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ABSTRACT. The Leray transform L is studied on a family Mγ
of unbounded hypersurfaces in two complex dimensions. For a
large class of measures, we obtain necessary and sufficient con-
ditions for the L2-boundedness of L, along with exact spectral
descriptions of L∗L, LL∗ and L∗ − L. This yields both the
norm and high-frequency norm of L, the latter affirming an un-
bounded analogue of an open conjecture relating the essential
norm of L to a projective invariant on a bounded hypersurface.
L is also shown to play a central role in bridging the function
theoretic and projective geometric notions of duality. Our work
leads to the construction of projectively invariant Hardy spaces
on the Mγ , along with the realization of their duals as invariant
Hardy spaces on the dual hypersurfaces.

1. INTRODUCTION

This article continues a series aimed at further developing the theory of the Leray
transform from a projective dual point of view. Much of our focus here will be on
the following family of real hypersurfaces. For γ ≥ 1, define

Mγ := {(ζ1, ζ2) ∈ C2 : Im(ζ2) = |ζ1|γ},(1.1)

together with the unbounded domain lying on its C-convex side

Ωγ := {(z1, z2) ∈ C2 : Im(z2) > |z1|γ}.(1.2)

The Leray transform is a higher-dimensional analogue of the Cauchy trans-
form of a planar domain; it acts by taking in data given on a real hypersurface
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to construct holomorphic functions on the domain bounded by the hypersurface.
(See Section 2.1 for precise definitions.) As is typical in multi-dimensional com-
plex analysis constructions, convexity conditions play a crucial role. In particular,
the Leray transform LS := L is a well-defined integral operator on any smoothly
bounded C-convex hypersurface S in Cn. When S is an unbounded hypersur-
face (such as Mγ), additional care must be taken. As in the case of the Cauchy
transform, knowledge of both quantitative and qualitative information related to
L provides insight into holomorphic function spaces associated with S.

A great deal of additional information can be obtained by viewing the Leray
transform through the lens of projective duality. The projective dual of a hypersur-
face S ⊂ CPn, denoted S∗, is the set of complex hyperplanes tangent to S. In [4],
the first author demonstrates that the efficiency of a natural pairing of two dual
Hardy spaces associated with, respectively, S and S∗ is measured by the L2-norm
of LS. The Cauchy transform plays an analogous role in the pairing of interior
and exterior Hardy spaces associated with a planar curve (see [32]). New aspects
of this theory are set forth in Section 6, where they are carefully illustrated in the
setting of Mγ .

Each Mγ is homogeneous with respect to certain projective automorphisms
(see Section 3.1), and L admits a transformation law with respect to such maps (see
(2.13)). It thus makes sense to pay special attention to L2-spaces onMγ which are
built from measures satisfying desirable transformation laws. Our analysis begins
by considering the measure σ := αγ−1dα∧ dθ∧ ds, with α = |ζ1|, θ = arg(ζ1),
s = Re(ζ2). This is a constant multiple of the Leray-Levi measure corresponding
to the most natural choice of defining function for Mγ (see Section 2.1).

We now highlight several results established in this paper. Continuing the
theme of [6], the exact L2(Mγ , σ)-norm of the Leray transform is obtained as
follows.

Theorem 1.1. Let L be the Leray transform of Mγ . Then, L : L2(Mγ , σ) →
L2(Mγ , σ) is a bounded projection operator with norm

‖L‖L2(Mγ ,σ) =
γ

2
√
γ − 1

.

We go on to consider a more general class of measures: for r ∈ R, let µr =
αrdα∧ dθ ∧ ds. Then, we have the following result.

Theorem 1.2. The Leray transform L is a bounded projection from

L2(Mγ , µr )→ L2(Mγ , µr )

if and only if r ∈ I0 := (−1,2γ − 1).

Theorem 1.1 is proved in Section 4.3, and Theorem 1.2 in Section 5.1. The
analysis involved in proving these results relies heavily on the symmetries of Mγ .
In particular, the S1 action in the ζ1 variable of (1.1) yields a (partial) Fourier
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series decomposition of the space

L2(Mγ , µr ) =
∞⊕

k=−∞
L2
k(Mγ , µr ).

(Here, we use the “subspace” notion of direct sum as set forth, for example, on
page 81 of [3].) The Leray transform decomposes similarly, but the bound-
ary values of a holomorphic function on Mγ may have nonzero components in
L2
k(Mγ , µr ) only if k ≥ 0. In other words,

L =
∞⊕

k=0

Lk,

where the sub-Leray operator Lk is nonzero only when acting on L2
k(Mγ , µr ). Very

precise information on each Lk is obtained, including both the sharp range of r
for which boundedness in L2(Mγ , µr ) holds and the exact operator norm when it
does. Define the interval

Ik = (−2k− 1, (2k+ 2)(γ − 1)+ 1),

along with the µr -symbol function

Cµr (γ, k) =
Γ
(

2k+ 1+ r
γ

)
Γ
(

2k+ 2− 2k+ 1+ r
γ

)

Γ (k+ 1)2

×
(
γ

2

)2k+2

(γ − 1)−(2k+2−(2k+1+r)/γ).

Theorem 1.3. Let k ≥ 0 be an integer and r ∈ R. Then, Lk is bounded from
L2
k(Mγ , µr )→ L2

k(Mγ , µr ) if and only if r ∈ Ik. Furthermore, when r ∈ Ik,

‖Lk‖L2(Mγ ,µr ) =
√
Cµr (γ, k).

When r ∈ I0 (the interval of boundedness from Theorem 1.2), the Leray
transform admits a bounded adjoint L(∗,µr ) in the L2(Mγ , µr )-inner product.
For these r values, we obtain a complete spectral description of the self-adjoint
L(∗,µr )L and LL(∗,µr ), and anti-self-adjoint Aµr := L(∗,µr ) − L in terms of the
symbol function. In Section 5.3 it is shown that the following results hold true.

Theorem 1.4. Let r ∈ I0 and let T denote either L(∗,µr )L or LL(∗,µr ). Then, T
admits an orthogonal basis of eigenfunctions, and its spectrum is given by

{0} ∪ {Cµr (γ, k) : k = 0,1,2, . . . }.
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Theorem 1.5. Let r ∈ I0. The operator Aµr := L(∗,µr )−L admits an orthogonal
basis of eigenfunctions and its spectrum is given by

{0} ∪ {±i
√
Cµr (γ, k)− 1 : k = 0,1,2, . . . }.

We now emphasize a fascinating observation about the limiting behavior of
the sub-Leray operators. Define the (µr )-high-frequency limit norm by

(1.3) ‖L‖L2
HF(Mγ ,µr )

:= lim sup
k→∞

‖Lk‖L2(Mγ ,µr ).

This is definable for any operator admitting a Fourier series decomposition, and
it can be viewed as a generalized essential norm in the sense of Lefèvre [31]—in
Section 2.3.1 we introduce the terminology grade-essential-norm.

As the value of r varies, the norm ‖Lk‖L2(Mγ ,µr ) expectedly changes. But in
Section 5.1, it is shown that all choices of r yield the same high frequency limit.

Theorem 1.6. For r ∈ R, the µr -high-frequency limit norm of L is

‖L‖L2
HF(Mγ ,µr )

=
√

γ

2
√
γ − 1

.

An analogous result was observed in [9] on smoothly bounded, strongly C-
convex Reinhardt hypersurfaces in C2. We will see in Section 2.3 that this quantity
is closely connected to a projective geometric invariant of Mγ . Note also that this
quantity is the square root of the L2(Mγ , σ)-norm in Theorem 1.1; a similar
observation was recently noted for the Leray transform on boundaries of Lp-balls
{(ζ1, ζ2) ∈ C2 : |ζ1|p + |ζ2|p = 1} (see [34]).

Lanzani and Stein have written a series of recent articles on the Leray trans-
form in various settings. One of the takeaways in [26,27] is that L is well behaved
(one can expect both L2 and Lp boundedness results) as long as the hypersurface
in question is both (1) strongly C-convex and (2) C1,1-smooth. When either hy-
pothesis is dropped, they are able to construct elementary counterexamples with
no Leray Lp-boundedness (including p = 2) (see [29, 30]). The positive Lanzani-
Stein results do not apply in our setting since Mγ (viewed in projective space)
fails even to be C1 when it meets the line at infinity (except when γ = 2) (see Sec-
tion 3.6). But unlike their counterexamples, our results show that L is L2-bounded
for a range of reasonable measures on Mγ .

Interest in Mγ also stems from other considerations. In [4], Barrett defines a
scalar invariant (denoted βS(ζ) in Section 2.3 below) associated with any strongly
C-convex hypersurface. The Mγ comprise one of the few families for which this
invariant is constant. Another such family

(1.4) Sβ = {(ζ1, ζ2) ∈ C2 : Im(ζ2) = |ζ1|2 + βRe(ζ2
1)}, 0 ≤ β < 1
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was recently studied by Barrett and Edholm in [6]. BothMγ and Sβ are intriguing
models in connection with Conjecture 2.1 on the essential norm of L, but this
conjecture does not directly apply to either family since these hypersurfaces are
unbounded (or more to the point, they fail to be C1 at infinity—except in the
very special case of M2 = S0).

Holomorphic function spaces associated with Mγ have been previously stud-
ied for positive even integers γ = 2n. (These are the only γ for which Mγ is
C∞ at the origin.) Greiner and Stein [22] found an explicit formula for the Szegő
kernel on L2(M2n,dx1 ∧ dy1 ∧ dx2). Their work was later used by Diaz [18] to
determine mapping properties of the Szegő projection in this setting. Note that
dx1∧dy1∧dx2 is the Euclidean surface measure on the parameter space R3; this
measure agrees with µ1 in our above notation. Since r = 1 ∈ I0 for all γ > 1,
a special case of Theorem 1.2 implies that L is a bounded, skew (unless γ = 2)
projection on the same L2-spaces considered by Greiner, Stein, and Diaz.

Recall that the Szegő projection is the orthogonal projection from a pre-
specified L2-space onto its associated Hardy space. The projection is represented
by its Szegő kernel, a Hilbert space reproducing kernel. The existence of this pro-
jection is guaranteed, but such kernels can only be concretely written down in a
small number of situations. The Leray transform on the other hand, is always
given by an explicit integral formula and can often be shown to be a bounded,
skew projection operator onto reasonable Hardy spaces. An intimate relation-
ship between Szegő projections and “Cauchy-like” integral operators C (the Leray
transform is just one such example) was noticed by Kerzman and Stein in [24,25].
They observed that detailed information about the Szegő projection can be ex-
tracted from the operator A := C∗ − C. See [10] for an expository treatment of
these ideas in the complex plane, and [9,12,13,28] for more recent developments.

There are important reasons to think of complex projective space (not affine
space) as the ideal setting in which to study the Leray transform. Following the
point of view taken in [1], we maintain that C-convexity most naturally belongs
in CPn due to the duality seen between points and hyperplanes. Formula (2.1b)
shows that C-convexity is built into the definition of L: the denominator of LS
vanishes on the supporting complex hyperplanes of S, and C-convexity is precisely
the condition needed for this hyperplane to avoid the domain bounded by S. The
set of complex hyperplanes—and therefore the set of C-convex hypersurfaces—is
preserved under projective automorphism. In Section 2.2.3, we define the pre-
ferred measure µ̃S. It follows from work of Bolt [11] that if the Leray kernel is
written in terms of µ̃S, then it admits a projective transformation law (cf. (2.13)).

This material is consolidated into a satisfying circle of ideas in Section 6, where
L is used to bridge the notions of function-theoretic and projective geometric du-
ality. We construct a projectively invariant Hardy space on each Mγ , then show
that its dual space can be naturally identified with the pullback of the invariant
Hardy space on the dual hypersurface. Unlike Bergman spaces which come nat-
urally equipped with a transformation law, Hardy spaces only transform nicely if
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set up with respect to very specific measures. This is where our preferred mea-
sure comes in: µ̃Mγ = µ̃ is shown to be a constant multiple of some µr , r ∈ I0.
Therefore, Theorem 1.1 allows us to define the Hardy space

H2(Mγ , µ̃) := L(L2(Mγ, µ̃)).

By its construction, this space admits a projective transformation law. (One im-
portant order of business is the verification that functions in this space actually
correspond to holomorphic functions on the domain Ωγ . This turns out to be the
case, but the proof is postponed until Appendix A.)

In Section 6.1 we show that the projective dual of Mγ can be represented
by Mγ∗ (where γ∗ = γ/(γ − 1) is the Hölder conjugate), and we construct a
diffeomorphism w : Mγ → Mγ∗ . The pullback of this map is used to define the
preferred dual measure w∗(µ̃Mγ∗ ) := µ̃∗Mγ = µ̃∗, along with the dual Hardy space

H2
dual(Mγ , µ̃

∗) := w∗(H2(Mγ∗ , µ̃Mγ∗ )).

A third measure of interest facilitates a bilinear pairing of these two Hardy
spaces. The pairing measure ν appears in [6] as part of a universal formulation
of the Leray transform (see Theorem 6.7 below); also see [1]. In the Mγ setting,
ν is a constant multiple of σ from Theorem 1.1. A multiplicative constant can
be specified to give a sharp Cauchy-Schwarz inequality relating µ̃, µ̃∗, and ν: for
f ∈ L2(Mγ , µ̃) and g ∈ L2(Mγ , µ̃∗),

∣∣∣∣
∫

Mγ
fg ν

∣∣∣∣ ≤
∥∥f
∥∥2
L2(Mγ ,µ̃)

∥∥g
∥∥2
L2(Mγ ,µ̃∗),

where equality is achieved for any such f (likewise for any such g). Consider now
the map

χγ : L2(Mγ , µ̃
∗)→ (L2(Mγ , µ̃))

∗

given by χγ(g) : f ֏
∫

Mγ
fg ν, along with the companion map

χ̂γ : H2
dual
(Mγ , µ̃

∗)→ (H2(Mγ , µ̃))
∗

given by the restriction χ̂γ(g) = χγ(g)|H2(Mγ ,µ̃).
In Section 6.4 it is shown that χ̂γ induces a faithful representation of the

dual space, and that the efficiency of the Hardy space pairing is measured by the
appropriate norm of L, as follows.

Theorem 1.7. The operator χ̂γ : H2
dual(Mγ , µ̃

∗) → (H2(Mγ , µ̃))∗ is invertible
with norm

‖χ̂−1
γ ‖ = ‖L‖L2(Mγ ,µ̃).
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The paper is organized as follows. Sections 2.1–2.3 cover necessary back-
ground material, while Section 2.4 is included to collect frequently used notation.
Section 3.1 is concerned with geometric symmetries ofMγ , which greatly assist our
analysis of Lγ in Sections 3.2–3.5. (The computations in Section 3 only involve
the measure σ , but the stage there is set for the larger class of measures consid-
ered later.) In Section 3.6, we study the geometry of Mγ at infinity. Section 4
mainly concerns properties of the σ -symbol function Cσ (γ, k). In Section 5.1
we widen our scope and examine the action of L with respect to the more general
measures µr . Sections 5.2 and 5.3 focus on adjoints and other related operators.
Section 6 begins with an introduction to projective duality, leading directly into a
detailed study of the projective dual ofMγ in Section 6.1. Section 6.2 is concerned
with certain distinguished measures on Mγ , while 6.3 and 6.4 set up the invari-
ant Hardy spaces and their dual spaces. A computationally intensive Appendix is
included at the end of the paper to establish crucial facts without disrupting the
exposition of our main results.

Lastly, the authors wish to emphasize our surprise at the exactness of many
results in this paper. We suspect that mathematicians interested in special function
theory may be particularly drawn to computations found in Sections 4.1, 4.2, 5.1
and Appendix A.

2. BACKGROUND AND PRELIMINARIES

2.1. The Leray transform. A domain Ω ⊂ Cn is said to be C-convex if its
intersection with any complex line is both connected and simply connected (when
non-empty). It is said to be C-linearly convex if the complement can be written as
the union of complex hyperplanes. These two notions coincide when the bound-
ary of Ω is C1 (see Section 2.5 in [1]). A hypersurface S bounding a domain Ω is
said to be C-convex (respectively, C-linearly convex) if Ω is C-convex (respectively,
C-linearly convex). A hypersurface S that is locally projectively equivalent to a
strongly convex hypersurface is said to be strongly C-convex. (Section 5.2 of [4]
discusses equivalent characterizations of strong C-convexity.)

Let S ⊂ Cn be a C-linearly convex hypersurface with defining function ρ and
f a function defined on S. The Leray transform maps f to a holomorphic func-
tion onΩ whenever the following integral makes sense (Theorem A.1 in Appendix
A gives conditions on f which guarantee the holomorphicity of Lf on Ωγ):

LSf (z) :=
∫

S
f (ζ)LS(z, ζ),(2.1a)

LS(z, ζ) := 1
(2πi)n

∂ρ(ζ)∧ (∂̄ ∂ρ(ζ))n−1

〈∂ρ(ζ), (ζ − z)〉n .(2.1b)

Note that the Leray kernel LS is a form of bi-degree (n,n−1). Here, 〈·, ·〉 denotes
the natural bilinear pairing between (1,0)-forms and vectors. This definition is
independent of the choice of ρ (see Chapter IV of [33] for more information).
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Separate the Leray kernel (2.1b) into two pieces, each of which does depend
on the choice of defining function:

ℓρ(z, ζ) := 1
〈∂ρ(ζ), (ζ − z)〉n(2.1c)

λρ(ζ) := 1
(2πi)n

∂ρ(ζ) ∧ (∂̄ ∂ρ(ζ))n−1.(2.1d)

We refer to λρ as the Leray-Levi measure for the defining function ρ, often suppress-
ing the subscript ρ when it is clear from context.

Now calculate the pieces of the Leray transform on Mγ . Using the defining
function

(2.2) ρ(z) = |z1|γ − Im (z2),

equations (2.1c) and (2.1d) yield

ℓρ(z, ζ) =
4

(γζ̄1|ζ1|γ−2(ζ1 − z1)+ i(ζ2 − z2))2
,(2.3a)

λρ(ζ) =
γ2

32π2i
|ζ1|γ−2

dζ2 ∧ dζ̄1 ∧ dζ1.(2.3b)

In this paper, the Leray transform LMγ will frequently be denoted by L, or some-
times by Lγ when it is important to keep track of the exponent. Equations (2.1a)
and (2.1b) give

Lf (z) = γ2

8π2i

∫

Mγ
f (ζ)

|ζ1|γ−2
dζ2 ∧ dζ̄1 ∧ dζ1

[γζ̄1|ζ1|γ−2(ζ1 − z1)+ i(ζ2 − z2)]2
.(2.3c)

2.2. Projective invariants and transformation laws. Recall that, with re-
spect to the standard affinization, automorphisms of CP2 have the form

(2.4) X̂ : (z1, z2)֏

(
D + Ez1 + Fz2

A+ Bz1 + Cz2
,
G+Hz1 + Iz2

A+ Bz1 + Cz2

)
,

where X̂ is induced by the invertible matrix

X :=



A B C
D E F
G H I


 .

In homogeneous coordinates, these are linear maps. Projective automorphisms
map strongly C-convex hypersurfaces to strongly C-convex hypersurfaces (see Sec-
tion 5.2 of [4]). See also [14, 15] for a detailed treatment of Möbius geometry on
hypersurfaces.
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Direct computation reveals the Jacobian determinant of X̂ is given by

det X̂′ = detX
(A+ Bz1 + Cz2)3

.

A similar formula holds in dimension n with exponent n+1 in the denominator.
Below we will have occasion to refer to (det X̂′)n/(n+1); it is clear that there are
n+1 distinct well-defined branches of this function. It is understood that the same
branch is to be used within a single computation when this expression appears
repeatedly.

2.2.1. A projective scalar invariant. For a strongly pseudoconvex hyper-
surface S ⊂ C2 with defining function ρ and a point ζ ∈ S, the scalar quantity

(2.5) βS(ζ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det




0 ρz1 ρz2

ρz1 ρz1z1 ρz2z1

ρz2 ρz1z2 ρz2z2




det




0 ρz1 ρz2

ρz̄1 ρz1z̄1 ρz2z̄1

ρz̄2 ρz1z̄2 ρz2z̄2




(ζ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(where subscripts denote derivatives) is directly invariant under projective auto-
morphisms. This scalar is the absolute value of an invariant tensor BS introduced
by the first author in Section 5.3 of [4]. A computation shows that for all ζ ∈ Mγ ,

(2.6) βMγ (ζ) =
|γ − 2|
γ

.

