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Abstract. Dual pairs of interior and exterior Hardy spaces associated to a simple closed
Lipschitz planar curve are considered, leading to a Möbius invariant function bounding
the norm of the Cauchy transform C from below. This function is shown to satisfy strong
rigidity properties and is closely connected via the Berezin transform to the square of the
Kerzman-Stein operator. Explicit example calculations are presented. For ellipses, a new
asymptotically sharp lower bound on the norm of C is produced.

1. Introduction

Let γ be a simple closed oriented Lipschitz curve in the Riemann sphere Ĉ bounding a
domain Ω+ to the left and Ω− to the right. Each domain admits a Hardy space, denoted
respectively by H2

+(γ) and H2
−(γ), consisting of holomorphic functions with square inte-

grable boundary values. (Precise definitions are given in Section 2.1.) In this paper we
investigate the interaction between the Hardy spaces on Ω+ and Ω− and use our findings to
deduce norm estimates and prove invariance and rigidity theorems related to two classical
projection operators: the Szegő projection, S, and the Cauchy transform, C.

These operators and the connections between them are well studied. Of particular im-
portance is a breakthrough made by Kerzman and Stein in [18] where it was shown that for
smooth γ, their eponymously named operator A := C −C∗ is compact. This observation
led to the formula C = S(I + A) relating the Cauchy and Szegő projections, making it
possible to use known information about S to study C, and vice versa. The Kerzman-Stein
operator established an alternative foundation upon which both Hardy space theory and
much of classical complex analysis could be developed; this is the theme of Bell’s book [5].

One aim of the present paper is to investigate the function

(∗) z 7→
(ˆ

γ
|C(z, ζ)|2 dσ(ζ)

) 1
2
(ˆ

γ
|S(z, ζ)|2 dσ(ζ)

)− 1
2

,

where C is the Cauchy kernel, S is the Szegő kernel and σ is arc length measure. This
function has a number of remarkable properties and, unsurprisingly, encodes detailed in-
formation about the Cauchy transform, the Szegő projection and how the two operators
interact. A close relationship between (∗) and A (or more precisely A ◦A) via the Berezin
transform is shown to hold (see Proposition 4.19), and there are situations (e.g. Theo-
rem 3.30) where direct analysis of (∗) recaptures and even strengthens results previously
obtained from the Kerzman-Stein operator.
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The following theme pervades the paper: it is natural and informative to consider the
pieces of (∗) on Ω+ and Ω− together as a single object. With this in mind, several pairs of
objects associated to a simple closed Lipschitz curve γ will be considered in tandem:

(1) Domains and function spaces. The interior and exterior domains Ω+ and Ω−, along
with the associated Hardy spaces H2

+(γ) and H2
−(γ).

(2) Projection operators and kernel functions. The Cauchy transforms (C+ and C−)
and Szegő projections (S+ and S−) on the interior and exterior domains, together
with the representative kernel functions (C+, C−, S+ and S−).

(3) Two pairings of functions in L2(γ). The usual inner product ⟨f, g⟩, along with
a C-bilinear pairing ⟨⟨f, g⟩⟩ defined in (1.4) below. The second pairing yields an
alternative characterization of the Hardy dual spaces that underlies much of the
theory we develop.

1.1. Interior and exterior projections. Throughout the paper, many arguments can be
carried out simultaneously in the interior (Ω+, H2

+(γ), S+, etc.) and exterior (Ω−, H2
−(γ),

S−, etc.) settings. Whenever possible our notation will reflect this, as we now demonstrate.

One way to construct holomorphic functions on Ω+ with L2(γ) boundary values is the
Szegő projection S+, the orthogonal projection from L2(γ) onto its holomorphic subspace
H2

+(γ). Given h ∈ L2(γ),

(1.1) S+h(z) =

ˆ
γ
S+(z, ζ)h(ζ) dσ(ζ), z ∈ Ω+,

where S+(z, ζ) is the Szegő kernel of H2
+(γ) and dσ is arc length measure. This kernel is

conjugate symmetric, i.e., S+(z, ζ) = S+(ζ, z), and for fixed z ∈ Ω+, S+(·, z) ∈ H2
+(γ).

Since S+ is an orthogonal projection onto H2
+(γ), we immediately obtain the reproducing

property that S+f = f for f ∈ H2
+(γ), as well as the fact that S∗

+ = S+.

There is a corresponding Szegő projection S− from L2(γ) onto H2
−(γ) given by a formula

à la (1.1), but now using S−(z, ζ), the Szegő kernel of H2
−(γ), as the representative kernel.

