High Frequency Bebhavior of the Leray Transform:
Model Hypersurfaces and Projective Duality
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ABSTRACT. The Leray transform L is studied on a family M,
of unbounded hypersurfaces in two complex dimensions. For a
large class of measures, we obtain necessary and sufficient con-
ditions for the L2-boundedness of L, along with exact spectral
descriptions of L*L, LL* and L* — L. This yields both the
norm and high-frequency norm of L, the latter affirming an un-
bounded analogue of an open conjecture relating the essential
norm of L to a projective invariant on a bounded hypersurface.
L is also shown to play a central role in bridging the function
theoretic and projective geometric notions of duality. Our work
leads to the construction of projectively invariant Hardy spaces
on the My, along with the realization of their duals as invariant
Hardy spaces on the dual hypersurfaces.

1. INTRODUCTION

This article continues a series aimed at further developing the theory of the Leray
transform from a projective dual point of view. Much of our focus here will be on
the following family of real hypersurfaces. For y > 1, define

(1.1) My = {(L1,C2) € C*: Im(%2) = |G},
together with the unbounded domain lying on its C-convex side
(12) Qy = {(21,22) c (Czl Im(Zz) > |Z]|y}.

The Leray transform is a higher-dimensional analogue of the Cauchy trans-
form of a planar domain; it acts by taking in data given on a real hypersurface
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to construct holomorphic functions on the domain bounded by the hypersurface.
(See Section 2.1 for precise definitions.) As is typical in multi-dimensional com-
plex analysis constructions, convexity conditions play a crucial role. In particular,
the Leray transform Lg := L is a well-defined integral operator on any smoothly
bounded C-convex hypersurface S in C". When S is an unbounded hypersur-
face (such as My), additional care must be taken. As in the case of the Cauchy
transform, knowledge of both quantitative and qualitative information related to
L provides insight into holomorphic function spaces associated with S.

A great deal of additional information can be obtained by viewing the Leray
transform through the lens of projective duality. The projective dual of a hypersur-
face S € CP", denoted S*, is the set of complex hyperplanes tangent to S. In [4],
the first author demonstrates that the efficiency of a natural pairing of two dual
Hardy spaces associated with, respectively, S and S* is measured by the L?>-norm
of Ls. The Cauchy transform plays an analogous role in the pairing of interior
and exterior Hardy spaces associated with a planar curve (see [32]). New aspects
of this theory are set forth in Section 6, where they are carefully illustrated in the
setting of M.

Each M, is homogeneous with respect to certain projective automorphisms
(see Section 3.1), and L admits a transformation law with respect to such maps (see
(2.13)). It thus makes sense to pay special attention to L?-spaces on My, which are
built from measures satisfying desirable transformation laws. Our analysis begins
by considering the measure 0 := &Y~ 'dax A d0 A ds, with &« = [T, 0 = arg(Ly),
s = Re(T,). This is a constant multiple of the Leray-Levi measure corresponding
to the most natural choice of defining function for My (see Section 2.1).

We now highlight several results established in this paper. Continuing the
theme of [6], the exact L?(M,, 0)-norm of the Leray transform is obtained as
follows.

Theorem 1.1. Let L be the Leray transform of My. Then, L: L>(My,0) —
L*(My, 0) is a bounded projection operator with norm

Y
1Ll 2(my,0) = 2 =T

We go on to consider a more general class of measures: for ¥ € R, let py =

«"da A dO A ds. Then, we have the following result.
Theorem 1.2. The Leray transform L is a bounded projection from

Lz(My,HV) - Lz(My; IJT)

ifand only if v € 1y := (=1,2y — 1).

Theorem 1.1 is proved in Section 4.3, and Theorem 1.2 in Section 5.1. The
analysis involved in proving these results relies heavily on the symmetries of M,,.
In particular, the S! action in the Ty variable of (1.1) yields a (partial) Fourier
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series decomposition of the space

L*(My,ur) = @ Ly(My, py).
k=—oc0

(Here, we use the “subspace” notion of direct sum as set forth, for example, on
page 81 of [3].) The Leray transform decomposes similarly, but the bound-
ary values of a holomorphic function on M, may have nonzero components in
Li(My,ur) only if k > 0. In other words,

L=PLy,
k=0

where the sub-Leray operator Ly is nonzero only when acting on L3 (My, pty). Very
precise information on each Ly is obtained, including both the sharp range of
for which boundedness in Lz(My, Hy) holds and the exact operator norm when it
does. Define the interval

Tk =(-2k-1,2k+2)(y - 1) + 1),

along with the py-symbol function

r<2k+1+r>r<2k+2_2k+1+1f)

CUr(ysk) = Y Y

I'(k+1)2

y 2k+2
X (§> (y _ 1)7(2k+27(2k+1+1’)/)/)_

Theorem 1.3. Let k = 0 be an integer and v € R. Then, Ly is bounded from
Li(My,ur) - Li(My,IJ‘y) if and only if v € Ix. Furthermore, whenv € Iy,

1Lkl 2 vy ) = A/Cry (Y5 K).

When v € 7 (the interval of boundedness from Theorem 1.2), the Leray
transform admits a bounded adjoint L*#) in the L?(My, pty-)-inner product.
For these 7 values, we obtain a complete spectral description of the self-adjoint
LOHL and LL*#), and anti-self-adjoint A#* := L*#r) — L in terms of the
symbol function. In Section 5.3 it is shown that the following results hold true.

Theorem 1.4. Letv € 1y and let T denote either L*H)L or LLYHY) | Then, T
admits an orthogonal basis of eigenfunctions, and its spectrum is given by

{0} uiCy (y,k) : k=0,1,2,...}.
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Theorem 1.5. Letv € 1. The operator AFr := LUHr) —L admits an orthogonal
basis of eigenfunctions and its spectrum is given by

{0} U {=iyCy (¥, k) —1:k=0,1,2,...}.

We now emphasize a fascinating observation about the limiting behavior of
the sub-Leray operators. Define the (uy)-high-frequency limit norm by

(1.3) L2, oy ) 2= lim sup Lk llz2(ay g0, -

k— oo

This is definable for any operator admitting a Fourier series decomposition, and
it can be viewed as a generalized essential norm in the sense of Lefevre [31]—in
Section 2.3.1 we introduce the terminology grade-essential-norm.

As the value of 7 varies, the norm ||Lg|| L2(My ay) expectedly changes. But in
Section 5.1, it is shown that all choices of 7 yield the same high frequency limit.

Theorem 1.6. Forv € R, the py-high-frequency limit norm of L is

Y
y-1

”LHL%_H:(M;/JJV) = 2

An analogous result was observed in [9] on smoothly bounded, strongly C-
convex Reinhardt hypersurfaces in C2. We will see in Section 2.3 that this quantity
is closely connected to a projective geometric invariant of M. Note also that this
quantity is the square root of the L?>(My,0)-norm in Theorem 1.1; a similar
observation was recently noted for the Leray transform on boundaries of LP-balls
{(€1,C) € C: |G |P + |G2|P = 1} (see [34])).

Lanzani and Stein have written a series of recent articles on the Leray trans-
form in various settings. One of the takeaways in [26,27] is that L is well behaved
(one can expect both L2 and L? boundedness results) as long as the hypersurface
in question is both (1) strongly C-convex and (2) C"!-smooth. When either hy-
pothesis is dropped, they are able to construct elementary counterexamples with
no Leray LP-boundedness (including p = 2) (see [29,30]). The positive Lanzani-
Stein results do not apply in our setting since M) (viewed in projective space)
fails even to be C! when it meets the line at infinity (except when y = 2) (see Sec-
tion 3.6). But unlike their counterexamples, our results show that L is L2-bounded
for a range of reasonable measures on M.

Interest in My, also stems from other considerations. In [4], Barrett defines a
scalar invariant (denoted Bs(T) in Section 2.3 below) associated with any strongly
C-convex hypersurface. The M, comprise one of the few families for which this
invariant is constant. Another such family

(1.4) Sp=1{(C1,82) € C:Im(Lp) = IT1* + BRe(TP)}, 0=<P<1
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was recently studied by Barrett and Edholm in [6]. Both M), and Sg are intriguing
models in connection with Conjecture 2.1 on the essential norm of L, but this
conjecture does not directly apply to either family since these hypersurfaces are
unbounded (or more to the point, they fail to be C! at infinity—except in the
very special case of M, = Sy).

Holomorphic function spaces associated with M,, have been previously stud-
ied for positive even integers y = 2n. (These are the only y for which M, is
C® at the origin.) Greiner and Stein [22] found an explicit formula for the Szeg6
kernel on L?(M3y,dx1 A dy1 A dxz). Their work was later used by Diaz [18] to
determine mapping properties of the Szeg6 projection in this setting. Note that
dx1 A dyy Adx; is the Euclidean surface measure on the parameter space R?; this
measure agrees with 4 in our above notation. Since ¥ = 1 € 7 for all y > 1,
a special case of Theorem 1.2 implies that L is a bounded, skew (unless y = 2)
projection on the same L2-spaces considered by Greiner, Stein, and Diaz.

Recall that the Szeg§ projection is the orthogonal projection from a pre-
specified L2-space onto its associated Hardy space. The projection is represented
by its Szeg6 kernel, a Hilbert space reproducing kernel. The existence of this pro-
jection is guaranteed, but such kernels can only be concretely written down in a
small number of situations. The Leray transform on the other hand, is always
given by an explicit integral formula and can often be shown to be a bounded,
skew projection operator onto reasonable Hardy spaces. An intimate relation-
ship between Szegd projections and “Cauchy-like” integral operators C (the Leray
transform is just one such example) was noticed by Kerzman and Stein in [24,25].
They observed that detailed information about the Szegd projection can be ex-
tracted from the operator A := C* — C. See [10] for an expository treatment of
these ideas in the complex plane, and [9,12,13,28] for more recent developments.

There are important reasons to think of complex projective space (not affine
space) as the ideal setting in which to study the Leray transform. Following the
point of view taken in [1], we maintain that C-convexity most naturally belongs
in CP™ due to the duality seen between points and hyperplanes. Formula (2.1b)
shows that C-convexity is built into the definition of L: the denominator of Lg
vanishes on the supporting complex hyperplanes of S, and C-convexity is precisely
the condition needed for this hyperplane to avoid the domain bounded by S. The
set of complex hyperplanes—and therefore the set of C-convex hypersurfaces—is
preserved under projective automorphism. In Section 2.2.3, we define the pre-
ferred measure fis. It follows from work of Bolt [11] that if the Leray kernel is
written in terms of fig, then it admits a projective transformation law (cf. (2.13)).

This material is consolidated into a satisfying circle of ideas in Section 6, where
L is used to bridge the notions of function-theoretic and projective geometric du-
ality. We construct a projectively invariant Hardy space on each My, then show
that its dual space can be naturally identified with the pullback of the invariant
Hardy space on the dual hypersurface. Unlike Bergman spaces which come nat-
urally equipped with a transformation law, Hardy spaces only transform nicely if
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set up with respect to very specific measures. This is where our preferred mea-
sure comes in: fiy, = fi is shown to be a constant multiple of some ., ¥ € Tp.
Therefore, Theorem 1.1 allows us to define the Hardy space

Hz(M)/’ﬁ) = L(LZ(M)/J[())

By its construction, this space admits a projective transformation law. (One im-
portant order of business is the verification that functions in this space actually
correspond to holomorphic functions on the domain Q,. This turns out to be the
case, but the proof is postponed until Appendix A.)

In Section 6.1 we show that the projective dual of M, can be represented
by My« (where y* = y/(y — 1) is the Holder conjugate), and we construct a
diffeomorphism w : My, — My«. The pullback of this map is used to define the
preferred dual measure w* ( fin,) = /flj\'}y = fi*, along with the dual Hardy space

H§Ua|(M}”ﬁ*) = W*(HZ(M)/*,[]M},* ))

A third measure of interest facilitates a bilinear pairing of these two Hardy
spaces. The pairing measure v appears in [0] as part of a universal formulation
of the Leray transform (see Theorem 6.7 below); also see [1]. In the M, setting,
Vv is a constant multiple of o from Theorem 1.1. A multiplicative constant can
be specified to give a sharp Cauchy-Schwarz inequality relating fi, fi*, and v: for
f € LZ(My;ﬁ) and g e Lz(My;ﬁ*),

2
9] |L2(My,ﬂ*)’

' JMyng‘ =< ||f“i2(My,ﬂ)

where equality is achieved for any such f (likewise for any such g). Consider now
the map

Xy i L (My, @*) = (L*(My, fi)*
given by x,,(g9) : f ~ [ fg v, along with the companion map
M}’

)?Y : HéuaI(MY!ﬂ*) - (HZ(MY'ﬁ))*

given by the restriction Xy (g) = X, (9) [m2(m,.i0)-

In Section 6.4 it is shown that X, induces a faithful representation of the
dual space, and that the efliciency of the Hardy space pairing is measured by the
appropriate norm of L, as follows.

Theorem 1.7. The operator Ry: Hi,(My, @*) — (H>(My, 1))* is invertible
with norm

X5 = Ll 2 vy o) -
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The paper is organized as follows. Sections 2.1-2.3 cover necessary back-
ground material, while Section 2.4 is included to collect frequently used notation.
Section 3.1 is concerned with geometric symmetries of My, which greatly assist our
analysis of Ly, in Sections 3.2-3.5. (The computations in Section 3 only involve
the measure o, but the stage there is set for the larger class of measures consid-
ered later.) In Section 3.6, we study the geometry of M, at infinity. Section 4
mainly concerns properties of the o-symbol function Cy(y, k). In Section 5.1
we widen our scope and examine the action of L with respect to the more general
measures [y. Sections 5.2 and 5.3 focus on adjoints and other related operators.
Section 6 begins with an introduction to projective duality, leading directly into a
detailed study of the projective dual of My, in Section 6.1. Section 6.2 is concerned
with certain distinguished measures on My, while 6.3 and 6.4 set up the invari-
ant Hardy spaces and their dual spaces. A computationally intensive Appendix is
included at the end of the paper to establish crucial facts without disrupting the
exposition of our main results.

Lastly, the authors wish to emphasize our surprise at the exactness of many
results in this paper. We suspect that mathematicians interested in special function

theory may be particularly drawn to computations found in Sections 4.1, 4.2, 5.1
and Appendix A.

2. BACKGROUND AND PRELIMINARIES

2.1. The Leray transform. A domain Q C C" is said to be C-convex if its
intersection with any complex line is both connected and simply connected (when
non-empty). It is said to be C-linearly convex if the complement can be written as
the union of complex hyperplanes. These two notions coincide when the bound-
ary of Q is C! (see Section 2.5 in [1]). A hypersurface S bounding a domain Q is
said to be C-convex (respectively, C-linearly convex) if Q) is C-convex (respectively,
C-linearly convex). A hypersurface S that is locally projectively equivalent to a
strongly convex hypersurface is said to be strongly C-convex. (Section 5.2 of [4]
discusses equivalent characterizations of strong C-convexity.)

Let S € C" be a C-linearly convex hypersurface with defining function p and
f a function defined on S. The Leray transform maps f to a holomorphic func-
tion on Q whenever the following integral makes sense (Theorem A.1 in Appendix
A gives conditions on f which guarantee the holomorphicity of L f on Q,):

(2.1a) Lsf(z) := Lf(?;)Es(Z,C),

1 3p(C) A (@ap(C)n!

(2.1b) Ls(2.8) = o (0p(@). (€ = 2))m

Note that the Leray kernel L is a form of bi-degree (n,n—1). Here, (-, ) denotes
the natural bilinear pairing between (1,0)-forms and vectors. This definition is
independent of the choice of p (see Chapter IV of [33] for more information).
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Separate the Leray kernel (2.1b) into two pieces, each of which does depend
on the choice of defining function:

1
(219 b0 = G o
o 1 3 n-1
(2.1d) Ap(T) := G 0p(C) A (d0p(T))" .