2.2.2. Fefferman surface measure. On page 259 of [20], Fefferman intro-
duced an invariant measure µFef

S for an arbitrary smooth strongly pseudoconvex
hypersurface S ⊂ Cn. Viewing µFef

S as a positive (2n− 1)-form, it is characterized
by the equation

(2.7) µFef
S ∧ dρ = cnM(ρ)1/(n+1)ωCn ,

where ωCn is the Euclidean volume 2n-form, ρ is a defining function for S, and
M(ρ) denotes Fefferman’s complex Monge-Ampère operator defined by

(2.8) M(ρ) = (−1)n det

(
ρ ρzj
ρz̄k ρzj z̄k

)
.

(The subscripts denote differentiation and cn is a dimensional constant. In Sec-
tion 6.2 we specify an explicit value of this constant that is convenient for the
purposes of this paper.)
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Fefferman’s measure satisfies the transformation law

(2.9) Ψ∗(µFef

Ψ(S)) = |detΨ ′|2n/(n+1)µFef
S

for CR diffeomorphisms Ψ (see [23]).
If a Szegő projection operator for a compact strongly pseudoconvex S is de-

fined with respect to µFef
S and Ψ is a CR diffeomorphism with a well-defined

branch of (detΨ ′)n/(n+1), then from (2.9) we find that the operator

f ֏ (detΨ ′)n/(n+1) · (f ◦ Ψ)

maps L2(Ψ(S), µFef

Ψ(S)) isometrically to L2(S, µFef
S ), preserving the corresponding

Hardy spaces. This leads to the transformation law demonstrated in [23]:

(2.10) SS((detΨ ′)n/(n+1)(f ◦ Ψ)) = (detΨ ′)n/(n+1)((SΨ(S)f ) ◦ Ψ).

From (2.2), (2.7), and (2.8), the Fefferman measure onMγ is seen to be given
by

µFef
Mγ = c2

γ2/3

27/3i
|ζ1|(γ−2)/3

dζ2 ∧ dζ̄1 ∧ dζ1.

2.2.3. The preferred measure. For the general theory of the Leray transform
it is useful to work with a modified version of Fefferman’s measure. In Section 8
of [4], the first author defines a projective modification of µFef

S tailored to suit a
natural pairing of Hardy spaces for which the Fefferman measure is not optimal;
we examine this pairing in Section 6.4.

Throughout this paper, we refer to this modification of Fefferman’s measure
as the preferred measure, and denote it by µ̃S. In two dimensions, it is given by the
formula

µ̃S(ζ) =
µFef
S (ζ)

3
√

1− βS(ζ)2
,

where βS(ζ) is defined in (2.5). By (2.6), this invariant is constant on Mγ . Thus,

µ̃Mγ =
γ2/3

22/3(γ − 1)1/3
µFef
Mγ(2.11)

= c2
γ4/3

8(γ − 1)1/3i
|ζ1|(γ−2)/3

dζ2 ∧ dζ̄1 ∧ dζ1.

Equation (2.9) and the projective invariance of βS(ζ) now show that

(2.12) Ψ∗(µ̃Ψ(S)) = |detΨ ′|4/3µ̃S

for any projective automorphism Ψ .
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For such Ψ we can use (2.12) to deduce that a transformation law analogous
to (2.10) holds for Szegő projections based on the preferred measure µ̃S. If S is
strongly C-convex and Ψ is a projective automorphism, then Bolt [11] has shown
that the Leray transform satisfies the same transformation law. In two dimensions,
this is

(2.13) LS((detΨ ′)2/3(f ◦ Ψ)) = (detΨ ′)2/3((LΨ(S)f ) ◦ Ψ).

2.3. Projective invariants and the essential norm conjecture. In [6], the
authors conjecture a quantitative relationship between the projective invariant
βS(ζ) defined in (2.5) and the essential norm of the Leray transform on smoothly
bounded, strongly C-convex hypersurfaces S ⊂ C2. We restate a version of this
conjecture here.

Conjecture 2.1. Let S ⊂ C2 be a smoothly bounded, strongly C-convex hyper-
surface, and L its Leray transform. There is a “reasonable” family F of measures on S
such that if µ ∈ F , the essential L2(S, µ)-norm is given by

(2.14) ‖L‖L2
ess(S,µ) = sup

ζ∈S

1
4
√

1− βS(ζ)2
.

At this stage, the word “reasonable” is left intentionally vague, but there is
good reason to expect such a relationship. This has been previously established
(Theorem 3 in [9]) when S is the boundary of a C2-smooth, bounded, strongly
convex Reinhardt domain, and µ is any continuous, positive multiple of surface
measure on S.

While Conjecture 2.1 only pertains to bounded hypersurfaces, the invariant
βS(ζ) does not require S to be bounded. It was noted in [4] that this invariant is
constant for both Sβ (defined in (1.4)) and Mγ . It easily follows from (2.5) that

βSβ(ζ) = β and βMγ =
|γ − 2|
γ

,

and consequently, the quantity on the righthand side of (2.14) is equal to

(2.15)
1

4
√

1− β2
when S = Sβ and

√
γ

2
√
γ − 1

when S =Mγ .

We raise the following question:

(∗)
∥∥∥∥

Are the quantities in (2.15) connected to the Leray
transform in a meaningful way?

In [6], the authors gave an affirmative answer to (∗) on Sβ by proving that

‖L‖L2(Sβ,σ) =
1

4
√

1− β2
= ‖L‖L2

ess(Sβ,σ),
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where σ = dx1 ∧ dy1 ∧ dx2 is (a constant multiple of ) the Leray-Levi measure
corresponding to the defining function ρ(ζ) = |ζ1|2 + βRe(ζ2

1)− Im(ζ2). The
norm coincides with the essential norm because the former is attained on an infi-
nite dimensional subspace of L2(Sβ, σ).

In the present paper, (∗) is answered affirmatively on Mγ , but the interpreta-
tion of this quantity is slightly different. Indeed, Theorem 1.1 and Remark 4.3
show that

(2.16) ‖L‖L2(Mγ ,σ) =
γ

2
√
γ − 1

= ‖L‖L2
ess(Mγ ,σ)

,

where now σ = αγ−1dα ∧ dθ ∧ ds is (a constant multiple of ) the Leray-Levi
measure corresponding to the defining function ρ(ζ) = |ζ1|γ − Im (ζ2). Notice
that (2.16) is the square of the desired quantity in (2.15). But this desired quantity
does naturally arise (Theorem 1.6) as the high-frequency limit norm of L in the
space L2(Mγ , µr ) for every measure of the form µr = αr dα ∧ dθ ∧ ds, r ∈ R

(which clearly includes σ ):

lim sup
k→∞

‖Lk‖L2(Mγ ,µr ) =
√

γ

2
√
γ − 1

.

This suggests a connection between the geometric invariant βS on similar un-
bounded hypersurfaces (those admitting both S1 and R actions) and the behavior
of the Leray transform at high frequencies. This connection is further developed
in the coming work of Edholm and Shelah [19], where a much more general class
of such hypersurfaces is shown to satisfy an analogue of Conjecture 2.1. In the
two-dimensional Reinhardt setting, the high frequency limit norm coincides with
the essential norm, but Mγ shows these two notions do not necessarily agree on
unbounded domains. The high frequency limit norm can, however, be conceptu-
alized as a generalized essential norm, as we now shall see.

2.3.1. The grade-essential-norm. Given a Hilbert space E, recall that the
norm-closure of the space of finite-rank operators is the two-sided ideal of compact
operators, and that the essential norm of a bounded operator T : E → E is the
distance to the ideal of compact operators; equivalently, the essential norm of T is
its norm in the quotient Calkin algebra. (See [17] for more information.)

Consider on the other hand a Hilbert space E admitting an orthogonal de-
composition

E =
∞⊕

k=−∞
Ek.
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(The decomposition is also known as a Z-grading of E.) Call a bounded operator
T : E → E decomposable if it may be written as

T =
∞⊕

k=−∞
Tk

with each Tk : Ek → Ek. (One way this could arise is from Fourier series decom-
position based on an S1 action on E commuting with T.) The decomposable
operators form an algebra.

We will call a decomposable T grade-compact if it is the norm-limit of op-
erators taking values in span{E−k, E−k+1, . . . , Ek}; equivalently, if ‖Tk‖ → 0 as
|k| → ∞.

We define the grade-essential-norm of a decomposable T to be the distance
(lim sup‖Tk‖) from T to the space of grade-compact decomposable operators.
This is consistent with Lefèvre’s notion of a generalized essential norm [31]. It is
clear that the grade-essential-norm coincides with the high-frequency limit norm
defined in (1.3) above.

The grade-compact decomposable operators form a two-sided ideal in the
algebra of decomposable operators; the grade-essential-norm induces a norm on
the corresponding quotient algebra.

Remark 2.2. In Theorem 5.3, we will have occasion to consider situations in
which finitely many of the Tk are unbounded; in such a setting we still refer to
lim sup‖Tk‖ as the grade-essential norm.

2.4. Notation. Throughout this paper, a number of different measures oc-
cur, and precise notation is required to prevent ambiguity. We include this section
to collect this material in one central location.

2.4.1. Measures on Mγ . We begin by gathering formulas for previously dis-
cussed measures onMγ, along with others that will appear in Sections 5 and 6. The
measures are given both in (ζ1, ζ2) coordinates and in terms of the parametriza-
tion of Mγ given by (αeiθ, s + iαγ), where α = |ζ1|, θ = arg(ζ1), and s =
Re(ζ2).

The Leray-Levi measure that is associated with the defining function ρ(z) =
|z1|γ − Im (z2) is

λρ =
γ2

32π2i
|ζ1|γ−2

dζ2 ∧ dζ̄1 ∧ dζ1(2.17)

= γ2

16π2
αγ−1

ds ∧ dα∧ dθ.

In (6.8), we introduce a family νA of pairing measures parametrized by matri-
ces A ∈ GL(n + 1,C). The matrices are used to induce various affinizations of
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projective space, and in our work each Mγ corresponds to a matrix Aγ , defined in
(6.4). For a fixed γ > 1, the pairing measure we are interested in is

νAγ = 4λρ =
γ2

4π2
αγ−1

ds ∧ dα∧ dθ.

The preferred measure µ̃S defined in (2.11) will be used in Section 6 to con-
struct a family of invariant Hardy spaces on Mγ . It takes the form

µ̃Mγ = c2
γ4/3

8(γ − 1)1/3i
|ζ1|(γ−2)/3

dζ2 ∧ dζ̄1 ∧ dζ1

= c2
γ4/3

4(γ − 1)1/3
α(γ+1)/3

ds ∧ dα∧ dθ.

Also in Section 6, we meet the counterpart to µ̃S, which we call the preferred
dual measure. This is obtained by taking the preferred measure on the projective
dual hypersurface and pulling it back to Mγ . The representation of the dual hy-
persurface (and hence the measure) in affine space depends on an affinization of
projective space, and therefore on a matrix. These measures are used to construct
the duals of the Hardy spaces mentioned above. With respect to the aforemen-
tioned matrix Aγ , the preferred dual measure is given by

µ̃
∗,Aγ
Mγ = c2

γ4/3

8(γ − 1)i
|ζ1|5(γ−2)/3

dζ2 ∧ dζ̄1 ∧ dζ1

= c2
γ4/3

4(γ − 1)
α(5γ−7)/3

ds ∧ dα∧ dθ.

Notice that these measures take a very specific form when written in (α, θ, s)
coordinates. For r ∈ R, define the measure

(2.18) µr := αr ds ∧ dα∧ dθ = 1
2i
|ζ1|r−1

dζ2 ∧ dζ̄1 ∧ dζ1,

together with the family of all constant positive multiples of µr :

Fr = {cµr : c ∈ R+}.

Thus,
λρ , ν

Aγ ∈ Fγ−1, µ̃Mγ ∈ F(γ+1)/3, µ̃
∗,Aγ
Mγ ∈ F(5γ−7)/3.

Finally, because the measure µγ−1 occurs so frequently throughout the paper, we
give it its own symbol (as already introduced in Section 1):

σ = αγ−1
ds ∧ dα∧ dθ.
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We emphasize the trivial fact that though multiplying a measure by a positive
constant will uniformly scale the norms of functions, norms of operators remain
unchanged. Indeed, if µ is a measure on Mγ and T is a bounded operator on
L2(Mγ , µ), then for all constants c > 0 we have

‖T‖L2(Mγ ,µ) = ‖T‖L2(Mγ ,cµ).

2.4.2. Inner products, norms and adjoints. Let µ be a measure onMγ and
f , g ∈ L2(Mγ , µ). We often write their L2(Mγ , µ)-inner product by

〈f , g〉µ :=
∫

Mγ
f (ζ)g(ζ)µ(ζ).

The L2(Mγ, µ)-norm is similarly defined:

‖f‖µ =
√
〈f , f 〉µ.

Now let µr be the measure in (2.18). Throughout this paper, we shall fre-
quently encounter the following one-dimensional integral related to µr . For
f , g ∈ L2((0,∞),αrdα), define the one-dimensional inner product

(2.19) 〈f , g〉(µr ,1) :=
∫∞

0
f (α)g(α)αr dα.

Similarly, define the norm

‖f‖(µr ,1) =
√
〈f , f 〉(µr ,1).

If T : L2(Mγ , µ) → L2(Mγ , µ) is a bounded operator, it admits a bounded
adjoint T(∗,µ), satisfying

〈Tf , g〉µ = 〈f ,T(∗,µ)g〉µ.

It is trivial to see that

T
(∗,µ) = T(∗,cµ)

for all constants c > 0, a fact that is repeatedly used in Section 6.

3. GEOMETRY AND ANALYSIS ON Mγ

Mγ is both strongly C-convex and real analytic away from {ζ1 = 0} for each γ > 1.
But on this set, these properties simultaneously hold only in the special case of
γ = 2. Mγ is weakly C-convex here when γ > 2, and it fails to be C2 smooth when
1 < γ < 2. (It is only Cγ smooth.) These two notions are highly intertwined (see
[9] for a detailed study of this in the Reinhardt setting). The interplay between
C-convexity and smoothness is further illuminated from a projective dual point of
view (see Section 6). At infinity, the behavior of Mγ is even less regular; this is the
subject of Section 3.6.
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3.1. Projective automorphisms of Mγ. Certain affine maps preserving Mγ
are examined here. These play an important role in our analysis of the Leray
transform. The three types of maps considered are the following:

• Rotations in the first coordinate: rθ(z1, z2) = (eiθz1, z2), θ ∈ [0,2π).
• Real translations in the second coordinate: ts(z1, z2)=(z1, z2+s), s ∈ R.
• Non-isotropic dilations: δα(z1, z2) = (αz1, αγz2), α > 0.

It is easily verified that the following pairs of maps commute:

• rθ1 ◦ rθ2 = rθ1+θ2 = rθ2 ◦ rθ1 .
• ts1 ◦ ts2 = ts1+s2 = ts2 ◦ ts1 .
• δα1 ◦ δα2 = δα1α2 = δα2 ◦ δα1 .
• rθ ◦ ts = ts ◦ rθ .
• rθ ◦ δα = δα ◦ rθ.

(Note though, that ts ◦δα ≠ δα ◦ ts .) Because rθ commutes with both ts and δα,
this rotational symmetry is the starting point of our analysis.

Define the set
V = {(ζ1, ζ2) ∈Mγ : ζ1 = 0}.

Here, V is a copy of R sitting insideMγ . Each rθ, ts , δα fixes V ; collectively, they
act transitively on Mγ \ V . Indeed, we have the following result.

Theorem 3.1. Given any pair of points z,ζ ∈ Mγ \V , there is a unique map of
the form ts ◦ rθ ◦ δα sending z ֏ ζ.

Proof. The numbers α and θ are determined by setting αeiθ = ζ1z1
−1. The

second variable is appropriately adjusted by setting s = Re(ζ2)−αγ Re(z2). ❐

3.2. Leray reparametrization. The symmetries rθ , ts , δα lead to a repara-
metrization of Mγ . Write z,ζ ∈ Mγ as

z = (αzeiθz , sz + iαγz),(3.1)

ζ = (αζeiθζ , sζ + iαγζ),(3.2)

where each α ≥ 0, each θ ∈ [0,2π), and each s ∈ R. Equation (2.17) says the
Leray-Levi measure from (2.3b) takes the form

λρ =
γ2

32π2i
|ζ1|γ−2

dζ2 ∧ dζ̄1 ∧ dζ1 =
γ2

16π2
α
γ−1
ζ dsζ ∧ dαζ ∧ dθζ .

Now, re-write the Leray transform. Expression (2.3c) becomes

(3.3) Lf (z)

= γ2

4π2

∫

Mγ
f (ζ)

α
γ−1
ζ dsζ ∧ dαζ ∧ dθζ

[((γ − 1)αγζ +α
γ
z + i(sζ − sz))− (γαzαγ−1

ζ ei(θz−θζ))]2
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= γ2

4π2

∫

Mγ

f (ζ)

[A− Bei(θz−θζ)]2σ(ζ),

where σ(ζ) = αγ−1
ζ dsζ ∧ dαζ ∧ dθζ and

(3.4) A := (γ − 1)αγζ +α
γ
z + i(sζ − sz), B := γαzαγ−1

ζ .

3.3. Series expansion. The S1 action on Mγ yields a decomposition of the
L2-space

(3.5) L2(Mγ , σ) =
∞⊕

k=−∞
L2
k(Mγ , σ),

where functions in L2
k(Mγ , σ) have the form fk(s,α)eikθ.

Each f (ζ) = f (sζ , αζ , θζ) ∈ L2(Mγ , σ) decomposes as a partial Fourier
series

(3.6) f (sζ , αζ , θζ) =
∞∑

k=−∞
fk(sζ , αζ)e

ikθζ ,

and the following version of Parseval’s theorem holds:

∥∥f
∥∥2
L2(Mγ ,σ)

=
∫

Mγ
|f (sζ , αζ , θζ)|2αγ−1

ζ dsζ dαζ dθζ

=
∫ 2π

0

∫∞

0

∫∞

−∞

( ∞∑

j,k=−∞
fj(sζ , αζ)fk(sζ , αζ)e

i(j−k)θζ
)
α
γ−1
ζ dsζ dαζ dθζ

= 2π
∞∑

k=−∞

∫∞

0

∫∞

−∞
|fk(sζ , αζ)|2αγ−1

ζ dsζ dαζ .

Return now to the computation of the Leray transform. The rational function
appearing in the integrand of (3.3) may be expanded as a series as a consequence
of the following result.

Lemma 3.2. Let x,y ≥ 0 and γ > 1. Then,

(3.7) xγ + (γ − 1)yγ ≥ γxyγ−1,

with equality if and only if x = y .

Proof. Divide both sides of (3.7) by yγ and set u = x/y . Now, let f (u) =
uγ − γu+ (γ − 1). This function is convex and attains its global minimum of 0
at u = 1. ❐
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Consider the formula for Lf in (3.3). Lemma 3.2 shows |B/A| < 1, unless
both sz = sζ and αz = αζ . Away from this set of σ -measure 0,

1

[A− Bei(θz−θζ)]2 =
1
A2

∞∑

k=0

(k+ 1)
(
B

A

)k
eik(θz−θζ ).

Returning now to (3.3),

Lf (sz, αz, θz) =
γ2

4π2

∫

Mγ

f (ζ)σ(ζ)

[A− Bei(θz−θζ)]2(3.8)

=
∞∑

k=0

γ2(k+ 1)
4π2

∫

Mγ
f (ζ)

Bk

Ak+2
e−ikθζσ(ζ)eikθz

:=
∞∑

k=0

Λkf (sz, αz)eikθz .

Now replace f with its Fourier expansion (3.6) to obtain

Λkf (sz, αz)(3.9)

= γ
2(k+ 1)

4π2

∫

Mγ

( ∞∑

j=−∞
fj(sζ , αζ)e

ijθζ
) Bk
Ak+2

e−ikθζσ(ζ)

= γ
2(k+ 1)

4π2

∞∑

j=−∞

∫

Mγ

Bk

Ak+2
fj(sζ , αζ)e

i(j−k)θζαγ−1
ζ dsζ dαζ dθζ

= γ
2(k+ 1)

2π

∫∞

0

∫∞

−∞

Bk

Ak+2
fk(sζ , αζ)α

γ−1
ζ dsζ dαζ .

This gives the series decomposition of the Leray transform.

Definition 3.3. For each nonnegative integer k, define the sub-Leray operator
Lk to be the restriction of L to the subspace L2

k(Mγ , σ).

Remark 3.4. We shall later consider the same decomposition in the space
L2(Mγ , µr ).