The same basic properties of S+ and S+ mentioned above hold for S− and S−, though in
general the kernel functions S+ and S− themselves bear no obvious resemblance.

When we meet situations as described above, where parallel facts hold in the interior and
exterior settings, the presentation will be streamlined as follows:

“The Szegő projection S± is an orthogonal projection from L2(γ) onto H2
±(γ).”

is a condensed way of writing two statements at once. The original string is meant to be
read exactly twice, once using only the top signs, and once using only the bottom signs:

• The Szegő projection S+ is an orthogonal projection from L2(γ) onto H2
+(γ).

• The Szegő projection S− is an orthogonal projection from L2(γ) onto H2
−(γ).

A second way to construct holomorphic functions from L2 boundary data is the Cauchy
transform. Let γ be a simple closed Lipschitz curve in the plane and let T be the (a.e.
defined) unit tangent vector pointing in the counterclockwise direction. Given h ∈ L2(γ),
interior and exterior holomorphic functions C±h ∈ O(Ω±) are generated via the Cauchy
integral

C±h(z) =
1

2πi

˛
γ

h(ζ)

ζ − z
dζ,=

ˆ
γ
C±(z, ζ)h(ζ) dσ(ζ), z ∈ Ω±,(1.2a)
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where, upon noting that dζ = ±T (ζ) dσ(ζ), the Cauchy kernel is defined as

(1.2b) C±(z, ζ) =
±T (ζ)

2πi(ζ − z)
.

The choice of ± specifies orientation so that holomorphic functions are reproduced.

When z ∈ γ, the integral (1.2a) no longer converges in the ordinary sense. But if non-
tangential limits (see Section 2.1) of the holomorphic function C±h ∈ O(Ω±) are taken, we
obtain the following principle value integral for a.e. z ∈ γ:

(1.3) C±h(z) =
h(z)

2
+

1

2
P.V.

ˆ
γ
C±(z, ζ)h(ζ) dσ(ζ).

The notion of a principle value – where the integral is calculated over the curve with a
small symmetric portion of γ about z excised, and a limit is taken as the endpoints of the
excision are sent to z at the same rate – makes sense when γ is a C1 curve and h ∈ C1(γ).
But the scope of this notion extends to a wider setting thanks to a deep result of Coifman,
McIntosh and Meyer [13], which says that when γ is a Lipschitz curve, the principle value
integral in (1.3) both exists for almost every z ∈ γ and defines a bounded operator on
Lp(γ, σ), 1 < p <∞.

1.2. Duals of Hardy spaces. Let γ be a simple closed oriented Lipschitz curve. Consider
two related pairings of f, g ∈ L2(γ): the usual inner product ⟨·, ·⟩ and a (C-)bilinear pairing
⟨⟨·, ·⟩⟩ given by

(1.4) ⟨f, g⟩ =
ˆ
γ
f(ζ)g(ζ) dσ(ζ), ⟨⟨f, g⟩⟩=

˛
γ
f(ζ)g(ζ) dζ.

Since dζ = T (ζ) dσ(ζ), these pairings are related by ⟨f, g⟩ =
〈〈
f, gT

〉〉
and ⟨⟨f, g⟩⟩= ⟨f, gT ⟩,

where T is the unit tangent agreeing with the orientation of γ.

Since H2
±(γ) is a Hilbert space, the inner product ⟨·, ·⟩ facilitates the canonical isometric

duality self-identification H2
±(γ)

′ ∼= H2
±(γ). The bilinear pairing ⟨⟨·, ·⟩⟩ facilitates a quasi-

isometric dual space identification of the interior and exterior Hardy spaces:

(1.5) H2
±(γ)

′ ≃ H2
∓(γ),

see Section 2.2, and in particular, Proposition 2.4.

1.3. The Cauchy-Szegő Λ-function. Let γ be a simple closed bounded Lipschitz curve
oriented counterclockwise in the plane. Define two real-valued functions

Λ+(γ, z) =
∥C+(z, ·)∥L2(γ)√

S+(z, z)
, z ∈ Ω+,

Λ−(γ, z) =
∥C−(z, ·)∥L2(γ)√

S−(z, z)
, z ∈ Ω−\{∞}.