We refer to A, as the Leray-Levi measure for the defining function p, often suppress-
ing the subscript p when it is clear from context.

Now calculate the pieces of the Leray transform on M,. Using the defining
function

(2.2) p(z) =1z11Y = Im(22),

equations (2.1¢) and (2.1d) yield

4
23 ‘e y = = ]
(2.39) o(2:0) (YC1IC11Y72(Cy — z1) + (T2 — 22))?
2 _
(2.3b) A (D) = =X 11V 72dC, A ATy A AT

32123

In this paper, the Leray transform Ly, will frequently be denoted by L, or some-
times by L, when it is important to keep track of the exponent. Equations (2.1a)
and (2.1b) give

_ 111772 dg A ATy A dT;
(YT 2(C1 = 21) + (L2 — 22) 1>

2.2. Projective invariants and transformation laws. Recall that, with re-
spect to the standard affinization, automorphisms of CP? have the form

81r2i

230  Lf(z)= -2 J F(@©)
M}’

N D+Ezi+Fzy G+Hzy+1z
(2.4) X:(z1,22) = ( ! 2 ! 2>,

A+ Bz, +C22,A+le +Czy

where X is induced by the invertible matrix

ABC
X:=|DEF|.
GHI

In homogeneous coordinates, these are linear maps. Projective automorphisms
map strongly C-convex hypersurfaces to strongly C-convex hypersurfaces (see Sec-
tion 5.2 of [4]). See also [14, 15] for a detailed treatment of Mobius geometry on
hypersurfaces.
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Direct computation reveals the Jacobian determinant of X is given by

det X

det X' = )
e (A+ Bz, + Czy)3

A similar formula holds in dimension n with exponent 7 + 1 in the denominator.
Below we will have occasion to refer to (det X’)™ +D; it is clear that there are
n+1 distinct well-defined branches of this function. It is understood that the same
branch is to be used within a single computation when this expression appears
repeatedly.

2.2.1. A projective scalar invariant. For a strongly pseudoconvex hyper-
surface S C C? with defining function p and a point T € §, the scalar quantity

0 p21 p22
det Pz, Pziz, Pzyzy

Pz, Pzizy Pzyz,
(2.5) Bs(T) := 0 oo o, @)

det p21 p2121 p2221
p22 p2122 p2222

(where subscripts denote derivatives) is directly invariant under projective auto-
morphisms. This scalar is the absolute value of an invariant tensor Bs introduced
by the first author in Section 5.3 of [4]. A computation shows that for all T € M,,

2.6) B, (©) = =2,

2.2.2. Fefferman surface measure. On page 259 of [20], Fefferman intro-
duced an invariant measure & for an arbitrary smooth strongly pseudoconvex
hypersurface S ¢ C". Viewing ugef as a positive (2n — 1)-form, it is characterized

by the equation
2.7) uEF A dp = cnM(p)V D wen,

where wcn is the Euclidean volume 2n-form, p is a defining function for S, and
M (p) denotes Fefferman’s complex Monge-Ampere operator defined by

_(_ n p ij
(2.8) M(p) = (~1)" det (pik pzjz-,)'

(The subscripts denote differentiation and ¢, is a dimensional constant. In Sec-
tion 6.2 we specify an explicit value of this constant that is convenient for the
purposes of this paper.)
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Fefferman’s measure satisfies the transformation law
(2.9) V() = [ der |2/ (D) et

for CR diffeomorphisms ¥ (see [23]).
If a Szeg® projection operator for a compact strongly pseudoconvex S is de-
fined with respect to p§*" and ¥ is a CR diffeomorphism with a well-defined

branch of (det ‘I”)"/("H), then from (2.9) we find that the operator
£ (det?)M D L (f oY)

maps L2(Y(S), u\';,e(fs)) isometrically to L2(S, ufef), preserving the corresponding
Hardy spaces. This leads to the transformation law demonstrated in [23]:

(2.10) Ss((det W)™ D (f o W) = (det V)™ D ((Sy(5) f) o ).

From (2.2), (2.7), and (2.8), the Fefferman measure on M), is seen to be given
by

2/3 -
Hif) = 622}/7/3i|C1|(’/’2)/3dCz AdTy A dT).

2.2.3. The preferred measure. For the general theory of the Leray transform
it is useful to work with a modified version of Fefferman’s measure. In Section 8
of [4], the first author defines a projective modification of uEEf tailored to suit a
natural pairing of Hardy spaces for which the Fefferman measure is not optimal;
we examine this pairing in Section 6.4.

Throughout this paper, we refer to this modification of Fefferman’s measure

as the preferred measure, and denote it by fis. In two dimensions, it is given by the

formula
uEe (©)

J1-Bs@)?

where Bs(T) is defined in (2.5). By (2.6), this invariant is constant on M,,. Thus,

fs(C) =

2/3

i _ .y . Fef

(211) “My— 22/3()/—1)1/3“My
y4/3

— L (y-2)/3 -
_628(y—1)1/3i|§1| dCy A ATy AT
Equation (2.9) and the projective invariance of B5(C) now show that
(2.12) Y* (fiyes)) = | dec V' |“P fis

for any projective automorphism ¥.
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For such ¥ we can use (2.12) to deduce that a transformation law analogous
to (2.10) holds for Szeg6 projections based on the preferred measure fis. If S is
strongly C-convex and ¥ is a projective automorphism, then Bolt [11] has shown
that the Leray transform satisfies the same transformation law. In two dimensions,
this is

(2.13) Ls((det¥)?3(f o ¥)) = (det ¥')23 ((Ly(s).f) o V).

2.3. Projective invariants and the essential norm conjecture. In [0], the
authors conjecture a quantitative relationship between the projective invariant
Bs(T) defined in (2.5) and the essential norm of the Leray transform on smoothly
bounded, strongly C-convex hypersurfaces S ¢ C2. We restate a version of this
conjecture here.

Conjecture 2.1. Let S C C? be a smoothly bounded, strongly C-convex hyper-
surface, and L its Leray transform. There is a “reasonable” family F of measures on S
such that if u € F, the essential L2(S, p)-norm is given by

1

(2.14) IIL|l;2 =sup ——.
Rt = AT Bo(@)?

At this stage, the word “reasonable” is left intentionally vague, but there is
good reason to expect such a relationship. This has been previously established
(Theorem 3 in [9]) when § is the boundary of a C?-smooth, bounded, strongly
convex Reinhardt domain, and p is any continuous, positive multiple of surface
measure on S.

While Conjecture 2.1 only pertains to bounded hypersurfaces, the invariant
Bs(T) does not require S to be bounded. It was noted in [4] that this invariant is
constant for both Sg (defined in (1.4)) and M,,. It easily follows from (2.5) that

-2
Bs,(C) =B and BMY='?/Y y

and consequently, the quantity on the righthand side of (2.14) is equal to

(2.15) ﬁ when §$ = Sg  and

We raise the following question:

when S = M,,.

Y
2y -1

Are the quantities in (2.15) connected to the Leray
transform in a meaningful way?

()

In [6], the authors gave an affirmative answer to () on Sg by proving that

1
ILlzsp0r = 7= = ILlliissss.00
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where 00 = dx; A dy1 A dx; is (a constant multiple of) the Leray-Levi measure
corresponding to the defining function p(Z) = |C1|> + BRe(L?) — Im(L2). The
norm coincides with the essential norm because the former is attained on an infi-
nite dimensional subspace of L2(Sg, o).

In the present paper, () is answered affirmatively on My, but the interpreta-
tion of this quantity is slightly different. Indeed, Theorem 1.1 and Remark 4.3
show that

Y
(2.16) ILlzan.0) = 5 5=F = Ll 000

where now 0 = ¥ !'da A dO A ds is (a constant multiple of) the Leray-Levi
measure corresponding to the defining function p(Z) = |C;|¥ — Im (T;). Notice
that (2.106) is the square of the desired quantity in (2.15). But this desired quantity
does naturally arise (Theorem 1.6) as the high-frequency limit norm of L in the
space L2(My,uy) for every measure of the form p, = & dx AdO Ads, ¥ € R
(which clearly includes 0):

Y

limsupIILklle(My,ur) = 2)/7_1

k— oo

This suggests a connection between the geometric invariant S5 on similar un-
bounded hypersurfaces (those admitting both S! and R actions) and the behavior
of the Leray transform at high frequencies. This connection is further developed
in the coming work of Edholm and Shelah [19], where a much more general class
of such hypersurfaces is shown to satisfy an analogue of Conjecture 2.1. In the
two-dimensional Reinhardt setting, the high frequency limit norm coincides with
the essential norm, but M, shows these two notions do not necessarily agree on
unbounded domains. The high frequency limit norm can, however, be conceptu-
alized as a generalized essential norm, as we now shall see.

2.3.1. The grade-essential-norm. Given a Hilbert space E, recall that the
norm-closure of the space of finite-rank operators is the two-sided ideal of compact
operators, and that the essential norm of a bounded operator T: E — E is the
distance to the ideal of compact operators; equivalently, the essential norm of T is
its norm in the quotient Calkin algebra. (See [17] for more information.)

Consider on the other hand a Hilbert space E admitting an orthogonal de-
composition

E= P E.
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(The decomposition is also known as a Z-grading of E.) Call a bounded operator
T: E — E decomposable if it may be written as

T= P T«

k=—00

with each Tk: Ex — Ek. (One way this could arise is from Fourier series decom-
position based on an S! action on E commuting with T.) The decomposable
operators form an algebra.

We will call a decomposable T grade-compact if it is the norm-limit of op-
erators taking values in span{E_g, E_x+1,..., Ex}; equivalently, if [| Tl — O as
k| — .

We define the grade-essential-norm of a decomposable T to be the distance
(limsup [ Tk|l) from T to the space of grade-compact decomposable operators.
This is consistent with Lefevre’s notion of a generalized essential norm [31]. It is
clear that the grade-essential-norm coincides with the high-frequency limit norm
defined in (1.3) above.

The grade-compact decomposable operators form a two-sided ideal in the
algebra of decomposable operators; the grade-essential-norm induces a norm on
the corresponding quotient algebra.

Remark 2.2. In Theorem 5.3, we will have occasion to consider situations in
which finitely many of the Tk are unbounded; in such a setting we still refer to
limsup || Tk || as the grade-essential norm.

2.4. Notation. Throughout this paper, a number of different measures oc-
cur, and precise notation is required to prevent ambiguity. We include this section
to collect this material in one central location.

2.4.1. Measures on M. We begin by gathering formulas for previously dis-
cussed measures on My, along with others that will appear in Sections 5 and 6. The
measures are given both in (T, C2) coordinates and in terms of the parametriza-
tion of M, given by (xe'?,s + i), where & = [Ty, 0 = arg(Cy1), and s =
Re(2).

The Leray-Levi measure that is associated with the defining function p(z) =
[z1]Y — Im (z3) is

2 -
(2.17) Ao = 3 11l 2Ty A 4Ty A dTy

y?
" 16m?

o Tds A da A dO.

In (6.8), we introduce a family V2 of pairing measures parametrized by matri-
ces A € GL(n + 1,C). The matrices are used to induce various affinizations of
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projective space, and in our work each M, corresponds to a matrix Ay, defined in
(6.4). For a fixed y > 1, the pairing measure we are interested in is

2
Ay _ _ Y -1
Vy—4Ap—mO(y ds Adax A do.
The preferred measure fis defined in (2.11) will be used in Section 6 to con-
struct a family of invariant Hardy spaces on M),. It takes the form

4/3

— (y-2)/3 =
“80 - nini o dCa A dT) A dT)

e y4/3
4y — 1)1

v, =
xY+D3 ds A dex A dO.

Also in Section 6, we meet the counterpart to fis, which we call the preferred
dual measure. This is obtained by taking the preferred measure on the projective
dual hypersurface and pulling it back to My. The representation of the dual hy-
persurface (and hence the measure) in affine space depends on an affinization of
projective space, and therefore on a matrix. These measures are used to construct
the duals of the Hardy spaces mentioned above. With respect to the aforemen-
tioned matrix Ay, the preferred dual measure is given by

4/3

%A y B _
f,” = g G P A6 A dG A dEy
4
= Czyi/stx(sy‘”/3 ds A dx A do.
4(y-1)

Notice that these measures take a very specific form when written in (¢, 6, 5)
coordinates. For 7 € R, define the measure

(2.18) Uy = o ds Ada A dO = %|§1|Hdgwdil A dT,

together with the family of all constant positive multiples of py:
Fr=Hcur:ce R*}.

Thus,
A - ¥, Ay
Ao, V€ Fy-1, Bmy € Fiyenyyz By, € Fisy-713-

Finally, because the measure py_; occurs so frequently throughout the paper, we
give it its own symbol (as already introduced in Section 1):

o =o"1ds Ada A do.
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We emphasize the trivial fact that though multiplying a measure by a positive
constant will uniformly scale the norms of functions, norms of operators remain
unchanged. Indeed, if p is a measure on My and T is a bounded operator on
L?(My, u), then for all constants ¢ > 0 we have

ITl 2y = 1Tl L2(My, -

2.4.2. Inner products, norms and adjoints. Let 1t be a measure on My and
fr9 € L>(My, u). We often write their L2(My, u)-inner product by

(0= | T,

The L2(My, p)-norm is similarly defined:

”f”u = \l(f’f)u-

Now let i be the measure in (2.18). Throughout this paper, we shall fre-
quently encounter the following one-dimensional integral related to p,. For
fy9 € L?((0, ), " dx), define the one-dimensional inner product

(2.19) (fr9) @) = JO flog(x) o dex.

Similarly, define the norm

”f”(uy,l) = (f’f)(uy,l)-

If T : L>(My,u) — L?>(My, ) is a bounded operator, it admits a bounded
adjoint T satisfying

(Tf,9)u = (f, THH g),.

It is trivial to see that

T — TOxew)

for all constants ¢ > 0, a fact that is repeatedly used in Section 6.

3. GEOMETRY AND ANALYSIS ON M,

My, is both strongly C-convex and real analytic away from {C; = 0} foreach y > 1.
But on this set, these properties simultaneously hold only in the special case of
Y = 2. My is weakly C-convex here when y > 2, and it fails to be C? smooth when
1 <y < 2. (Itis only CY smooth.) These two notions are highly intertwined (see
[9] for a detailed study of this in the Reinhardt setting). The interplay between
C-convexity and smoothness is further illuminated from a projective dual point of
view (see Section 6). At infinity, the behavior of M, is even less regular; this is the
subject of Section 3.6.
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3.1. Projective automorphisms of M. Certain affine maps preserving M,
are examined here. These play an important role in our analysis of the Leray
transform. The three types of maps considered are the following:

e Rotations in the first coordinate: ¥g(z1,22) = (e'%z;,22), 0 € [0, 217).

e Real translations in the second coordinate: t;(z1,2;) = (21,22+5), s € R.

 Non-isotropic dilations: d«(z1,22) = (xz1, ®¥z3), & > 0.

It is easily verified that the following pairs of maps commute:

b 1/91 o T@z = 1/91+92 = T@z o 7’91-

o t51 ° tSz = t51+52 = tSz ° t51'

o 60(1 (o] 60(2 = 60(10(2 = 60(2 (o] 60(1.

L4 T@Ots =t501’9.

e 9o Oy =0yo 7.
(Note though, that ts o 04 # 0« o ts.) Because g commutes with both ts and 84,
this rotational symmetry is the starting point of our analysis.

Define the set

V={(C,0) eM,:C =0}

Here, V is a copy of R sitting inside M. Each 79, t, 6« fixes V; collectively, they
act transitively on M, \ V. Indeed, we have the following result.

Theorem 3.1. Given any pair of points z,C € My \'V, there is a unique map of
the form ts o ¥g o 8« sending z — CT.

