Sp(Ω1, λp), σ
(eβ) = eβ for all σ ∈ Γ}
=
{
eβ : β ∈ SΓ

p (Ω1, λp)
}
,

completing the proof. �
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5.7. Transforming operators with positive kernels

We prove here a transformation law for the “absolute” operator involving the MBK:

(PΩ2
p,1)+f(z) =

∫
Ω2

∣∣∣KΩ2
p,1(z, w)

∣∣∣ f(w) dV (w), f ∈ Cc(Ω2). (5.25)

This operator is defined on Cc(Ω2), but can be extended to Lp(Ω2) when Lp-estimates 
are shown to hold. Define a related operator using the Γ-invariant subkernel from (5.22):

(PΩ1
p,λp,Γ)+f(z) =

∫
Ω1

∣∣∣KΩ1
p,λp,Γ(z, w)

∣∣∣ f(w)λp(w)dV (w), f ∈ Cc(Ω1). (5.26)

These operators are closely related via the �-pullback of Section 5.3:

Theorem 5.27. The following statements are equivalent:

(1) (PΩ2
p,1)+ extends to a bounded operator (PΩ2

p,1)+ : Lp(Ω2) → Lp(Ω2).
(2) (PΩ1

p,λp,Γ)+ extends to a bounded operator (PΩ1
p,λp,Γ)+ : [Lp(Ω1, λp)]Γ → [Lp(Ω1, λp)]Γ.

When these equivalent statements hold,

Φ� ◦ (PΩ2
p,1)+ = (PΩ1

p,λp,Γ)+ ◦ Φ� (5.28)

as operators on Lp(Ω2), which is to say, that the following diagram commutes

Lp(Ω2) Lp(Ω1, λp)Γ

Lp(Ω2) Lp(Ω1, λp)Γ.

Φ�

∼=

(PΩ2
p,1)

+ (PΩ1
p,λp,Γ)+

Φ�

(5.29)

The following kernel transformation formula can be thought of as a generalization of 
the classical biholomorphic transformation formula for the Bergman kernel.

Proposition 5.30. The Monomial Basis Kernel admits the transformation law

KΩ1
p,λp,Γ(z, w) = 1 detΦ′(z) ·KΩ2

p,1(Φ(z),Φ(w)) · |detΦ′(w)|p
′ . (5.31)
|Γ| detΦ (w)
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Proof. Starting from the series representation for KΩ2
p,1(z, w) in (3.2), we have

KΩ2
p,1(Φ(z),Φ(w)) =

∑
α∈Sp(Ω2)

eα(Φ(z))eα(Φ(w))|eα(Φ(w))|p−2

‖eα‖pLp(Ω2)

= |Γ|
∑

α∈Sp(Ω2)

eα(Φ(z))eα(Φ(w))|eα(Φ(w))|p−2

‖Φ
(eα)‖pLp(Ω1,λp)
, (5.32)

since by (5.8), the homothetic isomorphism Φ
 scales norms uniformly for each f ∈
Lp(Ω2) by |Γ| · ‖f‖pLp(Ω2) =

∥∥Φ
(f)
∥∥p
Lp(Ω1,λp). Now use the definition of Φ
 to write

(5.32) = |Γ| det Φ′(w)
det Φ′(z)|det Φ′(w)|p

∑
α∈Sp(Ω2)

Φ
(eα)(z)Φ
(eα)(w)|Φ
(eα)(w)|p−2

‖Φ
(eα)‖pLp(Ω1,λp)

= |Γ| det Φ′(w)
det Φ′(z)|det Φ′(w)|p

∑
β∈SΓ

p (Ω1,λp)

eβ(z)eβ(w)|eβ(w)|p−2

‖eβ‖pLp(Ω1,λp)
(5.33)

= |Γ| det Φ′(w)
det Φ′(z)|det Φ′(w)|p ·KΩ1

p,λp,Γ(z, w). (5.34)

Equation (5.33) follows from Proposition 5.23, and (5.34) follows from the definition of 
the Γ-invariant MBK given in (5.22). This completes the proof. �
Proof of Theorem 5.27. Proposition 5.14 and (5.16) show that Φ� : Lp(Ω2) →
Lp(Ω1, λp)Γ is a homothetic isomorphism with ‖Φ�f‖pLp(Ω1,λp) = |Γ| ‖f‖pLp(Ω2). Now 
for f ∈ Cc(Ω2),

Φ� ◦ (PΩ2
p,1)+f(z) = |detΦ′(z)|

∫
Ω2

∣∣∣KΩ2
p,1(Φ(z), w)

∣∣∣ f(w) dV (w)

= |det Φ′(z)|
|Γ|

∫
Ω1

∣∣∣KΩ2
p,1(Φ(z),Φ(w))

∣∣∣ f(Φ(w)) · |detΦ′(w)|2 dV (w)

=
∫
Ω1

∣∣∣KΩ1
p,λp,Γ(z, w)

∣∣∣Φ�f(w)λp(w) dV (w) (5.35)

= (PΩ1
p,λp,Γ)+ ◦ Φ�f(z).