Now combine them to form the Cauchy-Szegő Λ-function, a real-valued function defined
on the Riemann sphere by:

(1.7) Λ(γ, z) =


Λ±(γ, z), z ∈ Ω±\{∞},
1, z ∈ γ,√

σ(γ)
2πκ(γ) , z = ∞,

where σ(γ) denotes arc length and κ(γ) denotes analytic capacity (see Section 3.1).
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1.3.1. Basic properties. The assigned values for z ∈ γ and z = ∞ are very natural:

Theorem 1.8. Let γ be a simple closed Lipschitz curve in the plane. Then

(1) Λ(γ, z) is continuous as z → ∞.
(2) If γ is C1 smooth and ζ0 ∈ γ, then Λ(γ, z) is continuous as z → ζ0.
(3) If Φ is a Möbius transformation with pole off of γ, then Λ(γ, z) = Λ(Φ(γ),Φ(z)).

Part (1) is proved in Theorem 3.3 after a short discussion of analytic capacity. Part (2) is
proved in Theorem 4.1, with the Berezin transform and compactness of the Kerzman-Stein
operator playing important roles. These first two parts together show that z 7→ Λ(γ, z) is
continuous on the Riemann sphere whenever γ is a C1 smooth curve. Part (3) is shown in
Theorem 3.22 after obtaining a Möbius transformation rule for the Cauchy kernel.

One consequence of Möbius invariance is that it gives a simple way to extend Λ to
unbounded curves: let γ be a simple closed Lipschitz curve in the Riemann sphere passing
through ∞ (see Section 2.1), and Φ be a Möbius transformation with its pole lying off of γ.
Then the image curve, denoted Φ(γ), is a simple closed Lipschitz curve in the plane, and
we define

Λ(γ, z) := Λ(Φ(γ),Φ(z)).

The fact this extension is well-defined is immediate from Theorem 1.8, part (3).

The next result shows that circles form the class of minimizing curves for Λ:

Theorem 1.9. Let γ be a simple closed Lipschitz curve in the Riemann sphere.

(1) Λ(γ, z) ≥ 1, for all z ∈ Ω±.
(2) If there is a single z ∈ Ω± such that Λ(γ, z) = 1, then Λ(γ, ·) ≡ 1 and γ is a circle

(or a line, including the point at ∞).

This theorem and its consequences are presented in Sections 3.3 and 3.4.

In [18] Kerzman and Stein gave a clever geometric interpretation of their operator A and
deduced that if the Cauchy and Szegő kernels of a bounded domain coincide, the underlying
domain must be a disc. Theorem 1.9 implies a significantly strengthened version of this
result. The proof of the following result (see Corollary 3.30) uses the Λ-function and makes
no reference to the geometry of the Kerzman-Stein operator:

Corollary 1.10. Let Ω be a bounded simply connected planar domain with Lipschitz bound-
ary. If there exists a single z ∈ Ω such that the Cauchy and Szegő kernels satisfy

|C(z, ζ)| ≤ |S(z, ζ)|

for almost every ζ ∈ γ, then Ω is a disc.

1.3.2. Estimating Cauchy norms. The maximum value attained by Λ(γ, ·) on the Riemann
sphere bounds the norm of the Cauchy transform from below:

Theorem 1.11. Let γ be a simple closed Lipschitz curve in the Riemann sphere. The norms
of the interior and exterior Cauchy transforms are equal and further, satisfy the estimate

(1.12) sup
z∈Ĉ Λ(γ, z) ≤ ∥C±∥.

Proof. That ∥C+∥ = ∥C−∥ is shown in Theorem 2.6. In Theorem 2.19 it is shown that
Λ(γ, z) ≤ ∥C±∥ for every z ∈ C. The continuity of Λ(γ, ·) at ∞ finishes the proof. □
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Let Wθ = {reiφ : r > 0, |φ| < θ} be the unbounded wedge with aperture 2θ ∈ (0, 2π)
and boundary denoted by bWθ. In Section 5.1 we study this wedge and produce an explicit
formula for Λ(bWθ, z) in Theorem 5.9. Several conclusions are drawn from this formula;
in particular, it is shown that Λ(bWθ, z) is discontinuous at the origin (a corner point),
breaking from the continuous behavior on C1 curves guaranteed by Theorem 1.8.

In Section 5.2, a second family of curves is considered. Let Er = {(x, y) : x2

r2
+ y2 = 1},

an ellipse with major-to-minor axis ratio r > 1. We compute Λ(Er, z) and use it to produce
the best known lower estimate on the norm of the Cauchy transform.