Proof The numbers & and 0 are determined by setting xe’® = €;z;7!. The
second variable is appropriately adjusted by setting s = Re(Z,) — o¥ Re(z,). O

3.2. Leray reparametrization. The symmetries ¥, ts, 0 lead to a repara-
metrization of M. Write z,§ € M, as
3.1) z = (xze'%, s, +ia),
(3.2) € = (age'®, s +ia),

where each « = 0, each 0 € [0,21), and each s € R. Equation (2.17) says the
Leray-Levi measure from (2.3b) takes the form

2 _ 2 _
) = 323;21.@1 Y2dC, AT A dT = lé/rrz (xé "dse A deg A do.

Now, re-write the Leray transform. Expression (2.3¢) becomes

(3.3) Lf(z)

2 o Vs A doe A dO
Sy e £ isg g .0
412 Ju, [((

y - Do + ol +ilsg —s2)) — (yozaf eill®—00)]2
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y? J f(©)

=4 Ju, TA - et 7 (&)

where 0 (C) = (X?l dsz A dag A dOg and

(3.4) A= (y-Dof + o +i(sg—52), B:= yaza{l.

3.3. Series expansion. The S! action on My, yields a decomposition of the
L2-space

(3.5) L*(My,0) = € Li(My,0),
k=—oc0
where functions in L} (My,, o) have the form fi (s, o)e’*?.

Each f(T) = f(s¢,a¢,0¢) € L*>(My, o) decomposes as a partial Fourier
series

(3.6) fsg o, 020) = > filse, og)e*,
k=—oc0

and the following version of Parseval’s theorem holds:
2 -1
I i = |, 1G5, B P dse dce ao
2T 0 oo 00 o 1
:Jo Joj (X filse, a0 fielsg, ag)e ™% ) ot dsg dexg dbg
T® jk=—w
:27Tk2 L Lw Ifk(s§,o(§)|20(?l/:—1ds§do<;.

Return now to the computation of the Leray transform. The rational function
appearing in the integrand of (3.3) may be expanded as a series as a consequence
of the following result.

Lemma 3.2. Letx,y = 0andy > 1. Then,
(3.7) XY+ (y - DyY = yxy¥ !,

with equality if and only if x = y.

Proof- Divide both sides of (3.7) by »¥ and set u = x/y. Now, let f(u) =
uY —yu + (y — 1). This function is convex and attains its global minimum of 0
atu = 1. O
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Consider the formula for Lf in (3.3). Lemma 3.2 shows |B/A| < 1, unless
both s, = sz and &, = xz. Away from this set of o-measure 0,

1 _ 1< kel (B k ik(0.—0¢)
[A—Beiwz—e-l)]z T A2 kZ:( +1) Z e 57,
-0

Returning now to (3.3),

oy f(©)a(©)
(3.8) Lf(sz, &z, 07) = 4772 JM,, [A— Bei(@z—Qc)]Z

o~ y2(k + 1)

BX ko ik0
-2 o |, @R e
k Y

Arf(sz, az)eikez .

i
Me &

T

0

Now replace f with its Fourier expansion (3.6) to obtain

(3.9) Awf(sz,xz)

y2(k+1) & o\ BK
o (jzszj“?’“c)e”%)me "o (@)
y*(k+1)

\ Bk R0y
= 2 JMyAk+2fj(SC’O(C)el(J %o dsg dog dOg
j=—co

2(k+1) © roo pk B
:yTJQ J, Ak+2fk(SC"XC)‘X§ lngdO(;;.

This gives the series decomposition of the Leray transform.

Definition 3.3. For each nonnegative integer k, define the sub-Leray operator
Ly to be the restriction of L to the subspace L} (My, o).

Remark 3.4. We shall later consider the same decomposition in the space
L2 (M. v M)

The orthogonal decomposition (3.5) shows L = @y, Lk, and (3.8) and (3.9)
give that

Lif (52, 0z, 02) = A f (52, 0z)e™ %,

3.4. Fourier transforms. We continue the analysis of Ly by taking a closer
look at Ax f(sz, &z). The goal is to use the Fourier transform and understand the
unitarily equivalent operator F 'Ly F.

Importing A and B from (3.4),

k+2 k (oo
Y (k+1)o<ZJ (k+1)(y-1)
B9 ="—7—= , &
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r" Jr(sg, xg)
—o [(y = D} + o +i(sg — 52)]k+2
2k + Dok (0 jin-n
B 21T Jo %
o r" S (sg, &)
oo [(s2 = 57) + iy — Do + o) k+2

dsg dog

dsg dae.

This shows that

(iy)*+2(k + 1)k
21T

X Jo af:kﬂ)(y*l)(fk(-, oz) * G)(sz) de,

(3.10) A f(sz,0z) =

where the function G is given by

1

(3.11) Gr(s) := GG Dl T

To better understand the integral defining Ax.f, consider the Fourier trans-
form F and its inverse F~!: For g € L'(R) n L*(R),

Fo(&) = J oog(s)e’z’mgds, Flg(€) = J oog(s)ez"”gds.

Under this convention, F and F~! are well known to transform convolutions to
products

(3.12) F(gxh)(8) = Fg(&)-Fh(®), F '(gxh)(&) =F 'g@® -F 'h®.

These operators also extend to isometries of L?(R):

Igl® = IFglew = 1F glew-
Applying F~! in the s, variable to (3.10) yields

)Rk + Dk
B 21T

X Jo af:kﬂ)(y*l)f*l(fk(-,oq;) * Gi) (&) dxe.

(3.13)  F'Af(E, ez

By (3.12),

(3.14) F U fC o) % G)(E) = FUAE, o) - F1Gr(E).
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Now;, calculate F~1Gg(E). From (3.11), notice the term
C:=(y- 1)0(%/ + a2 >0, unless both a; = otz = 0.

Proposition 3.5. Let C > 0. Then, the inverse Fourier transform of Gy (s) =
1/(s +iC)k+2 js

FlGe = |

R i k+2
—wo (§ +iC)k+2 _Mgkﬂemgc £<0.

00 e2‘rris§ 0, E =0,
ds =

(k+ 1! ’

Proof- Since C > 0, the function Hy(z) := e2mize |(z + iC)**2 has a pole in

the lower half plane. For any R > 0, the integral
R 62171'55

[fem

_R (s +iC)k+2

can be thought of as a piece of a contour integral around a semicircle with base on
the x-axis.

When & > 0, consider such a semicircle in the upper half plane traversed
counterclockwise. It can be seen that the radial portion of the integral tends to 0
as R — 0. On the other hand, this function is holomorphic inside this semicircle
contour. Thus, Cauchy’s theorem implies F~!G(E) = 0 for € > 0.

When & < 0, consider a semicircle in the lower half plane traversed clockwise.
For R sufficiently large, the contour encloses the pole of Hi. As above, the radial
portion of this integral tends to 0 as R — 0. Thus, Cauchy’s integral formula
shows

R 62ni5§ 2771 dk+1 rris
: _ _ &
Am LR Griok2 ST G ek @ )| e
_ _ (2mri)k+2 gk+1p2mEC
(k+ 1! ’
completing the proof. O

Combining (3.13) and (3.14) with Proposition 3.5 shows
(3.15) FIAS(E, x2) = ni(E) T (E, oxz)
X Jo fﬁlfk(f,ag)Kk(E,az;)a?ld(x;;,

where

) k+14,k+2
(3.16) k(&) = % “ Lig<oy,
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(3.17) Ti(E, &) = 0ke?™E% L 1y,
(3.18) Ki (8, og) = oYV emE e Ly

and 1z} is the indicator function of the set {& < 0}. These three functions
occur frequently throughout the rest of the paper.
Recall the one-dimensional inner product (-, -) 4,1y defined by formula (2.19):

(f,9) o1 : J fleg(x)od Hdex.

We summarize this in the following result.
Proposition 3.6. The operator F 1Ly F is given by
(3.19)  FLkFS(E 0z, 02) = (@) Tr(E, &) (fi(E, ), ki (€, ) (0,1,
w/7€7€ f(g, 0(2, 92) = Z_] fj(§! o(z)elkez (S Lz(My, O-).
Proof. By its definition, Ly is only a nonzero operator on Li (M, o). Since
Ff =73, Ffiei% we have
.T_lLk(ff)(gs xz,0;) = f_lAk.Tfk(g, az)eikez
= Nk (&)Tk(E, az)(L fi(E, o) ki (8, o)t d(xg>e”“’z
= k() Tk (&, &) (fi(E, ), ki (&, )o@,
where the second equality follows from (3.15). O

3.5. Norms of the sub-Leray operators. Let us first record a computational
lemma that will be used several times throughout the paper.

Proposition 3.7. Fixx > -1,y >0,y = 1. Then,

Jw o(xe—ycxy dot = lyf(Hx)/Yr (_1 +X) .
0 Y Y

Proof. This follows from the substitution t = y o and the definition of the
I'-function. il

This immediately implies the following result.

Corollary 3.8. Let Ty (§,-) and ki (&, -) be as defined in (3.17) and (3.18).
Then, for & < 0,

(3.20) ||tk (E, ')||%0',1) = =+ (AT IO (2; 1)’

B21) k(€ ) [ior) = = - (~4TE(y — 1))2K/y=2k-1 <1+2k—%)

I
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Proof. Recall that T and ki are nonzero only for & < 0. Now, by choosing
the appropriate values of x and ) in Proposition 3.7,

Tk (E, [y = L oY1 el g o

L (—4mrg) 12N (2—k + 1) :
Y Y

2 * 2k+1)(y—-1 _ y
||Kk(§, ')||(0-‘1) = _[() O((C * )(}’ )34"5(}’ 1)0(1: dO(E
1

=5 (—41E(y — 1))2k/y=2k-1r (1 +2k — %) O

Now, consider a function f(&, &z, 0;) = fi(E, x;)el?= Li(My, o). Equa-
tion (3.19) and Cauchy-Schwarz show

(3.22) |F L Ff(E, &z, 0,) 1% =
= Ik E) 2 1R (&, o) 2 1 (E, ), kx (€, N ooy 12
< M@ 1P 1Tk (E, o) P E oy 1k (E, i1y

with equality if and only if fi (&, -) is a multiple of kx (&, -), that is,

where, recalling the definition of ki in (3.18), the multiplier function 1, must

satisfy

0
(3.24) | @ gpry et < o

Estimate (3.22) implies

17 6 o, 0202 e =

< @ Pt [y 1 E oy Nk E iy
= Co (y, k) || fr (&, ')||%0',1)’

where the (§-independent) quantity

Co (v, k) = InkE) 1P|k (&, M[o1y 1Kk E, Ty
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We call this the o-symbol function. Combining equations (3.16), (3.20), and
(3.21), we see

F<%+1>F<2k—%+l) k42
- Y _ 1y\2k/y—2k—1
Co (y, ) T X)) o-n .

Detailed analysis of the o-symbol function is carried out in Section 4.

Remark 3.9. It is remarkable that Cy (y, k) is independent of §. The more
general symbol function Cy, (y, k) calculated in Section 5.1 also shares this prop-
erty.

We now compute the norm of the operator L.

Theorem 3.10. The operator Ly : L>(My, o) — Li(My, 0) is bounded with

norm given by
ILkllL2(my,0) = y/Cor (¥, k).

Proof- First, note that Ly is unitarily equivalent to F 1Ly F. Now,

(3.25) \F L F 112
210 oo 00 1
| e e 0P dE e a0

21 oo
< Corid [ | IE s dE e

21T oo )
_ 2 y-1
~Cotyk) ||| 1B Pl dec ag do.
= Co(y, BI£l5
Equality in (3.25) holds if and only if fj is of the form given by (3.23) and (3.24).
|
Theorem 3.11. The operator Ly : L*(M,, o) — Li(My, 0’) is a projection.
Proof: Let f € L?>(My,0). It must be shown that Ly o Ly = L. Proceed by
conjugating by the Fourier transform. Proposition 3.6 says
(3.26) F~ 'Ly o Ly F(f)
= F'LkF o FILF(f)
= F I F (e (B) Tk (&, 02) (f (&, ), ki (&, ) (o) eK%)
= k(&) (fi(E, ), ki (&, ) o) F 1Lk F (T (8, xz)et*02)
= k() (fr (&, ), ki (&, )) (o) Tk (&, L) (T (&, ), Ki (€, ) (01),
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where o, denotes the radial part of the T; variable after two applications of

FILF.
From the definitions of Tk and ki in (3.17) and (3.18),

[ee]

(T (&, ), Kk (&, ) (o1) = JO T (&, ) ki (&, o) ¥ "' dex

o]

— 1{§<0} L) (xy(k+1)—162n§y<xy do

T(k+1)
(3.27) = lieco ey ke
L
k(&)

where (3.27) follows from Proposition 3.7. Returning to (3.26), we now see that

F Lk o L F(f) = me(E) (S, ), kx (€, ) (o)
X Tr (&, ) (T (&, +), ki (&, ) (o)
= (&) Tk (&, ) (fi (&, -), ki (&, ) (o)
= F'LF ().

This shows that F 'Ly o Ly F = F 'L F and thus Lg o Ly = L. O

3.6. My at infinity. To understand the behavior of M, at infinity, apply
the projective automorphism ® mapping (21, z2) — (21/z2,1/z3). This transfor-
mation swaps the line {z, = 0} with the line at co. Setting My = ®(M,), the
transformed hypersurface can be represented as follows:

My = {(z1,22) : —1z21Y 2 Im (22) = |z11"}
(3.28) = {(x1, Y1, X2, 72) : =2 (x3 + yD)V2 = (x} + y})V/2}

(3.29) = {(ne®, 1rei®) : —r) sin 6, = ¥)'}.

The behavior of]VIy at z; = 0 gives the behavior of My at co. Forany y > 1,
(3.29) shows that sending 7, — 0 forces ¥; — 0. This implies that the closure
of M, in CP? contains a single point at infinity with homogeneous coordinates
[0:0:1]. We now consider the regularity here as follows.

Theorem 3.12. Lety > 1. The closure of My, in CP? fails to be a C' submani-
Jold near [0 : 0 : 1] except in the case y = 2. However, My, is globally Lipschitz.

Proof. The discussion above lets us transfer the problem to M. If M, were a
C! manifold at the origin, then one of the four real variables in (3.28) would be
expressible as a C! function of the other three in a neighborhood of the origin.
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Now, given the constraint in (3.28) that 3, < 0, we see that the only possibility is
for v, to be a function of x1, Y1 and x>.

Starting from the equation (x§ + ¥#)¥/? + y2(x3 + ¥3)¥/?~1 = 0, implicit
differentiation shows

0y, (2-y)x2y2  (2-y)cosbrsin 0,

o0x2 x3+(y—-1)y7 1+(y-2)sin’0, "

(3.30)

Now set, for instance, 6, = 1 and 0, = 571/4 in (3.30), and see that different
values are obtained, except in the case that y = 2. (Any two distinct choices of
0, € [m,27] can be used.) This shows that 0y,/0x; fails to be continuous at
the origin, which in turn proves My, is not C! at infinity.

Now see that My is Lipschitz. It will again suffice to consider My, in the form
of (3.28) and show that the derivatives 0y, /0x1, 0y,/0V1, and 0y,/0x, are L®
functions near the origin.

First, see that the quantity |1+ (y —2) sin? 0| = min{1,y — 1} for any choice
of 0. Then, implicit differentiation shows

0y | _ |y £y 1 3
d0x1 x5+ (y— 1)y}
— — 2_ -
sv) 11,22 Y < 1,2(}/ 2y+D)/y+2-y) _ Tzl/y,

which is clearly bounded near the origin. By symmetry, 0y,/0y, satisfies an
analogous bound. Similarly, it quickly follows from (3.30) that [0y, /0x,| < 1,
finishing the proof. O

Remark 3.13. It is easy to check that the line at infinity {[0: z; : 23]} is the
only complex line in CP? \ Q, passing through the point [0 : 0 : 1] and thus may
be viewed as the tangent line at [0 : 0 : 1] (in a weak sense).