Equality in (5.35) uses the kernel transformation law (5.31), and the final line makes 
sense since the properness of Φ guarantees Φ�f ∈ [Cc(Ω1)]Γ. The fact that Cc(Ω2) is 
dense in Lp(Ω2), along with the fact that its image Φ� (Cc(Ω2)) = [Cc(Ω1)]Γ is dense in 
[Lp(Ω1, λp)]Γ shows that statements (1) and (2) are equivalent. When these statements 
hold, equation (5.28) and Diagram (5.29) follow immediately. �
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6. Monomial polyhedra

In this section we prove Theorem 1.15, which says that if U is a monomial polyhedron 
and 1 < p < ∞, the Monomial Basis Projection of Ap(U ) is absolutely bounded. As 
discussed in Section 1.6, this stands in contrast with the limited Lp-regularity of the 
Bergman projection.

6.1. Matrix representation

We denote the spaces of row and column vectors with integer entries by Z1×n and 
Zn×1, respectively. Suppose B = (bjk) ∈ Mn×n(Z) is a matrix of integers with detB �= 0, 
with rows written as bj = (bj1, . . . , bjn) ∈ Z1×n. Define

UB = {z ∈ Cn : |ebj (z)| < 1, 1 ≤ j ≤ n} , (6.1)

and call it the monomial polyhedron associated to the matrix B, provided it is bounded. 
This gives a compact notation for the domains defined in Section 1.6

The matrix B in (6.1) is far from unique. If B′ is obtained from B by permuting rows 
or by multiplying any row by a positive integer, then UB = UB′ . We recall the following 
observation, originally proved in [4, Proposition 3.2]:

Proposition 6.2. Suppose that UB is a bounded monomial polyhedron as in (6.1), where 
detB �= 0. Without loss of generality we may assume

(1) detB > 0.
(2) each entry in the inverse matrix B−1 is nonnegative.

Given the monomial polyhedron UB, we will assume for the rest of the paper that 
B satisfies both properties (1) and (2) of Proposition 6.2. Observe that Cramer’s rule 
combined with property (2) says that the adjugate A = (detB)B−1 is a matrix of 
nonnegative integers.

The following representation of monomial polyhedra as quotients was first proved in 
[4, Theorem 3.12].

Proposition 6.3. Let A = (detB)B−1 ∈ Mn×n(Z). There exists a product domain

Ω = U1 × · · · × Un ⊂ Cn, (6.4)

each factor Uj either a unit disc D or a unit punctured disc D∗, such that the monomial 
map ΦA : Cn → Cn of (5.18) restricts to a proper holomorphic map ΦA : Ω → UB. This 
map is of quotient type with respect to group ΓA, which is given in (5.19b).



32 D. Chakrabarti, L.D. Edholm / Advances in Mathematics 451 (2024) 109790
The conditions of Section 5.5 are satisfied, if we take Ω1 = Ω, Ω2 = UB , and A, ΦA, ΓA

as above in Proposition 6.3. In the present situation, the source domain Ω1 = Ω is a 
product and the weight λp = |det Φ′

A|
2−p of (5.20) admits a tensor product structure:

λp(ζ) = |detΦ′
A(ζ)|2−p = (detA)2−p

n∏
j=1

μγj
(ζj), (6.5)

where μγj
is the weight on Uj given by

μγj
(z) = |z|γj , where γj = (1 · aj − 1)(2 − p), (6.6)

1 ∈ Z1×n is the row vector with 1 in each component and aj ∈ Zn×1 the j-th column 
of A. We can remove the absolute value from detA since detA = (detB)n · 1

detB =
detBn−1 > 0.

6.2. Absolute boundedness of the monomial basis projection

We now give a decomposition of the Γ-invariant subkernel defined in (5.22).

Proposition 6.7. Let d = detA (a positive integer). The Γ-invariant subkernel defined in 
(5.22) admits the decomposition

KΩ
p,λp,Γ(z, w) =

dn−1∑
i=1

Ki(z, w), (6.8)

where each Ki is a tensor product of n arithmetic progression subkernels defined in (4.6):

Ki(z, w) = dp−2
n∏

j=1
k
Uj

p,γj ,αi,j ,d
(zj , wj), (6.9)

where the γj is determined by (6.6) and αi,j ∈ Z/dZ is determined by the group Γ.

Proof. Following (5.22), the Γ-invariant subkernel KΩ
p,λp,Γ(z, w) is found by summing 

over the p-allowable indices, Γ-invariant in the � sense. From (5.21), this set can be 
written as

SΓ
p (Ω, λp) = {α ∈ Sp(Ω, λp) : σ
(eα) = eα for all σ ∈ Γ} = Sp(Ω, λp) ∩ [Zn]Γ,(6.10)

where [Zn]Γ is defined to be the subset of Z1×n consisting of exactly those indices for 
which the corresponding monomials are Γ-invariant, i.e.,

[Zn]Γ = {α ∈ Z1×n : σ
(eα) = eα for all σ ∈ Γ}.
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By (5.19d), we see that [Zn]Γ = {α ∈ Z1×n : α = βA −1, β ∈ Z1×n}, so after translating 
by 1, we have

[Zn]Γ + 1 = Z1×nA = {βA : β ∈ Z1×n} ⊂ Z1×n.