The orthogonal decomposition (3.5) shows L =⊕∞
k=0 Lk, and (3.8) and (3.9)

give that
Lkf (sz, αz, θz) = Λkf (sz, αz)eikθz .

3.4. Fourier transforms. We continue the analysis of Lk by taking a closer
look at Λkf (sz, αz). The goal is to use the Fourier transform and understand the
unitarily equivalent operator F−1LkF .

Importing A and B from (3.4),

(3.9) = γ
k+2(k+ 1)αkz

2π

∫∞

0
α
(k+1)(γ−1)
ζ
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×
∫∞

−∞

fk(sζ , αζ)

[(γ − 1)αγζ +α
γ
z + i(sζ − sz)]k+2

dsζ dαζ

= (iγ)
k+2(k+ 1)αkz

2π

∫∞

0
α
(k+1)(γ−1)
ζ

×
∫∞

−∞

fk(sζ , αζ)

[(sz − sζ)+ i((γ − 1)αγζ +α
γ
z)]k+2

dsζ dαζ .

This shows that

Λkf (sz, αz) =
(iγ)k+2(k+ 1)αkz

2π
(3.10)

×
∫∞

0
α
(k+1)(γ−1)
ζ (fk(·, αζ)∗Gk)(sz)dαζ ,

where the function Gk is given by

(3.11) Gk(s) := 1

(s + i((γ − 1)α
γ
ζ +α

γ
z ))k+2

.

To better understand the integral defining Λkf , consider the Fourier trans-
form F and its inverse F−1: For g ∈ L1(R)∩ L2(R),

Fg(ξ) =
∫∞

−∞
g(s)e−2πisξ

ds, F−1g(ξ) =
∫∞

−∞
g(s)e2πisξ

ds.

Under this convention, F and F−1 are well known to transform convolutions to
products

(3.12) F(g∗h)(ξ) = Fg(ξ)·Fh(ξ), F−1(g∗h)(ξ) = F−1g(ξ)·F−1h(ξ).

These operators also extend to isometries of L2(R):

‖g‖L2(R) = ‖Fg‖L2(R) = ‖F−1g‖L2(R).

Applying F−1 in the sz variable to (3.10) yields

F−1Λkf (ξ,αz) =
(iγ)k+2(k+ 1)αkz

2π
(3.13)

×
∫∞

0
α
(k+1)(γ−1)
ζ F−1(fk(·, αζ)∗Gk)(ξ)dαζ .

By (3.12),

F−1(fk(·, αζ)∗Gk)(ξ) = F−1fk(ξ,αζ) · F−1Gk(ξ).(3.14)
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Now, calculate F−1Gk(ξ). From (3.11), notice the term

C := (γ − 1)αγζ +α
γ
z > 0, unless both αz = αζ = 0.

Proposition 3.5. Let C > 0. Then, the inverse Fourier transform of Gk(s) =
1/(s + iC)k+2 is

F−1Gk(ξ) =
∫∞

−∞

e2πisξ

(s + iC)k+2
ds =





0, ξ ≥ 0,

−(2πi)
k+2

(k+ 1)!
ξk+1e2πξC , ξ < 0.

Proof. Since C > 0, the function Hk(z) := e2πizξ/(z + iC)k+2 has a pole in
the lower half plane. For any R > 0, the integral

∫ R

−R

e2πisξ

(s + iC)k+2
ds

can be thought of as a piece of a contour integral around a semicircle with base on
the x-axis.

When ξ > 0, consider such a semicircle in the upper half plane traversed
counterclockwise. It can be seen that the radial portion of the integral tends to 0
as R → 0. On the other hand, this function is holomorphic inside this semicircle
contour. Thus, Cauchy’s theorem implies F−1Gk(ξ) = 0 for ξ > 0.

When ξ < 0, consider a semicircle in the lower half plane traversed clockwise.
For R sufficiently large, the contour encloses the pole of Hk. As above, the radial
portion of this integral tends to 0 as R → 0. Thus, Cauchy’s integral formula
shows

lim
R→∞

∫ R

−R

e2πisξ

(s + iC)k+2
ds = − 2πi

(k+ 1)!
dk+1

dsk+1
(e2πisξ)

∣∣∣∣
s=−iC

= −(2πi)
k+2

(k+ 1)!
ξk+1e2πξC ,

completing the proof. ❐

Combining (3.13) and (3.14) with Proposition 3.5 shows

F−1Λkf (ξ,αz) = ηk(ξ)τk(ξ,αz)(3.15)

×
∫∞

0
F−1fk(ξ,αζ)κk(ξ,αζ)α

γ−1
ζ dαζ ,

where

ηk(ξ) =
(−2πξ)k+1γk+2

k!
· 1{ξ<0},(3.16)
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τk(ξ,αz) = αkze2πξα
γ
z · 1{ξ<0},(3.17)

κk(ξ,αζ) = αk(γ−1)
ζ e2πξ(γ−1)α

γ
ζ · 1{ξ<0},(3.18)

and 1{ξ<0} is the indicator function of the set {ξ < 0}. These three functions
occur frequently throughout the rest of the paper.

Recall the one-dimensional inner product 〈·, ·〉(σ ,1) defined by formula (2.19):

〈f , g〉(σ ,1) :=
∫∞

0
f (α)g(α)αγ−1

dα.

We summarize this in the following result.

Proposition 3.6. The operator F−1LkF is given by

(3.19) F−1
LkFf (ξ,αz, θz) = ηk(ξ)τk(ξ,αz)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)eikθz ,

where f (ξ,αz, θz) =
∑
j fj(ξ,αz)e

ikθz ∈ L2(Mγ , σ).

Proof. By its definition, Lk is only a nonzero operator on L2
k(Mγ , σ). Since

Ff =∑j Ffjeijθ, we have

F−1
Lk(Ff )(ξ,αz, θz) = F−1ΛkFfk(ξ,αz)eikθz

= ηk(ξ)τk(ξ,αz)
(∫∞

0
fk(ξ,αζ)κk(ξ,αζ)α

γ−1
ζ dαζ

)
eikθz

= ηk(ξ)τk(ξ,αz)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)eikθz ,

where the second equality follows from (3.15). ❐

3.5. Norms of the sub-Leray operators. Let us first record a computational
lemma that will be used several times throughout the paper.

Proposition 3.7. Fix x > −1, y > 0, γ ≥ 1. Then,

∫∞

0
αxe−yα

γ
dα = 1

γ
y−(1+x)/γΓ

(
1+ x
γ

)
.

Proof. This follows from the substitution t = yαγ and the definition of the
Γ -function. ❐

This immediately implies the following result.

Corollary 3.8. Let τk(ξ, ·) and κk(ξ, ·) be as defined in (3.17) and (3.18).
Then, for ξ < 0,

∥∥τk(ξ, ·)
∥∥2
(σ ,1) =

1
γ
· (−4πξ)−1−2k/γΓ

(
2k
γ
+ 1

)
,(3.20)

∥∥κk(ξ, ·)
∥∥2
(σ ,1) =

1
γ
· (−4πξ(γ − 1))2k/γ−2k−1Γ

(
1+ 2k− 2k

γ

)
.(3.21)
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Proof. Recall that τk and κk are nonzero only for ξ < 0. Now, by choosing
the appropriate values of x and y in Proposition 3.7,

∥∥τk(ξ, ·)
∥∥2
(σ ,1) =

∫∞

0
α

2k+γ−1
z e4πξα

γ
z dαz

= 1
γ
· (−4πξ)−1−2k/γΓ

(
2k
γ
+ 1

)
,

∥∥κk(ξ, ·)
∥∥2
(σ ,1) =

∫∞

0
α
(2k+1)(γ−1)
ζ e4πξ(γ−1)α

γ
ζ dαζ

= 1
γ
· (−4πξ(γ − 1))2k/γ−2k−1Γ

(
1+ 2k− 2k

γ

)
. ❐

Now, consider a function f (ξ,αz, θz) = fk(ξ,αz)eiθz ∈ L2
k(Mγ , σ). Equa-

tion (3.19) and Cauchy-Schwarz show

|F−1
LkFf (ξ,αz, θz)|2 =(3.22)

= |ηk(ξ)|2 |τk(ξ,αz)|2 |〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)|2

≤ |ηk(ξ)|2 |τk(ξ,αz)|2
∥∥fk(ξ, ·)

∥∥2
(σ ,1)

∥∥κk(ξ, ·)
∥∥2
(σ ,1),

with equality if and only if fk(ξ, ·) is a multiple of κk(ξ, ·), that is,

(3.23) fk(ξ,αz) =mk(ξ)κk(ξ,αz),

where, recalling the definition of κk in (3.18), the multiplier function mk must
satisfy

(3.24)
∫ 0

−∞
|mk(ξ)|2 |ξ|2k/γ−2k−1

dξ < ∞.

Estimate (3.22) implies

∫∞

0
|F−1

LkFf (ξ,αz, θz)|2αγ−1
z dαz ≤

≤ |ηk(ξ)|2
∥∥τk(ξ, ·)

∥∥2
(σ ,1)

∥∥fk(ξ, ·)
∥∥2
(σ ,1)

∥∥κk(ξ, ·)
∥∥2
(σ ,1)

:= Cσ (γ, k)
∥∥fk(ξ, ·)

∥∥2
(σ ,1),

where the (ξ-independent) quantity

Cσ (γ, k) = |ηk(ξ)|2
∥∥τk(ξ, ·)

∥∥2
(σ ,1)

∥∥κk(ξ, ·)
∥∥2
(σ ,1).
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We call this the σ -symbol function. Combining equations (3.16), (3.20), and
(3.21), we see

Cσ (γ, k) =
Γ
(

2k
γ
+ 1

)
Γ
(

2k− 2k
γ
+ 1

)

Γ (k+ 1)2

(
γ

2

)2k+2

(γ − 1)2k/γ−2k−1.

Detailed analysis of the σ -symbol function is carried out in Section 4.

Remark 3.9. It is remarkable that Cσ (γ, k) is independent of ξ. The more
general symbol function Cµr (γ, k) calculated in Section 5.1 also shares this prop-
erty.

We now compute the norm of the operator Lk.

Theorem 3.10. The operator Lk : L2(Mγ , σ) → L2
k(Mγ , σ) is bounded with

norm given by

‖Lk‖L2(Mγ ,σ) =
√
Cσ (γ, k).

Proof. First, note that Lk is unitarily equivalent to F−1
LkF . Now,

∥∥F−1
LkFf

∥∥2
σ(3.25)

=
∫ 2π

0

∫∞

−∞

∫∞

0
|F−1

LkFf (ξ,αz, θz)|2αγ−1
z dξ dαz dθz

≤ Cσ (γ, k)
∫ 2π

0

∫∞

−∞

∥∥fk(ξ, ·)
∥∥2
(σ ,1) dξ dθz

= Cσ (γ, k)
∫ 2π

0

∫∞

−∞

∫∞

0
|fk(ξ,αz)|2αγ−1

z dαz dξ dθz

= Cσ (γ, k)
∥∥f
∥∥2
σ .

Equality in (3.25) holds if and only if fk is of the form given by (3.23) and (3.24).

❐

Theorem 3.11. The operator Lk : L2(Mγ , σ)→ L2
k(Mγ , σ) is a projection.

Proof. Let f ∈ L2(Mγ , σ). It must be shown that Lk ◦ Lk = Lk. Proceed by
conjugating by the Fourier transform. Proposition 3.6 says

F−1
Lk ◦ LkF(f )(3.26)

= F−1
LkF ◦F−1

LkF(f )
= F−1

LkF(ηk(ξ)τk(ξ,αz)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)eikθz)
= ηk(ξ)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)F−1

LkF(τk(ξ,αz)eikθz)
= ηk(ξ)2〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)τk(ξ,α′z)〈τk(ξ, ·), κk(ξ, ·)〉(σ ,1),
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where α′z denotes the radial part of the ζ1 variable after two applications of
F−1LkF .

From the definitions of τk and κk in (3.17) and (3.18),

〈τk(ξ, ·), κk(ξ, ·)〉(σ ,1) =
∫∞

0
τk(ξ,α)κk(ξ,α)α

γ−1
dα

= 1{ξ<0}

∫∞

0
αγ(k+1)−1e2πξγαγ

dα

= 1{ξ<0}
Γ (k+ 1)

(−2πξ)k+1γk+2
(3.27)

= 1
ηk(ξ)

,

where (3.27) follows from Proposition 3.7. Returning to (3.26), we now see that

F−1
Lk ◦ LkF(f ) = ηk(ξ)2〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)

× τk(ξ,α′z)〈τk(ξ, ·), κk(ξ, ·)〉(σ ,1)
= ηk(ξ)τk(ξ,α′z)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)
= F−1

LkF(f ).

This shows that F−1
Lk ◦ LkF = F−1

LkF and thus Lk ◦ Lk = Lk. ❐

3.6. Mγ at infinity. To understand the behavior of Mγ at infinity, apply
the projective automorphism Φ mapping (z1, z2)֏ (z1/z2,1/z2). This transfor-
mation swaps the line {z2 = 0} with the line at ∞. Setting M̃γ := Φ(Mγ), the
transformed hypersurface can be represented as follows:

M̃γ = {(z1, z2) : −|z2|γ−2 Im (z2) = |z1|γ}
= {(x1, y1, x2, y2) : −y2(x

2
2 +y2

2)
γ/2−1 = (x2

1 +y2
1)
γ/2}(3.28)

= {(r1e
iθ1 , r2e

iθ2) : −rγ−1
2 sinθ2 = rγ1 }.(3.29)

The behavior of M̃γ at z2 = 0 gives the behavior of Mγ at ∞. For any γ > 1,
(3.29) shows that sending r2 → 0 forces r1 → 0. This implies that the closure
of Mγ in CP2 contains a single point at infinity with homogeneous coordinates
[0 : 0 : 1]. We now consider the regularity here as follows.

Theorem 3.12. Let γ > 1. The closure of Mγ in CP2 fails to be a C1 submani-
fold near [0 : 0 : 1] except in the case γ = 2. However, Mγ is globally Lipschitz.

Proof. The discussion above lets us transfer the problem to M̃γ . If M̃γ were a
C1 manifold at the origin, then one of the four real variables in (3.28) would be
expressible as a C1 function of the other three in a neighborhood of the origin.
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Now, given the constraint in (3.28) that y2 ≤ 0, we see that the only possibility is
for y2 to be a function of x1, y1 and x2.

Starting from the equation (x2
1 + y2

1 )
γ/2 + y2(x

2
2 + y2

2 )
γ/2−1 = 0, implicit

differentiation shows

(3.30)
∂y2

∂x2
= (2− γ)x2y2

x2
2 + (γ − 1)y2

2

= (2− γ) cosθ2 sinθ2

1+ (γ − 2) sin2 θ2
.

Now set, for instance, θ2 = π and θ2 = 5π/4 in (3.30), and see that different
values are obtained, except in the case that γ = 2. (Any two distinct choices of
θ2 ∈ [π,2π] can be used.) This shows that ∂y2/∂x2 fails to be continuous at
the origin, which in turn proves Mγ is not C1 at infinity.

Now see that Mγ is Lipschitz. It will again suffice to consider M̃γ in the form
of (3.28) and show that the derivatives ∂y2/∂x1, ∂y2/∂y1, and ∂y2/∂x2 are L∞

functions near the origin.
First, see that the quantity |1+ (γ−2) sin2 θ| ≥ min{1, γ−1} for any choice

of θ. Then, implicit differentiation shows

∣∣∣∣
∂y2

∂x1

∣∣∣∣ =
∣∣∣∣∣
−γx1(x

2
1 +y2

1 )
γ/2−1(x2

2 + y2
2)

2−γ/2

x2
2 + (γ − 1)y2

2

∣∣∣∣∣

≲ rγ−1
1 r

2−γ
2 ≲ r (γ

2−2γ+1)/γ+(2−γ)
2 = r 1/γ

2 ,

which is clearly bounded near the origin. By symmetry, ∂y2/∂y1 satisfies an
analogous bound. Similarly, it quickly follows from (3.30) that |∂y2/∂x2| ≲ 1,
finishing the proof. ❐

Remark 3.13. It is easy to check that the line at infinity {[0 : z1 : z2]} is the
only complex line in CP2 \Ωγ passing through the point [0 : 0 : 1] and thus may
be viewed as the tangent line at [0 : 0 : 1] (in a weak sense).

Remark 3.14. In the case of γ = 1, (3.29) shows that the completion of the
hypersufaceM1 in CP2 consists of a closed disc at infinity, rather than just a single
point.

4. ANALYSIS OF THE σ -SYMBOL FUNCTION

4.1. Properties of Cσ (γ, k). Analysis of Cσ (γ, k) for each k value yields
precise information on L. Recall that

Cσ (γ, k) :=
Γ
(

2k
γ
+ 1

)
Γ
(

2k− 2k
γ
+ 1

)

Γ (k+ 1)2

×
(
γ

2

)2k+2

(γ − 1)2k/γ−2k−1.
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Theorem 4.1. Let γ > 1 and k be a non-negative integer. The symbol function
Cσ (γ, k) has the following properties:

(a) Cσ (γ,0) = γ2/(4(γ − 1)).
(b) Cσ (2, k) = 1 for all positive integers k.
(c) Cσ (γ, k) is Hölder symmetric in γ, that is,

Cσ (γ, k) = Cσ
(
γ

γ − 1
, k

)
.

(d) For each γ ≠ 2, Cσ (γ, k) strictly decreases as a function of k.
(e) limk→∞ Cσ (γ, k) = γ/(2

√
γ − 1).

Proof. Parts (a) and (b) are immediate from the formula. We will also quickly
verify (c) and (e), leaving (d) for the next section.

For part (c), compute

Cσ

(
γ

γ − 1
, k

)

=
Γ
(

2k(γ − 1)
γ

+ 1

)
Γ
(

2k− 2k(γ − 1)
γ

+ 1

)

Γ (k+ 1)2

×
(

γ

2γ − 2

)2k+2 (
1

γ − 1

)2k(γ−1)/γ−2k−1

=
Γ
(

2k− 2k
γ
+ 1

)
Γ
(

2k
γ
+ 1

)

Γ (k+ 1)2

(
γ

2

)2k+2

(γ − 1)2k/γ−2k−1

= Cσ (γ, k).

Part (e) follows from Stirling’s formula. Recall that f and g are said to be
asymptotically equivalent when

(4.1) lim
x→∞

f (x)

g(x)
= 1.

When (4.1) holds, we write f (x) ∼ g(x). Stirling’s formula says that we have
Γ (x + 1) ∼

√
2πx(x/e)x , which implies the following asymptotic equivalences:

Γ (k+ 1)2 ∼ 2πe−2kk2k+1,(4.2)

Γ
(

2k
γ
+ 1

)
∼
√

2π · e−2k/γ

(
2k
γ

)2k/γ+1/2

,(4.3)
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Γ
(

2k− 2k
γ
+ 1

)
∼
√

2π · e2k/γ−2k

(
2k
γ

)2k−2k/γ+1/2

(4.4)

× (γ − 1)2k−2k/γ+1/2.

Combining (4.2), (4.3) and (4.4) shows

Γ
(

2k
γ
+ 1

)
Γ
(

2k− 2k
γ
+ 1

)

Γ (k+ 1)2
∼
(

2
γ

)2k+1

(γ − 1)2k−2k/γ+1/2.

Consequently,

Cσ (γ, k) ∼
(

2
γ

)2k+1

(γ − 1)2k−2k/γ+1/2
(
γ

2

)2k+2

(γ − 1)2k/γ−2k−1

= γ

2
√
γ − 1

.

This completes the proof of item (e). ❐

4.2. Proof of item (d) in Theorem 4.1. We will prove that the function
Cσ (γ, k) decreases in the integer variable k by showing that

Cσ (γ, k+ 1)
Cσ (γ, k)

≤ 1,(4.5)

with equality holding only in the case of γ = 2. (That equality (4.5) holds when
γ = 2 is item (b) in Theorem 4.1.) Note the Hölder symmetry in the variable γ
(item (c) in Theorem 4.1) lets us reduce our investigation to 1 < γ < 2. After
cancellation, the above ratio may be written as

Cσ (γ, k+ 1)
Cσ (γ, k)

=
Γ
(

2
γ
(k+ 1)

)
Γ
((

2− 2
γ

)
(k+ 1)

)

Γ
(

2k
γ
+ 1

)
Γ
((

2− 2
γ

)
k+ 1

) (γ − 1)2/γ−1.(4.6)

Now observe further symmetries that simplify the situation. Letting x = 2/γ
(so 1 < x < 2) and taking the logarithm of (4.6) leads to the definition of the
function

A(k,x) := log
Γ ((k+ 1)x)
Γ (kx + 1)

+ log
Γ ((k+ 1)(2− x))
Γ (k(2− x)+ 1)

+ (x − 1) log
(

2
x
− 1

)
.
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Establishing inequality (4.5) amounts to showing that A(k,x) < 0 for each inte-
ger k ≥ 0 and 1 < x < 2.