Remark 3.14. In the case of y = 1, (3.29) shows that the completion of the
hypersuface M; in CP? consists of a closed disc at infinity, rather than just a single
point.

4. ANALYSIS OF THE 0-SYMBOL FUNCTION

4.1. Properties of Cy(y,k). Analysis of Cy(y,k) for each k value yields
precise information on L. Recall that

F<%+1>F<2k—%+l)
Y Y
I'(k+1)2
Y 22 2k/y—2k—1
<(3) oo

Co(y, k) =
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Theorem 4.1. Lety > 1 and k be a non-negative integer. The symbol function
Co (y, k) has the following properties:

@ Co(y,0) =y?/(4(y - 1)).
(b) Co(2,k) =1 for all positive integers k.
(c) Coly, k) is Holder symmetric in'y, that is,

Coly,k) = Co (—y{ l,k) .
(d) Foreachy + 2, Cy(y, k) strictly decreases as a function of k.

(e) limg—o Co(y, k) =y/(2\y = 1).

Proof. Parts (a) and (b) are immediate from the formula. We will also quickly
verify (c) and (e), leaving (d) for the next section.
For part (c), compute

o (52
y—1

r<w+1>r<2k_w+l>
Y Y

[(k+1)2

2k+2 2k(y—1)/y—2k-1
o [ 1
=) )
F(Zk—%+l)r<%+l)
_ Y Y (

B I'(k+1)2

2k+2
) (y_ 1)2k/y—2k—1

SIE

= Co()’,k)

Part (e) follows from Stirling’s formula. Recall that f and g are said to be
asymptotically equivalent when

. fx)
(4.1) )1%10 e 1

When (4.1) holds, we write f(x) ~ g(x). Stirling’s formula says that we have
[(x + 1) ~/2mx(x/e)*, which implies the following asymptotic equivalences:

(4.2) T(k + 1)2 ~ 2mre 2k 2k+1,
2k/y+1/2
(4.3) r <% + 1) ~ 21T - e 2Ky (%) ,
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2k—2k/y+1/2
(4.4) r (2k 2k + 1) ~ 277 - e2kly-2k <%>
y y
x (y — 1)2k—2k/y+1/2_

Combining (4.2), (4.3) and (4.4) shows

F(z—k+l)r(2k—2—k+l) 2k+1
Y Y N 2 _ 1)2k—2k/y+1/2
y (y—-1) .

I'(k+1)2
Consequently,
2 2k+1 y k42
Ca.(y’k) ~ <_) (Y _ 1)2k72k/y+1/2 (5> (y _ 1)2k/y72k71
Y
_ Y
2y -1°
This completes the proof of item (¢). r

4.2. Proof of item (d) in Theorem 4.1. We will prove that the function
Co (y, k) decreases in the integer variable k by showing that

Co()’,k‘l'l) <

(4'5) Co.(y, k) - b

with equality holding only in the case of y = 2. (That equality (4.5) holds when
y = 2 isitem (b) in Theorem 4.1.) Note the Holder symmetry in the variable y
(item (c) in Theorem 4.1) lets us reduce our investigation to 1 < y < 2. After
cancellation, the above ratio may be written as

r (2(k+ 1))r ((2 %) k+ 1))
Coly,k+1) \¥ Y

o0l r<%+1>r<(2—3>k+1>
y y

Now observe further symmetries that simplify the situation. Letting x = 2/y
(so 1 < x < 2) and taking the logarithm of (4.6) leads to the definition of the
function

(4.0) (y =11

T((k +1)x) T((k+1)(2-x))
Tkx+1) B Tk2-x)+1)

+(X—1)log(%—l).

A(k,x) :=log
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Establishing inequality (4.5) amounts to showing that A(k,x) < 0 for each inte-
gerk>=0and 1 <x <2.

Notice that A(k, 1) = 0, so the required negativity of A(k, x) will follow after
it is shown that

4.7) a—A(k,x) <0, 1l<x<2.
0x

With this in mind, observe that

A(k,x) =logT'((k + 1)x) —logI'(kx + 1) — (x — 1) logx
+ logT'((k+1)(2 — x)) — logT'(k(2 —x) + 1)
- (2-x)-1)log(2 - x)
:= B(k,x) + B(k,2 — x),

where
(4.8) B(k,x) = logI'((k + 1)x) — log['((kx + 1)) — (x — 1) logx.

Therefore,
94 x) = Bixy - Bz .
ox ox ox

Note that for 1 < x < 2, the inequality 0 < 2 — x < x holds. The validity
of (4.7) will follow from a stronger claim: that for each fixed integer k > 0,
(0B/0x)(k,x) is a decreasing function for all x > 0. This of course is equivalent
to showing

0%B
(49) w(k,)() < 0,

for integers k > 0 and all x > 0. The establishment of (4.9) will imply (4.7),
which in turn will imply (4.5) and complete the proof. In order to proceed, we
need to better understand the logarithmic derivative of the gamma function.

4.2.1. The digamma function. Define the digamma function ¢ to be the
logarithmic derivative of T'(x), that is,
I"(x)
(x)’

Y(x) =

and its derivative, the trigamma function ¢’ (x). Properties of digamma, trigam-
ma, and further polygamma functions (obtained by taking further derivatives)
have been extensively studied in special function theory (see, e.g., [2]).
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From (4.8), it is seen that

0B 1

a(k,x) =(k+1Dy(k+1)x) —kypykx +1) —logx + ol 1,
and

0?B 1

1
_ 2., —_ 124 -
(4.10) axz(k’x)_(k+1) Y ((k+1x) —k*yp' (kx +1) %

We make use of the well known formula for ¢’ (x), valid for all x outside of
the non-positive integers:

(o)

(4.11) W=y —

et (J+x-1)2"

Substituting (4.11) into (4.10),

0?B 2 (k +1)2 e 11
@(k”‘)_; (j+(k+1)x—1)2_§1 G+ka)? x x2
< (k+1)? K 1
Sl ke D2 (k)2 ] x

:=D(k+1,x) — D(k,x),

where

(o)

D(k,x) = >

j=1

Kk k
(j+kx)2 x°

Thus, to establish (92B/0x?) (k,x) < 0, it is sufficient to show that for any x > 0,

D (k,x) decreases as a function of k > 0. Treating k as a continuous variable and
differentiating, we claim

o]

a0, S ki1
*12) ak(k’X)_;(kxu)s x <

Setting a := kx, inequality (4.12) is a consequence of the following result.
Proposition 4.2. For all a > 0,

[ee] 2a.
>

@+ )3 <1
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Proof. Observe the following estimate:

> w

] (a+J)3

/\
[Me

(a+J—1)(a+J)(a+J+1)

Jj 1

.
Il

[
M

.
Il

[
M

J
1|:(a+]—1)(a+]) (a+j)(a+j+1)]

1
: (7L+J—1 a+1}

J

+le[(a+J—1)(a+J) (a+j)(a+j+1)]

_ L O

Proposition 4.2 shows that (4.12) holds, implying (4.9). This gives (4.5),
completing the proof of item (d) in Theorem 4.1.!

4.3. Proof of Theorem 1.1.

Proof. Following Section 3.4, we denote the Fourier transform in the s vari-
able along with its inverse by F and F~!, respectively. These operators respect the
decomposition of L?(My, o) into the orthogonal sum of the spaces Li(My, o).
Since each Lg is a projection operator (Theorem 3.11), the full L is as well. We
now confirm that the full operator is bounded, and calculate its norm.

Since F and F~! are isometries,

ILlg = 1F 'LFlls and |Lille = 1 F 'L Fllo.

In what follows, let f(s,x,0) = >; fj(S,(x)eife € L*(My,0). Since Lk (and
thus F 'L F) is only non-zero when acting on Li(My, o),

1FLFFllp = D NF LT fIlG = 3 IF LT fee™ o
k=0

NF L2 Al

»
Me i

<

=
Il

0

e (v, K| Fel2

[Me
@)

(4.13) =

=
Il

0

I'The authors thank Wijit Yangjit for showing the elegant proof of Proposition 4.2 to the second
author. The authors’ original proof of this proposition used the Euler-Maclaurin formula (see [21]) to
relate the Riemann sum Z;ozl (2aj/(a+ j)3) to the integral [ (2aj/(a + j)3) dj = 1.
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y? % 2 y? 2
(414) S4}/_4k§:0||fk||a'_43/_4||f||a"
where (4.13) follows from Theorem 3.10 and (4.14) follows from Theorem 4.1.

This tells us that

Y
2y -1°

(4.15) ILllo <

To see that equality holds in (4.15), let f be of a multiple of ko, that is,

f(g! X, 0) = f0(§! 0()

1= mo(§)e’™EV VN e o € LE(My, 0),

where, by (3.24), the multiplier function my satisfies

0
(4.16) [ o) g ag < o

With this choice of f = fo, equations (3.22) and (3.23) show that

|F'LF £l = JMY | F Lo Ff(E, 0, 0)2¥ 1 dE A dex A dO
=21 ﬁo J: | F Lo Ff(§, 0, 0) P ' dex dE
= 2m [ 1n0@® P 1o & i 10(E, I

< (], 1moE e ax) dg
= 2m [ 1n0®2 ko (&, ) 170 E, 0l 1LFoCE, ) I8
= 2mCo(y,0) | IUfoE, I dE

G
- 4y_4||f||a'

This shows that the upper bound in (4.15) is attained. O

Remark 4.3. The space of functions m () satisfying (4.16) is infinite dimen-
sional, which implies the o-norm of the L is achieved on an infinite dimensional

space (cf. Section 5.3).



1864 DAVID E. BARRETT ¢ LUKE D. EDHOLM

5. MODIFIED MEASURES AND ADJOINTS

We have seen that L : L?(M,, o) — L*(My, o) is bounded, where o is a constant
multiple of the Leray-Levi measure A,. More flexibility on measures will now be
allowed. For v € R, recall the rotationally invariant measure

Uy := " ds A da A dO.

5.1. Leray boundedness. Just as in (3.5), S!-invariance leads to the decom-
position

Lz(My;UT) = @ Li(My,HV);
k=—o0

where the functions in Li(My,uy) take the form fi(s, x)ek?. In the spirit of
Definition 3.3, the restriction of L to each Li(My, Hy) yields the decomposition
L = @]o::o Lk

We once again work with the unitarily equivalent F 'Lk F. From Section 3.4,
recall

(_27T§)k+lyk+2

(5.1) nk(§) = — 1ig<0},
(5.2) Tk (E, &) = oke?™EX . 1ig gy,
(5.3) ki (E, o) = k=D 2mely=Dea . 1, o\

where 1¢g.g; is the indicator function of the set {§ < 0}.
Let f(s,,0) = X fj(s,x)el® € L2(My, py). The form of Proposition 3.6
remains valid, that is,

(54) f—lkaf(g’o(, 9) = rlk(g)Tk(gs(X)(fk(g; ')1Kk(§! '))(U,l)eikes

as long as the inner product makes sense. Recall that (-, -) 5,1 is a special case (with
r=y-1)of

(5.5) (9,1 1) = jo 9(T(@ o da.

When working with p,-, we will frequently encounter its counterpart measure
My, where ¥ and 7’ are related by

r+7
(5.6) 2 =y-1.

The following version of Cauchy-Schwarz is crucial to the investigation of the
boundedness of Lg in L2(My, piy).
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Lemma 5.1. Fixy > 1 and letv and v’ be real numbers related by (v +v") /2 =
y — 1. Then,

g, h) 0| < 11gll 1) 1R, 1)

where the inner product and norms are defined by (5.5). Equality holds if and only if
there exists a constant ¢ such that g(X)x"/? = ¢ - h(x) " /2. When this happens,
gl = lcl - Il 1.

Proof. Start by setting ¥ = y — 1 in (5.5). Split the integrand into g; () =
g(x)a’? and hi(x) = h(x) "' /2, and apply the usual Cauchy-Schwarz inequal-
ity. O

To make use of Lemma 5.1, let us generalize Corollary 3.8. The definitions

of Tx and Kk in (5.2) and (5.3) ensure that we are only interested in negative &.
Combining (5.6) and Proposition 3.7 shows that for & < 0,

6.7) [l (E, .)||%W,1) - JO o2KHT ATERY

forr > -2k — 1,

l(_4n§)—((2k+r+1)/y)r (M)
Y

) otherwise.

[o0]
2 —1)— _
58 Ku(E 0 = |, G200

L (C4mE(y - 1))@k -D=r+1)1y)
y

Y
) otherwise.

= ><r<(2k+2)(y‘”"’”) forr < 2k+2)(y — 1) +1,

These computations suggest the definition of the interval
(5.9 Tk =(-2k-1,2k+2)(y - 1) + 1).

We are now able to prove the general boundedness result that was stated in
Theorem 1.3.

Theorem 5.2. Let k = 0 be an integer and v € R. Then, Ly is bounded from
L2(My, ty) — Li(My, Uy) if and only if v € Ix. Furthermore, when v € I,

(5.10) Lkl 2y ) = /Cair (¥, KD,
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where the W, -symbol function is

r<2k+1+r>r<2k+2_2k+yl+r)

T(k+1)2
dl

2k+2
) (y _ 1)7(2k+27(2k+1+1’)/)/)_
Proof- Consider three cases:
(@) v € %.
(b) r < -2k —-1.
©r=QRk+2)(y-1)+1.

Cur()’, k) =

N[

(a): Let ¥ € i and, without loss of generality, now assume that we have f =
fr(E, 0etkf € L (My, ). From (5.4),

||f_1kaf||i2(My,uy)
_ JM Nk () Tk (&, &) Lfie(E, ), Kk (€, ) (o) e*? 2y

0 o0
=21 L L 1Nk (E)Tk(E, ) (fi (&, ), ki (E, ) o1y 2" dx dE
0
(5.11) :2Trj, |’7k(§)|2|(fk(§"),Kk(ﬁ,-))w,nlz
X JO Tk (8, ) 2" dx dE

0 2
612 <o | I @R & Ol
X |k E, Gy ) L E D[ dE,

where (5.12) follows from Lemma 5.1. The norms appearing in the last integral

are finite since ¥ € 7x. By combining (5.1), (5.7), and (5.8), it is easily verified
that the quantity

Nk @) P [T, [0 1Kk E DI 1)

appearing in the integrand of (5.12) equals Cy,, (y, k). Note that this more general
symbol function is once again independent of §. Returning now to (5.12),

(5.13) ||f71kaf||i2(My,ur)

0
<2mC (K | IUFCE I ) dE
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2 0 00
= Cy, (v, k) JO Lo JO |fx (&, ) |>” dx dE dO
= Cur()’,k)Hf”iz(My,uy)-

Thus, /Cy, (y, k) is an upper bound on [[Lkllz2(a,,u,). We now show this to
be sharp. Lemma 5.1 says that equality in (5.12) holds if and only if

(5.14) Sr(E 000 = my (&) ki (€, )" /2,

where my (E) must be chosen so that f(§, &, 0) = fi(§, x)ek? e L?(My, ).
This happens if and only if

0
(5.15) j e (E) 2 £ y-22) g

These conditions generalize (3.23) and (3.24). When f takes this form, equalities
throughout (5.13) must also hold. This establishes (5.10) and concludes case (a).

(b): Let ¥ < —2k — 1. Combining (5.4) and (5.11), we see that for any
f(gi O(, 9) = fk(g; O()elke € Li(My,HV) Wlth <fk(§, ')J Kk(gi '))(O’,l) * 0,
FLFf & L2(My, piy), since [Tk (&, )17, 1) = o by (5.7).
(c): Letr = 2k +2)(y — 1) + 1. For j € Z* set

KZ(E,(X) =K (&, 00 - Li1/j<ass
where 1{1/j<« is the indicator function for {(§, &, 0) : 1/j < «}. Now define
K,{('E, x) oy~
||K]€(§, ')”(IJV’J)

It is easily shown that for any j,

f,{(z,a) = 1(_1/@m<z<0; and f7(E, &, 0) := f,{(ﬁ,a)eike.