We make two observations: first, it is known (see Lemma 3.3 of [34]) that Z1×nA is a 
sublattice of Z1×n with index∣∣Z1×n/(Z1×nA)

∣∣ = detA = d.

Second, we claim that Z1×nA contains d Z1×n = {dβ : β ∈ Z1×n} as a sublattice. 
Consider a vector v = dy, for some y ∈ Z1×n and check that v ∈ Z1×nA. Since A is 
invertible, there is a solution x ∈ Q1×n with v = dy = xA. Write A in terms of its rows 
a1, · · · , an ∈ Z1×n as A = [a1, · · · , an]T . Cramer’s rule shows the j-th component of x is

xj =
det
(
[a1, · · · , aj−1, dy, aj+1, · · · , an]T

)
detA

= det
(
[a1, · · · , aj−1, y, aj+1, · · · , an]T

)
∈ Z,

confirming that x ∈ Z1×n, and therefore that d Z1×n is a sublattice of Z1×nA.
Since the index 

∣∣Z1×n/dZ1×n
∣∣ = dn, the Third Isomorphism Theorem for groups says

∣∣Z1×nA/dZ1×n
∣∣ = ∣∣Z1×n/dZ1×n

∣∣
|Z1×n/Z1×nA| = dn−1.

It now follows that we have a representation of the group Z1×nA as a disjoint union of 
dn−1 cosets of the subgroup d Z1×n, i.e., there are �i ∈ Z1×nA, such that we have

Z1×nA = [Zn]Γ + 1 =
dn−1

�
i=1

(dZ1×n + �i),

where � denotes disjoint union. Therefore, we have

[Zn]Γ =
(

dn−1

�
i=1

(dZ1×n + �i)
)

− 1 =
dn−1

�
i=1

(
dZ1×n + (�i − 1)

)
.

Fix an i, 1 ≤ i ≤ dn−1 and write �i = (�i1, . . . , �in) with �ij ∈ Z. Then we have

dZ1×n + (�i − 1) = {(d · ν1 + �i1 − 1, . . . , d · νn + �in − 1) : ν1, . . . , νn ∈ Z}

=
n∏

j=1
{α ∈ Z : α ≡ �ij − 1 mod d}, (6.11)

where in the last line we have the Cartesian product of n sets of integers.
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We now analyze the other intersecting set Sp(Ω, λp) in (6.10). Let α ∈ Zn. Combining 
the representation of λp from (6.5) with the fact that eα(z) =

∏n
j=1 eαj

(zj), we can write 
the norm of eα on Ω in terms of the norms of the eαj

on the factors Uj :

‖eα‖pLp(Ω,λp) = d2−p
n∏

j=1

∥∥eαj

∥∥p
Lp(Uj ,μγj

) . (6.12)

The left-hand side is finite, i.e., α ∈ Sp(Ω, λp), if and only if each factor on the right-hand 
side is finite, i.e., for each 1 ≤ j ≤ n we have αj ∈ Sp(Uj , μγj

). Consequently we obtain 
a Cartesian product representation of the set

Sp(Ω, λp) =
n∏

j=1
Sp(Uj , μγj

). (6.13)

Therefore by (6.10), we have

SΓ
p (Ω, λp) = Sp(Ω, λp) ∩

(
dn−1

�
i=1

(
(dZ1×n + �i) − 1

))
=

dn−1

�
i=1

Li,

where

Li = Sp(Ω, λp) ∩
(
(dZ1×n + �i) − 1

)
by definition

=

⎛⎝ n∏
j=1

Sp(Uj , μγj
)

⎞⎠⋂⎛⎝ n∏
j=1

{α ∈ Z : α ≡ �ij − 1 mod d}

⎞⎠ by (6.11) and (6.13)

=
n∏

j=1

(
Sp(Uj , μγj

) ∩ {α ∈ Z : α ≡ �ij − 1 mod d}
)

=
n∏

j=1
A(Uj , p, γj , �

i
j − 1, d), (6.14)

and the last equality follows from the definition (4.1). We now define

Ki(z, w) =
∑
α∈Li

eα(z)χ∗
peα(w)

‖eα‖pp,λp

, (6.15)

which immediately gives (6.8), since absolute convergence permits rearrangement of the 
series defining KΩ1

p,λ ,Γ. Now from (6.12), we see that for α ∈ Li we have

p
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eα(z)χ∗
peα(w)

‖eα‖pp,λp

= dp−2
n∏

j=1

eαj
(zj)χ∗

peαj
(wj)∥∥eαj

∥∥p
p,μγj

, (6.16)

where for each j, we have αj ∈ A(Uj , p, γj , �ij − 1, d), and on the right hand side χp :
C → C is the one-dimensional version of the map (1.8). Using (6.14) and (6.16), we can 
rearrange the sum (6.15) as