Notice that A(k,1) = 0, so the required negativity of A(k,x) will follow after
it is shown that

(4.7)
∂A

∂x
(k,x) < 0, 1 < x < 2.

With this in mind, observe that

A(k,x) = log Γ ((k+ 1)x)− log Γ (kx + 1)− (x − 1) logx

+ log Γ ((k+ 1)(2− x))− log Γ (k(2− x)+ 1)

− ((2− x)− 1) log(2− x)
:= B(k,x)+ B(k,2− x),

where

(4.8) B(k,x) = log Γ ((k+ 1)x)− log Γ ((kx + 1))− (x − 1) logx.

Therefore,
∂A

∂x
(k,x) = ∂B

∂x
(k,x)− ∂B

∂x
(k,2− x).

Note that for 1 < x < 2, the inequality 0 < 2 − x < x holds. The validity
of (4.7) will follow from a stronger claim: that for each fixed integer k ≥ 0,
(∂B/∂x)(k,x) is a decreasing function for all x > 0. This of course is equivalent
to showing

(4.9)
∂2B

∂x2
(k,x) < 0,

for integers k ≥ 0 and all x > 0. The establishment of (4.9) will imply (4.7),
which in turn will imply (4.5) and complete the proof. In order to proceed, we
need to better understand the logarithmic derivative of the gamma function.

4.2.1. The digamma function. Define the digamma function ψ to be the
logarithmic derivative of Γ (x), that is,

ψ(x) := Γ ′(x)
Γ (x) ,

and its derivative, the trigamma function ψ′(x). Properties of digamma, trigam-
ma, and further polygamma functions (obtained by taking further derivatives)
have been extensively studied in special function theory (see, e.g., [2]).



Leray Transform 1861

From (4.8), it is seen that

∂B

∂x
(k,x) = (k+ 1)ψ((k+ 1)x)− kψ(kx + 1)− logx + 1

x
− 1,

and

∂2B

∂x2
(k,x) = (k+ 1)2ψ′((k+ 1)x)− k2ψ′(kx + 1)− 1

x
− 1
x2
.(4.10)

We make use of the well known formula for ψ′(x), valid for all x outside of
the non-positive integers:

ψ′(x) =
∞∑

j=1

1
(j + x − 1)2

.(4.11)

Substituting (4.11) into (4.10),

∂2B

∂x2
(k,x) =

∞∑

j=1

(k+ 1)2

(j + (k+ 1)x − 1)2
−

∞∑

j=1

k2

(j + kx)2 −
1
x
− 1
x2

=
∞∑

j=1

[
(k+ 1)2

(j + (k+ 1)x)2
− k2

(j + kx)2

]
− 1
x

:= D(k+ 1, x)−D(k,x),

where

D(k,x) =
∞∑

j=1

k2

(j + kx)2 −
k

x
.

Thus, to establish (∂2B/∂x2)(k,x) < 0, it is sufficient to show that for any x > 0,
D(k,x) decreases as a function of k ≥ 0. Treating k as a continuous variable and
differentiating, we claim

(4.12)
∂D

∂k
(k,x) =

∞∑

j=1

2kj
(kx + j)3 −

1
x
< 0.

Setting a := kx, inequality (4.12) is a consequence of the following result.

Proposition 4.2. For all a > 0,

∞∑

j=0

2aj
(a+ j)3 < 1.
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Proof. Observe the following estimate:

∞∑

j=1

2j
(a+ j)3 <

∞∑

j=1

2j
(a+ j − 1)(a+ j)(a+ j + 1)

=
∞∑

j=1

[
j

(a+ j − 1)(a+ j) −
j

(a+ j)(a+ j + 1)

]

=
∞∑

j=1

[
1

a+ j − 1
− 1
a+ j

]

+
∞∑

j=1

[
j − 1

(a+ j − 1)(a+ j) −
j

(a+ j)(a+ j + 1)

]

= 1
a
. ❐

Proposition 4.2 shows that (4.12) holds, implying (4.9). This gives (4.5),
completing the proof of item (d) in Theorem 4.1.1

4.3. Proof of Theorem 1.1.

Proof. Following Section 3.4, we denote the Fourier transform in the s vari-
able along with its inverse by F and F−1, respectively. These operators respect the
decomposition of L2(Mγ , σ) into the orthogonal sum of the spaces L2

k(Mγ , σ).
Since each Lk is a projection operator (Theorem 3.11), the full L is as well. We
now confirm that the full operator is bounded, and calculate its norm.

Since F and F−1 are isometries,

‖L‖σ = ‖F−1
LF‖σ and ‖Lk‖σ = ‖F−1

LkF‖σ .

In what follows, let f (s,α, θ) = ∑
j fj(s,α)e

ijθ ∈ L2(Mγ , σ). Since Lk (and
thus F−1LkF) is only non-zero when acting on L2

k(Mγ , σ),

∥∥F−1
LFf

∥∥2
σ =

∞∑

k=0

∥∥F−1
LkFf

∥∥2
σ =

∞∑

k=0

∥∥F−1
LkF(fkeikθ)

∥∥2
σ

≤
∞∑

k=0

∥∥F−1
LkF

∥∥2
σ

∥∥fk
∥∥2
σ

=
∞∑

k=0

Cσ (γ, k)
∥∥fk

∥∥2
σ(4.13)

1The authors thank Wijit Yangjit for showing the elegant proof of Proposition 4.2 to the second
author. The authors’ original proof of this proposition used the Euler-Maclaurin formula (see [21]) to
relate the Riemann sum

∑∞
j=1(2aj/(a+ j)3) to the integral

∫∞
0 (2aj/(a+ j)3)dj = 1.
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≤ γ2

4γ − 4

∞∑

k=0

∥∥fk
∥∥2
σ =

γ2

4γ − 4

∥∥f
∥∥2
σ ,(4.14)

where (4.13) follows from Theorem 3.10 and (4.14) follows from Theorem 4.1.
This tells us that

(4.15) ‖L‖σ ≤
γ

2
√
γ − 1

.

To see that equality holds in (4.15), let f be of a multiple of κ0, that is,

f (ξ,α, θ) = f0(ξ,α)

:=m0(ξ)e
2πξ(γ−1)αγ1{ξ<0} ∈ L2

0(Mγ , σ),

where, by (3.24), the multiplier functionm0 satisfies

(4.16)
∫ 0

−∞
|m0(ξ)|2 |ξ|−1

dξ < ∞.

With this choice of f = f0, equations (3.22) and (3.23) show that

∥∥F−1
LFf

∥∥2
σ =

∫

Mγ
|F−1

L0Ff (ξ,α, θ)|2αγ−1
dξ ∧ dα∧ dθ

= 2π
∫∞

−∞

∫∞

0
|F−1

L0Ff (ξ,α, θ)|2αγ−1
dα dξ

= 2π
∫∞

−∞
|η0(ξ)|2

∥∥f0(ξ, ·)
∥∥2
(σ ,1)

∥∥κ0(ξ, ·)
∥∥2
(σ ,1)

×
(∫∞

0
|τ0(ξ,α)|2αγ−1

dα

)
dξ

= 2π
∫∞

−∞
|η0(ξ)|2

∥∥κ0(ξ, ·)
∥∥2
(σ ,1)

∥∥τ0(ξ,α)
∥∥2
(σ ,1)

∥∥f0(ξ, ·)
∥∥2
(σ ,1) dξ

= 2πCσ (γ,0)
∫∞

−∞

∥∥f0(ξ, ·)
∥∥2
(σ ,1) dξ

= γ2

4γ − 4

∥∥f
∥∥2
σ .

This shows that the upper bound in (4.15) is attained. ❐

Remark 4.3. The space of functionsm0(·) satisfying (4.16) is infinite dimen-
sional, which implies the σ -norm of the L is achieved on an infinite dimensional
space (cf. Section 5.3).



1864 DAVID E. BARRETT & LUKE D. EDHOLM

5. MODIFIED MEASURES AND ADJOINTS

We have seen that L : L2(Mγ , σ)→ L2(Mγ , σ) is bounded, where σ is a constant
multiple of the Leray-Levi measure λρ . More flexibility on measures will now be
allowed. For r ∈ R, recall the rotationally invariant measure

µr := αr ds ∧ dα∧ dθ.

5.1. Leray boundedness. Just as in (3.5), S1-invariance leads to the decom-
position

L2(Mγ , µr ) =
∞⊕

k=−∞
L2
k(Mγ , µr ),

where the functions in L2
k(Mγ , µr ) take the form fk(s,α)eikθ. In the spirit of

Definition 3.3, the restriction of L to each L2
k(Mγ , µr ) yields the decomposition

L =⊕∞
k=0 Lk.

We once again work with the unitarily equivalentF−1LkF . From Section 3.4,
recall

ηk(ξ) =
(−2πξ)k+1γk+2

k!
· 1{ξ<0},(5.1)

τk(ξ,α) = αke2πξαγ · 1{ξ<0},(5.2)

κk(ξ,α) = αk(γ−1)e2πξ(γ−1)αγ · 1{ξ<0},(5.3)

where 1{ξ<0} is the indicator function of the set {ξ < 0}.
Let f (s,α, θ) =∑j fj(s,α)eijθ ∈ L2(Mγ , µr ). The form of Proposition 3.6

remains valid, that is,

(5.4) F−1
LkFf (ξ,α, θ) = ηk(ξ)τk(ξ,α)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)eikθ,

as long as the inner product makes sense. Recall that 〈·, ·〉(σ ,1) is a special case (with
r = γ − 1) of

(5.5) 〈g,h〉(µr ,1) :=
∫∞

0
g(α)h(α)αr dα.

When working with µr , we will frequently encounter its counterpart measure
µr ′ , where r and r ′ are related by

(5.6)
r + r ′

2
= γ − 1.

The following version of Cauchy-Schwarz is crucial to the investigation of the
boundedness of Lk in L2(Mγ , µr ).
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Lemma 5.1. Fix γ > 1 and let r and r ′ be real numbers related by (r+r ′)/2 =
γ − 1. Then,

|〈g,h〉(σ ,1)| ≤ ‖g‖(µr ,1) ‖h‖(µr ′ ,1),

where the inner product and norms are defined by (5.5). Equality holds if and only if
there exists a constant c such that g(α)αr/2 = c · h(α)αr ′/2. When this happens,
‖g‖(µr ,1) = |c| · ‖h‖(µr ′ ,1).

Proof. Start by setting r = γ − 1 in (5.5). Split the integrand into g1(α) =
g(α)αr/2 and h1(α) = h(α)αr ′/2, and apply the usual Cauchy-Schwarz inequal-
ity. ❐

To make use of Lemma 5.1, let us generalize Corollary 3.8. The definitions
of τk and κk in (5.2) and (5.3) ensure that we are only interested in negative ξ.
Combining (5.6) and Proposition 3.7 shows that for ξ < 0,

(5.7)
∥∥τk(ξ, ·)

∥∥2
(µr ,1)

=
∫∞

0
α2k+r e4πξαγ

dα

=





1
γ
(−4πξ)−((2k+r+1)/γ)Γ

(
2k+ r + 1

γ

)
for r > −2k− 1,

∞ otherwise.

(5.8)
∥∥κk(ξ, ·)

∥∥2
(µr ′ ,1)

=
∫∞

0
α(2k+2)(γ−1)−r e4πξ(γ−1)αγ

dα

=





1
γ
(−4πξ(γ − 1))−(((2k+2)(γ−1)−r+1)/γ)

× Γ
(
(2k+ 2)(γ − 1)− r + 1

γ

)
for r < (2k+ 2)(γ − 1)+ 1,

∞ otherwise.

These computations suggest the definition of the interval

(5.9) Ik = (−2k− 1, (2k+ 2)(γ − 1)+ 1).

We are now able to prove the general boundedness result that was stated in
Theorem 1.3.

Theorem 5.2. Let k ≥ 0 be an integer and r ∈ R. Then, Lk is bounded from
L2(Mγ , µr )→ L2

k(Mγ , µr ) if and only if r ∈ Ik. Furthermore, when r ∈ Ik,

(5.10) ‖Lk‖L2(Mγ ,µr ) =
√
Cµr (γ, k),
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where the µr -symbol function is

Cµr (γ, k) =
Γ
(

2k+ 1+ r
γ

)
Γ
(

2k+ 2− 2k+ 1+ r
γ

)

Γ (k+ 1)2

×
(
γ

2

)2k+2

(γ − 1)−(2k+2−(2k+1+r)/γ).

Proof. Consider three cases:

(a) r ∈ Ik.
(b) r ≤ −2k− 1.
(c) r ≥ (2k+ 2)(γ − 1)+ 1.

(a): Let r ∈ Ik and, without loss of generality, now assume that we have f =
fk(ξ,α)eikθ ∈ L2

k(Mγ , µr ). From (5.4),

∥∥F−1
LkFf

∥∥2
L2(Mγ ,µr )

=
∫

Mγ
|ηk(ξ)τk(ξ,α)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)eikθ|2µr

= 2π
∫ 0

−∞

∫∞

0
|ηk(ξ)τk(ξ,α)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)|2αr dα dξ

= 2π
∫ 0

−∞
|ηk(ξ)|2|〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)|2(5.11)

×
∫∞

0
|τk(ξ,α)|2αr dαdξ

≤ 2π
∫ 0

−∞
|ηk(ξ)|2

∥∥τk(ξ, ·)
∥∥2
(µr ,1)(5.12)

×
∥∥κk(ξ, ·)

∥∥2
(µr ′ ,1)

∥∥fk(ξ, ·)
∥∥2
(µr ,1) dξ,

where (5.12) follows from Lemma 5.1. The norms appearing in the last integral
are finite since r ∈ Ik. By combining (5.1), (5.7), and (5.8), it is easily verified
that the quantity

|ηk(ξ)|2
∥∥τk(ξ, ·)

∥∥2
(µr ,1)

∥∥κk(ξ, ·)
∥∥2
(µr ′ ,1)

appearing in the integrand of (5.12) equals Cµr (γ, k). Note that this more general
symbol function is once again independent of ξ. Returning now to (5.12),

∥∥F−1
LkFf

∥∥2
L2(Mγ ,µr )

(5.13)

≤ 2πCµr (γ, k)
∫ 0

−∞

∥∥fk(ξ, ·)
∥∥2
(µr ,1) dξ
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= Cµr (γ, k)
∫ 2π

0

∫ 0

−∞

∫∞

0
|fk(ξ,α)|2αr dαdξ dθ

≤ Cµr (γ, k)
∥∥f
∥∥2
L2(Mγ ,µr )

.

Thus,
√
Cµr (γ, k) is an upper bound on ‖Lk‖L2(Mγ ,µr ). We now show this to

be sharp. Lemma 5.1 says that equality in (5.12) holds if and only if

(5.14) fk(ξ,α)α
r/2 =mk(ξ)κk(ξ,α)α

r ′/2,

where mk(ξ) must be chosen so that f (ξ,α, θ) = fk(ξ,α)eikθ ∈ L2(Mγ , µr ).
This happens if and only if

(5.15)
∫ 0

−∞
|mk(ξ)|2 |ξ|((2k+1+r)/γ−2k−2)

dξ <∞.

These conditions generalize (3.23) and (3.24). When f takes this form, equalities
throughout (5.13) must also hold. This establishes (5.10) and concludes case (a).

(b): Let r ≤ −2k− 1. Combining (5.4) and (5.11), we see that for any

f (ξ,α, θ) = fk(ξ,α)eikθ ∈ L2
k(Mγ , µr ) with 〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1) ≠ 0,

F−1LkFf ∉ L2(Mγ , µr ), since ‖τk(ξ, ·)‖2
(µr ,1)

= ∞ by (5.7).

(c): Let r ≥ (2k+ 2)(γ − 1)+ 1. For j ∈ Z+ set

κ
j
k(ξ,α) := κk(ξ,α) · 1{1/j<α},

where 1{1/j<α} is the indicator function for {(ξ,α, θ) : 1/j < α}. Now define

f
j
k(ξ,α) := κ

j
k(ξ,α)α

γ−1−r

‖κjk(ξ, ·)‖(µr ′ ,1)
· 1{−1/(2π)<ξ<0} and f j(ξ,α, θ) := f jk (ξ,α)eikθ.

It is easily shown that for any j,

‖f jk(ξ, ·)‖(µr ,1) = 1{−1/(2π)<ξ<0}.

Therefore,

(5.16) ‖f j‖L2(Mγ ,µr ) =
(∫ 2π

0

∫∞

−∞

∥∥f jk (ξ, ·)
∥∥2
(µr ,1) dξ dθ

)1/2

= 1.

From (5.4),

F−1
LkFf j(ξ,α, θ) = ηk(ξ)τk(ξ,α)〈f jk(ξ, ·), κk(ξ, ·)〉(σ ,1)eikθ

= 1{−1/(2π)<ξ<0} · ηk(ξ)τk(ξ,α)‖κjk(ξ, ·)‖(µr ′ ,1)eikθ,
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and consequently,

∥∥F−1
LkFf j

∥∥2
L2(Mγ ,µr )

= 2π
∫ 0

−1/(2π)
|ηk(ξ)|2

∥∥τk(ξ, ·)
∥∥2
(µr ,1)

∥∥κjk(ξ, ·)
∥∥2
(µr ′ ,1) dξ.

But the monotone convergence theorem says

lim
j→∞

∥∥κjk(ξ, ·)
∥∥2
(µr ′ ,1)

= lim
j→∞

∫∞

1/j
|κk(ξ,α)|2αr

′
dα

= lim
j→∞

∫∞

1/j
α(2k+2)(γ−1)−r e4πξ(γ−1)αγ

dα

= ∞

for any −1/(2π) < ξ < 0. This means

lim
j→∞

‖F−1
LkFf j‖L2(Mγ ,µr ) = ∞,

which together with (5.16) shows that Lk fails to be bounded. This completes
(c). ❐

Fix any r ∈ R. Despite the limited boundedness range in Theorem 5.2, the
interval Ik tends to (−∞,∞) as k → ∞. This means that the tail of the sequence
of operators {Lk} is always bounded in the L2(Mγ , µr ) norm. In fact, a much
stronger result holds, as follows.

Theorem 5.3. Fix r ∈ R. The high-frequency limit norm of L in L2(Mγ , µr ) is
given by the (r -independent) quantity

‖L‖L2
HF(Mγ ,µr )

= lim
k→∞

‖Lk‖L2(Mγ ,µr ) =
√

γ

2
√
γ − 1

.

Proof. For k large enough, Theorem 5.2 says

∥∥Lk
∥∥2
µr
=
Γ
(

2k+ 1+ r
γ

)
Γ
(

2k+ 2− 2k+ 1+ r
γ

)

Γ (k+ 1)2
(5.17)

×
(
γ

2

)2k+2

(γ − 1)−(2k+2−(2k+1+r)/γ).

First, focus on the following quotient:

(5.18)

Γ
(

2k+ 1+ r
γ

)
Γ
(

2k+ 2− 2k+ 1+ r
γ

)

Γ (k+ 1)2
.
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Stirling’s formula says

Γ (k+ 1)2 ∼ 2πe−2kk2k+1,

Γ
(

2k+ 1+ r
γ

)
∼
√

2π · e(1−(2k+1+r)/γ)

×
(

2k+ 1+ r
γ

− 1

)((2k+1+r)/γ−1/2)

,

Γ
(

2k+ 2− 2k+ 1+ r
γ

)
∼

∼
√

2π · e(−2k−1+(2k+1+r)/γ)

×
(

2k+ 1− 2k+ 1+ r
γ

)(2k+3/2−(2k+1+r)/γ)
.

Combining these asymptotic equivalences yields that

(5.18) ∼ 1
k2k+1

(
2k+ 1+ r

γ
− 1

)((2k+1+r)/γ−1/2)

(5.19)

×
(

2k+ 1− 2k+ 1+ r
γ

)(2k+3/2−(2k+1+r)/γ)

= 1
γ2k+1

·
(

2+ 1+ r − γ
k

)((2k+1+r)/γ−1/2)

×
(

2γ − 2+ γ − 1− r
k

)(2k+3/2−(2k+1+r)/γ)

∼ 1
γ2k+1

· 2((2k+1+r)/γ−1/2)(2γ − 2)(2k+3/2−(2k+1+r)/γ)

=
(

2
γ

)2k+1

(γ − 1)(2k+3/2−(2k+1+r)/γ).