ILFLCE M) = -1/ 2m) <e<0y-
Therefore,
, oo 5 1/2
616 oy = (|| _IHE I, as0) 1.
From (5.4),

f—lij:'fj(g’o(, 9) = nk(g)Tk(gsO(Mf]g(g; ')1Kk(§! '))(U,l)eike

= 1 1jam<g<0) - M E)TR(E, O] (E, )l (1€,
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and consequently,
_ 2
N F L F £ 2y i)

0 .
=2m J—l/(Zn) Mk CE) P11, Iy 1K, Gy, 1) AE-

But the monotone convergence theorem says

lim [ &, I,y = lim | (€ 0P dex
J—® J—o J1/j

00
_ l,im kA (y=1) =7 AT E(y =D&
J—o J1/j
= 00

forany —1/(2m) < & < 0. This means

Jllglo ||_T_1kafj||Lz(My,Ur) = 00,
which together with (5.16) shows that Ly fails to be bounded. This completes
(). O

Fix any v € R. Despite the limited boundedness range in Theorem 5.2, the
interval 7y tends to (—o0, %) as k — co. This means that the tail of the sequence
of operators {Li} is always bounded in the L?(My, ) norm. In fact, a much
stronger result holds, as follows.

Theorem 5.3. Fixv € R. The high-frequency limit norm of L in LZ(My, W) is
given by the (v -independent) quantity

o [y
L0yt = Jim k200t ) = 5

Proof- For k large enough, Theorem 5.2 says

r<2k+1+r)r<2k+2_2k+yl+r)

T'(k+1)2

y 2k+2
» (§> (y — 1)~ 2k+2-Cke 141 /).

(5.17) ILelly, =

First, focus on the following quotient:

r<2k+1+1f)r<2k+2_2k+1+1f)
Y Y

©.18) T(k+1)2
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Stirling’s formula says
T(k + 1) ~ 2me 2Kk,
r<2k+1+7)~ Bt . (- Qk+147) /)
Y

<2k+ 147 )((2k+1+1’)/}’—1/2)
X|——— -1
Y

r<2k+2_2kf%)~

" /27T . e(—2k—1+(2k+1+1f)/y)

2k+3/2—(2k+1
2k+1+1’)( +3/2=(2k+1+7)/y)

x<2k+1—

Combining these asymptotic equivalences yields that

(2k+1+7)/y-1/2)
1 2k +1+7v
(519 (5.18) ~ ( - 1)
y <2k L1 2k 4+ 1 +T)(2k+3/2—(2k+1+r)/y)
Y
1 l+r—y ((2k+1+71)/y-1/2)
g 20 25
1 (2k+3/2—Q2k+1+7)/y)
><@y_2+z_i_1>
k
- 2i - _2((2k+1+7)/y—1/2)(2y _2)(2k+3/2—(2k+1+1f)/y)
y +

2k+1
<%) (y_ 1)(2k+3/2—(2k+1+1’)/y).
Y

Now combine (5.17) and (5.19) to see that

ILelly, ~ 5=
2y -1
which completes the proof. O

We now establish the sharp interval of Leray boundedness as stated in Theo-
rem 1.4.
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Corollary 5.4.
The Leray transform L is bounded from L*(My, 1) — L*(My, ty) if and only if
rel=(-1,2y-1).

Proof- If v € 7y, then each Ly is bounded on L?(My, i1,) since 7y C Ik for all
k € Z*. And since limg—o [ILkll,, is finite, we conclude there is some C > 0 with

ILkll,, < C forall k. Let f = 3 frxe'k?. Then,
ILAIE, = SIfIE, < STl Al
k=0 k=0
< C? Y AL, = AL -
k=0

On the other hand if 7 ¢ 7y, then Ly is unbounded, implying the same for L. O

Remark 5.5. Notice that vg = y — 1 (the r-value for the measure o) lies
exactly at the midpoint of the interval 7y. This says that if (¥ +v')/2 =y — 1,
then 7 € 7y if and only if ¥" € 7. In other words, L is bounded on L2(My, i) if
and only if it is bounded on L?(My, ).

5.2. Adjoints. Theorem 5.2 says Ly is bounded on Li (My, py) whenr € .
It therefore admits a bounded adjoint L}({*,ur) which satisfies

(Lif, D = L g), -

We wish to describe this adjoint more explicitly.
The following lemma justifies later applications of Fubini’s theorem.

Lemma 5.6. Choose v and k so that v € Iy, and take N, Tk, Kk as in (5.1),
(5.2), (5.3).
(@) Let fr(€,)et*, gy (&, x)ekf € L3 (My, uy). Then, the following integral
estimate holds:

21T oo 0 oo
om0 ] eI TCE s o)l o) gi (€ o)
x oo dex; doeg dE O

=< \Cu, Vs Sl 11N -

(b) Let @i (&, 0)e*® € L3 (My, py) and Wi (&, 0)e™*® € L3 (My, py). Then,
the following integral estimate holds:

21T oo 0 00
I := L LO JO L Ik (&) Tk (&, xz) ki (&, ) P (&, xg) Wi (&, )|
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X (xé_1 o ' de, doe dEAO

= \/Cu,,()’, k) ||(pk||,u,, ||(pk||urr-

Proof. Recall that n, Tk, Kk are everywhere non-negative and identically 0 for
£ > 0. Write

=2 [ @ [ 19eE o lreE oo e |

0

<[], e a8 oo dece | g

0
<2 [ (9, i) 1T(E )l
XL ficE ) ) 195 (E 1) IE

0
= 211+/Cy, (¥, k) J, lgx (&, ), vy 1Sk (E, ) (1) A
< G, (s K fklpy LGN gy -

In the first inequality we used both the standard version of Cauchy-Schwarz and
the variant from Lemma 5.1. Also, recall that

Nk @) N (E, ) w0 1Kk (&5 ) M 1)

is equal to the (§-independent) term /Cy, (¥, k) encountered in Theorem 5.2.
Similarly,

0 00
b2 [ n®| [ e e imE eood dec |
x U: Kk(E,ag)lwk(E,ag)la?ldag] dg

0
<2 [ @9k, g 1T, Dl
X NPk CE, ) 1By 1 E

0
=21/ Cy, (¥, k) L Iwi (&, M, 1@E, )l 1) AE
<G (v, D @kl 1Wlly,

completing the proof. O

We shall now compute a formula for (F 'L F)#r) = j-"‘lL,(c*’“V)j-" when
v € Ig.
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Proposition 5.7. Choose k and v so thatv € 1.
Then, if g(§, &, 0) = 3; g;(§, x)ell? € L2(My, uy),

(5.20) FILEH) Fg(E, o, 0)
= o R (E) ki (&, ) (ke (E, ), Tk(E, ) (1),

where Nk, Tk, Kk are the real valued functions given by (5.1), (5.2), (5.3), respectively.

Proof- For v € i, the boundedness of F 'Ly F shows there exists an adjoint
operator FILY"*" T satisfying

(F'WFfr @ = o F L Fahy, VY f,g € LMy, uy).

Without loss of generality, assume that f(&, , 0) = fk(&, o) etko,
Lemma 5.6 (a) justifies the use of Fubini’s theorem in what follows:

(.T_lkaf!g>Hr =
= JM Nk (E) Tk (&, o) (fr (&, )y ki (€, ) (o) gi (8, otz) etk (2)

- JMY k() TH(E, 00 GRTE: 00 | il o), ) o doxg o dE dx. dO

— | Al x0 ol B KE o) | G TE T (E ) o dexs dE dexg 40

= JM Fi(E, o) e ol i (8) ki (8, o) (i (€, ), Tk (€, ) gy 1€k pty (T)

= (f, F L F o,

completing the proof. O
We now obtain a formula for the adjoint of the full operator L in the space
L?>(My, 0).

Proposition 5.8. The adjoint of the Leray transform with respect to the inner
product (-, )y is given by the following integral:

1TV 2dE, /_\dil NG
[yzilzi]y=2(21 - C) - i(22 - §) )?
Proof. Define an integral operator T, where Tg(z) is equal to the righthand

side of (5.21) for all choices of g for which this integral converges. Referring back
to (2.3a) and (2.3b), we see that T can be expressed as

(x,07) - yz
(5.21) L g(z)—STerMyg(C)

T9(2) = [ T 290 ©.
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Revisit Section 3.2, but this time start with T and carry out the reparame-
trization (3.1) and (3.2) together with all subsequent steps through Section 3.3.
In particular, T admits an orthogonal decomposition into @y_, Tk.

Now for each Ty (following the outline in Section 3.4), conjugate by the
Fourier transform to obtain the operator F~!TyF. This leads to a result in the
spirit of Proposition 3.6:

(5.22)  F'TkFg(E &, 0) = ne(E)ki(E, 00 (g (&, ), Tk(E, ) (o).

Since 0 = py_1, we see that (5.22) is exactly (5.20) when v = y — 1. This
says that for each k, F ' Ty F = f’lL,i*’U)j:, implying each Ty = L,((*’U), and
therefore T = L(*0), |

Lemma5.9. Let (v +7')/2 = y—1. The map Ry : L>(My, pty) — L2(My, tiy)
given by
9E x,0) — 1" g(E,x,0)

is an isometry.

Proof- This is essentially a reformulation of the condition which tells when
equality holds in Lemma 5.1. Indeed,

IRrglly, = JM |17 g (€, o, 0) 2" dE dex dO
Y

- j 19(E, &, 0) P’ dEded0 = ||g[2,.-

My

It is clear this map is bijective with inverse R, ! given by
h(g§, &, 0) — & '"Yh(E, , 0). m

For v € 7y, we now give an explicit formula for the more general adjoint
LGH) | as follows.

Theorem 5.10. Letv € 1y = (—1,2y — 1). The adjoint of the Leray transform
with respect to the inner product -, -)y, is given by
(5.23) -
LOH) g (2) = Y2|Z1|Z_‘1_V J 9(C |C1|V_1_dC2 A dG ‘/\?CI .
8rr2i My [yzilz11¥=2(z1 - C1) — (22 - §2) ]2

Proof. Letv € 1y, f € L*(My, uy) and g € L?>(My, pty). Remark 5.5 guar-
antees ' € 7y, so L is bounded in both of these function spaces.

The Fourier transform F (acting in the variable s = Re(Z>)) is obviously an
isometry of both L?(My, u,) and L?(My, piy-). Now write f = F(), g = F (@)
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forp =X pje? € L2(My,py), ¢ = Sy pre*® € L2(My, pty). On the one
hand,

(5.24) (Lf, 9o = (LF (@), F(W))o = (F'LF (@), P)o
= D (F'LF (@), w0,
k=0

where the summand can be rewritten as

FLF @) 0o = | T, ) (P(E ) K€ Dot
X Yr(E, o)) N dEde, dO

(5.25) - [M O (E, 0K VKK (E, X WR(E, ), e (E o)

x o} ' dE dog dO
(@, F 'L F ().

The rearrangement in (5.25) is justified by Lemma 5.6 (b) together with the fact
that ng, Tk, and ki are real valued. Thus,

(5260 (5.24) = YA, F'LIVF(@))o = (@, FILE F(y)e
k=0
= <f!L(*’U)g>O' = <f!RYL(*‘a—)g>Hr'

Notice that Lemma 5.9 guarantees that R,L*9) g e L2(My, ty).
On the other hand,

(5.27) (Lf,9)e = (Lf,Ryg)y, = (f, L*HI)R,g),, .

Equating (5.26) and (5.27) shows R, Lt*:9) g = Lt*# )R, g forall g € L*(M,,7").
This is equivalent to saying that, as an operator on L2(M. vy My ),

L0k — RyL(*’U)R;l.

Writing this out as an integral equation yields (5.23). O

5.3. Related operators. In the discussion below, we often simplify notation
and write L0#) = L*. This convention is also extended to other operators.
Proposition 5.11. L : Lz(My,IJ‘y) - L2(My,uy) is a projection for v € 1y =



Leray Transform 1875

Proof: If v € 1y, Corollary 5.4 says L is bounded on L?(My,u,). For-
mula (5.4) is valid for f € L*(My, yy), and the same argument given in The-
orem 3.11 shows that each L, and consequently the full operator L, is a projec-
tion.

Let v € 7 so that L : L2(My, ) — L?(My, pty) is bounded. Define a Hardy
space in the following way:

(5.28) H*(My, piy) := L(L*(My, py)) = ker(L = ).
It is verified in Appendix A that H2(My, i) consists entirely of boundary values
of holomorphic functions. In what follows, write H2(My, pi) = H.

Let K: H* — H be the restriction of L to H*; thus, with respect to the
decomposition L?(My, ) = H ® H*,

L s given by the operator matrix <(I) Ié) .

Similarly,

L*  isgiven by (KI* 8) ,

L*L is given by (KI* Ié) ,

LL* s given by (I " OKK* 8) ,
and

.. 0 -K
T *
A:=L* —L isgiven by <K* 0 ) .

These representations are standard operator theory facts (see, e.g., (2.1.6) and
(2.1.34) in [35]) and it is easy to verify that

(5.29a) ANl = 1Kl = [IK*|l
(5.29b) LI = IIL*] = y1 + IK|I?
(5.29¢) ILL*|| = IL*L|l = ILII* = 1 + [IK|I>.

The operator A stems from work of Kerzman and Stein [24, 25] examining
the relation between certain Cauchy-Fantappi¢ projections and the self-adjoint
Szegb projection S (corresponding to K = 0). (See [5,10,12,13,16] for results on
A in the complex plane and [9] for results on Reinhardt domains in C2.)
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The formulas in (5.29) respect the decomposition

LZ(M)/,“V) = @ Li(My; Hy),
k=0

that is, identical statements hold with L, A and K replaced by Lk, Ak and Ky,
respectively. To be more specific, write

o]

LOsEIL, = @Ll(j’“y)lak, LLGH) — @Lkl-;((*'u”
k=0 k=0
and

(o)

AHr = @AW, where A}" = L,i*‘m) — Lg.
k=0

We devote the rest of the section to the study of these operators. Computations
are omitted, but can be easily reconstructed by an interested reader.

5.3.1. Spectra of L*L and LL*. Letk = 0,7 € 7 and
f = z fkeike GLZ(M}/;IJT)-
k=—o

We analyze the k™ piece of L*:¥)L by considering the action of the following
unitarily equivalent operator on f. Equations (5.4) and (5.20) show

FILH* L F(F) (E, , 0) =

:Cuy()’,k)<fk(§,'), Ki(E, ) > o017 i (8, ) eikO.

||Kk(§")||%llr’vl) (o,

It is not hard to verify that the related operator

1

1y Geoky)
Gyl T e L

represents the following orthogonal projection (in the (-, -}, inner product):

Ly
Li (M)h Ur)_u’ Xk!

where

0
Xy = {m(aa%l*wk(z,a)eik@ : j [m (&) |g|(Gkrtaniy =2k dz}.

We emphasize the following observations:
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o Infinite-dimensional Xj is constructed around the single function of
oY1 TKk(g O()Qike

e X coincides with the eigenspace Ec,, (y k) of the operator F~ IL(* HOLe F .

o Xy is precisely the space of functions which achieve the norm of the oper-

ator F~'LiF, as described by (5.14) and (5.15).