Ki(z, w) = dp−2
n∏

j=1

⎛⎝ ∑
αj∈A(Uj ,p,γj ,�ij−1,d)

eαj
(zj)χ∗

peαj
(wj)∥∥eαj

∥∥p
p,μγj

⎞⎠ (6.17)

= dp−2
n∏

j=1
k
Uj

p,γj ,�ij−1,d(zj , wj)

where the rearrangement in (6.17) is justified since each of the n factor series on the right 
hand side is absolutely convergent. The final line is just the definition given in (4.6). �
Proof of Theorem 1.15. Theorem 5.27 says (PU

p,1)+ : Lp(U ) → Lp(U ) is a bounded 
operator if and only if (PΩ

p,λp,Γ)+ : [Lp(Ω, λp)]Γ → [Lp(Ω, λp)]Γ is bounded. From (6.8), 
we see that

∣∣∣KΩ
p,λp,Γ(z, w)

∣∣∣ ≤ dn−1∑
i=1

|Ki(z, w)| . (6.18)

From formula (5.26) defining the operator (PΩ
p,λp,Γ)+, it would be sufficient to prove 

that for each 1 ≤ i ≤ n, the operator

f �→
∫
Ω

|Ki(·, w)| f(w)λp(w)dV (w)

is bounded on (the full space) Lp(Ω, λp). Formula (6.9) now gives

|Ki(z, w)| = dp−2
n∏

j=1

∣∣∣kUj

p,γj ,αi,j ,d
(zj , wj)

∣∣∣ .
Proposition 4.14 now says that for each 1 ≤ j ≤ n, there exist functions φj , ψj and 
constants Cj

1 , C
j
2 such that
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∫
Uj

∣∣∣kUj

p,γj ,αi,j ,d
(z, w)
∣∣∣ψj(w)qμγj

(w) dV (w) ≤ Cj
1φj(z)q,

∫
Uj

φj(z)p
∣∣∣kUj

p,γj ,αi,j ,d
(z, w)
∣∣∣μγj

(z) dV (z) ≤ Cj
2ψj(w)p.

Proposition 4.11 now finishes the proof. �
7. Duality theory of Bergman spaces

7.1. Properties of the twisting map

In this section, Ω will denote an arbitrary Reinhardt domain in Cn. We return now 
to the twisting map χp introduced in (1.8), and use it to present a duality theory for 
Bergman spaces on Reinhardt domains. This leads to a concrete description for all 1 <
p < ∞ of the duals of the Ap-Bergman spaces when the Monomial Basis Projection 
is absolutely bounded; this is new on all monomial polyhedral domains (including the 
Hartogs triangle), and even new in the case of the punctured disc.

Proposition 7.1. The twisting map χp : Cn → Cn has the following properties.

(1) It is a homeomorphism of Cn with itself, and its inverse is the map χq.
(2) It is a diffeomorphism away from the set 

⋃n
j=1{zj = 0} and its Jacobian determinant 

(as a mapping of the real vector space Cn) is given by

ηp(ζ) = det(Dχp) = (p− 1)n |ζ1 · · · · · ζn|2p−4
. (7.2)

(3) It restricts to a homeomorphism χp : Ω → Ω(p−1) with inverse χq : Ω(p−1) → Ω, 
where Ω(p−1) is a Reinhardt power of Ω as in (3.6).

Proof. For item (1), notice that if w = χp(z), then for each j we have

wj |wj |q−2 = zj |zj |p−2 ·
∣∣zj |zj |p−2∣∣q−2 = zj |zj |p−2+(p−1)(q−2) = zj ,

since p −2 +(p −1)(q−2) = pq−p −q = 0. So χq◦χp is the identity, and similarly χp◦χq is 
also the identity. Item (2) follows from direct computation. Item (3) follows upon noting 
that in each coordinate, the map z �→ z |z|p−2 is represented in polar coordinates as 
reiθ �→ rp−1eiθ. The claim follows from the definition of Ω(p−1). �
Proposition 7.3. The Monomial Basis Kernels of Ap(Ω) and Aq

(
Ω(p−1), ηq

)
are related 

via the twisting map in the following way:

KΩ
p,1 (χq(z), w) = KΩ(p−1)

q,η (χp(w), z), z ∈ Ω(p−1), w ∈ Ω. (7.4)

q
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This “twisted” symmetry generalizes the conjugate symmetry of the Bergman kernel on 
Ω.

Proof. Recalling equation (3.1) above, observe that

∣∣χ∗
qeα(ζ)

∣∣p = |eα(χq(ζ))|p = |eα(ζ)|(q−1)p = |eα(ζ)|q .