Now combine (5.17) and (5.19) to see that

∥∥Lk
∥∥2
µr
∼ γ

2
√
γ − 1

,

which completes the proof. ❐

We now establish the sharp interval of Leray boundedness as stated in Theo-
rem 1.4.
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Corollary 5.4.
The Leray transform L is bounded from L2(Mγ , µr ) → L2(Mγ, µr ) if and only if
r ∈ I0 = (−1,2γ − 1).

Proof. If r ∈ I0, then each Lk is bounded on L2(Mγ , µr ) since I0 ⊂ Ik for all
k ∈ Z+. And since limk→∞ ‖Lk‖µr is finite, we conclude there is some C > 0 with
‖Lk‖µr ≤ C for all k. Let f =∑k fkeikθ. Then,

∥∥Lf
∥∥2
µr
=

∞∑

k=0

∥∥Lkf
∥∥2
µr
≤

∞∑

k=0

∥∥Lk
∥∥2
µr

∥∥fk
∥∥2
µr

≤ C2
∞∑

k=0

∥∥fk
∥∥2
µr
= C2

∥∥f
∥∥2
µr
.

On the other hand if r ∉ I0, then L0 is unbounded, implying the same for L. ❐

Remark 5.5. Notice that r0 = γ − 1 (the r -value for the measure σ ) lies
exactly at the midpoint of the interval I0. This says that if (r + r ′)/2 = γ − 1,
then r ∈ I0 if and only if r ′ ∈ I0. In other words, L is bounded on L2(Mγ , µr ) if
and only if it is bounded on L2(Mγ, µr ′).

5.2. Adjoints. Theorem 5.2 says Lk is bounded on L2
k(Mγ , µr )when r ∈ Ik.

It therefore admits a bounded adjoint L(∗,µr )k which satisfies

〈Lkf , g〉µr = 〈f ,L
(∗,µr )
k g〉µr .

We wish to describe this adjoint more explicitly.
The following lemma justifies later applications of Fubini’s theorem.

Lemma 5.6. Choose r and k so that r ∈ Ik, and take ηk, τk, κk as in (5.1),
(5.2), (5.3).

(a) Let fk(ξ,α)eikθ, gk(ξ,α)eikθ ∈ L2
k(Mγ , µr ). Then, the following integral

estimate holds:

I1 :=
∫ 2π

0

∫∞

−∞

∫∞

0

∫∞

0
|ηk(ξ)τk(ξ,αz)κk(ξ,αζ)fk(ξ,αζ)gk(ξ,αz)|

× αγ−1
ζ αrz dαz dαζ dξ dθ

≤
√
Cµr (γ, k)‖fk‖µr ‖gk‖µr .

(b) Let ϕk(ξ,α)eikθ ∈ L2
k(Mγ , µr ) and ψk(ξ,α)eikθ ∈ L2

k(Mγ , µr ′). Then,
the following integral estimate holds:

I2 :=
∫ 2π

0

∫∞

−∞

∫∞

0

∫∞

0
|ηk(ξ)τk(ξ,αz)κk(ξ,αζ)ϕk(ξ,αζ)ψk(ξ,αz)|
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× αγ−1
ζ α

γ−1
z dαz dαζ dξ dθ

≤
√
Cµr (γ, k)‖ϕk‖µr ‖ψk‖µr ′ .

Proof. Recall that ηk, τk, κk are everywhere non-negative and identically 0 for
ξ ≥ 0. Write

I1 = 2π
∫ 0

−∞
ηk(ξ)

[∫∞

0
|gk(ξ,αz)|τk(ξ,αz)αrz dαz

]

×
[∫∞

0
κk(ξ,αζ)|fk(ξ,αζ)|αγ−1

ζ dαζ

]
dξ

≤ 2π
∫ 0

−∞
ηk(ξ)‖gk(ξ, ·)‖(µr ,1) ‖τk(ξ, ·)‖(µr ,1)

× ‖fk(ξ, ·)‖(µr ,1) ‖κk(ξ, ·)‖(µr ′ ,1) dξ

= 2π
√
Cµr (γ, k)

∫ 0

−∞
‖gk(ξ, ·)‖(µr ,1) ‖fk(ξ, ·)‖(µr ,1) dξ

≤
√
Cµr (γ, k)‖fk‖µr ‖gk‖µr .

In the first inequality we used both the standard version of Cauchy-Schwarz and
the variant from Lemma 5.1. Also, recall that

ηk(ξ)‖τk(ξ, ·)‖(µr ,1)‖κk(ξ, ·)‖(µr ′ ,1)

is equal to the (ξ-independent) term
√
Cµr (γ, k) encountered in Theorem 5.2.

Similarly,

I2 = 2π
∫ 0

−∞
ηk(ξ)

[∫∞

0
|ψk(ξ,αz)|τk(ξ,αz)αγ−1

z dαz

]

×
[ ∫∞

0
κk(ξ,αζ)|ϕk(ξ,αζ)|αγ−1

ζ dαζ

]
dξ

≤ 2π
∫ 0

−∞
ηk(ξ)‖ψk(ξ, ·)‖(µr ′ ,1) ‖τk(ξ, ·)‖(µr ,1)

× ‖ϕk(ξ, ·)‖(µr ,1) ‖κk(ξ, ·)‖(µr ′ ,1) dξ

= 2π
√
Cµr (γ, k)

∫ 0

−∞
‖ψk(ξ, ·)‖(µr ′ ,1) ‖ϕk(ξ, ·)‖(µr ,1) dξ

≤
√
Cµr (γ, k)‖ϕk‖µr ‖ψk‖µr ′ ,

completing the proof. ❐

We shall now compute a formula for (F−1LkF)(∗,µr ) = F−1L
(∗,µr )
k F when

r ∈ Ik.
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Proposition 5.7. Choose k and r so that r ∈ Ik.
Then, if g(ξ,α, θ) =∑j gj(ξ,α)eijθ ∈ L2(Mγ , µr ),

F−1
L
(∗,µr )
k Fg(ξ,α, θ)(5.20)

= αγ−1−rηk(ξ)κk(ξ,α)〈gk(ξ, ·), τk(ξ, ·)〉(µr ,1)eikθ,

where ηk, τk, κk are the real valued functions given by (5.1), (5.2), (5.3), respectively.

Proof. For r ∈ Ik, the boundedness of F−1
LkF shows there exists an adjoint

operator F−1
L
(∗,µr )
k F satisfying

〈F−1
LkFf , g〉µr = 〈f ,F−1

L
(∗,µr )
k Fg〉µr ∀f , g ∈ L2(Mγ , µr ).

Without loss of generality, assume that f (ξ,α, θ) = fk(ξ,α)eikθ.
Lemma 5.6 (a) justifies the use of Fubini’s theorem in what follows:

〈F−1
LkFf , g〉µr =

=
∫

Mγ
ηk(ξ)τk(ξ,αz)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)eikθgk(ξ,αz)eikθµr (z)

=
∫

Mγ
ηk(ξ)τk(ξ,αz)gk(ξ,αz)

∫∞

0
fk(ξ,αζ)κk(ξ,αζ)α

γ−1
ζ dαζα

r
z dξ dαz dθ

=
∫

Mγ
fk(ξ,αζ)α

γ−1
ζ ηk(ξ)κk(ξ,αζ)

∫∞

0
gk(ξ,αz)τk(ξ,αz)α

r
z dαz dξ dαζ dθ

=
∫

Mγ
fk(ξ,αζ)e

ikθα
γ−1−r
ζ ηk(ξ)κk(ξ,αζ)〈gk(ξ, ·), τk(ξ, ·)〉(µr ,1)eikθµr (ζ)

:= 〈f ,F−1
L
(∗,µr )
k Fg〉µr ,

completing the proof. ❐

We now obtain a formula for the adjoint of the full operator L in the space
L2(Mγ , σ).

Proposition 5.8. The adjoint of the Leray transform with respect to the inner
product 〈·, ·〉σ is given by the following integral:

(5.21) L
(∗,σ)g(z) = γ2

8π2i

∫

Mγ
g(ζ)

|ζ1|γ−2 dζ2 ∧ dζ̄1 ∧ dζ1

[γz1|z1|γ−2(z̄1 − ζ̄1)− i(z̄2 − ζ̄2)]2
.

Proof. Define an integral operator T, where Tg(z) is equal to the righthand
side of (5.21) for all choices of g for which this integral converges. Referring back
to (2.3a) and (2.3b), we see that T can be expressed as

Tg(z) =
∫

Mγ
ℓρ(ζ, z)g(ζ)λρ(ζ).
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Revisit Section 3.2, but this time start with T and carry out the reparame-
trization (3.1) and (3.2) together with all subsequent steps through Section 3.3.
In particular, T admits an orthogonal decomposition into

⊕∞
k=0 Tk.

Now for each Tk (following the outline in Section 3.4), conjugate by the
Fourier transform to obtain the operator F−1TkF . This leads to a result in the
spirit of Proposition 3.6:

(5.22) F−1
TkFg(ξ,α, θ) = ηk(ξ)κk(ξ,α)〈gk(ξ, ·), τk(ξ, ·)〉(σ ,1)eikθ.

Since σ = µγ−1, we see that (5.22) is exactly (5.20) when r = γ − 1. This

says that for each k, F−1TkF = F−1L
(∗,σ)
k F , implying each Tk = L

(∗,σ)
k , and

therefore T = L(∗,σ). ❐

Lemma 5.9. Let (r+r ′)/2 = γ−1. The map Rr : L2(Mγ , µr ′)→ L2(Mγ , µr )
given by

g(ξ,α, θ) 7 -→ αγ−1−rg(ξ,α, θ)

is an isometry.

Proof. This is essentially a reformulation of the condition which tells when
equality holds in Lemma 5.1. Indeed,

∥∥Rrg
∥∥2
µr
=
∫

Mγ
|αγ−1−rg(ξ,α, θ)|2αr dξ dα dθ

=
∫

Mγ
|g(ξ,α, θ)|2αr ′ dξ dαdθ =

∥∥g
∥∥2
µr ′
.

It is clear this map is bijective with inverse R−1
r given by

h(ξ,α, θ) ֏ αr+1−γh(ξ,α, θ). ❐

For r ∈ I0, we now give an explicit formula for the more general adjoint
L(∗,µr ), as follows.

Theorem 5.10. Let r ∈ I0 = (−1,2γ − 1). The adjoint of the Leray transform
with respect to the inner product 〈·, ·〉µr is given by
(5.23)

L
(∗,µr )g(z) = γ

2|z1|γ−1−r

8π2i

∫

Mγ
g(ζ)

|ζ1|r−1 dζ2 ∧ dζ̄1 ∧ dζ1

[γz1|z1|γ−2(z̄1 − ζ̄1)− i(z̄2 − ζ̄2)]2
.

Proof. Let r ∈ I0, f ∈ L2(Mγ , µr ) and g ∈ L2(Mγ , µr ′). Remark 5.5 guar-
antees r ′ ∈ I0, so L is bounded in both of these function spaces.

The Fourier transform F (acting in the variable s = Re(ζ2)) is obviously an
isometry of both L2(Mγ , µr ) and L2(Mγ , µr ′). Now write f = F(ϕ), g = F(ψ)
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for ϕ = ∑
jϕje

ijθ ∈ L2(Mγ , µr ), ψ = ∑
kψke

ikθ ∈ L2(Mγ , µr ′). On the one
hand,

〈Lf , g〉σ = 〈LF(ϕ),F(ψ)〉σ = 〈F−1
LF(ϕ),ψ〉σ(5.24)

=
∞∑

k=0

〈F−1
LkF(ϕ),ψ〉σ ,

where the summand can be rewritten as

〈F−1
LkF(ϕ),ψ〉σ =

∫

Mγ
ηk(ξ)τk(ξ,αz)〈ϕk(ξ, ·), κk(ξ, ·)〉(σ ,1)

× ψk(ξ,αz)αγ−1
z dξ dαz dθ

=
∫

Mγ
ϕk(ξ,αz)ηk(ξ)κk(ξ,αζ)〈ψk(ξ, ·), τk(ξ, ·)〉(σ ,1)(5.25)

× αγ−1
ζ dξ dαζ dθ

= 〈ϕ,F−1
L
(∗,σ)
k F(ψ)〉σ .

The rearrangement in (5.25) is justified by Lemma 5.6 (b) together with the fact
that ηk, τk, and κk are real valued. Thus,

(5.24) =
∞∑

k=0

〈ϕ,F−1
L
(∗,σ)
k F(ψ)〉σ = 〈ϕ,F−1

L
(∗,σ)F(ψ)〉σ(5.26)

= 〈f ,L(∗,σ)g〉σ = 〈f ,RrL(∗,σ)g〉µr .

Notice that Lemma 5.9 guarantees that RrL(∗,σ)g ∈ L2(Mγ , µr ).
On the other hand,

(5.27) 〈Lf , g〉σ = 〈Lf ,Rrg〉µr = 〈f ,L(∗,µr )Rrg〉µr .

Equating (5.26) and (5.27) showsRrL(∗,σ)g = L(∗,µr )Rrg for all g ∈ L2(Mγ , r ′).
This is equivalent to saying that, as an operator on L2(Mγ , µr ),

L
(∗,µr ) = RrL(∗,σ)R−1

r .

Writing this out as an integral equation yields (5.23). ❐

5.3. Related operators. In the discussion below, we often simplify notation
and write L(∗,µr ) = L∗. This convention is also extended to other operators.

Proposition 5.11. L : L2(Mγ , µr ) → L2(Mγ , µr ) is a projection for r ∈ I0 =
(−1,2γ − 1).
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Proof. If r ∈ I0, Corollary 5.4 says L is bounded on L2(Mγ , µr ). For-
mula (5.4) is valid for f ∈ L2(Mγ , µr ), and the same argument given in The-
orem 3.11 shows that each Lk, and consequently the full operator L, is a projec-
tion. ❐

Let r ∈ I0 so that L : L2(Mγ , µr ) → L2(Mγ , µr ) is bounded. Define a Hardy
space in the following way:

(5.28) H2(Mγ , µr ) := L(L2(Mγ , µr )) = ker(L− I).

It is verified in Appendix A that H2(Mγ , µr ) consists entirely of boundary values
of holomorphic functions. In what follows, write H2(Mγ , µr ) = H.

Let K : H⊥ → H be the restriction of L to H⊥; thus, with respect to the
decomposition L2(Mγ , µr ) = H ⊕H⊥,

L is given by the operator matrix

(
I K
0 0

)
.

Similarly,

L
∗ is given by

(
I 0
K∗ 0

)
,

L
∗
L is given by

(
I K

K
∗ 0

)
,

LL
∗ is given by

(
I +KK∗ 0

0 0

)
,

and

A := L∗ − L is given by

(
0 −K
K∗ 0

)
.

These representations are standard operator theory facts (see, e.g., (2.1.6) and
(2.1.34) in [35]) and it is easy to verify that

‖A‖ = ‖K‖ = ‖K∗‖(5.29a)

‖L‖ = ‖L∗‖ =
√

1+ ‖K‖2(5.29b)

‖LL∗‖ = ‖L∗L‖ = ‖L‖2 = 1+ ‖K‖2.(5.29c)

The operator A stems from work of Kerzman and Stein [24, 25] examining
the relation between certain Cauchy-Fantappiè projections and the self-adjoint
Szegő projection S (corresponding to K = 0). (See [5,10,12,13,16] for results on
A in the complex plane and [9] for results on Reinhardt domains in C2.)
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The formulas in (5.29) respect the decomposition

L2(Mγ , µr ) =
∞⊕

k=0

L2
k(Mγ , µr ),

that is, identical statements hold with L, A and K replaced by Lk, Ak and Kk,
respectively. To be more specific, write

L
(∗,µr )L =

∞⊕

k=0

L
(∗,µr )
k Lk, LL

(∗,µr ) =
∞⊕

k=0

LkL
(∗,µr )
k

and

A
µr =

∞⊕

k=0

A
µr
k , where Aµrk = L(∗,µr )k − Lk.

We devote the rest of the section to the study of these operators. Computations
are omitted, but can be easily reconstructed by an interested reader.

5.3.1. Spectra of L∗L and LL∗. Let k ≥ 0, r ∈ Ik and

f =
∞∑

k=−∞
fke

ikθ ∈ L2(Mγ , µr ).

We analyze the kth piece of L(∗,µr )L by considering the action of the following
unitarily equivalent operator on f . Equations (5.4) and (5.20) show

F−1
L
(∗,µr )
k LkF(f )(ξ,α, θ) =

= Cµr (γ, k)
〈
fk(ξ, ·),

κk(ξ, ·)∥∥κk(ξ, ·)
∥∥2
(µr ′ ,1)

〉

(σ ,1)

αγ−1−rκk(ξ,α)eikθ.

It is not hard to verify that the related operator

1
Cµr (γ, k)

· F−1
L
(∗,µr )
k LkF

represents the following orthogonal projection (in the 〈·, ·〉µr inner product):

L2
k(Mγ , µr )

⊥µr
----------------------------------------------------------------------------------------→ Xk,

where

Xk =
{
m(ξ)αγ−1−rκk(ξ,α)eikθ :

∫ 0

−∞
|m(ξ)|2 |ξ|((2k+1+r)/γ−2k−2)

dξ

}
.

We emphasize the following observations:
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• Infinite-dimensional Xk is constructed around the single function of
αγ−1−rκk(ξ,α)eikθ.

• Xk coincides with the eigenspace ECµr (γ,k) of the operatorF−1L
(∗,µr )
k LkF .

• Xk is precisely the space of functions which achieve the norm of the oper-
ator F−1LkF , as described by (5.14) and (5.15).

Now analyze the kth piece of LL(∗,µr ) by considering the action of the follow-
ing unitarily equivalent operator on f . Equations (5.4) and (5.20) show

F−1
LkL

(∗,µr )
k F(f )(ξ,α, θ) =

= Cµr (γ, k)
〈
fk(ξ, ·),

τk(ξ, ·)∥∥τk(ξ, ·)
∥∥2
(µr ,1)

〉

(µr ,1)

τk(ξ,α)e
ikθ.

It is clear that the related operator (1/Cµr (γ, k)) · F−1
LkL

(∗,µr )
k F represents the

following orthogonal projection (in the 〈·, ·〉µr inner product):

L2
k(Mγ , µr )

⊥µr
----------------------------------------------------------------------------------------→ Yk,

where

Yk =
{
m(ξ)τk(ξ,α)e

ikθ :
∫ 0

−∞
|m(ξ)|2 |ξ|−((2k+r+1)/γ)

dξ

}
.

We emphasize the following observations:

• Infinite dimensional Yk is constructed around the single function

τk(ξ,α)e
ikθ.

• Yk coincides with the eigenspace ECµr (γ,k) of the operator

F−1
LkL

(∗,µr )
k F .

• Yk is precisely the space of functions in the image of the operator F−1Lk.

In summary, we have the following result.

Theorem 5.12. Fix an integer k ≥ 0, r ∈ Ik and let Tk be either L(∗,µr )k Lk or

LkL
(∗,µr )
k . Then, Tk admits an orthogonal basis of eigenfunctions, and its spectrum is

given by
{0, Cµr (γ, k)}.

If r ∈ I0, then r ∈ Ik for all k ≥ 0. Consequently, for this range of r values,
the conclusion of Theorem 5.12 holds for each non-negative k. This immediately
implies Theorem 1.4.
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5.3.2. The spectrum of A. Again, let k ≥ 0, r ∈ Ik and

f =
∞∑

k=−∞
fke

ikθ ∈ L2(Mγ , µr ).

We analyze the kth piece of the anti-self-adjoint Aµr by considering the action of
the following unitarily equivalent operator on f . Equations (5.4) and (5.20) show

F−1
A
µr
k F(f )(ξ,α, θ) = F−1(L

(∗,µr )
k − Lk)F(f )(ξ,α, θ)

(5.30)

= ηk(ξ)
(
αγ−1−rκk(ξ,α)〈fk(ξ, ·), τk(ξ, ·)〉(µr ,1)
− τk(ξ,α)〈fk(ξ, ·), κk(ξ, ·)〉(σ ,1)

)
eikθ.

For our purposes, it is convenient to introduce the following function:

λk(ξ,α) := αγ−1−rκk(ξ,α)−
τk(ξ,α)

ηk(ξ)
∥∥τk(ξ, ·)

∥∥2
(µr ,1)

.