Theorem 1.13. Let r > 1. The L2-norm of the Cauchy transform on Er satisfies

(1.14) ∥C∥L2(Er) ≥

√√√√√ 2

π

√
1− 1

r2
·
(r2 + 1) ·Π

(
1− r2,

√
1− 1

r2

)
−K

(√
1− 1

r2

)
ϑ2

(
0,
(
r−1
r+1

)2)
ϑ3

(
0,
(
r−1
r+1

)2) .

This bound is shown to be asymptotically sharp as r → 1. (See Section 5.2.1 for conven-
tions regarding elliptic integrals and theta functions appearing in the formula.)

1.4. Motivation from higher dimensions. This paper grew out of an ongoing project
on the Leray transform L, a higher dimensional analogue of the Cauchy transform. Given
a C-convex hypersurface S ⊂ CPn, recent work of the authors (see [2, 3, 4]) uncovers
an intriguing connection between analytic quantities tied to L (norms, essential norms,
spectral data) and projective-geometric invariants associated to S and its projective dual
hypersurface S∗. A natural construction yields a pair of projectively-invariant dual Hardy
spaces on S and S∗, and a generalized version of Λ(γ, ·) can be defined using Leray and
Szegő kernels. The higher dimensional theory simplifies considerably in one dimension,
serving to motivate the present paper.

The function Λ can be related to Fredholm eigenvalue problems studied by Bergman-
Schiffer [6] and Singh [28]. Burbea previously connected the Kerzman-Stein operator A to
these same eigenvalue problems in [11], then went on to reprove key properties of A (e.g.
compactness) using the theory of Garabedean anti-symmetric l kernels. Similarly, some
basic properties of Λ in Section 1.3.1 can be obtained using the same approach – at least
when γ is smooth enough. But here we have opted to avoid the Garabedean machinery
entirely. The reason for this is two-fold. Firstly, in minimally smooth settings (γ being C1 or
less), analysis becomes significantly harder and the Garabedean approach is often untenable.
For example, while the compactness of A continues to hold when γ is only assumed to be
C1, Burbea’s argument breaks down and the proof requires much more delicacy; see [21].
Secondly, the theory of the Garabedean kernel depends critically on a particular orthogonal
decomposition of L2(γ) (see [5, Theorem 4.3]), one that no longer holds for L2(S). As we
are motivated by the higher dimensional problem, several of our proofs have been written
so as to mirror that setting.

2. Interior and exterior Hardy spaces

2.1. Lipschitz curves. A function φ : R → R is called Lipschitz if there exists a constant
K > 0 (the Lipschitz constant) so that |φ(x1)−φ(x2)| ≤ K|x1−x2| for all x1, x2 ∈ R. Such
a function is differentiable almost everywhere with an L∞ derivative.

A simple closed curve γ in the plane is called Lipschitz if there exists a finite number
rectangles {Rj}nj=1 with sides parallel to the coordinate axes, angles {θj}nj=1 and Lipschitz

functions φj : R → R, such that the union ∪n
j=1{e−iθjRj} covers γ and the intersection
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{eiθj (γ)} ∩ Rj = {x+ iφj(x) : x ∈ (aj , bj)}, for some aj < bj < ∞. If γ is a simple closed
curve in the Riemann sphere passing through ∞, say that γ is Lipschitz if there is a Möbius
transformation Φ mapping γ to a simple closed Lipschitz curve in the plane.

Each simple closed oriented curve γ ⊂ Ĉ bounds two simply connected domains: write
Ω+ for the domain lying to the left and Ω− the domain to the right. When γ is a planar
curve, it is assumed to have counterclockwise orientation unless explicitly stated otherwise;
we refer to Ω+ and Ω− as interior and exterior domains, respectively. Ω+ and Ω− are called
Lipschitz domains when their boundary γ is Lipschitz. Note that if γ is an oriented curve in
the Riemann sphere and Φ is a Möbius transformation with its pole in Ω−, the image curve
Φ(γ) is a planar curve oriented counterclockwise. When the pole is in Ω+, the orientation
is reversed.

Let γ be a simple closed planar curve oriented counterclockwise. For β > 0 and ζ ∈ γ,
define a set called a non-tangential approach region to ζ by

Γ(ζ) = {z ∈ C : |z − ζ| ≤ (1 + β) dist(z, γ)}.
Lipschitz curves are well-known to satisfy the uniform interior and exterior cone condition,
meaning there exists β, r > 0 such that for each ζ ∈ γ, one of the two components of
Γ(ζ) ∩ D(ζ, r) is contained in Ω+ and the other contained in Ω−. Write the interior and
exterior non-tangential approach regions by Γ±(ζ) = Γ(ζ) ∩ Ω±. An important technical
tool for work on Lipschitz domains is a Neças exhaustion, a method of approximation by
C∞ subdomains with uniformly bounded Lipschitz constants; see [21, 22] for details.