Now analyze the k™ piece of LL*#) by considering the action of the follow-
ing unitarily equivalent operator on f. Equations (5.4) and (5.20) show

F LY F () (E «, 0) =
= Cy, (¥, k) <fk(§, 9, Tk(E, ")

_ Tkls, ) i (E, ) etk?.
||Tk(§1')||%ﬂv|1)> )

It is clear that the related operator (1/Cy, (y, k)) - j—"’lLkL,(c*’“V)f represents the
following orthogonal projection (in the (-, -),, inner product):

Lur
Li(My;UY)_u’ Yk!

where

, 0
Vi = {m© e, 00" [ m@P g @erm ag].

We emphasize the following observations:
e Infinite dimensional Yj is constructed around the single function

T (E, ) etk?.

e Y) coincides with the eigenspace Ec,, (yk) of the operator

j_"flLkLli*vlJr)j:-

e Y is precisely the space of functions in the image of the operator F~!'Ly.
In summary, we have the following result.

Theorem 5.12. Fix an integer k = 0, v € Ix and let Ty be either L( Hr) Ly or

LkL,((* HE)  Then, Tk admits an orthogonal basis of eigenfunctions, and its spectrum is
given by
{01 Cuy ()’; k)}'

If r € 7y, then v € Iy for all k = 0. Consequently, for this range of 7 values,
the conclusion of Theorem 5.12 holds for each non-negative k. This immediately
implies Theorem 1.4.
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5.3.2. The spectrum of A. Again, letk > 0, ¥ € Ty and

f: z fkeikeeLz(MyilJr)-

k=—oc0

We analyze the k™ piece of the anti-self-adjoint A¥ by considering the action of
the following unitarily equivalent operator on f. Equations (5.4) and (5.20) show

(5.30)
FAY FHE &, 0) = FHLE" — Lo F () E «, 0)
= (&) (0 ke (8, 00 fielE, ), T () )
~ k(& QL f(€, ), Kk (€, ) oy ) X

For our purposes, it is convenient to introduce the following function:

Tk(g; O()
k(&) Tk (&, ')Hfur,n

Ak(E, ) := o T ki (&, &) —

(The notation Ak (&, &) is used only in this section and should not be confused
with our notation for the Leray-Levi measure used elsewhere in the paper.) It is
easily checked that for each fixed & < 0, Ak (&, -) Ly, 1) Tk (&, -), and that

1

(2T (&, Ty

1Ak E, [yt = Kk E 1) —

It follows that we can re-express (5.30) in a more symmetric fashion:

FIAY F(HE a0 = FHL L) F()(E a,0)
= k() (A, O fielE, ) Tr(Es )y
— Tk (&, @) (fi(E, ), Ak(E, ) ) ) €™

A computation now shows that

IF AR F O

Tk(§! )
- ~1 g kS )
(Cu (v, k) — 1) (\ <fk<§, e ')||(ur,1)>(ur,1)

. Ak(§! )
* '<f’<(§’ D TARCE, ->||<,,,,1>><uy,1>

2

)
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meaning j—”lAZY}~ annihilates L?(My, pty) \ Zx, where
Zy := span{Tk(§, 0)e0 Ak (E, ) et ?}.

Now decompose Zx = Z @ Z{, where

1 _ .||Ak(§i.)||(uy,1) iko .
7y = {m@) (\e(E 00 + et E, @)el
[ e gy g,
2 o ||Ak(gi ')”(uy,l) iko .
73 = m(®) (M(E o - ik 2 it E, @)e

[O |m(§)|2 |§|((2k+1’+1)/}’—2k—2) dg}

It is easily verified that the following hold:
e Z, coincides with the eigenspace Eim of FT1AL F.
e Z} coincides with the eigenspace E; oyt of F7IAL F.
e These two spaces are infinite dimensional, but each is constructed around
its own particular linear combination of Ty (&, x)e*? and Ay (€, x)etk?,
In summary, we have the following resul.

Theorem 5.13. Fix an integer k = 0 and let v € Tx. The operator Air admits
an orthogonal basis of eigenfunctions, and its spectrum is given by

{0, +i+/Cy, (y, k) — 1}.

If v € 7, then v € I for all k > 0. Consequently, for this range of v values,
the conclusion of Theorem 5.13 holds for each non-negative k. This immediately
implies Theorem 1.5.

6. PROJECTIVE DUALITY

We now introduce the notion of projective duality. Define CP™* to be the set of
hyperplanes in CP™. It is easily seen that this set can be isomorphically identified
with CP". Indeed, each hyperplane in CP" corresponds to a unique point T =

he = {CT* € CP" : Gy + - - - + TnCyy = 0}

It is clear that this identification is reflexive.
Given a domain Q € CP" with smooth boundary S, we now define the dual
S§* C CP"™* to be the set of complex hyperplanes tangent to S. (See [1] for a
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detailed treatment of this topic; also see [7, 8] for related recent developments.)
When S is a smooth and strongly C-convex hypersurface, $* is also smooth and
strongly C-convex with $** = S. However, such regularity properties for $* often
fail under weaker hypotheses on S (see Remark 6.6).

From the denominator of L in (2.1b), we see that the complex tangent hy-
perplanes to a smooth hypersurface S play a critical role in the Leray transform.
Strong C-convexity ensures that each supporting hyperplane intersects Q at the
point of tangency and nowhere else (see Section 2.5 in [1]). In [4], the first author
develops the connection between the Leray transforms Lg and Lg+ and shows that
these operators respect a natural bilinear pairing of two “dual” Hardy spaces when
S and $* are smoothly bounded, strongly C-convex hypersurfaces. The Leray
transform plays a role in higher dimensions analogous to the role played by the
Cauchy transform of a planar domain in pairing two Hardy spaces of holomor-
phic boundary values associated with the interior and exterior of a planar curve,
respectively (see [32]). We extend this work in Section 6.4.

6.1. The dual hypersurface of M,. If S is a smooth strongly C-convex
hypersurface, we can choose an appropriate matrix A € GL(n + 1,C) to induce
an affinization of CP™*, and thereby represent $* as a hypersurface in C"*. The
details below were first introduced by the authors in Section 4 of [6].

Define the map ®4 : C" x C" — C by calculating the following matrix prod-
uct:

6.1)  Da((z1,aey2Zn), (Wi, oy wn)) =[1wy - wulA[l 21 - -+ zn]T.

The following proposition is stated for two-dimensional S, but it admits a
straightforward generalization to higher dimensions.

Proposition 6.1. Given a smooth real hypersurface S C C* with defining func-
tion p and a matrix

i1 a1 ap
(6.2) A=|bym;mp|eGL3,0),
b, my; moy

the following conditions are equivalent:

(6.32) There are functions wi' and w5 on S with the property that the complex
tangent line to S ar C is given by

{(z1,22): ®a((21,22), (WD), w5 (D)) = 0}.

(6.3b) The conditions in (6.32) hold, with the additional conditions that w?* and

w4 are smooth and uniquely determined.
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(6.3¢) The matrix

op op op

Mmiy==——m m
11 IZaC 21 7~ 5C 5C1

mi1C1 + m28s + by mlel +mls + by
— My

is invertible for all T € S.

Proof. The complex tangent line to S at T is the unique (afhne) line joining
C to the point T + (0p/0C2, —0p/0C1). This follows from the fact that the vec-
tor field (0p/0C,)(0/0C1) — (0p/0T1)(0/0T>) is tangent to S at L. To try to
represent the tangent line in the desired form we seek solutions (wlA, w?) of the
inhomogeneous linear system

(1w, wh) AQ,C,0)7T =

T
(1,wf‘,w5‘>A(1,§1+a—” ) - a”) 0.

Uniqueness of the line implies that the system has at most one solution, so if there
is any solution, the associated homogeneous system is non-singular; conversely,
non-singularity of the associated homogeneous system implies the existence of a
unique smooth solution of the inhomogeneous system. A computation reveals
that the matrix representing the associated homogeneous system is

op op op op

Mg T e 9T

ma1 5

MG + MG + by MGy + maGh + by
— Moy

Remark 6.2. A corresponding result holds in higher dimensions, in which
condition (6.3c) is replaced by a maximal-rank condition on a certain nx((%) + 1)
matrix.

Definition 6.3. When the equivalent conditions in Proposition 6.1 hold,
we say that S is A-admissible, and denote the image of S under the map w4 =
(wlA, sz) by $*4. When A is clear from context, we may drop the superscripts
and simply write w = (w;, w;) and S*.

It is easily checked that any hypersurface that can be written as a smooth graph
over the variables z; and Re(z;) is A-admissible for any invertible matrix A whose
only non-zero entries occur on the anti-diagonal. For My, y > 1, we will use the
matrix

0 01
(64) Ay = 0 YO ’
i(y-1)00
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which yields
D4, ((21,22), (W1 (D), w2(T))) =iz + yw1(L)z1 + i(y — Dw2(T) = 0.

Rewriting the tangent line

oty &)

to any Ay-admissible hypersurface S at T in the form

{(zl,zg: Bty z-t)+ L@ (2T = o}

{(z1,22) : yw(" (Q)z1 + iza = i(1 — Y)w)” (D)},
we find that

wiAY(C) _ ;pC1 , w?y(C) _ Cpo + CZPEZ

p€2 ( 1 - Y)PCz
Specializing now to My, by setting p(8) = |C11¥, — Im(Z>), we obtain

90 ¢y - Yoz, 9% -t

aCl 6C2 2’
and thus
(6:52) wi” () = 4G,
Y Y -
—i 1-5 )6+ 350
(6.5b) W () = G —iylGilY ( 2) 2%

-y 1-y
This shows that the defining equation for the dual hypersurface M;f A s
(6.6) Im(szy(g)) = |wlAy(§)|y/(y—1)_

Thus, via the matrix Ay, the dual hypersurface Mjf = My«, where y* = y/(y — 1)
is the Holder conjugate of the exponent y.
Note for future reference that

(6.7a) T o= wi w @/
(6.7b) 1Tl = fwp” (MO,
(6.7¢) G, = <1 _ %) szy _ %szy

A p A —
= (1—y)wy” +iylwy” /oY,

6.7d) ReZ, = (1 — y) Rew,”.
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Remark 6.4. Using the (s, &, 0) parametrization of My, from Section 3.2, the
matrix in (6.3c) has determinant

A:=P+Qe P 1 +R ((x?/+iyi 1),
where

i
P = E(blmzl - bymyy),

Q= %(bzmm —bimy),

-1
R = yT(mmmm - Mi1My2).
Thus, the matrix A is admissible if and only if A is non-zero for all 5,0 € R,

« > 0. We make the following observations:
o Invertibility of A implies that P, Q, R are not all zero.
o If R = 0 then it is easy to see that My is A-admissible if and only if one of
P, Q vanishes.
e For R # 0 we can apply Young’s inequality in the form

71§l+y—_10(y

Y Y

oY

to obtain
ReAR = RePR + RRxY + Re(QRe ) . o¥~!
> <RePR - @) + <|R|2 - %”QR') o

so if

. PR |R|
Q| < ymm{Re Ry - 1}
(with strict inequality ifRe(PR/IR|) = |R|/(y—1)), then Re AR is strictly
positive and thus My is A-admissible.
e On the other hand, if Q = 0 and PR is negative then it is easy to see that
M, is not A-admissible.
Remark 6.5. In general, when a hypersurface S is both A-admissible and
A’-admissible, then the dualization maps w# and w4 are related by

wA = who (A(A) DT,

where (A(A")=1)T is the projective automorphism corresponding to the matrix
(A(A)"HT as in (2.4). (See Lemma 4.28 in [6].)



1884 DAVID E. BARRETT ¢ LUKE D. EDHOLM

Remark 6.6. As 'y ~ 1, the M, tend to the hypersurface M; which is C-
convex but not strongly C-convex. The matrix A; is not invertible, but using the

matrix
001
i00

instead we obtain wlA*(C) = C,/1C| and sz*(C) = i|C1| — o = —Re(Cy).
Thus, M; is mapped onto the 2-manifold S! x R.

6.2. Distinguished measures on M. In Section 2.4.1 we previewed several
measures now to be discussed in detail. Each of these belongs to one of the families

j:V:{CIJT5C€[R+};

where t, = & ds A dot A d, so Leray boundedness results obtained in previous
sections are immediately applicable.

6.2.1. The pairing measure. Let A € GL(3,C) be as in (6.2), and S an
A-admissible, strongly C-convex hypersurface in C2. Define the pairing measure
(with respect to A) on S by the following formula:

a1 mi My az
6.8) vA:= VTP (dwy,4,dwo,4) Moy ma | \ —a;

mip mi
ma1 My

(Wp,adwia — Wia de,A)) A dT1 A dTs.

The authors previously introduced this measure in [6]. (Related objects also
appear in Section 7 of [4] and Section 3.2 of [1].) This measure allows for the
Leray transform to be written in terms of the dual variables. We restate Proposition
4.30 from [6] as follows, which gives a universal formula for the Leray transform
of any A-admissible S.

Proposition 6.7. Let A € GL(3,C) be as in (6.2), and S an A-admissible,
strongly C-convex hypersurface in C2. Then, the Leray integral from (2.12) may be
written as

vA(0),

) £@)
(6.9) Lsf(z) = LGS [®a(z, wA(D)) 2

where D4 is defined in (6.1).
In the special case of S = M), A = A, we have

2 _
S 1G1dE A 4Gy A ATy

6.10)  vA = = qui Adg A dT, = o

47172
y2
Ray‘l ds A da A d6.
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6.2.2. The preferred measure and its dual. In Section 2.2.3, we defined
(up to a constant) the preferred measure fis. This measure was introduced by the
first author in [4] to define a pair of dual Hardy spaces with desirable projective
transformation laws. Employing the Fefferman measure (2.7) to construct such
spaces still leads to such transformation laws, but the preferred measure fis dove-
tails with a pairing of these spaces in the spirit of (6.9) in a way that ugef does
not.

One Hardy space is defined using fis. To define the other Hardy space, intro-
duce the preferred dual measure by pulling back the preferred measure on the dual
§$*4 via the map w*:

(6.11) aet = (WA)* (figna).
When the hypersurface and matrix are clear from context, we may simply write i

and fi* to denote the preferred measure and its dual.
The preferred measure on M), was already recorded in (2.11):

4/3
i = Y (y-2)/3 7
HMy—ng(y_1)1/3i|C1| dC, A AT A dT.

We will choose a convenient normalization constant ¢, shortly. But first let us
compute the dual measure. From (6.5) we obtain

A A dwi = (1-y) |G Y4 dg) A dL,

so from (6.11), we see

A -
_ %A, _ cy - (y*)4/3|w1 y|(y* 2)/3 dey
My 8(y* — 1)1/3i :
cr-yY

3 .
8y - 1)l.|C1|5(?/_2)/3 A A dTy A dT.

_A A
Adwy” Adwy”

Note the Radon-Nikodym derivative

_%,A
6.12) diy, _ 1T, |43 =)
' dfim, (y - 123

. - KAy ~ ~k,Ay
Now define the geometric mean 4/ fiy, fr, of measures fiy, and fing, by
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Therefore,
4/3 )
_ x4, C T 1Y =
Ve, g, = 823_71;)12/31‘ gz A dgy A dey,
and thus
A
], faavt | ﬂ 'f'zd“MY\/f o i — e e
M, Y [~ %A
IJMyﬂMy

_ by -1)*P

2
12 ||f“L2(My,[1) HgHLZ(My,[J*)

(Here, we identify the positive three-form vA4r with a measure so that [ fgdvAy

and J SfgvA have the same meaning.)

In order to obtain a sharp Cauchy-Schwarz inequality

2 2
(613) ], Fov ] = W e, 19, e
we set
_ (yly—1)*?
I
s
so that , ,
- oxay YOG >
Ay iy, = g2 A A Gy ATy = v

For each f, there is some non-zero g such that equality holds in (6.13). (The same
is true with the roles of f and g reversed.) Here, we have allowed ¢, to depend
not only on the dimension but also on the choice of matrix A, .