(The notation λk(ξ,α) is used only in this section and should not be confused
with our notation for the Leray-Levi measure used elsewhere in the paper.) It is
easily checked that for each fixed ξ < 0, λk(ξ, ·) ⊥(µr ,1) τk(ξ, ·), and that

∥∥λk(ξ, ·)
∥∥2
(µr ,1) =

∥∥κk(ξ, ·)
∥∥2
(µr ′ ,1) −

1

ηk(ξ)2
∥∥τk(ξ, ·)

∥∥2
(µr ,1)

.

It follows that we can re-express (5.30) in a more symmetric fashion:

F−1
A
µr
k F(f )(ξ,α, θ) = F−1(L

(∗,µr )
k − Lk)F(f )(ξ,α, θ)

= ηk(ξ)
(
λk(ξ,α)〈fk(ξ, ·), τk(ξ, ·)〉(µr ,1)
− τk(ξ,α)〈fk(ξ, ·), λk(ξ, ·)〉(µr ,1)

)
eikθ.

A computation now shows that

∥∥F−1
A
µr
k F(f )

∥∥2
(µr ,1)

= (Cµr (γ, k)− 1
)
(∣∣∣∣
〈
fk(ξ, ·),

τk(ξ, ·)
‖τk(ξ, ·)‖(µr ,1)

�

(µr ,1)

∣∣∣∣
2

+
∣∣∣∣
〈
fk(ξ, ·),

λk(ξ, ·)
‖λk(ξ, ·)‖(µr ,1)

�

(µr ,1)

∣∣∣∣
2
)
,
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meaning F−1A
µr
k F annihilates L2(Mγ , µr ) \ Zk, where

Zk := span{τk(ξ,α)eikθ, λk(ξ,α)eikθ}.

Now decompose Zk = Z1
k

⊕
Z2
k , where

Z1
k =

{
m(ξ)

(
λk(ξ,α)+ i

‖λk(ξ, ·)‖(µr ,1)
‖τk(ξ, ·)‖(µr ,1)

τk(ξ,α)

)
eikθ :

∫ 0

−∞
|m(ξ)|2 |ξ|((2k+r+1)/γ−2k−2)

dξ

}
,

Z2
k =

{
m(ξ)

(
λk(ξ,α)− i

‖λk(ξ, ·)‖(µr ,1)
‖τk(ξ, ·)‖(µr ,1)

τk(ξ,α)

)
eikθ :

∫ 0

−∞
|m(ξ)|2 |ξ|((2k+r+1)/γ−2k−2)

dξ

}
.

It is easily verified that the following hold:

• Z1
k coincides with the eigenspace Ei

√
Cµr (γ,k)−1 of F−1A

µr
k F .

• Z2
k coincides with the eigenspace E−i

√
Cµr (γ,k)−1 of F−1A

µr
k F .

• These two spaces are infinite dimensional, but each is constructed around
its own particular linear combination of τk(ξ,α)eikθ and λk(ξ,α)eikθ.

In summary, we have the following result.

Theorem 5.13. Fix an integer k ≥ 0 and let r ∈ Ik. The operator Aµrk admits
an orthogonal basis of eigenfunctions, and its spectrum is given by

{0,±i
√
Cµr (γ, k)− 1}.

If r ∈ I0, then r ∈ Ik for all k ≥ 0. Consequently, for this range of r values,
the conclusion of Theorem 5.13 holds for each non-negative k. This immediately
implies Theorem 1.5.

6. PROJECTIVE DUALITY

We now introduce the notion of projective duality. Define CPn∗ to be the set of
hyperplanes in CPn. It is easily seen that this set can be isomorphically identified
with CPn. Indeed, each hyperplane in CPn corresponds to a unique point ζ =
[ζ0 : · · · : ζn] ∈ CPn:

hζ = {ζ∗ ∈ CPn : ζ0ζ
∗
0 + · · · + ζnζ∗n = 0}.

It is clear that this identification is reflexive.
Given a domain Ω ⊂ CPn with smooth boundary S, we now define the dual

S∗ ⊂ CPn∗ to be the set of complex hyperplanes tangent to S. (See [1] for a
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detailed treatment of this topic; also see [7, 8] for related recent developments.)
When S is a smooth and strongly C-convex hypersurface, S∗ is also smooth and
strongly C-convex with S∗∗ = S. However, such regularity properties for S∗ often
fail under weaker hypotheses on S (see Remark 6.6).

From the denominator of LS in (2.1b), we see that the complex tangent hy-
perplanes to a smooth hypersurface S play a critical role in the Leray transform.
Strong C-convexity ensures that each supporting hyperplane intersects Ω̄ at the
point of tangency and nowhere else (see Section 2.5 in [1]). In [4], the first author
develops the connection between the Leray transforms LS and LS∗ and shows that
these operators respect a natural bilinear pairing of two “dual” Hardy spaces when
S and S∗ are smoothly bounded, strongly C-convex hypersurfaces. The Leray
transform plays a role in higher dimensions analogous to the role played by the
Cauchy transform of a planar domain in pairing two Hardy spaces of holomor-
phic boundary values associated with the interior and exterior of a planar curve,
respectively (see [32]). We extend this work in Section 6.4.

6.1. The dual hypersurface of Mγ . If S is a smooth strongly C-convex
hypersurface, we can choose an appropriate matrix A ∈ GL(n + 1,C) to induce
an affinization of CPn∗, and thereby represent S∗ as a hypersurface in Cn. The
details below were first introduced by the authors in Section 4 of [6].

Define the map ΦA : Cn × Cn → C by calculating the following matrix prod-
uct:

(6.1) ΦA((z1, . . . , zn), (w1, . . . ,wn)) = [1 w1 · · · wn]A[1 z1 · · · zn]T .

The following proposition is stated for two-dimensional S, but it admits a
straightforward generalization to higher dimensions.

Proposition 6.1. Given a smooth real hypersurface S ⊂ C2 with defining func-
tion ρ and a matrix

(6.2) A =



c1 a1 a2

b1 m11 m12

b2 m21 m22


 ∈ GL(3,C),

the following conditions are equivalent:

(6.3a) There are functions wA1 and wA2 on S with the property that the complex
tangent line to S at ζ is given by

{(z1, z2) : ΦA((z1, z2), (w
A
1 (ζ),w

A
2 (ζ))) = 0}.

(6.3b) The conditions in (6.3a) hold, with the additional conditions that wA1 and
wA2 are smooth and uniquely determined.
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(6.3c) The matrix



m11ζ1 +m12ζ2 + b1 m21ζ1 +m22ζ2 + b2

m11
∂ρ

∂ζ2
−m12

∂ρ

∂ζ1
m21

∂ρ

∂ζ2
−m22

∂ρ

∂ζ1




is invertible for all ζ ∈ S.

Proof. The complex tangent line to S at ζ is the unique (affine) line joining
ζ to the point ζ + (∂ρ/∂ζ2,−∂ρ/∂ζ1). This follows from the fact that the vec-
tor field (∂ρ/∂ζ2)(∂/∂ζ1) − (∂ρ/∂ζ1)(∂/∂ζ2) is tangent to S at ζ. To try to
represent the tangent line in the desired form we seek solutions (wA1 ,w

A
2 ) of the

inhomogeneous linear system

(1,wA1 ,w
A
2 )A(1, ζ1, ζ2)

T = 0,

(1,wA1 ,w
A
2 )A

(
1, ζ1 +

∂ρ

∂ζ2
, ζ2 −

∂ρ

∂ζ1

)T
= 0.

Uniqueness of the line implies that the system has at most one solution, so if there
is any solution, the associated homogeneous system is non-singular; conversely,
non-singularity of the associated homogeneous system implies the existence of a
unique smooth solution of the inhomogeneous system. A computation reveals
that the matrix representing the associated homogeneous system is



m11ζ1 +m12ζ2 + b1 m21ζ1 +m22ζ2 + b2

m11
∂ρ

∂ζ2
−m12

∂ρ

∂ζ1
m21

∂ρ

∂ζ2
−m22

∂ρ

∂ζ1


 . ❐

Remark 6.2. A corresponding result holds in higher dimensions, in which
condition (6.3c) is replaced by a maximal-rank condition on a certainn×

((n
2

)
+ 1

)

matrix.

Definition 6.3. When the equivalent conditions in Proposition 6.1 hold,
we say that S is A-admissible, and denote the image of S under the map wA =
(wA1 ,w

A
2 ) by S∗,A. When A is clear from context, we may drop the superscripts

and simply write w = (w1,w2) and S∗.

It is easily checked that any hypersurface that can be written as a smooth graph
over the variables z1 and Re(z2) is A-admissible for any invertible matrix A whose
only non-zero entries occur on the anti-diagonal. For Mγ , γ > 1, we will use the
matrix

(6.4) Aγ =




0 0 i
0 γ 0

i(γ − 1) 0 0


 ,
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which yields

ΦAγ ((z1, z2), (w1(ζ),w2(ζ))) = iz2 + γw1(ζ)z1 + i(γ − 1)w2(ζ) = 0.

Rewriting the tangent line
{
(z1, z2) :

∂ρ

∂ζ1
(ζ) · (z1 − ζ1)+

∂ρ

∂ζ2
(ζ) · (z2 − ζ2) = 0

}

to any Aγ-admissible hypersurface S at ζ in the form

{(z1, z2) : γw
Aγ
1 (ζ)z1 + iz2 = i(1− γ)wAγ2 (ζ)},

we find that

w
Aγ
1 (ζ) =

iρζ1

γρζ2

, w
Aγ
2 (ζ) =

ζ1ρζ1 + ζ2ρζ2

(1− γ)ρζ2

.

Specializing now to Mγ by setting ρ(ζ) = |ζ1|γ ,− Im(ζ2), we obtain

∂ρ

∂ζ1
(ζ) = γ

2
ζ̄1|ζ1|γ−2,

∂ρ

∂ζ2
(ζ) = i

2
,

and thus

w
Aγ
1 (ζ) = ζ̄1|ζ1|γ−2,(6.5a)

w
Aγ
2 (ζ) =

ζ2 − iγ|ζ1|γ
1− γ =

(
1− γ

2

)
ζ2 +

γ

2
ζ̄2

1− γ .(6.5b)

This shows that the defining equation for the dual hypersurface M
∗,Aγ
γ is

(6.6) Im(w
Aγ
2 (ζ)) = |w

Aγ
1 (ζ)|γ/(γ−1).

Thus, via the matrix Aγ , the dual hypersurfaceM∗
γ = Mγ∗ , where γ∗ = γ/(γ−1)

is the Hölder conjugate of the exponent γ.
Note for future reference that

ζ1 =wAγ1 |wAγ1 |(2−γ)/(γ−1)(6.7a)

|ζ1| = |wAγ1 |1/(γ−1),(6.7b)

ζ2 =
(

1− γ
2

)
w
Aγ
2 − γ

2
w
Aγ
2(6.7c)

= (1− γ)wAγ2 + iγ|wAγ1 |γ/(γ−1),

Reζ2 = (1− γ)Rew
Aγ
2 .(6.7d)
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Remark 6.4. Using the (s,α, θ) parametrization ofMγ from Section 3.2, the
matrix in (6.3c) has determinant

∆ := P +Qe−iθαγ−1 + R
(
αγ + i s

γ − 1

)
,

where

P = i
2
(b1m21 − b2m11),

Q = γ
2
(b2m12 − b1m22),

R = γ − 1
2
(m12m21 −m11m22).

Thus, the matrix A is admissible if and only if ∆ is non-zero for all s, θ ∈ R,
α > 0. We make the following observations:

• Invertibility of A implies that P,Q,R are not all zero.
• If R = 0 then it is easy to see that Mγ is A-admissible if and only if one of
P,Q vanishes.

• For R 6= 0 we can apply Young’s inequality in the form

αγ−1 ≤ 1
γ
+ γ − 1

γ
αγ

to obtain

Re∆R̄ = RePR̄ + RR̄αγ + Re(QR̄e−iθ) ·αγ−1

≥
(

RePR̄ − |QR|
γ

)
+
(
|R|2 − (γ − 1)|QR|

γ

)
αγ ;

so if

|Q| ≤ γmin

{
Re
PR̄

|R| ,
|R|
γ − 1

}

(with strict inequality if Re(PR̄/|R|) = |R|/(γ−1)), then Re∆R̄ is strictly
positive and thus Mγ is A-admissible.

• On the other hand, if Q = 0 and PR̄ is negative then it is easy to see that
Mγ is not A-admissible.

Remark 6.5. In general, when a hypersurface S is both A-admissible and
A′-admissible, then the dualization maps wA and wA

′
are related by

wA
′ = wA ◦ ̂(A(A′)−1)T ,

where ̂(A(A′)−1)T is the projective automorphism corresponding to the matrix
(A(A′)−1)T as in (2.4). (See Lemma 4.28 in [6].)
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Remark 6.6. As γ ց 1, the Mγ tend to the hypersurface M1 which is C-
convex but not strongly C-convex. The matrix A1 is not invertible, but using the
matrix

A∗ :=




0 0 i
0 γ 0
i 0 0




instead we obtain wA∗1 (ζ) = ζ̄1/|ζ1| and wA∗2 (ζ) = i|ζ1| − ζ2 = −Re(ζ2).
Thus, M1 is mapped onto the 2-manifold S1 ×R.

6.2. Distinguished measures on Mγ . In Section 2.4.1 we previewed several
measures now to be discussed in detail. Each of these belongs to one of the families

Fr = {cµr : c ∈ R+},

where µr = αr ds ∧ dα ∧ dθ, so Leray boundedness results obtained in previous
sections are immediately applicable.

6.2.1. The pairing measure. Let A ∈ GL(3,C) be as in (6.2), and S an
A-admissible, strongly C-convex hypersurface in C2. Define the pairing measure
(with respect to A) on S by the following formula:

(6.8) νA := 1
(2πi)2

(
(dw1,A,dw2,A)

(
m11 m12

m21 m22

)(
a2

−a1

)

+
∣∣∣∣∣
m11 m12

m21 m22

∣∣∣∣∣ (w2,A dw1,A −w1,A dw2,A)

)
∧ dζ1 ∧ dζ2.

The authors previously introduced this measure in [6]. (Related objects also
appear in Section 7 of [4] and Section 3.2 of [1].) This measure allows for the
Leray transform to be written in terms of the dual variables. We restate Proposition
4.30 from [6] as follows, which gives a universal formula for the Leray transform
of any A-admissible S.

Proposition 6.7. Let A ∈ GL(3,C) be as in (6.2), and S an A-admissible,
strongly C-convex hypersurface in C2. Then, the Leray integral from (2.1a) may be
written as

(6.9) LSf (z) =
∫

ζ∈S

f (ζ)

[ΦA(z,wA(ζ))]2
νA(ζ),

where ΦA is defined in (6.1).
In the special case of S = Mγ , A = Aγ , we have

νAγ = − iγ

4π2
dw

Aγ
1 ∧ dζ1 ∧ dζ2 =

γ2

8π2i
|ζ1|γ−2

dζ2 ∧ dζ̄1 ∧ dζ1(6.10)

= γ2

4π2
αγ−1

ds ∧ dα∧ dθ.
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6.2.2. The preferred measure and its dual. In Section 2.2.3, we defined
(up to a constant) the preferred measure µ̃S. This measure was introduced by the
first author in [4] to define a pair of dual Hardy spaces with desirable projective
transformation laws. Employing the Fefferman measure (2.7) to construct such
spaces still leads to such transformation laws, but the preferred measure µ̃S dove-
tails with a pairing of these spaces in the spirit of (6.9) in a way that µFef

S does
not.

One Hardy space is defined using µ̃S. To define the other Hardy space, intro-
duce the preferred dual measure by pulling back the preferred measure on the dual
S∗,A via the map wA:

(6.11) µ̃
∗,A
S := (wA)∗(µ̃S∗,A).

When the hypersurface and matrix are clear from context, we may simply write µ̃
and µ̃∗ to denote the preferred measure and its dual.

The preferred measure on Mγ was already recorded in (2.11):

µ̃Mγ = c2
γ4/3

8(γ − 1)1/3i
|ζ1|(γ−2)/3

dζ2 ∧ dζ̄1 ∧ dζ1.

We will choose a convenient normalization constant c2 shortly. But first let us
compute the dual measure. From (6.5) we obtain

dw̄
Aγ
1 ∧ dw

Aγ
1 = (1− γ)|ζ1|2γ−4

dζ̄1 ∧ dζ1,

so from (6.11), we see

µ̃
∗,Aγ
Mγ = c2 · (γ∗)4/3|wAγ1 |(γ∗−2)/3

8(γ∗ − 1)1/3i
dw

Aγ
2 ∧ dw̄

Aγ
1 ∧ dw

Aγ
1

= c2 · γ4/3

8(γ − 1)i
|ζ1|5(γ−2)/3

dζ2 ∧ dζ̄1 ∧ dζ1.

Note the Radon-Nikodym derivative

(6.12)
dµ̃

∗,Aγ
Mγ

dµ̃Mγ
= |ζ1|(4/3)(γ−2)

(γ − 1)2/3
.

Now define the geometric mean

√
µ̃Mγ µ̃

∗,Aγ
Mγ of measures µ̃Mγ and µ̃

∗,Aγ
Mγ by

d

√
µ̃Mγ µ̃

∗,Aγ
Mγ :=

√√√√√dµ̃
∗,Aγ
Mγ

dµ̃Mγ
dµ̃Mγ .
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Therefore,
√
µ̃Mγ µ̃

∗,Aγ
Mγ = c2γ4/3|ζ1|γ−2

8(γ − 1)2/3i
dζ2 ∧ dζ̄1 ∧ dζ1,

and thus

∣∣∣∣
∫

Mγ
fg dνAγ

∣∣∣∣ ≤
√∫

Mγ
|f |2 dµ̃Mγ

√∫

Mγ
|g|2 dµ̃∗,AγMγ

dνAγ

d

√
µ̃Mγ µ̃

∗,Aγ
Mγ

= (γ(γ − 1))2/3

c2π2

∥∥f
∥∥2
L2(Mγ ,µ̃)

∥∥g
∥∥2
L2(Mγ ,µ̃∗).

(Here, we identify the positive three-form νAγ with a measure so that
∫
fg dνAγ

and
∫
fg νAγ have the same meaning.)

In order to obtain a sharp Cauchy-Schwarz inequality

(6.13)
∣∣∣∣
∫

Mγ
fg νAγ

∣∣∣∣ ≤
∥∥f
∥∥2
L2(Mγ ,µ̃)

∥∥g
∥∥2
L2(Mγ ,µ̃∗),

we set

c2 =
(γ(γ − 1))2/3

π2

so that √
µ̃Mγ µ̃

∗,Aγ
Mγ = γ

2|ζ1|γ−2

8π2i
dζ2 ∧ dζ̄1 ∧ dζ1 = νAγ .

For each f , there is some non-zero g such that equality holds in (6.13). (The same
is true with the roles of f and g reversed.) Here, we have allowed c2 to depend
not only on the dimension but also on the choice of matrix Aγ .

This choice of c2 will be fixed throughout the rest of the paper. We therefore
settle on the convention that

µ̃Mγ =
γ2(γ − 1)1/3

8π2i
|ζ1|(γ−2)/3

dζ2 ∧ dζ̄1 ∧ dζ1(6.14)

= γ
2(γ − 1)1/3

4π2
α(γ+1)/3

ds ∧ dα∧ dθ

and

µ̃
∗,Aγ
Mγ = γ2

8π2(γ − 1)1/3i
|ζ1|(5γ−10)/3

dζ2 ∧ dζ̄1 ∧ dζ1(6.15)

= γ2

4π2(γ − 1)1/3
α(5γ−7)/3

ds ∧ dα∧ dθ.
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6.3. Dual Hardy spaces and the dual Leray transform. Formulas (6.10),
(6.14) and (6.15) show that each of the distinguished measures from the previous
section are contained in some Fr . In particular,

νAγ ∈ Fγ−1, µ̃Mγ ∈ F(γ+1)/3, µ̃
∗,Aγ
Mγ ∈ F(5γ−7)/3.

Notice that the numbers γ−1, (γ+1)/3, (5γ−7)/3 ∈ I0 = (−1,2γ−1), for any
γ > 1. Therefore, Corollary 5.4 implies that the Leray transform is a bounded

operator on all three spaces L2(Mγ , νAγ ), L2(Mγ , µ̃Mγ ) and L2(Mγ , µ̃
∗,Aγ
Mγ ).