Now using χq to change of variables, we have

‖eα‖pLp(Ω) =
∫

Ω(p−1)

|eα(χq(ζ))|p ηq(ζ) dV (ζ) = ‖eα‖qLq(Ω(p−1),ηq) ,

which in particular shows the equality of the sets Sp(Ω) = Sq

(
Ω(p−1), ηq

)
of allowable 

indices. Thus, for z ∈ Ω(p−1) and w ∈ Ω, we have

KΩ
p,1 (χq(z), w) =

∑
α∈Sp(Ω)

eα(χq(z))χ∗
peα(w)

‖eα‖pLp(Ω)

=
∑

α∈Sq(Ω(p−1),ηq)

eα(χp(w))χ∗
qeα(z)

‖eα‖qLq(Ω(p−1),ηq)
= KΩ(p−1)

q,ηq
(χp(w), z).

By setting p = 2, (7.4) recaptures the conjugate symmetry of the Bergman kernel. �
7.2. Adjoints and duality

We now use the map χp to give a “twisted” L2-style pairing of the spaces Lp(Ω) and 
Lq(Ω(p−1), ηq):

{f, g}p =
∫
Ω

f · χ∗
p(g) dV, f ∈ Lp(Ω), g ∈ Lq(Ω(p−1), ηq). (7.5)

Proposition 7.6. The map (f, g) �→ {f, g}p, is an isometric duality pairing of Lp(Ω) and 
Lq
(
Ω(p−1), ηq

)
. In other words, through {·, ·}p we obtain the dual space identification

Lp(Ω)′ � Lq
(
Ω(p−1), ηq

)
,

where the operator norm of the functional {·, g}p ∈ Lp(Ω)′ is equal to the norm of its 
representative function g ∈ Lq

(
Ω(p−1), ηq

)
.

Proof. It is a classical fact that the ordinary L2-style pairing of Lp(Ω) with Lq(Ω) given 
by
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(f, h) �→
∫
Ω

f · hdV, f ∈ Lp(Ω), g ∈ Lq(Ω)

is an isometric duality pairing. Proposition 7.1 says that χq : Ω(p−1) → Ω is a diffeomor-
phism outside a set of measure zero, with inverse χp : Ω → Ω(p−1), itself a diffeomorphism 
outside a set of measure zero. It therefore suffices to show that

χ∗
q : Lq(Ω) → Lq(Ω(p−1), ηq) (7.7)

is an isometric isomorphism of Banach spaces. Calculation shows

‖h‖qLq(Ω) =
∫

Ω(p−1)

|h ◦ χq(w)|q ηq(w)dV (w) =
∥∥χ∗

q(h)
∥∥q
Lq(Ω(p−1),ηq) . (7.8)

Since the inverse map χ∗
p of χ∗

q exists, it is surjective and the result follows by the 
closed-graph theorem. �
Proposition 7.9. Suppose the Monomial Basis Projection of Ap(Ω) is absolutely bounded 
on Lp(Ω). Then under the pairing {·, ·}p defined in (7.5), its adjoint is the Monomial 
Basis Projection of Aq(Ω(p−1), ηq), which is itself absolutely bounded in Lq(Ω(p−1), ηq); 
i.e., {

PΩ
p,1f, g

}
p

=
{
f,PΩ(p−1)

q,ηq
g
}
p
, for all f ∈ Lp(Ω), g ∈ Lq(Ω(p−1), ηq).

Proof. Suppose that f ∈ Lp(Ω) and g ∈ Lq(Ω(p−1), ηq):

{
PΩ

p,1f, g
}
p

=
∫
Ω

PΩ
p,1f · χ∗

pg dV =
∫
Ω

⎛⎝∫
Ω

KΩ
p,1(z, w)f(w) dV (w)

⎞⎠ g(χp(z)) dV (z)

(7.10)

=
∫
Ω

⎛⎝∫
Ω

KΩ
p,1(z, w)g(χp(z))dV (z)

⎞⎠ f(w) dV (w),

(7.11)

where the change in order of integration can be justified as follows. By the assumption 
that PΩ

p,1 is absolutely bounded on Lp(Ω), we see that the function on Ω given by

z �−→
∫
Ω

∣∣KΩ
p,1(z, w)

∣∣ · |f(w)| dV (w)

is in Lp(Ω). Since g ∈ Lq(Ω(p−1), ηq), using Tonelli’s theorem we see that
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∫
Ω×Ω

∣∣KΩ
p,1(z, w)g(χp(z))f(w)

∣∣ dV (z, w)

=
∫
Ω

⎛⎝∫
Ω

∣∣KΩ
p,1(z, w)

∣∣ · |f(w)| dV (z)

⎞⎠ |g(χp(z))| dV (w) < ∞,

by Proposition 7.6. Fubini’s theorem gives that (7.10) = (7.11). Now change variables in 
the inner integral of (7.11) by setting z = χq(ζ), where ζ ∈ Ω(p−1) to obtain

(7.11) =
∫
Ω

⎛⎝ ∫
Ω(p−1)

KΩ
p,1(χq(ζ), w)g(ζ) ηq(ζ) dV (ζ)

⎞⎠ f(w)dV (w)

=
∫
Ω

⎛⎝ ∫
Ω(p−1)

KΩ(p−1)
q,ηq

(χp(w), ζ)g(ζ) ηq(ζ)dV (ζ)

⎞⎠f(w)dV (w) (7.12)

=
∫
Ω

f(w)PΩ(p−1)

q,ηq
g(χp(w)) dV (w) (7.13)

=
∫
Ω

f · χ∗
p

(
PΩ(p−1)

q,ηq
g
)
dV =

{
f,PΩ(p−1)

q,ηq
g
}
p
.