Given a function g : Ω± → C and ζ ∈ γ, its non-tangential maximal function g∗ and
non-tangential limit ġ (when it exists) are defined to be

g∗(ζ) = sup
z∈Γ±(ζ)

|g(z)|, ġ(ζ) = lim
Γ±(ζ)∋z→ζ

g(z).

Given f ∈ L2(γ), its Cauchy transform (1.3) arises as the non-tangential limit of the Cauchy
integral in (1.2a). A deep and highly non-trivial result in [13] shows that this limit exists
a.e. for Lipschitz γ, and further, defines an L2(γ) function. We slightly abuse notation by
denoting both the Cauchy integral of f and its boundary values by C±f , but our intended
meaning should always be clear from context.

We now define the Hardy space H2
±(γ) as the image of L2(γ) under C±:

(2.1) H2
±(γ) = {C±f : f ∈ L2(γ)};

since γ is always assumed to be Lipschitz, this definition is equivalent to several other char-
acterizations of the Hardy space used in the literature; see [22]. We have been intentionally
flexible with our definition so that Hardy space functions can be at times thought of as
holomorphic functions with L2 boundary values and at other times as the boundary values
themselves. Observe from (1.2a) that functions in H2

−(γ) necessarily vanish at ∞.

The results in [13] along with the Plemelj jump formula (see [23]) allow rigorous justifi-
cation of the following “intuitive” statements for Lipschitz γ: if f ∈ H2

±(γ), then C±f = f
(Cauchy’s integral formula), while C∓f ≡ 0 (Cauchy’s theorem).

Remark 2.2. Given α ∈ (0, 1), define the space of α-Hölder continuous functions on γ to be

Cα(γ) := {f : |f(x)− f(y)| < |x− y|α, x, y ∈ γ},
and denote by Aα(Ω±) the space of holomorphic functions on Ω± with Cα boundary values.
If γ is Lipschitz and f ∈ Cα(γ), then C±f ∈ Aα(Ω±); see [23, Appendix 2]. The regularity
of C± in Cα together with its boundedness in L2(γ) imply that Aα(Ω±) is a dense subspace
of the Hardy space H2

±(γ). ♢
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2.2. Dual space characterization. A duality paradigm of Grothendieck [17], Köthe [19]
and Sebastião e Silva [27] identifies duals of holomorphic function spaces on simply con-
nected domains with spaces of holomorphic functions on their complements: Let O(Ω+)
denote the space of all holomorphic functions on Ω+ under the standard Frechét topol-
ogy. Under this paradigm, the dual can be identified with O0(Ω−), the space of functions
holomorphic in a neighborhood of Ω− which vanish at ∞. The functionals themselves are
represented using bilinear pairings ⟨⟨·, ·⟩⟩ à la (1.4) to pair f ∈ O(Ω+) and g ∈ O0(Ω−),
where the path of integration is taken inside Ω+ and sufficiently close to γ.

We follow this paradigm and identify the dual space of H2
±(γ) with H2

∓(γ).

Since C± is bounded on L2(γ) whenever γ is Lipschitz, a bounded adjoint exists (with
respect to the standard inner product), characterized by ⟨C±f, g⟩ = ⟨f,C∗

±g⟩. Explicitly,

C∗
±g(z) =

g(z)

2
± 1

2πi
T (z) P.V.

ˆ
γ

g(ζ)

ζ − z
dσ(ζ),

where the formula is understood to hold for almost every z ∈ γ.

Proposition 2.3. The Cauchy transforms C+ and C− can be viewed as “adjoints” with
respect to the bilinear pairing (1.4). Indeed,

⟨⟨C±f, g⟩⟩=⟨⟨f,C∓g⟩⟩=⟨⟨C±f,C∓g⟩⟩.

Proof. Since C± is a projection operator, it will suffice to prove the first equality. We claim
that if g ∈ L2(γ) and T is the almost everywhere defined unit tangent vector for γ, then

C∗
±(gT ) = C∓(g)T . Indeed, for a.e. z ∈ γ, we have

C∗
±(gT )(z) =

g(z)T (z)

2
± 1

2πi
T (z) P.V.

ˆ
γ

g(ζ)T (ζ)

ζ − z
dσ(ζ)

=

(
g(z)

2
± 1

2πi
P.V.