In what follows, (wAγ )∗ and (wAγ )∗ refer to the pullback and pushforward
of wAγ , respectively. In the spirit of (5.28), define the Hardy space

H2(Mγ , µ̃Mγ ) := Lγ(L2(Mγ , µ̃Mγ )) = ker(Lγ − I)

and the dual Hardy space

H2
dual(Mγ, µ̃

∗,Aγ
Mγ ) := (wAγ )∗(H2(Mγ∗ , µ̃Mγ∗ )).(6.16)

Also define the dual Leray transform

L̃γ := (wAγ )∗ ◦ Lγ∗ ◦ (wAγ )∗.

Proposition 6.8. The dual Leray transform L̃γ is a bounded projection operator

from L2(Mγ , µ̃
∗,Aγ
Mγ ) onto H2

dual(Mγ , µ̃
∗,Aγ
Mγ ).

Proof. We occasionally write µ̃∗ for µ̃
∗,Aγ
Mγ when context is clear. If then we let

g ∈ L2(Mγ , µ̃∗) and write the purely imaginary constant in (6.15) as

γ2

8π2(γ − 1)1/3i
:= −Ci,

we have

∥∥g
∥∥2
µ̃∗ = −Ci

∫

Mγ
|g(ζ)|2 |ζ1|(5γ−10)/3

dζ2 ∧ dζ̄1 ∧ dζ1

= −Ci
∫

Mγ∗
|g ◦w−1|2 |w1|(2−γ)/(3γ−3)

dw2 ∧ dw̄1 ∧ dw1 < ∞.

Since −Ci|w1|(2−γ)/(3γ−3) dw2 ∧ dw̄1 ∧ dw1 ∈ F(2γ−1)/(3γ−3), we see that
g ◦ w−1 ∈ L2(Mγ∗ , µ(2γ−1)/(3γ−3)) and that each function in this space corre-
sponds to a unique such g. Now considering that

2γ − 1
3γ − 3

∈ (−1,2γ∗ − 1) = I0
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(the interval of r values with Leray boundedness on L2(Mγ∗ , µr )), Theorem 1.2
says that Lγ∗ is bounded on L2(Mγ∗ , µ(2γ−1)/(3γ−3)). Using wAγ = w to pull the
computation back to Mγ (since L̃γg = w∗ ◦ Lγ∗ ◦ w∗ ◦ g), we conclude that
‖L̃γg‖µ̃∗ ≲ ‖g‖µ̃∗ , where the implied constant is independent of the particular
choice of g. We are also now able to invoke Proposition 5.11 to conclude that the
dual Leray transform is a projection.

Since µ̃Mγ∗ ∈ F(2γ−1)/(3γ−3), H2(Mγ∗ , µ̃Mγ∗ ) is the image, under Lγ∗ , of
L2(Mγ∗ , µ(2γ−1)/(3γ−3)), the definition in (6.16) now lets us conclude

L̃γ(L
2(Mγ , µ̃

∗,Aγ
Mγ )) = H2

dual
(Mγ , µ̃

∗,Aγ
Mγ ). ❐

Remark 6.9. It is shown in Appendix A that functions in the Hardy space
H2(Mγ , µ̃Mγ ) are boundary values of holomorphic functions on Ωγ . Functions in

H2
dual
(Mγ , µ̃

∗,Aγ
Mγ ) are pullbacks viawAγ of holomorphic boundary values on Ωγ∗ .

Remark 6.10. If Y is a non-vanishing vector field annihilating CR functions

on Mγ∗ , then H2
dual
(Mγ , µ̃

∗,Aγ
Mγ ) can equivalently be thought of as the set of func-

tions in L2(Mγ , µ̃
∗,Aγ
Mγ ) annihilated by (wAγ )∗Y . (Thus, Y induces the “projective

dual CR structure on Mγ .” See Section 3 of [7] for a general discussion.) Alterna-
tively, Lemma 4.40 in [6] leads to the characterizing vector field of the dual Hardy
space. It can be shown that

L̄dual := i
2
∂

∂ζ1
+ (2− γ)i

2γ
ζ̄1

ζ1

∂

∂ζ̄1
− γ

2
ζ̄1|ζ1|γ−2 ∂

∂ζ2
+
(

1− γ
2

)
ζ̄1|ζ1|γ−2 ∂

∂ζ̄2

annihilates all functions in H2
dual
(Mγ , µ̃

∗,Aγ
Mγ ).

Now, L̃γ is now re-expressed as a single integral, as follows.

Proposition 6.11. Let g ∈ L2(Mγ , µ̃
∗,Aγ
Mγ ). The dual Leray transform is given

by

(6.17) L̃γ(g)(z) =
γ2

8π2i

∫

Mγ
g(ζ)

|ζ1|γ−2 dζ2 ∧ dζ̄1 ∧ dζ1

[γz̄1|z1|γ−2(z1 − ζ1)+ i(z2 − ζ2)]2
.

Proof. The map wAγ = w given by (6.6) is a diffeomorphism from Mγ onto
Mγ∗ . To help keep track of notation, write

ζ = (ζ1, ζ2) ∈ Mγ, w(ζ) := ζ∗ = (ζ∗1 , ζ∗2 ) ∈ Mγ∗ ,
z = (z1, z2) ∈Mγ , w(z) := z∗ = (z∗1 , z∗2 ) ∈ Mγ∗ .

Now transfer the computation from Mγ to Mγ∗ by considering the push-
forward of g, denoted G := w∗(g). The proof of Proposition 6.8 shows both
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that G ∈ L2(Mγ∗ , µ(2γ−1)/(3γ−3)) and that Lγ∗ is a bounded operator on this
space. We have

L̃γ(g)(z) = (w∗ ◦ Lγ∗ ◦w∗ ◦ g)(z)(6.18)

= (Lγ∗(g ◦w−1))(w(z)) = Lγ∗(G)(z∗).

Now,

(6.19) Lγ∗(G)(z
∗)

= (γ
∗)2

8π2i

∫

Mγ∗
G(ζ∗)

|ζ∗1 |γ
∗−2

dζ∗2 ∧ dζ∗1 ∧ dζ∗1[
γ∗ζ∗1 |ζ∗1 |γ∗−2(ζ∗1 − z∗1 )+ i(ζ∗2 − z∗2 )

]2

= γ2

8π2(γ − 1)2i

∫

Mγ∗
G(ζ∗)

× |ζ∗1 |(2−γ)/(γ−1)
dζ∗2 ∧ dζ∗1 ∧ dζ∗1[(

γ

γ − 1

)
ζ∗1 |ζ∗1 |(2−γ)/(γ−1)(ζ∗1 − z∗1 )+ i(ζ∗2 − z∗2 )

]2

= γ2

8π2i

∫

Mγ∗
G(ζ∗)

× |ζ∗1 |(2−γ)/(γ−1)dζ∗2 ∧ dζ∗1 ∧ dζ∗1[
γ|ζ∗1 |γ/(γ−1) − γz∗1 ζ∗1 |ζ∗1 |(2−γ)/(γ−1) + i(γ − 1)(ζ∗2 − z∗2 )

]2 .

Now, we wish to move the computation back to Mγ . Writing (6.5) and (6.7)
in the notational convention adopted above, we see that

ζ∗1 = ζ̄1|ζ1|γ−2, ζ∗2 =
ζ2 − iγ|ζ1|γ

1− γ ,(6.20)

ζ1 = ζ∗1 |ζ∗1 |(2−γ)/(γ−1), ζ2 = (1− γ)ζ∗2 + iγ|ζ1|γ/(γ−1).(6.21)

The same relations also hold between the z and z∗ variables. From here, it follows
that

(6.22) dζ∗2 ∧ dζ∗1 ∧ dζ∗1 = |ζ1|2γ−4
dζ2 ∧ dζ̄1 ∧ dζ1.

Using (6.20) and (6.21), rewrite the term inside the brackets appearing in the
denominator in (6.19):

γ|ζ∗1 |γ/(γ−1) − γz∗1 ζ∗1 |ζ∗1 |(2−γ)/(γ−1) + i(γ − 1)(ζ∗2 − z∗2 )(6.23)

= γ|ζ1|γ − γζ1z̄1|z1|γ−2 + γ|z1|γ − γ|ζ1|γ + i(z2 − ζ2)

= γz̄1|z1|γ−2(z1 − ζ1)+ i(z2 − ζ2).
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Inserting equations (6.22) and (6.23) into (6.19) shows

(6.19) = γ2

8π2i

∫

Mγ
g(ζ)

|ζ1|γ−2 dζ2 ∧ dζ̄1 ∧ dζ1[
γz̄1|z1|γ−2(z1 − ζ1)+ i(z2 − ζ2)

]2 ,

which is equal to L̃γ(g)(z) by (6.18). ❐

The preceding proposition demonstrates the close connection between the
dual Leray transform and the adjoint of the Leray transform with respect to the
measure σ .

Corollary 6.12. The dual Leray transform on Mγ can be expressed as

L̃γ = c ◦ L(∗,σ)γ ◦ c,

where c is the conjugation operator and L(∗,σ) is given by the integral in (5.21).

Proof. This is immediate from formulas (5.21) and (6.17). ❐

Remark 6.13. We have seen that Lγ is bounded on L2(Mγ , µr ) if and only if
r ∈ I0 = (−1,2γ − 1). For a fixed r in this range, choose r ′ with (r + r ′)/2 =
γ − 1, and let f ∈ L2(Mγ , µr ), g ∈ L2(Mγ , µr ′). By symmetry (Remark 5.5),
r ′ is also contained in I0. General theory (or, alternatively, the proof of Theorem
5.10) shows

〈Lγf , g〉σ = 〈f ,L(∗,σ)γ g〉σ ,

implying that

‖Lγ‖µr = ‖L(∗,σ)γ ‖µr ′ = ‖L̃γ‖µr ′ .

This shows that the dual Leray transform L̃γ is bounded on L2(Mγ , µr ′) for all
r ′ ∈ I0. In particular,

‖Lγ‖µ̃ = ‖L̃γ‖µ̃∗ .

where µ̃ and µ̃∗ are the preferred measure and preferred dual measure, respectively.

6.4. Pairing Hardy spaces. For f ∈ L2(Mγ , µ̃Mγ ), g ∈ L2(Mγ , µ̃
∗,Aγ
Mγ ),

define the bilinear pairing

(6.24) 〈〈f , g〉〉 =
∫

Mγ
f (ζ)g(ζ)νAγ (ζ).

Continue to write µ̃ and µ̃∗ for µ̃Mγ and µ̃
∗,Aγ
Mγ , respectively. This pairing fa-

cilitates the representation of linear functionals on H2(Mγ , µ̃) by functions in
H2

dual(Mγ , µ̃
∗). In Theorem 6.17 below we prove that the efficiency of this repre-

sentation is closely connected to the Leray transform. We point out the following:
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(1) The preferred measure µ̃ and preferred dual measure µ̃∗ are projectively
invariant, so the corresponding Hardy spaces are too. Compare this to
both Theorem 2 and Section 8 in [4].

(2) PairingH2(Mγ , µ̃) and H2
dual(Mγ , µ̃

∗) via (6.24) is closely tied to the uni-
versal expression of the Leray transform given in (6.9).

Lemma 6.14. For f ∈ L2(Mγ , µ̃), g ∈ L2(Mγ , µ̃∗) we have

(6.25) 〈〈Lγf , g〉〉 = 〈〈f , L̃γg〉〉 = 〈〈Lγf , L̃γg〉〉.

Proof. Since Lγ and L̃γ are projections, it suffices to prove the first equality.
Notice that

〈〈Lγf , g〉〉 = 〈Lγf , ḡ〉ν = 〈f ,L(∗σ)γ ḡ〉ν = 〈〈f , c ◦ L(∗,σ)γ ◦ c(g)〉〉 = 〈〈f , L̃γg〉〉.

The second equality is justified by the proof of Theorem 5.10, and the final equal-
ity is just Corollary 6.12. ❐

Remark 6.15. Formula (6.25) could also be proved by adapting the Plemelj-
formula-based argument found in Theorem 25 of [4] to the current unbounded
setting.

Now consider the map

χγ : L2(Mγ , µ̃
∗)→ (L2(Mγ , µ̃))

∗

given by

χγ(g) : f → 〈〈f , g〉〉,

along with the companion map

χ̂γ : H2
dual(Mγ , µ̃

∗)→ (H2(Mγ , µ̃))
∗

given by

χ̂γ(g) = χγ(g)
∣∣
H2(Mγ ,µ̃)

.

Note that χγ and χ̂γ are linear (not conjugate-linear). From (6.13) we see that χγ
is an isometry and that

‖χ̂γ‖ ≤ 1.

Define a map R̃ : L2(Mγ , µ̃∗)→ L2(Mγ , µ̃) by

f (ζ) 7 -→

√√√√√dµ̃
∗,Aγ
Mγ

dµ̃Mγ
f (ζ) = |ζ1|(2/3)(γ−2)

(γ − 1)1/3
f (ζ) := R̃f ,

where the Radon-Nikodym derivative is calculated in (6.12).



1892 DAVID E. BARRETT & LUKE D. EDHOLM

Lemma 6.16. The map R̃ : L2(Mγ , µ̃
∗,Aγ
Mγ )→ L2(Mγ , µ̃Mγ ) is an isometry.

Proof. The appearance of the Radon-Nikodym derivative makes this clear. ❐

Theorem 6.17. The operator χ̂γ : H2
dual(Mγ , µ̃

∗)→ (H2
(
Mγ , µ̃))∗ is invertible

with norm
‖χ̂−1
γ ‖ = ‖Lγ‖µ̃.

Remark 6.18. If Mγ were the boundary of a smoothly bounded strongly C-
convex domain in C2 (or CP2), then Theorem 6.17 would just be a paraphrase of
Corollary 26 from [4]; the argument offered below is an adaptation of that earlier
proof.

Proof. Let g ∈ ker χ̂γ , that is, χ̂γ(g) is the zero functional on H2(Mγ , µ̃). It
can be easily checked that LγR̃ḡ ∈ H2(Mγ , µ̃). This means that

0 = χ̂γ(g)(LγR̃ḡ) = 〈〈LγR̃ḡ, g〉〉 = 〈〈R̃ḡ, L̃γg〉〉 = 〈〈R̃ḡ, g〉〉 =
∥∥g
∥∥2
µ̃∗ .

Thus, g ≡ 0 and χ̂γ is injective.
Let T ∈ H2(Mγ , µ̃)∗. There is some h ∈ L2(Mγ , µ̃∗) representing T and

satisfying
‖h‖L2(Mγ ,µ̃∗) = ‖T‖H2(Mγ ,µ̃)∗ .

Now, for all f ∈ H2(Mγ , µ̃),

Tf = 〈〈f ,h〉〉 = 〈〈Lγf ,h〉〉 = 〈〈f , L̃γh〉〉 = χ̂γ(L̃γh)(f ).

In other words,

T = χ̂γ(L̃γh) with ‖L̃γh‖µ̃∗ ≤ ‖L̃γ‖µ̃∗ ‖h‖µ̃∗ = ‖Lγ ‖µ̃‖T‖.

Thus, χ̂γ is surjective with ‖χ̂−1
γ ‖ ≤ ‖Lγ‖µ̃.

To prove the reverse estimate let f ∈ H2(Mγ , µ̃) and pick

h ∈ L2(Mγ , µ̃
∗) such that ‖h‖µ̃∗ = 1.

Then,

|χ̂γ(L̃γh)(f )| = |〈〈f , L̃γh〉〉| = |〈〈Lγf ,h〉〉| = |〈〈f ,h〉〉| ≤ ‖f‖µ̃,

and so ‖χ̂γ(L̃γh)‖ ≤ 1 for any such h. Let ε > 0 and choose a specific such h so
that ‖L̃γh‖µ̃∗ ≥ ‖Lγ‖µ̃ − ε. It easily follows that ‖χ̂−1

γ ‖ ≥ ‖L̃γh‖µ̃∗ ≥ ‖Lγ‖µ̃ − ε.
Since ε was arbitrary we have ‖χ̂−1

γ ‖ ≥ ‖Lγ‖µ̃, concluding the proof. ❐

See Section 9 in [4] for related results.
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Remark 6.19. It would be of interest to explicitly calculate the norm ‖Lγ‖µ̃.
In this regard, we point out there is no reason to expect the behavior of the symbol
function Cµr (γ, k) when r = (γ + 1)/3 (the r value corresponding to the pre-
ferred measure) to be closely related to its behavior when r = γ − 1 (the r value
of the pairing measure discussed in Section 4).

APPENDIX A. CONSTRUCTING HOLOMORPHIC FUNCTIONS ON Ωγ
We verify here that for certain values of r , the Leray transform maps functions
f ∈ L2(Mγ , µr ) to holomorphic functions on the domain

Ωγ = {(z1, z2) ∈ C2 : Im(z2) > |z1|γ}.

The main result is the following.

Theorem A.1. Let L denote the Leray transform. L maps L2(Mγ , µr )→ O(Ωγ)
for each r ∈ J0 := (−γ − 1,2γ − 1).

Notice that J0 ⊋ I0 = (−1,2γ − 1), the interval of r values for which L is
bounded from L2(Mγ , µr ) → L2(Mγ , µr ). In Section 5.3, we defined the Hardy
space

H2(Mγ , µr ) := L(L2(Mγ , µr ))

for each r ∈ I0. Theorem A.1 confirms that these Hardy spaces can be viewed as
consisting entirely of boundary values of holomorphic functions.

1.1. Symmetries of the Leray kernel. Partition Ωγ into translated copies of
Mγ by defining

Mεγ = {(z1, z2) : Im(z2) = |z1|γ + ε}.

It is clear that Ωγ =
⋃
ε>0M

ε
γ and that this is a union of disjoint sets.

Let z ∈ Ωγ . Equations (2.3a), (2.3b), and (2.3c) provide the formula for the
Leray transform:

(A.1) Lf (z) =
∫

Mγ
f (ζ)ℓρ(z, ζ)λρ(ζ) =

γ2

16π2

∫

Mγ
f (ζ)ℓρ(z, ζ)σ(ζ),

where the kernel ℓρ = ℓ and measure σ are

ℓ(z, ζ) = 4

(γζ̄1|ζ1|γ−2(ζ1 − z1)+ i(ζ2 − z2))2
,

σ(ζ) = 1
2i
|ζ1|γ−2

dζ2 ∧ dζ̄1 ∧ dζ1.

The measure σ is a special instance of µr , given in rectangular coordinates for
r ∈ R by

µr (ζ) =
1
2i
|ζ1|r−1

dζ2 ∧ dζ̄1 ∧ dζ1.
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Recall the three types of automorphisms of Mγ from Section 3.1: ts (translations
in Re(ζ2)), rθ (rotations in ζ1), and δa (non-isotropic dilations). These maps
transform ℓ(z, ζ) in the following way:

ℓ(ts(z), ts(ζ)) = ℓ(z, ζ) s ∈ R,(A.2a)

ℓ(rθ(z), rθ(ζ)) = ℓ(z, ζ) θ ∈ [0,2π),(A.2b)

ℓ(δa(z), δa(ζ)) = a−2γℓ(z, ζ) a > 0.(A.2c)

The measure µr is easily seen to be invariant under such translations and rotations.
Further computation reveals that

δ∗aµr (ζ) = aγ+r+1µr (ζ).(A.2d)

1.2. L2-norms of the kernel function. For r ∈ R, define Θr : Ωγ → [0,∞]
by

Θr (z) :=
∫

Mγ
|ℓ(z, ζ)|2µr (ζ).

Applying ts and rθ for appropriate values of s and θ, we see from (A.2a) and
(A.2b) that for z ∈ Ωγ ,

(A.3) Θr (z) = Θr (z1, z2) = Θr (|z1|, i Im(z2)).

Also observe that for a > 0, (A.2c) and (A.2d) imply

Θr (δa(z)) =
∫

Mγ
|ℓ(δa(z), ζ)|2µr (ζ)(A.4)

=
∫

Mγ
|ℓ(δa(z), δa(ζ))|2δ∗aµr (ζ)

= ar+1−3γΘr (z).

Now, let ε > 0 be the unique number with z ∈ Mεγ. If z1 ≠ 0, set a = |z1|−1

and combine (A.3) and (A.4) to see

Θr (z) = Θr (|z1|, i Im(z2))(A.5)

= a3γ−r−1Θr (δa(|z1|, i Im(z2)))

= |z1|r+1−3γΘr
(

1, i
Im(z2)

|z1|γ
)

= |z1|r+1−3γΘr
(

1, i
(

1+ ε

|z1|γ
))
.