The second equality above follows from (7.4). The fact that (7.13) = (7.12) can be 
justified as follows. For g ∈ Lq

(
Ω(p−1), ηq

)
, the quantity in (7.12) is finite for each 

f ∈ Lp(Ω), since by the above computations it is equal to the finite quantity {PΩ
p,1f, g}p. 

Therefore we see that for each g ∈ Lq(Ω(p−1), ηq), we have that the function⎛⎝w �−→
∫

Ω(p−1)

KΩ(p−1)

q,ηq
(χp(w), ζ)g(ζ)ηq(ζ) dV (ζ)

⎞⎠ ∈ Lq(Ω),

so that the linear map

g �−→
∫

Ω(p−1)

KΩ(p−1)

q,ηq
(χp(·), ζ)g(ζ)ηq(ζ) dV (ζ)

is bounded from Lq(Ω(p−1), ηq) to Lq(Ω) by the closed graph theorem (since the integral 
operator is easily seen to be closed). Composing with the (isometric) bounded linear map 
χ∗
q : Lq(Ω) → Lq(Ω(p−1), ηq), we see that the operator on Lq(Ω(p−1), ηq) given by

g �−→
∫

Ω(p−1)

KΩ(p−1)

q,ηq
(·, ζ)g(ζ)ηq(ζ) dV (ζ)

is bounded on Lq(Ω(p−1), ηq). Now Proposition 3.22 shows (7.13) = (7.12). �
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Proposition 7.14. Suppose the Monomial Basis Projection of Ap(Ω) is absolutely bounded 
on Lp(Ω). Then the duality pairing of Lp(Ω) and Lq(Ω(p−1), ηq) by {·, ·}p restricts to a 
duality pairing of the holomorphic subspaces. In other words, we can identify the dual 
space

Ap(Ω)′ � Aq
(
Ω(p−1), ηq

)
.

Proof. We claim that the conjugate-linear continuous map Aq(Ω(p−1), ηq) → Ap(Ω)′
given by h �→ {·, h}p,1 is a homeomorphism of Banach spaces. To see surjectivity, let 
φ ∈ Ap(Ω)′, let φ̃ : Lp(Ω) → C be its Hahn-Banach extension, and let g ∈ Lq(Ω(p−1), ηq)
be such that φ̃(f) = {f, g}p,1. The existence of g follows from Proposition 7.6. We see 
from Proposition 7.9 that for each f ∈ Ap(Ω) we have

φ(f) = φ̃(f) = {f, g}p = {PΩ
p,1f, g}p = {f,PΩ(p−1)

q,ηq
g}p

so the surjectivity follows since PΩ(p−1)

q,ηq
g ∈ Aq

(
Ω(p−1), ηq

)
. Now if h ∈ Aq

(
Ω(p−1), ηq

)
is in the null-space of this map, i.e., for each f ∈ Ap(Ω) we have {f, h}p = 0, then for 
g ∈ Lp(Ω):

{g, h}p = {g,PΩ(p−1)

q,ηq
h}p = {PΩ

p,1g, h}p = 0.

This shows that h = 0, so the mapping is injective. �
7.3. Dual spaces on monomial polyhedra

The duality pairing in Section 7.2 should be contrasted with the usual Hölder duality 
pairing of Lp and Lq. On the disc D, the Hölder pairing restricts to a duality pairing of the 
holomorphic subspaces, yielding the identification Ap(D)′ � Aq(D). On the punctured 
disc, the Hölder pairing fails to restrict to a holomorphic duality pairing and any attempt 
to identify Ap(D∗)′ with Aq(D∗) fails. This is discussed further in Section 8.3. For similar 
results, see [15].

Theorem 7.15. Let U = D∗ or D. The dual space of Ap(U) admits the identification

Ap(U)′ � Aq(U, ηq), ηq(ζ) = (q − 1)|ζ|2q−4,

via the pairing (7.5), sending (f, g) �→ {f, g}p, where f ∈ Ap(U), g ∈ Aq(U, ηq).

Proof. It was shown in Corollary 4.21 that the MBP of Ap(U) is absolutely bounded. 
Recalling the definition of a Reinhart power in (3.6), it is clear that in our case U (m) = U

for every m > 0, so in particular for m = p −1. Proposition 7.14 now gives the result. �
The same behavior regarding Reinhardt powers seen on the disc and punctured disc 

continues to hold on all monomial polyhedra:
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Proposition 7.16. Let U ⊂ Cn be a monomial polyhedron of the form (6.1). Then for 
each m > 0, the Reinhardt power U (m) = U .