ˆ
γ

g(ζ)T (ζ)

ζ − z
dσ(ζ)

)
T (z)

=

(
g(z)

2
∓ 1

2πi
P.V.

˛
γ

g(ζ)

ζ − z
dζ

)
T (z) = C∓(g)(z)T (z).

Thus we see that ⟨⟨C±f, g⟩⟩= ⟨C±f, gT ⟩ = ⟨f,C∗
±(gT )⟩ = ⟨f,C∓(g)T ⟩ =⟨⟨f,C∓g⟩⟩. □

Proposition 2.4. The dual space of H2
±(γ) can be identified with H2

∓(γ) via functionals
ψg : H2

±(γ) → C, g ∈ H2
∓(γ), given by ψg(f) =⟨⟨f, g⟩⟩. Moreover,

(2.5) ∥C±∥−1∥g∥ ≤ ∥ψg∥op ≤ ∥g∥.

Proof. Since H2
±(γ) is a Hilbert space, it is self dual in the ordinary inner product. Thus,

given a bounded linear functional ϕ : H2
±(γ) → C, there is a unique h ∈ H2

±(γ) so that for
any f ∈ H2

±(γ),

ϕ(f) = ⟨f, h⟩ =
〈〈
f, hT

〉〉
=
〈〈
C±f, hT

〉〉
=
〈〈
f,C∓(hT )

〉〉
.

Now set g = C∓(hT ) ∈ H2
∓(γ), so that ϕ = ψg =⟨⟨·, g⟩⟩∈ H2

±(γ)
′.

Given distinct g1, g2 ∈ H2
∓(γ), we now show the functionals ψg1 ̸= ψg2 . It will suffice to

exhibit an f ∈ H2
±(γ) with ψg1(f) ̸= ψg1(f). Set f = C±

(
(g1 − g2)T

)
, which is clearly in
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H2
±(γ). Then

(ψg1 − ψg2)(f) =⟨⟨f, g1 − g2⟩⟩

=
〈〈

C±
(
(g1 − g2)T

)
, g1 − g2

〉〉
=
〈〈

(g1 − g2)T ,C∓(g1 − g2)
〉〉

=
〈〈

(g1 − g2)T , g1 − g2

〉〉
= ∥g1 − g2∥2 > 0.

We now prove (2.5). The right-hand inequality follows from Cauchy-Schwarz. For the
left-hand inequality, note that for g ∈ H2

∓(γ)

∥g∥ = sup
{
|⟨⟨h, g⟩⟩| : h ∈ L2(γ), ∥h∥ = 1

}
= sup

{
|⟨⟨h,C∓g⟩⟩| : h ∈ L2(γ), ∥h∥ = 1

}
= sup

{
|⟨⟨C±h, g⟩⟩| : h ∈ L2(γ), ∥h∥ = 1

}
≤ sup

{
|⟨⟨f, g⟩⟩| : f ∈ H2

±(γ), ∥f∥ ≤ ∥C±∥
}

= ∥C±∥ · sup
{
|⟨⟨f, g⟩⟩| : f ∈ H2

±(γ), ∥f∥ = 1
}

= ∥C±∥ · ∥ψg∥op.

□

Theorem 2.6. Let γ be a simple closed Lipschitz curve in the plane. The norms of the
Cauchy transforms C± : L2(γ) → H2

±(γ) are given by

(2.7)
1

∥C+∥
= inf

g∈H2
+(γ)

g ̸=0

{
sup

f∈H2
−(γ)

f ̸=0

|⟨⟨f, g⟩⟩|
∥f∥∥g∥

}
= inf

g∈H2
−(γ)

g ̸=0

{
sup

f∈H2
+(γ)

f ̸=0

|⟨⟨f, g⟩⟩|
∥f∥∥g∥

}
=

1

∥C−∥
.

Proof. Given a nonzero g ∈ H2
∓(γ), the lower bound in (2.5) says

∥C±∥−1∥g∥ ≤ ∥ψg∥op = sup
{
|⟨⟨f, g⟩⟩| : f ∈ H2

±(γ), ∥f∥ = 1
}
.

As this holds for every such g, we obtain

(2.8)
1

∥C±∥
≤ inf

g∈H2
∓(γ)

g ̸=0

{
sup

f∈H2
±(γ)

f ̸=0

|⟨⟨f, g⟩⟩|
∥f∥∥g∥

}
.