Otherwise if z1 = 0,

Θr (z) = Θr (0, i Imz2) = Θr (0, iε).(A.6)
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Now, endow Ωγ with a coordinate system based on the (α, θ, s)-coordinati-
zation of Mγ that was introduced in Section 3.2. For z ∈ Mεγ, write

z = (αeiθ, s + i(αγ + ε)).

Points in Ωγ may now be described in (α, θ, s, ε)-coordinates, where α ≥ 0,
θ ∈ [0,2π), s ∈ R, ε > 0. In these coordinates, denote the quantity appearing in
the innermost set of parentheses of (A.5) as follows:

1+ ε

|z1|γ
= 1+ ε

αγ
:= q(α, ε).

The goal is now to understand the function z ֏ Θr (z) from the perspective of

(A.7) (α, θ, s, ε) ֏ αr+1−3γΘr (1, iq(α, ε)).

Proposition A.2. Let r ∈ J′0 := (−1,3γ − 1) and q > 1. Then,

Θr (1, iq) = q(1+r)/γ−3Fr (q),

where Fr is positive, strictly decreasing, and real-analytic on (1,∞). Furthermore, the
following hold:

(a) limq→1+ Fr (q) = ∞.
(b) limq→∞ Fr (q) is a positive number.

If r ∉ J′0, then Θr (1, iq) = ∞.

Proof. Denote ζ ∈Mγ by ζ = (αζeiθζ , sζ + iαγζ), which yields

ℓ((1, iq), ζ) = 4

((γ − 1)αγζ + q + isζ − γα
γ−1
ζ e−iθζ )2

.

Therefore,

Θr (1, iq) = 16
∫

Mγ

αrζ dsζ ∧ dαζ ∧ dθζ

|(γ − 1)αγζ + q + isζ − γα
γ−1
ζ e−iθζ |4

(A.8)

= 16
∫∞

0
αrζ

∫∞

−∞

{∫ 2π

0

dθζ

|A− Be−iθζ |4
}
dsζ dαζ ,

where
A = (γ − 1)αγζ + q + isζ , B = γαγ−1

ζ .
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Since q > 1, Lemma 3.2 shows that |B| < |A| for all choices of αζ , sζ . Focus now
on the innermost integral in (A.8):

∫ 2π

0

dθζ

|A− Be−iθζ |4(A.9)

=
∫ 2π

0

1

(A− Be−iθζ )2 ·
1

(A− Be−iθζ )2 dθζ

= 1
|A|4

∫ 2π

0

∞∑

j,k=0

(j + 1)(k+ 1)
(
B

A

)j (B
A

)k
ei(k−j)θζ dθζ

= 2π
|A|4

∞∑

k=0

(k+ 1)2
∣∣∣∣
B

A

∣∣∣∣
2k

.

Plugging (A.9) into (A.8) gives

Θr (1, iq) = 32π
∞∑

k=0

(k+ 1)2
∫∞

0
αrζ|B2k|

{∫∞

−∞

dsζ
|A|2k+4

}
dαζ(A.10)

= 32π
∞∑

k=0

(k+ 1)2γ2k
∫∞

0
α

2k(γ−1)+r
ζ

×
{∫∞

−∞

dsζ

|(γ − 1)αγζ + q + isζ|2k+4

}
dαζ .

We now import the first of two integral formulas which are established in
Section A.4. Proposition A.5 shows that for any C > 0,

(A.11)
∫∞

−∞

ds

|C + is|2k+4
= π

4k+1C2k+3

Γ (2k+ 3)
Γ (k+ 2)2

.

Substituting this into (A.10) with C = (γ − 1)α
γ
ζ + q shows

Θr (1, iq) = 8π2
∞∑

k=0

Γ (2k+ 3)
Γ (k+ 1)2

(
γ

2

)2k

(A.12)

×
∫∞

0

α
2k(γ−1)+r
ζ

((γ − 1)αγζ + q)2k+3
dαζ .

For each fixed k, two conditions on r are required for the integral in (A.12)
to converge:

(1) For αζ near 0, we need 2k(γ − 1)+ r > −1.
(2) As αζ tends to ∞, we need γ(2k+ 3)− 2k(γ − 1)− r > 1.
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These conditions suggest the definition of the following interval of r values:

(A.13) J′k := (−2k(γ − 1)− 1,3γ − 1+ 2k).

Note that J′0 ⊂ J′k for all k, so the convergence of the k = 0 integral implies the
convergence of all other integrals in the sum. But if the k = 0 integral diverges
(i.e., r ∉ J′0), then Θr (1, iq) = ∞. Now make use of the second integral formula
established in Section A.4. Proposition A.6 shows that, for q > 0, γ > 1, r ∈ J′k
and k a non-negative integer,

∫∞

0

α2k(γ−1)+r

((γ − 1)αγ + q)2k+3
dα(A.14)

=
Γ
(

3+ 2k− 1− r
γ

)
Γ
(

2k+ 1+ r − 2k
γ

)

γ(γ − 1)(1+r)/γq3−(1+r)/γΓ (2k+ 3)
(q(γ − 1)γ−1)−2k/γ .

Plugging this into (A.12) yields

Θr (1, iq) =
8π2

γ(γ − 1)(1+r)/γ
q(1+r)/γ−3(A.15)

×
∞∑

k=0

Γ
(

3+ 2k− 1− r
γ

)
Γ
(

2k+ 1+ r − 2k
γ

)

Γ (k+ 1)2

×
(

γ2

4(γ − 1)2−2/γq2/γ

)k
.

We study the convergence of this sum by considering (for r ∈ J′k) the related
series

∞∑

k=0

akx
k, where ak =

Γ
(

3+ 2k− 1− r
γ

)
Γ
(

2k+ 1+ r − 2k
γ

)

Γ (k+ 1)2
.

Stirling’s formula says

Γ (k+ 1)2 ∼ 2πe−2kk2k+1,

Γ
(

3+ 2k− 1− r
γ

)
∼
√

2π · e(1+r−2k)/γ−2

×
(

2+ 2k− 1− r
γ

)5/2+(2k−1−r)/γ
,



1898 DAVID E. BARRETT & LUKE D. EDHOLM

Γ
(

2k+ 1+ r − 2k
γ

)
∼
√

2π · e1−2k−(1+r−2k)/γ

×
(

2k− 1+ 1+ r − 2k
γ

)2k−1/2+(1+r−2k)/γ

.

Combining these shows that

ak ∼
1

ek2k+1
·
(

2+ 2k− 1− r
γ

)5/2+(2k−1−r)/γ
(A.16)

×
(

2k− 1+ 1+ r − 2k
γ

)2k−1/2+(1+r−2k)/γ

= k
e
·
(

2
γ
+ 2γ − 1− r

γk

)5/2+(2k−1−r)/γ

×
(

2− 2
γ
+ 1+ r − γ

γk

)2k−1/2+(1+r−2k)/γ

∼ k
e
·
(

2
γ

)5/2−(1+r)/γ (
2
γ
+ 2γ − 1− r

γk

)2k/γ

×
(

2− 2
γ

)(1+r)/γ−1/2 (
2− 2

γ
+ 1+ r − γ

γk

)2k−2k/γ

= k
e
·
(

2
γ

)2

(γ − 1)(1+r)/γ−1/2

(
2
γ

)2k/γ

×
(

1+
(

2γ − 1− r
γ

)
γ

2k

)2k/γ (
2− 2

γ

)2k−2k/γ

×

1+

(
1+ r − γ

γ

)(
2k− 2k

γ

)−1



2k−2k/γ

.

Since limt→∞(1+ c/t)t = ec , we see from (A.16) that

ak ∼
k

e
·
(

2
γ

)2

(γ − 1)(1+r)/γ−1/2

(
2
γ

)2k/γ

(A.17)

× e(2γ−1−r)/γ
(

2− 2
γ

)2k−2k/γ

e(1+r−γ)/γ

= 4γ−2(γ − 1)(1+r)/γ−1/2k(4γ−2(γ − 1)2−2/γ)k.
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It is easy to see that limk→∞ k
√
ak = 4γ−2(γ − 1)2−2/γ , so the root test guarantees

the convergence of
∑∞
k=0 akx

k on the interval

(A.18) 0 ≤ x < γ2

4(γ − 1)2−2/γ
.

Also from (A.17), it is immediate that
∑∞
k=0 akx

k diverges at the right endpoint
of (A.18), since the sum

∑∞
k=0 k diverges.

These observations about
∑
akxk yield immediate analogues for Θr (1, iq).

We now see that, for any r ∈ J′0, formula (A.15) converges for q > 1. Indeed,

Θr (1, iq) = q(1+r)/γ−3Fr (q),

where

Fr(q) =
8π2

γ(γ − 1)(1+r)/γ

×
∞∑

k=0

Γ
(

3+ 2k− 1− r
γ

)
Γ
(

2k+ 1+ r − 2k
γ

)

Γ (k+ 1)2

(
γ2

4(γ − 1)2−2/γq2/γ

)k
.

It is now clear that Fr is positive, strictly decreasing and real-analytic on (1,∞).
Furthermore, limq→1+ Fr (q) = ∞. It is also clear that

(A.19) lim
q→∞ Fr (q) =

8π2Γ
(

3− 1+ r
γ

)
Γ
(

1+ r
γ

)

γ(γ − 1)(1+r)/γ
.

This concludes the proof of Proposition A.2. ❐

Equation (A.5) in conjunction with Proposition A.2 gives a useful description
of Θr (z) when z1 ≠ 0. It still remains to consider the z1 = 0 case, which by (A.6)
amounts to understanding Θr (0, iε). Observe that

ℓ((0, iε), (ζ1, ζ2)) =
4

(γ|ζ1|γ + ε + iζ2)2
= 4

((γ − 1)αγζ + ε + isζ)2
,

and therefore

Θr (0, iε) = 16
∫

Mγ

1

|(γ − 1)αγζ + ε + isζ|4
µr (ζ)

= 32π
∫∞

0
αrζ

∫∞

−∞

1

|(γ − 1)αγζ + ε + isζ|4
dsζ dαζ .
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The inner integral is calculated by a special case of (A.11), while the outer integral
is a special case of (A.14). We conclude that

Θr (0, iε) =
8π2Γ

(
3− 1+ r

γ

)
Γ
(

1+ r
γ

)

γ(γ − 1)(1+r)/γ
ε(1+r)/γ−3.(A.20)

These two results can be incorporated into a single statement. Indeed, com-
bining (A.7) with Proposition A.2 shows that if |z1| = α ≠ 0, r ∈ J′0, then

Θr (z) = Θr (α, θ, s, ε)(A.21)

= αr+1−3γΘr (1, iq(α, ε))
= αr+1−3γq(α, ε)(r+1)/γ−3Fr(q(α, ε))

= (αγ + ε)(r+1)/γ−3Fr (q(α, ε)).

Since z ∈ Mεγ for some ε > 0, q(0, ε) = ∞. Equation (A.19) let us define
Fr(∞) := limq→∞ Fr (q). Comparing (A.20) and (A.21) side by side shows that
the latter now encompasses the former.

Remark A.3. If γ = 2 and r = 1 (i.e., the Heisenberg group equipped with
Euclidean measure on its parameter space R3), the expression for Θr (z) in (A.21)
is independent of α. This is an instance of a phenomenon occurring on the Sβ
hypersurfaces defined in (1.4). Refer to the Appendix in [6] for more information.

1.3. Proof of Theorem A.1.

Proof. Let B denote the set of all subsets K ⊂ Ωγ satisfying the following two
properties:

(1) αK := sup{α : (α, θ, s, ε) ∈ K} <∞.
(2) εK := inf{ε : (α, θ, s, ε) ∈ K} > 0.

Given a fixed K ∈ B, observe that the infimum of q(α, ε) when restricted to K
remains strictly greater than 1. Indeed, if we define

qK := inf{q(α, ε) : (α, θ, s, ε) ∈ K},

it is clear that qK ≥ 1+ εK/αγK > 1. B contains, for instance, all compact subsets
of Ωγ ; it also contains unbounded subsets of Ωγ , as it places no restriction on s.

Fix some r ∈ J0 = (−1−γ,2γ − 1). This determines a unique r ′ value with
(r + r ′)/2 = γ− 1, and it is clear that r ′ ∈ J′0 = (−1,3γ− 1). Now observe that
if K ∈ B, then supz∈K Θr ′(z) is bounded from above. Indeed, for z ∈ K, (A.21)
shows

Θr ′(z) = (αγ + ε)(r
′+1)/γ−3Fr ′(q(α, ε)) ≤ ε(r

′+1)/γ−3
K Fr ′(qK).
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Proposition A.2 guarantees that this is finite since qK > 1.
If f ∈ L2(Mγ , µr ), r ∈ J0, we will show that Lf ∈ O(Ωγ) by proving it is

holomorphic on each K ∈ B. First, assume f ∈ L2(Mγ , µr ) is compactly sup-
ported. Then, Lf is seen to be holomorphic by differentiating under the integral
sign in (A.1). For a general f ∈ L2(Mγ , µr ), choose a sequence of compactly
supported fj tending to f in L2(Mγ , µr ).

sup
z∈K

|Lfj(z)− Lf (z)|

= γ2

16π2
sup
z∈K

∣∣∣∣
∫

Mγ
ℓ(z, ζ)(fj(ζ)− f (ζ))σ(ζ)

∣∣∣∣

≤ γ2

16π2
sup
z∈K

(∫

Mγ
|ℓ(z, ζ)|2µr ′(ζ)

)(∫

Mγ
|fj(ζ)− f (ζ)|2µr (ζ)

)

= Cr ′,K
∥∥fj − f

∥∥2
µr
,

where the constant only depends on r ′ and K. This shows that Lfj → Lf uni-
formly on K, implying Lf ∈ O(K), being a uniform limit of holomorphic func-
tions. Since K ∈ B was arbitrary, we conclude that Lf is holomorphic on all of
Ωγ . ❐

Remark A.4. Calculations seen throughout this appendix can be easily adapted
to the sub-Leray operator Lk. Suppose that

r ′ ∈ J′k = (−2k(γ − 1)− 1,3γ − 1+ 2k),

the interval defined in (A.13). If (r + r ′)/2 = γ − 1, it holds that

r ∈ (−γ − 1− 2k,2γ − 1+ 2k(γ − 1)) := Jk.

It can be verified that if r ∈ Jk and f ∈ L2(Mγ , µr ), then Lkf ∈ O(Ωγ). Recall
now that the interval of r values for which Lk is bounded from L2(Mγ , µr ) →
L2(Mγ , µr ) was given in (5.9) by Ik = (−2k − 1, (2k + 2)(γ − 1) + 1). It is
immediate that Ik ⊂ Jk.

1.4. Two residue integral computations.

Proposition A.5. For C > 0 and k a non-negative integer,

∫∞

−∞

ds

|C + is|2k+4
= π

4k+1C2k+3
· Γ (2k+ 3)
Γ (k+ 2)2

.

Proof. Write

∫∞

−∞

ds

|C + is|2k+4
=
∫∞

−∞

ds

(s2 + C2)k+2
.
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Let PR denote a counter-clockwise oriented, closed half-circle contour with
radius R lying in the upper-half plane with base lying on the interval [−R,R]. If
we set g(z) = (z2 + C2)−k−2, the residue theorem says (provided R > C)

(A.22) 2πiRes(g, iC) =
∫

PR
g(z)dz.

We calculate

Res(g, iC) = 1
Γ (k+ 2)

dk+1

dzk+1

[
1

(z + iC)k+2

]∣∣∣∣∣
z=iC

= 1
i22k+3C2k+3

· Γ (2k+ 3)
Γ (k+ 2)2

.

Now, send R → ∞ and note that the circular portion of the contour integral
in (A.22) tends to 0. This gives the result. ❐

Proposition A.6. Let q > 0, γ > 1, r ∈ J′k = (−2k(γ − 1)− 1,3γ − 1+ 2k)
and k a non-negative integer. Then,

∫∞

0

α2k(γ−1)+r

((γ − 1)αγ + q)2k+3
dα

=
Γ
(

3+ 2k− 1− r
γ

)
Γ
(

2k+ 1+ r − 2k
γ

)

γ(γ − 1)(1+r)/γq3−(1+r)/γΓ (2k+ 3)
(q(γ − 1)γ−1)−2k/γ .

Proof. Making the change of variable x = αγ , we see that

∫∞

0

α2k(γ−1)+r

((γ − 1)αγ + q)2k+3
dα(A.23)

= 1
γ(γ − 1)2k+3

∫∞

0

x2k−1+(r+1−2k)/γ

(x + E)2k+3
dx,

with E = q/(γ − 1). Now, define the function

h(z) = z
2k−1+(r+1−2k)/γ

(z + E)2k+3
,

which is multivalued whenever the numerator exponent is a noninteger. Restrict
attention to a single-valued meromorphic branch of h defined on C\[0,∞). Note
that h has a pole of order 2k+ 3 at z = −E.

For 0 < δ < R, define the closed, positively oriented contour Pδ,R by travers-
ing the following paths in sequence:

I. A line segment on the positive x-axis moving right from δ to R.
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II. A circle of radius R centered at the origin, starting on the positive
x-axis and traveling counterclockwise.
III. A line segment on the positive x-axis moving left from R to δ.
IV . A circle of radius δ centered at the origin, starting on the positive
x-axis and traveling clockwise.

As long as δ < E < R, the residue theorem says

2πiRes(h,−E) =
∫

Pδ,R
h(z)dz(A.24)

=
∫

I
h(z)dz +

∫

II
h(z)dz +

∫

III
h(z)dz +

∫

IV
h(z)dz.

Keeping in mind the multivalued nature of h, combine the I and III integrals:
∫

I
h(z)dz +

∫

III
h(z)dz(A.25)

=
∫ R

δ
h(x)dx +

∫ δ

R
h(xe2πi)dx

=
∫ R

δ

x2k−1+(r+1−2k)/γ

(x + E)2k+3
dx

+
∫ δ

R

x2k−1+(r+1−2k)/γe2πi(2k−1+(r+1−2k)/γ)

(xe2πi + E)2k+3
dx

= (1− e2πi(r+1−2k)/γ)

∫ R

δ

x2k−1+(r+1−2k)/γ

(x + E)2k+3
dx.

Standard estimates show that since r ∈ J′k,

(A.26) lim
R→∞

∫

II
h(z)dz = 0 = lim

δ→0

∫

IV
h(z)dz.

Combining (A.26) with (A.24) and (A.25) shows

(A.27) 2πiRes(h,−E) = (1− e2πi(r+1−2k)/γ)

∫∞

0

x2k−1+(r+1−2k)/γ

(x + E)2k+3
dx.

Now calculate this residue:

Res(h,−E) = 1
Γ (2k+ 3)

d2k+2

dz2k+2
(z2k−1+(r+1−2k)/γ)

∣∣∣∣
z=−E

(A.28)

=
−Γ

(
2k+ r + 1− 2k

γ

)

Γ (2k+ 3)Γ
(
r + 1− 2k

γ
− 2

)

× E(r+1−2k)/γ−3e(πi(r+1−2k))/γ .
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Combining (A.27) and (A.28) shows that

∫∞

0

x2k(1−1/γ)

(x + E)2k+3
dx(A.29)

= −2πi
1− e2πi(r+1−2k)/γ

×
Γ
(

2k+ r + 1− 2k
γ

)

Γ (2k+ 3)Γ
(
r + 1− 2k

γ
− 2

)E(r+1−2k)/γ−3eπi(r+1−2k)/γ

= π csc

(
π

(
r + 1− 2k

γ

))
×

×
Γ
(

2k+ r + 1− 2k
γ

)

Γ (2k+ 3)Γ
(
r + 1− 2k

γ
− 2

)E(r+1−2k)/γ−3

=
Γ
(
r + 1− 2k

γ

)
Γ
(

1− r + 1− 2k
γ

)

Γ (2k+ 3)Γ
(
r + 1− 2k

γ
− 2

)

× Γ
(

2k+ r + 1− 2k
γ

)
E(r+1−2k)/γ−3

=
(
r + 1− 2k

γ
− 1

)(
r + 1− 2k

γ
− 2

)

×
Γ
(

1− r + 1− 2k
γ

)
Γ
(

2k+ r + 1− 2k
γ

)

Γ (2k+ 3)
E(r+1−2k)/γ−3

=
Γ
(

3+ 2k− r − 1
γ

)
Γ
(

2k+ r + 1− 2k
γ

)

Γ (2k+ 3)
E(r+1−2k)/γ−3.

Combining (A.23) and (A.29) gives the result. ❐
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[14] , The Möbius geometry of hypersurfaces, Michigan Math. J. 56 (2008), no. 3, 603–622.
https://dx.doi.org/10.1307/mmj/1231770363 . MR2490649
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