Proof. Write U = UB , where the rows of B are given by bj = (bj1, . . . , bjn) ∈ Z1×n. From 
the definition of the Reinhardt power of a domain given in (3.6), we see

U (m) = {z ∈ Cn : (|z1|
1
m , . . . , |zn|

1
m ) ∈ U }

= {z ∈ Cn : |ebj
(
|z1|

1
m , . . . , |zn|

1
m

)
| < 1, 1 ≤ j ≤ n}

=
{
z ∈ Cn : |ebj (z)|

1
m < 1, 1 ≤ j ≤ n

}
=
{
z ∈ Cn : |ebj (z)| < 1, 1 ≤ j ≤ n

}
= U . �

Theorem 7.17. Let U be a monomial polyhedron in Cn. The dual space of Ap(U ) admits 
the identification

Ap(U )′ � Aq(U , ηq), ηq(ζ) = (q − 1)|ζ1 · · · ζn|2q−4,

via the pairing (7.5), sending (f, g) �→ {f, g}p, where f ∈ Ap(U ), g ∈ Aq(U , ηq).

Proof. The absolute boundedness of the MBP of Ap(U ) seen in Theorem 1.15 allows 
for the use of Proposition 7.14. In this setting U (p−1) = U by Proposition 7.16, which 
yields the result. �
8. Comparing the MBP to the Bergman projection on Lp

Let Ω ⊂ Cn be a bounded Reinhardt domain such that the origin lies on its boundary. 
In even the simplest example, the punctured disc D∗ = {z ∈ C : 0 < |z| < 1}, special 
features of the holomorphic function theory can be seen in the Riemann removable 
singularity theorem. Higher dimensional versions of this phenomenon were noticed by 
Sibony in [38] on the Hartogs triangle and later generalized in [11].

8.1. The Lp-irregularity of the Bergman projection

In understanding the Lp function theory on Ω, it is instructive to consider the behavior 
of the sets of p-allowable indices introduced in Section 1.4: Sp(Ω) = {α ∈ Zn : eα ∈
Lp(Ω)}, as p traverses the interval (1, ∞). It is clear that the sets can only shrink as p
increases, as fewer monomials become integrable due to increase in the exponent p in 
the integral 

∫
Ω |eα|p dV . However, the set Sp(Ω) is always nonempty, since Nn ⊂ Sp(Ω), 

Ω being bounded.
For example on the punctured disc, if p < 2, then Sp(D∗) = {α ∈ Z : α ≥ −1}, 

and if p ≥ 2, then Sp(D∗) = {α ∈ Z : α ≥ 0}. The exponent p = 2 where the set of 
indices shrinks is a threshold. The Lp-irregularity of the Bergman projection is closely 
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related with these thresholds. It was shown in [4], that on a monomial polyhedron U , the 
Bergman projection is bounded in Lp if and only if p ∈ (q∗, p∗), where p∗ = p∗(U ) is the 
smallest threshold of U bigger than 2 and q∗ = q∗(U ) is its Hölder conjugate. Explicit 
values of p∗ and q∗ are given in the main theorem of [4]; see also Proposition 1.12.

Outside the interval (q∗, p∗), the Lp-boundedness of the Bergman projection on the 
monomial polyhedron U fails in different ways depending on whether p ≥ p∗ or p ≤ q∗. 
Since U is bounded, we have Lp(U ) ⊂ L2(U ) if p ≥ p∗ > 2, so the integral operator 
defining the Bergman projection in (1.1) is defined for each f ∈ Lp(U ). The failure of 
boundedness of the Bergman projection corresponds to the fact that there are functions 
f ∈ Lp(U ) for which the projection BU f is not in Ap(U ). It is easy to give an explicit 
example when U = H, the Hartogs triangle. Suppose p ≥ p∗(H) = 4 and let f(z) = z2, 
which is bounded and therefore in Lp(H). A computation shows that there is a constant 
C such that BHf(z) = Cz2

−1 /∈ Lp(H). This idea can be generalized to an arbitrary 
monomial polyhedron U to show that if p ≥ p∗, there is a function in Lp(U ) which 
projects to a monomial which is in L2(U ) but not in Lp(U ). In [14] the range of the 
map BH : Lp(H) → L2(H) for p ≥ 4 was identified as a weighted Lp-Bergman space 
strictly larger than Lp(H), and a similar result holds on any monomial polyhedron. 
Recent work in [25] shows that BH is of weak-type (4,4), and this has been extended to 
generalized Hartogs triangles in [13]. For p ≤ q∗, the situation is even worse:

Proposition 8.1. Let 1 < p ≤ q∗(U ) and z ∈ U . There is a function f ∈ Lp(U ) such 
that the integral

∫
U

BU (z, w)f(w) dV (w)

diverges. Consequently, there is no way to extend the Bergman projection to Lp(U ) using 
its integral representation.

Proof. Let q denote the Hölder conjugate of p so that q ≥ p∗. The holomorphic function 
on the Reinhardt domain U given by g(ζ) = B(ζ, z) has Laurent expansion

g(ζ) =
∑

α∈S2(U )

zα

‖eα‖2
ζα.