On the other hand, given (a sufficiently small) ϵ > 0, there exists hϵ ∈ L2(γ) such that
∥C±hϵ∥ = 1 and ∥hϵ∥ < (∥C±∥ − ϵ)−1. Now observe that

sup
f∈H2

∓(γ)

∥f∥=1

|⟨⟨C±hϵ, f⟩⟩| = sup
f∈H2

∓(γ)

∥f∥=1

|⟨⟨hϵ,C∓f⟩⟩| = sup
f∈H2

∓(γ)

∥f∥=1

|⟨⟨hϵ, f⟩⟩| ≤ ∥hϵ∥ <
1

∥C±∥ − ϵ
.

Taking g = C±hϵ ∈ H2
±(γ) and letting ϵ→ 0 we obtain

(2.9) inf
g∈H2

±(γ)
g ̸=0

{
sup

f∈H2
∓(γ)

f ̸=0

|⟨⟨g, f⟩⟩|
∥g∥∥f∥

}
≤ 1

∥C±∥
.

Now combine all four individual inequalities in (2.8) and (2.9) to obtain

1

∥C+∥
≤ inf

g∈H2
−(γ)

g ̸=0

{
sup

f∈H2
+(γ)

f ̸=0

|⟨⟨f, g⟩⟩|
∥f∥∥g∥

}
≤ 1

∥C−∥
≤ inf

g∈H2
+(γ)

g ̸=0

{
sup

f∈H2
−(γ)

f ̸=0

|⟨⟨f, g⟩⟩|
∥f∥∥g∥

}
≤ 1

∥C+∥
,

forcing equality to hold at every step. □
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2.3. The Szegő kernel. Several elementary properties are collected here for later use.

Proposition 2.10 ([5], Chapter 7). The Szegő kernel on the unit disc D is

(2.11) SD(z, ζ) =
1

2π(1− zζ)
, z ∈ D, ζ ∈ D.

The Szegő kernel admits a biholomorphic transformation law; see [5, Theorem 12.2] in
the C∞ setting, and [21, Lemma 5.3] for the Lipschitz setting:

Proposition 2.12. Let Φ : Ω1 → Ω2 be a biholomorphism of simply connected domains in
the Riemann sphere with Lipschitz boundaries. The Szegő kernels are related by formula

(2.13) S1(z, ζ) =
√
Φ′(z) · S2(Φ(z),Φ(ζ)) ·

√
Φ′(ζ).

The Szegő kernel admits a well-known extremal property; see [20, Sections 1.4, 1.5]:

Proposition 2.14. Given a simple closed Lipschitz curve γ in the Riemann sphere and a
point z ∈ Ω±, the Szegő kernel satisfies

(2.15) S±(z, z) = sup{|f(z)| : f ∈ H2
±(γ), ∥f∥L2(γ) = 1}.

Remark 2.16. In the setting of Proposition 2.14, the Riemann mapping theorem together
with formulas (2.11) and (2.13) show that S±(z, z) > 0 for any z ∈ Ω± \{∞}. On the other
hand, the condition that functions in the Hardy space must vanish at infinity shows that if
∞ ∈ Ω±, then S±(∞,∞) = 0. ♢

The following monotonicity property is known, but a short proof is included since the
authors had difficulty locating a reference.

Proposition 2.17. Let Ω1 ⊊ Ω2 ⊊ Ĉ be simply connected domains with Lipschitz bound-
aries properly contained in the Riemann sphere, and let z ∈ Ω1 \{∞}. Letting S1, S2 denote
the respective Szegő kernels, we have

(2.18) 0 < S2(z, z) < S1(z, z).

Proof. Let Φj : Ωj → D denote the Riemann map, j = 1, 2, with Φj(z) = 0 and Φ′
j(z) > 0.

Using the transformation law in (2.13) and the kernel formula for D in (2.11), we see

2πSj(z, z) = Φ′
j(z).

By the proof of the Riemann mapping theorem (see, e.g., [1, Chapter 6]), of all maps from
Ω1 into the disc D satisfying Φ(z) = 0 and Φ′(z) positive, the Riemann map Φ1 is uniquely
determined by the property that Φ′(z) is maximal. Since the restriction of Φ2 to Ω1 is also
a map with these properties, we conclude that Φ′

2(z) < Φ′
1(z). □

2.4. A lower estimate on the norm of the Cauchy transform.

Theorem 2.19. Let γ be a simple closed Lipschitz curve in the plane and z ∈ C. Then

Λ(γ, z) ≤ ∥C±∥.