This choice of ¢, will be fixed throughout the rest of the paper. We therefore
settle on the convention that

B 2( _ 1)1/3 B -

(6.14) i, = T 111725 4g, A dEy A AT,

_ 1/3

_yy-DP 21) aY*DB s A dac A dO
4t
and
2
~%,A

6.15) = Wm Y1934, A ALy A dT,

y2

= md6y—7)/5 ds A dax A de.



Leray Transform 1887

6.3. Dual Hardy spaces and the dual Leray transform. Formulas (6.10),
(6.14) and (6.15) show that each of the distinguished measures from the previous
section are contained in some Fy. In particular,

A ~ _ %, A,
v e Ty, bmy € Fyvnsz B, € Fisy-7)3-

Notice that the numbers y -1, (y +1)/3, 5y —=7)/3 € 7y = (-1,2y — 1), for any

y > 1. Therefore, Corollary 5.4 implies that the Leray transform is a bounded
operator on all three spaces L*(My, vA), L2(My, fiar,) and L?(My, ﬂ;’f”).
In what follows, (w4v)* and (w4v) refer to the pullback and pushforward

of w4y, respectively. In the spirit of (5.28), define the Hardy space
H*(My, i) := Ly (L*(My, i, ) = ker(Ly — I)

and the dual Hardy space

(6.16) Hiua (My, iy ) o= () * (HA(My+, fing, ).

Also define the dual Leray transform

-

Ly := (W) * oLy« o (w),.

Proposition 6.8. The dual Leray transform Ly, is a bounded projection operator

%A kA
from LZ(My,I.l;\k/Iy ") onto ngal(MY’“;CIy ")

Proof. We occasionally write fi* for fi ;I'fy when context is clear. If then we let
g € L*(M,, i*) and write the purely imaginary constant in (6.15) as
2
D Sy
gy 1B Ch

we have

g —Cij G2 16151973 42, A dEy A dT

|2,
a* M,

—Ci[ |g o w2 |w |FV/GY=3) qu, A diy A dwy < co.
y*

Since —Cilwll(z‘?/)/(5>"3) dwy; A dwp A dwy € f(zyfl)/(3y,3), we see that
gow ' € L2(My«, 2y-1)/3y-3)) and that each function in this space corre-
sponds to a unique such g. Now considering that

2y -1

-J - _ * —
3 €LY =D =1
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(the interval of ¥ values with Leray boundedness on L?(My+, 1)), Theorem 1.2
says that Ly+ is bounded on L2(My+, t(2y-1)/(3y-3))- Using w?r = w to pull the
computation back to M, (since Lyg = w* o Lys o wy o g), we conclude that
ILygllg« < llgllg, where the implied constant is independent of the particular
choice of g. We are also now able to invoke Proposition 5.11 to conclude that the
dual Leray transform is a projection.

Since fin« € Fay-1)/Gy-3)> H2(My*,ﬂMy*) is the image, under Ly«, of
L2(My+, H(2y-1)/(3y-3)), the definition in (6.16) now lets us conclude

- _x,A ~%,A
L}/(LZ(My’lJ;\k/Iy M) = Héual(M?/’“;Iy - ©

Remark 6.9. It is shown in Appendix A that functions in the Hardy space
H?(My, firr, ) are boundary values of holomorphic functions on Q. Functions in
nga| (My, ﬂ;}’fy) are pullbacks via why of holomorphic boundary values on Qy«.

Remark 6.10. 1f Y is a non-vanishing vector field annihilating CR functions
on My, then H éum (My, ﬂ;’yAy) can equivalently be thought of as the set of func-
tions in Lz(My, ﬁ;fy) annihilated by (w4v)*Y. (Thus, Y induces the “projective
dual CR structure on My.” See Section 3 of [7] for a general discussion.) Alterna-

tively, Lemma 4.40 in [6] leads to the characterizing vector field of the dual Hardy
space. It can be shown that

i 0 Q2-y)il o

Pooo_id o
dual = 53¢, 2y LG

Gl&8

—%iugw4§%+(1—§)iugwﬂ

o ) ) _%,A
annihilates all functions in Hﬁual(My’ fir, ).

Now, Ly is now re-expressed as a single integral, as follows.

Proposition 6.11. Let g € L*(M,, ﬁ;’f” ). The dual Leray transform is given

by

1C11Y"2dC, A T A dT
(¥Z11z11Y"2(z1 = C1) + i(z2 — C2) 1*°

. y2
6.17)  Ly(@)(2) = ¢ 5 [Myg(O

Proof. The map w?y = w given by (6.6) is a diffeomorphism from M, onto
My« To help keep track of notation, write

C=(C1,0) €My, w(D):=CT"=(C,C}) € My,

z=(z1,z2) €My, w(z):=z%=(z{,z5) € M.

Now transfer the computation from My, to My« by considering the push-
forward of g, denoted G := w4 (g). The proof of Proposition 6.8 shows both
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that G € L?>(My~, H(2y-1)/(3y-3)) and that Ly is a bounded operator on this
space. We have

(6.18) Ly(9)(2) = (W* oLy« owy 0 g)(2)

= (Ly+ (g ocw 1)) (w(2)) =Ly« (G)(z*).
Now,
(6.19) Ly« (G)(z¥)

(y*)? . |C 1Y -2 dgF A dTF A dES
= 812i [ G ) KTF | 7K |y 2 (77K _ % Coek %12
oL IMyx [Y*¥TFITF 1Y =2(Cf - 2{) + (85 - z3)]

Y «
8T (y — )% JMY* e
||/ 7D dg A dTT A dEF

2
[(y)_/ 1)§—Ik|cl*|(z—y)/(y—l)(§;k —zF) +i(Cy —Zik)]

X

Y’ | e

812 Juye
y ICF 120/ 0-D)dgs A dTT A AT
[YICFY0=1 — yZf TFICH 0D iy = D(CS - 2]

Now, we wish to move the computation back to M. Writing (6.5) and (6.7)
in the notational convention adopted above, we see that

(6.200 ¥ =CiTI" = @%ﬂfﬂy
(6.21) Ci=CFICH@VI0-D 6= (1= y)TF + iy|C /0D,

The same relations also hold between the z and z* variables. From here, it follows
that

(6.22) dT§ A dTF AT = 1512748, A Ay A dT.

Using (6.20) and (6.21), rewrite the term inside the brackets appearing in the
denominator in (6.19):
(623)  yILH YTV =y I OO iy - (&5 - 2D)
=yIGlY —yCizilzi 2+ ylzilY = yIG1Y +i(z2 — G2)

=yzilz11" (21 - C1) +i(z2 - C).
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Inserting equations (6.22) and (6.23) into (6.19) shows

2 1S, 1Y-2dEG, A dE, A dE,
(6.19) = =X 0) :
81r2i JMy [yzi1z11Y=2(z1 = C1) + i(z — Cz)]z
which is equal to iy(g)(z) by (6.18). O

The preceding proposition demonstrates the close connection between the
dual Leray transform and the adjoint of the Leray transform with respect to the
measure 0.

Corollary 6.12. The dual Leray transform on My, can be expressed as
Ly=co L;*’U) o,

where c is the conjugation operator and L'*7) is given by the integral in (5.21).
Proof. This is immediate from formulas (5.21) and (6.17). O

Remark 6.13. We have seen that Ly is bounded on L?(M, pty) if and only if
v €1y = (-1,2y — 1). For a fixed v in this range, choose " with (¥ +¥")/2 =
y — 1, and let f € L2(My, 1), g € L*(My, pty). By symmetry (Remark 5.5),
7' is also contained in 7y. General theory (or, alternatively, the proof of Theorem
5.10) shows

<Lyf;g)a = (f’I-';/*,O-)g>O'J
implying that

*,0) z
1Lyl = ILY N = Iyl

This shows that the dual Leray transform Ly is bounded on L2(M,, u,+) for all
v’ €1y In particular,

ILyllg = Ly llg=.

where fi and fi* are the preferred measure and preferred dual measure, respectively.

6.4. Pairing Hardy spaces. For f € L*(My,fin,), g € L2(My,ﬁ;k4’fy),

define the bilinear pairing
(6.24) (.00 = | F@a@ V@),

. . ~ ~ _%,A . L
Continue to write {i and fi* for fiy, and A, ", respectively. This pairing fa-
cilitates the representation of linear functionals on H%(M,y, fi) by functions in

Hj,0(My, i*). In Theorem 6.17 below we prove that the efficiency of this repre-
sentation is closely connected to the Leray transform. We point out the following:
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(1) The preferred measure fi and preferred dual measure fi* are projectively
invariant, so the corresponding Hardy spaces are too. Compare this to
both Theorem 2 and Section 8 in [4].

(2) Pairing H2(My, {i) and H},, (M, i*) via (6.24) is closely tied to the uni-
versal expression of the Leray transform given in (6.9).

Lemma 6.14. For f € L*>(My, 1), g € L*>(My, i*) we have

(6.25) (Lyf,9) = (f,Lyg) = (Lyf,Lyg).

!’roof Since Ly and L, are projections, it suffices to prove the first equality.
Notice that

(Lyf,a) = Ly f,d)y = (£LLEDG)y = (f,co LY o c(@)) = (f, Lyg)).

The second equality is justified by the proof of Theorem 5.10, and the final equal-
ity is just Corollary 6.12. O

Remark 6.15. Formula (6.25) could also be proved by adapting the Plemelj-
formula-based argument found in Theorem 25 of [4] to the current unbounded
setting.

Now consider the map
Xy: LZ(MANI]*) - (Lz(My;ﬂ))*
given by
X, (@) f = (f,a),

along with the companion map

Ry: Hiual (My, fi*) — (H*(My, fi))*
given by
Xy (@) = Xy (@D |2, -
Note that Xy and Xy are linear (no# conjugate-linear). From (6.13) we see that Xy

is an isometry and that
Xyl < 1.

Define a map R : L2(M,, i*) — L2(My, i) by

dﬁ]’\'}fy 1, |23 0-2) 3
f(C) — mf@) = Wf(g) :=Rf,

where the Radon-Nikodym derivative is calculated in (6.12).
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Lemma 6.16. The map R : L2(My,ﬁ;k,ffy) — L2(My, fing,) is an isometry.

Proof. The appearance of the Radon-Nikodym derivative makes this clear. O

Theorem 6.17. The operator Xy : Héua|(My,[1*) - (Hz(My,ﬂ))* is invertible
with norm
||)A<§1|| = [ILylla.

Remark 6.18. 1f M, were the boundary of a smoothly bounded strongly C-
convex domain in C? (or CP?), then Theorem 6.17 would just be a paraphrase of
Corollary 26 from [4]; the argument offered below is an adaptation of that earlier
proof.

Proof: Let g € ker Ry, that is, X, (g) is the zero functional on H*(My, f1). It
can be easily checked that Lyﬁg € H?(My, f1). This means that

Thus, g = 0 and X, is injective.
Let T € H2(My,ﬂ)*. There is some h € L2(My,ﬂ*) representing T and
satisfying
Wllr2my, 5% = 1T H20My )% -

Now, for all f € H>(My, f1),
Tf = (f h) = (Lyf h) = (f, Lyh) = Xy (Lyh) (f).
In other words,
T = Ry(@Lyh) with |Lyhlige < ILyllg lIRllgs = Ly 11T

Thus, Xy is surjective with ||}A(371|| < ILyll4.
To prove the reverse estimate let f € H2(My, i) and pick

heL*(My,@*) such that [|k]lz- = 1.
Then,

Xy (LyR) ()] = [KF,Lyh) | = 1Ly fohN | = K D < 11 fllg,

and so || Xy (Lyh) | < 1 for any such h. Let € > 0 and choose a specific such h so
that [[Ly hllg > lILyllz — €. It easily follows that [R5l = ILyhllg« = [Lyllg - e.
Since & was arbitrary we have II)AQ1 Il = lILyllg, concluding the proof. |

See Section 9 in [4] for related results.
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Remark 6.19. 1t would be of interest to explicitly calculate the norm ||IL [l 5.
In this regard, we point out there is no reason to expect the behavior of the symbol
function Cy, (¥, k) when v = (y + 1)/3 (the r value corresponding to the pre-
ferred measure) to be closely related to its behavior when ¥ = y — 1 (the » value
of the pairing measure discussed in Section 4).

APPENDIX A. CONSTRUCTING HOLOMORPHIC FUNCTIONS ON Q,

We verify here that for certain values of 7, the Leray transform maps functions
f € L*>(My, i) to holomorphic functions on the domain

Qy = {(z1,22) € C*: Im(z3) > |z1]}.

The main result is the following.

Theorem A.1. Let L denote the Leray transform. L maps Lz(My; Hr) = O(Qy)
foreachv € Jo:= (-y — 1,2y — 1).

Notice that Jy 2 79 = (—1,2y — 1), the interval of * values for which L is
bounded from L2(My, Hy) — Lz(My, Hy). In Section 5.3, we defined the Hardy
space

HZ(M)/, HV) = L(Lz(My; IJT))

for each v € 7y. Theorem A.1 confirms that these Hardy spaces can be viewed as
consisting entirely of boundary values of holomorphic functions.

1.1. Symmetries of the Leray kernel. Partition Q, into translated copies of
My, by defining
My = {(z1,22) : Im(z2) = |z1|Y + €}.

It is clear that Qy = U, M; and that this is a union of disjoint sets.
Let z € Qy. Equations (2.3a), (2.3b), and (2.3¢) provide the formula for the
Leray transform:

2
D L@ = [ FOLEON© - 1 | f©LE Do),

where the kernel £, = £ and measure o are

4
(YTITY 2T - 21) + i(Cy — 22))?

o(C) = 2%.|C1|y_2dC2 A dT; A dT.

(z,C) =

The measure o is a special instance of py, given in rectangular coordinates for
r € Rby

uy (C) = %mm*l 4T, A AT, A L.
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Recall the three types of automorphisms of M, from Section 3.1: ¢, (translations
in Re(T3)), 7o (rotations in C;), and 8, (non-isotropic dilations). These maps
transform € (z, C) in the following way:

(A.2a) L(ts(2),t5(C)) =4(2,0) s ER,
(A.2b) L(ro(2),70(0)) = £(z,0) 0 € [0,2m),
(A2C) 3(5a(2),5a(C)) = a‘zyﬂ(z, C) a> 0.

The measure iy is easily seen to be invariant under such translations and rotations.
Further computation reveals that

(A.2d) 52“1’(§) = ay”“lir(C)-

1.2. 1%-norms of the kernel function. For v € R, define ©, : Q) — [0, ]
by

O, (2) := JM 1€(z,0) 12ur ().

Applying ts and 7g for appropriate values of s and 6, we see from (A.2a) and
(A.2b) that for z € Q,,

(A.3) 0r(2) = 0r(21,22) = Or(|21],11Im(22)).
Also observe that for a > 0, (A.2c) and (A.2d) imply

(A4) Oy (5a(2)) = jM 10(64(2), 0) 1Py (T)

- jM 10(54(2),8a(0))25% 1y (©)
_ ar+173y®r(z)_

Now, let € > 0 be the unique number with z € M. Ifz; #0,seta = |z}
and combine (A.3) and (A.4) to see
(A.9) 0y (2) = 04 (I1211,1Im(z2))
=a® "0, (5a(lz11,11Im(22)))

_ |Z]|T+1_3y®y (l,llm(22)>
[z1 Y

=|z1|“1-5¥®r(1,i(1+ £ ))
|z |Y

Otherwise if z; = 0,

(A.6) 0,(z) =0,(0,iImz) = 0,(0,i¢).
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Now, endow Q) with a coordinate system based on the (&, 0, 5)-coordinati-
zation of My that was introduced in Section 3.2. For z € M, write

z= (e, s +i(atY +¢)).
Points in Q, may now be described in («, 0, s, €)-coordinates, where & = 0,

0 € [0,21), s € R, € > 0. In these coordinates, denote the quantity appearing in
the innermost set of parentheses of (A.5) as follows:

£
1+ =1+w:=q((x,e).

|z [Y
The goal is now to understand the function z — 0, (z) from the perspective of
(A7) (0,0,5,8) — &"T173Y0,(1,iq(«, €)).
Proposition A.2. Letv € Jy:= (—1,3y — 1) and q > 1. Then,
©r(1,iq) = """V F(q),

where Fy is positive, strictly decreasing, and real-analytic on (1, o). Furthermore, the

Jollowing hold:

(@) limg 1+ Fr(a) = .
(b) limg— Fr(q) is a positive number.