Since q ≥ p∗, and the set of integrable monomials shrinks at p∗, it follows that there 
is a monomial eα ∈ A2(U ) \ Aq(U ). Since this non-Aq monomial appears in the above 
Laurent series with a nonzero coefficient, and by Theorem 2.12, the Laurent expansion of 
a function in Aq can only have monomials which are in Aq, it follows that g /∈ Aq(U ). By 
symmetry therefore, B(z, ·) �∈ Lq(U ). It now follows that there is a function f ∈ Lp(U )
such that the integral above does not converge. �
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When U = H, one can show by explicit computation that if 1 < p < 4
3 = q∗(H), 

we can take f(w) = w−3
2 in the above result for each z ∈ H. It was shown in [25] that 

BH fails to be weak-type (4
3 , 

4
3 ), and this was extended in [13] to generalized Hartogs 

triangles. But in light of Proposition 8.1, we see that BH does not even exist as an 
everywhere defined operator on L4/3(H).

In contrast with the above, Theorem 1.15 guarantees that for 1 < p < ∞ and U
a monomial polyhedron, that the MBP PU

p,1 is a bounded operator from Lp(U ) onto 
Ap(U ), and Theorem 3.13 says that for z ∈ U , the function KU

p,1(z, ·) ∈ Lq(U ), where 
1
p + 1

q = 1.

8.2. Failure of surjectivity

Even if the Bergman projection can be given a bounded extension to Lp, it need not 
be surjective onto Ap for p < 2, as one sees in the case of the punctured disc. Here, 
since A2(D∗) and A2(D) are identical, the Bergman kernels have the same formula. The 
Bergman projection on D∗ consequently extends to a bounded operator on Lp(D∗) for 
every 1 < p < ∞, but fails to be surjective onto Ap(D∗) for p ∈ (1, 2). This happens 
because the range of the Bergman projection can be naturally identified with Ap(D), 
and when 1 < p < 2, the space Ap(D) is a strict subspace of Ap(D∗) (for example the 
function g(z) = z−1 belongs to Ap(D∗) \ Ap(D)). In particular, BD∗

is not the identity 
on Ap(D∗) and its nullspace is the one-dimensional span of g(z) = z−1.

On the Hartogs triangle, the Bergman projection is bounded on Lp(H) for 4
3 < p < 4, 

but is not surjective onto Ap(H) for 4
3 < p < 2. Let N ⊂ Ap(H) be the closed subspace 

spanned by the monomials in Ap(H) \ A2(H). One sees from a computation that the 
monomials in Ap(H) \ A2(H) are eα with α1 ≥ 0 and α1 + α2 = −2. Then one can 
verify using orthogonality of Lp and Lq monomials that the nullspace of BH restricted 
to Ap(H) is N .

In contrast, the MBP of Ap(U ) accounts for all monomials appearing in the Banach-
space basis {eβ : β ∈ Sp(U )}, and Corollary 1.16 shows that for 1 < p < ∞, PU

p,1 is a 
bounded surjective projection of Lp(U ) onto Ap(U ).

8.3. The Bergman projection and holomorphic dual spaces

The following is a reformulation of [10, Theorem 2.15]:

Theorem 8.2. Suppose that the following two conditions hold on a domain U ⊂ Cn.

(1) The absolute Bergman operator (BU )+ : Lp(U) → Lp(U) is bounded.
(2) The Bergman projection acts as the identity operator on both Ap(U) and Aq(U).



44 D. Chakrabarti, L.D. Edholm / Advances in Mathematics 451 (2024) 109790
Then the sesquilinear Hölder pairing restricts to a duality pairing of Ap(U) with Aq(U):

〈f, g〉 =
∫
U

fg dV, f ∈ Ap(U), g ∈ Aq(U), (8.3)

providing the dual space identification Ap(U)′ � Aq(U).

Conditions (1) and (2) both hold, for instance, on smoothly bounded strongly pseudo-
convex domains (see [36] and [8]), thus yielding the dual space identification. But when 
one of the conditions (1) or (2) fails, the conclusion can fail.

On the punctured disc D∗ ⊂ C, (1) always holds but (2) fails for all p �= 2; it can 
be shown that under the pairing (8.3), Ap(D∗)′ can only be identified with Aq(D∗) if 
p = q = 2. On the Hartogs triangle H, (1) holds if 4

3 < p < 4, but (2) never holds for a 
p in this range, as we saw in Section 8.2. The pairing (8.3) is not a duality pairing on H
for 4

3 < p < 4 unless p = 2. The mapping Aq(H) → Ap(H)′ given by the pairing is not 
injective if 2 < p < 4 and not surjective if 4

3 < p < 2.
In contrast with the above, the duality theory of Section 7.2 characterizes duals of 

Bergman spaces of Reinhardt domains via the pairing (7.5) whenever the MBP is ab-
solutely bounded. We saw that Theorem 7.15 gives a concrete description of the dual 
space of Ap(D∗), and for monomial polyhedra Theorem 7.17 does the same.
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