Ifr & Jo, then ©,(1,iq) = .

Proof- Denote C € My by T = ((XgeieC,Sg + itxé), which yields

4
((y —1)o<€+q+ls;;—yo<y Lo=i0c)2’

4((1,i9),0) =

Therefore,

(Xz dsg Adog A d@g

A8 0.1, )=16J - —
(A8) rihi v Iy = Do +q +isg — yol lemifc)d

do¢
_16J ‘XCJ “o [A—Be 19<|4}d3§d‘x§’

-1

where
=(y-Doay+q+isg, B=yo
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Since g > 1, Lemma 3.2 shows that |B| < |A| for all choices of &z, s¢. Focus now
on the innermost integral in (A.8):

21 d9§
(A.9) Jo |A — Be~i0c |4

21T 1 1 9
_ . |
Jo (A—Be 19%)2  (A—Be 0c)2 "¢
21T
T Al J

|A|4 Z(k+1)2

o]

D G+Dk+1) ( )j@e“kﬁec dor

Jj,k=0
‘Zk

Plugging (A.9) into (A.8) gives
) *® ) 0 d
(A.10)  ©,(1,iq) = 32m Z (k+1)° L ag|32’<|{ Lo w%}dag

_32TrZ(k+1)2 ij ot

X SLJ dsg }d(x
~oo [(y =)o + g + isg |2+ ¢

We now import the first of two integral formulas which are established in
Section A.4. Proposition A.5 shows that for any C > 0,

0o dS . T r(2k+ 3)
(A.11) J_w |C + is|2k+4 — 4k+1C2k+3 T(k +2)2°

Substituting this into (A.10) with C = (y — 1)0(2 + g shows

o]

, rQk+3)

2k(y 1)+

® Xy
X dor.
Jo ((y - 1)a?g+q>2k+3 ¢

For each fixed k, two conditions on 7 are required for the integral in (A.12)
to converge:
(1) For oz near 0, we need 2k(y — 1) + v > —1.
(2) As oz tends to o, we need y (2k +3) —2k(y — 1) —v > 1.
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These conditions suggest the definition of the following interval of 7 values:
(A.13) f],; = (=2k(y-1)—-1,3y — 1 + 2k).

Note that Jy € Jj, for all k, so the convergence of the k = 0 integral implies the
convergence of all other integrals in the sum. But if the k = 0 integral diverges
(i.e., v € Jp), then ©,(1,iq) = co. Now make use of the second integral formula
established in Section A.4. Proposition A.6 shows that, forqg > 0,y > 1, v € 7,
and k a non-negative integer,

4 0 (x2k(y—l)+r
A-19) Jo ((y = Doy + q)%k+3 det

r<3+2k—1—7)r<2k+ 1+r—2k)
y y

— — 1)Y-1y-2k/y
 y(y - DUy g3-+nIyL(2k + 3) (aly =1)>") '

Plugging this into (A.12) yields

(A.15) 0,(1,i )—8—Tr2 (1+7)/y-3
. r (1,19 _)/()/—1)(1'”’)/}’61

) r<3+2k—1—r)r(2k+1+r—2k)
« S y y

T'(k+1)2

k=0

X

k
(40/— D> 2/YqZ/Y) '

We study the convergence of this sum by considering (for v € 7;) the related

series
) r<3+2k—1—r)r<2k+1+r—2k)
z k Y Y
arx™, whereay = .

T'(k+1)2

Stirling’s formula says
T(k +1)% ~ 2me 2k,
T (3 n M) J2m . eUFT-20/y-2
Y

< k-1 _T)S/Z+(2k—1—1f)/y
X |24+ ———
Y
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r (2k LLlrr- 2k> 27T - el -2k—(1+7=2k) )y
Y

2k—1/2+(1+v -2k
1+1f—2k) =2l

><<2k—1+

Combining these shows that

5/2+(2k—-1-7r)/y
1 2k — 1 -
A16) ar~ (2 k ”)

ek2k+1 ’
2k—1/2+(1+r-2k)/y
X (2k _ 1 + M)
k | 2 X 2y —1-v 5/2+(2k—1-7)/y
e \y yk
2k—1/2+(1+r=-2k) ]y
X@_£+Lﬂ:l)
Y Yk
E (2)5/2(1+1’)/y (g N 2)/ 1 _T)zk/y
e \y Y vk

(1+7r)/y-1/2 2k-2k/y
X(z_z) (2_2+111;z>
% % vk

2 2k/y
. (E) (y — 1)I+N/y=172 (Z)
% %
2k/ 2k—2k/
1o (==Y N, 2
% 2k %
X e 2k-2k/y
« 1+(w)(2k__) _
% %

Since lim¢_ o (1 + ¢/E)! = €€, we see from (A.16) that

o | &

2 2k/y
(A.17) a~ K. (E) (y = 1)A+n1y-172 (2)
e \y y
2k—2k/y
w e@r=1-7)1y (2 _ E) eI+ 1y
y

_ 4)/72()/ _ 1)(1+1’)/y71/2k(4y72(y _ 1)272/y)k_
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It is easy to see that limg—. ¥/@r = 4y ~2(y — 1)272/¥, so the root test guarantees
the convergence of ¢y axx* on the interval

2

Y

Also from (A.17), it is immediate that >.;_o axx* diverges at the right endpoint
of (A.18), since the sum >.;_( k diverges.

These observations about > axx* yield immediate analogues for 0, (1,1iq).
We now see that, for any v € 7, formula (A.15) converges for g > 1. Indeed,

0,(1,iq) = gV 3E, (q),

where

8172

y(y_ 1)(1+1’)/Y
r(3+2k—1—r)r(2k+ 1+T—2k>
% Y

o0 k
yz
8 go T(k+1) <4(y— 1)22/>/q2/y> '

FY(Q) =

It is now clear that F, is positive, strictly decreasing and real-analytic on (1, ).
Furthermore, limg_.1+ Fr(q) = o. It is also clear that

8172F<3— 1+r)r<l+r>
Y Y

y(ly =Dy

(A.19) %LfroloFr(Q) =

This concludes the proof of Proposition A.2. O

Equation (A.5) in conjunction with Proposition A.2 gives a useful description
of ©,(z) when z; # 0. It still remains to consider the z; = 0 case, which by (A.6)
amounts to understanding 0, (0, i€). Observe that

. B 4 ) 4
8((0,15),@1,;2)) = (Y|C1|y+5+i§2)2 - ((y_ 1)0()£+€+l'52;)2’

and therefore

1
My [(y = Do} + € + isc|

1

=321TJ a’J dsg doe.
0 Clally—Doalretisgd "

0,(0,i¢) = 16
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The inner integral is calculated by a special case of (A.11), while the outer integral
is a special case of (A.14). We conclude that

81721"(3— 1;7)1_(1;1’)
L (1+7)/y-3
(A.20) 0, (0,1¢) = y(y = 1)=nly e

These two results can be incorporated into a single statement. Indeed, com-
bining (A.7) with Proposition A.2 shows that if |z;| = o # 0, 7 € ], then

(AZI) @V(Z) :®V(O(1 91515)
=" 0, (1,iq(x, €))
_ O(T+1*3Yq(0(,5)(7+1)/Y’3Fr(q(0(,€))

= (& + &) TTVIYBE (q(, €)).

Since z € Mj, for some € > 0, q(0,&) = co. Equation (A.19) let us define
Fy (o) := limg_ Fr(q). Comparing (A.20) and (A.21) side by side shows that
the latter now encompasses the former.

Remark A.3. 1If y = 2 and v = 1 (i.e., the Heisenberg group equipped with
Euclidean measure on its parameter space R3), the expression for ©, (z) in (A.21)
is independent of . This is an instance of a phenomenon occurring on the Sg
hypersurfaces defined in (1.4). Refer to the Appendix in [6] for more information.

1.3. Proof of Theorem A.1.

Proof. Let B denote the set of all subsets K C Qy satisfying the following two
properties:
(1) ok :=supfa: (x,0,s,&) €K} < 0.
(2) ek :=inf{e: (x,0,s,6) € K} > 0.
Given a fixed K € ‘B, observe that the infimum of g(«, €) when restricted to K
remains strictly greater than 1. Indeed, if we define

qk = inf{q(x, €) : (e, 0,s,€) € K},

itis clear that gk > 1 + ex/ak > 1. B contains, for instance, all compact subsets
of Qy; it also contains unbounded subsets of Qy, as it places no restriction on s.

Fix somer € Jop = (-1 —y,2y — 1). This determines a unique *’ value with
(r+7')/2 =y—1,and itis clear that *" € J; = (—1,3y — 1). Now observe that
if K € B, then sup,_; 0, (z) is bounded from above. Indeed, for z € K, (A.21)
shows

0, (z) = (o + &) VY BE (q(x, ) < ey TV (qk).
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Proposition A.2 guarantees that this is finite since gx > 1.

If f e L2(My,py), ¥ € Jo, we will show that Lf € ©(Q,) by proving it is
holomorphic on each K € B. First, assume f € L*(My, ity) is compactly sup-
ported. Then, Lf is seen to be holomorphic by differentiating under the integral

sign in (A.1). For a general f € L*(My, it,), choose a sequence of compactly
supported f; tending to f in L2(My, py).

sup [Lfj(z) —Lf(2)]

zek
= yz . _
e | [ 4@ 0@ - f@10©)]
< y2 2 . _ 2
< e ([ 1@ 0w ©) ([ 150 - @ rao)
= Crllfi = FIl

where the constant only depends on 7’ and K. This shows that Lf; — Lf uni-
formly on K, implying Lf € O(K), being a uniform limit of holomorphic func-
tions. Since K € B was arbitrary, we conclude that Lf is holomorphic on all of
Q,. =

Remark A.4. Calculations seen throughout this appendix can be easily adapted
to the sub-Leray operator Li. Suppose that
v e, =(-2k(y-1)-1,3y — 1 +2k),
the interval defined in (A.13). If (* ++’)/2 = y — 1, it holds that
re(—y—1-2k2y—1+2k(y—-1):= .

It can be verified that if ¥ € Jy and f € Lz(My,llr), then Ly f € O(Qy). Recall
now that the interval of v values for which Ly is bounded from L*(M,, 1) —
L?(My, uy) was given in (5.9) by 7, = (=2k = 1,2k + 2)(y — 1) + 1). Itis
immediate that 7y C J.

1.4. Two residue integral computations.
Proposition A.5. For C > 0 and k a non-negative integer,

Jw ds _ m  T@2k+3)
oo |C +is|2k+4 T 4k+1C2k+3  T(k 4 2)2°

Proof. Write

r" ds B r" ds
oo |C His|2RHE T J o (52 4 CR)k+2
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Let Pr denote a counter-clockwise oriented, closed half-circle contour with
radius R lying in the upper-half plane with base lying on the interval [-R, R]. If
we set g(z) = (22 + C2)~%2, the residue theorem says (provided R > C)

(A.22) 2miRes(g,iC) = J g(z)dz.
Pr
We calculate
. 1 dk+1 1
Restg10) = 172y azr [(z T iC)k+2] inc
1 I'(2k + 3)

T (22k+3C2k+3 T(k+2)2"

Now, send R — o and note that the circular portion of the contour integral
in (A.22) tends to 0. This gives the resul. 0

Proposition A.6. Letq >0,y >1,v € J, = (=2k(y — 1) — 1,3y — 1+ 2k)
and k a non-negative integer. Then,

dux

0 (xzk(y—l)-Hf
Jo ((y = Doy + q)%+3

r<3+2k—yl—r>r<2k+ 1+r—2k)

_ y yy—1y-2k/y
T Ty (y = Dy g T (2K + 3) (a(y -1 .

Proof. Making the change of variable x = ¥, we see that

] O(Zk(y—l)ﬂf
A2 [
(A.23) 0 (= Dao + g3 &
1 e x2k—1+(1f+1—2k)/y
- y(y — 1)2k+3 Jo (x + E)2k+3 dx,

with E = q/(y — 1). Now, define the function

Z2k—1+(1f+1—2k)/y

h(z) = (z + E)2k+3

which is multivalued whenever the numerator exponent is a noninteger. Restrict
attention to a single-valued meromorphic branch of h defined on C\ [0, o). Note
that h has a pole of order 2k + 3 at z = —E.

For 0 < & < R, define the closed, positively oriented contour Ps g by travers-
ing the following paths in sequence:

I. A line segment on the positive x-axis moving right from 6 to R.
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II. A circle of radius R centered at the origin, starting on the positive
x-axis and traveling counterclockwise.
II1. A line segment on the positive x-axis moving /eff from R to 9.

IV. A circle of radius 6 centered at the origin, starting on the positive
x-axis and traveling clockwise.

Aslongas 6 < E <R, the residue theorem says

(A.24) 2miRes(h, —E) = h(z)dz
Ps.r

= J h(z)dz+J h(z)dz+J h(z)dz+J h(z)dz.
I i 1 v
Keeping in mind the multivalued nature of h, combine the I and III integrals:

(A.25) L h(z)dz + Jm h(z)dz

R s ,
= L h(x)dx +J h(xe*™) dx
R
JR X2k—1+(1f+1—2k)/y

5 (x + E)2k+3
) x2k—1+(1f+1—2k)/ye2'ni(2k—1+(T+1—2k)/y)
|

R (xe2"i + E)2k+3
R X2k71+(r+172k)/y

dx

dx

=(1- p2mMi(r+1-2k)/y J

5 (x +E)2k+3 dx.

Standard estimates show that since v € 7,
(A.26) lim | h(z)dz=0= limj h(z)dz.
R—o0 Jq7 5-0Jrv

Combining (A.26) with (A.24) and (A.25) shows

Prritr41-2K) 0 sz—1+(r+1—2k)/y
. _ Ti(r+1-
(A.27) 21iRes(h,—E) = (1 —e V) JO (x + E)2k3 dx.

Now calculate this residue:

(A.28) Res(h,—E) = 1 d2er? (22k-1+(r+1-2K) [y )
' ’ T(2k + 3) dz2k+2 o
-T (Zk + M)

T(2k + 3)T (# - 2)

% E(r+l—2k)/y73e(rri(r+1—2k))/3’_
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Combining (A.27) and (A.28) shows that

o 2k(1-1/y)

(A29) o m dx

_ =211
- 1 — e2mi(r+1-2k)/y

r¢k+r+l—2k)
y
r@k+3ﬁ<1ii:35—z)
Y
( (r4—1—2k)>
=Trcsc| M| —M—M—MMM88 X
y
r@k+3ﬁ<ﬁii:35—2)
Y
r<r+1—2k>r<1_r+1—2k>
_ Y Y
r@k+3ﬁ(3ii:35—2)
y
X r <2k + M) E(1’+1—2k)/y_5
Y

:(r+1—2k_1)<r+1—2k_2>
y Y

r<1_r+1—2k>r@k+r+1—zk)

% E(r+1—2k)/y—3eni(1f+1—2k)/y

% E(1’+1—2k)/}’—3

Y Y (r+1-2k)/y-3
8 T(2k + 3) E
FG+2k—r—1>er+r+l—2k)
_ Y FOr+1-2k)/y-3
T(2k +3) '
Combining (A.23) and (A.29) gives the resul. O
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