Proof. For z ∈ Ω±\{∞}, define hz ∈ H2
∓(γ) by hz(ζ) = (2πi(ζ − z))−1. By Cauchy’s

integral formula we have

⟨⟨f, hz⟩⟩=
1

2πi

˛
γ

f(ζ)

ζ − z
dζ = f(z), f ∈ H2

±(γ).
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Now apply the Cauchy norm characterization in (2.7) with g = hz to obtain

1

∥C±∥
≤ sup

f∈H2
±(γ)

|⟨⟨f, hz⟩⟩|
∥f∥∥hz∥

=
1

∥C(z, ·)∥
sup

f∈H2
±(γ)

|f(z)|
∥f∥

=

√
S±(z, z)

∥C(z, ·)∥
=

1

Λ(γ, z)
,

where we used the extremal property of (2.15). This estimate holds for all z ∈ C \ γ. Since
Λ(γ, ·) ≡ 1 for z ∈ γ, the result follows for these z from the fact that C± is a projection
onto H2

±(γ) and thus ∥C±∥ ≥ 1. □

3. Invariance and rigidity properties

3.1. Analytic capacity and behavior at infinity. Let γ be a simple closed Lipschitz
curve in the plane oriented counterclockwise. If g is holomorphic on the exterior domain
Ω−, it admits a Laurent expansion in a neighborhood of ∞:

g(z) = a0 + a1z
−1 + a2z

−2 + · · ·
The coefficient a1 is important to what comes below; it can be obtained by calculating the
derivative of g at infinity with respect to the local coordinate 1

z . Define

(3.1) D(g,∞) := lim
z→∞

z(g(z)− g(∞)) = a1.

(In the literature, D(g,∞) is often denoted by g′(∞), but the authors find this notation
misleading since limz→∞ g′(z) ̸= D(g,∞) unless a1 = 0.)

Let A∞(Ω−) be the space of bounded holomorphic functions on Ω−, with norm given by
∥g∥∞ := sup{|g(z)| : z ∈ Ω−}. Define the analytic capacity of the curve γ to be

(3.2) κ(γ) := sup{|D(g,∞)| : g ∈ A∞(Ω−), g(∞) = 0, ∥g∥∞ ≤ 1}.
This notion helps formulate generalizations of Riemann’s removable singularity theorem by
measuring how large bounded holomorphic functions on Ω− can become; see [16, 26].

Theorem 3.3. Let γ be a simple closed Lipschitz curve in the plane. Then

(3.4) lim
z→∞

Λ−(γ, z) =

√
σ(γ)

2πκ(γ)
,

where σ(γ) and κ(γ) denote the arc length and analytic capacity of γ, respectively. Thus
Λ(γ, ·) is continuous at ∞ (by definition).

Proof. Set E := {z ∈ C : z−1 ∈ Ω−}, which is a bounded domain containing the origin.

Define a holomorphic and univalent function G : E → D with the following properties:
(i) ∥G∥∞ ≤ 1; (ii) G(0) = 0; (iii) G′(0) is positive and maximal, i.e., given another map
H : E → D satisfying (i) and (ii) with H ′(0) positive, then necessarily G′(0) > H ′(0). Such
a G always exists and is the Riemann map (see [1, Section 6.1]) from E to D satisfying
G(0) = 0 with G′(0) > 0. Now write G as a Taylor expansion about 0:

G(z) = a1z + a2z
2 + · · ·

Now define a biholomorphic map g : Ω− → D by g(z) = G(1z ). Clearly (i′) ∥g∥∞ ≤ 1; and
(ii′) g(∞) = 0. We claim the positive number D(g,∞) defined by (3.1) is maximal out of all
functions in A∞(Ω−) satisfying (i′) and (ii′). If D(g,∞) weren’t maximal, there would exist
an h ∈ A∞(Ω−) with D(h,∞) > D(g,∞) = a1. But then the function H(z) := h(1z ) would
satisfy (i) and (ii) from the previous paragraph, and H ′(0) > a1 = G′(0), contradicting the
maximality of G′(0). Therefore, κ(γ) = D(g,∞) = limz→∞ zg(z) = a1 = G′(0).
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Now use Proposition 2.12 and (2.11) to write the Szegő kernel of Ω−:

S−(z, z) = |g′(z)|SD(g(z), g(z)) =
1

2π
· |g′(z)|
1− |g(z)|2

.

Thus,

Λ−(γ, z)
2 =

∥C(z, ·)∥2L2(γ)

S−(z, z)
=

(
|z|2
ˆ
γ
|C(z, ζ)|2 dσ(ζ)

)(
1

2π
· |z|2|g′(z)|
1− |g(z)|2

)−1

,

where the term |z|2 has been inserted in both the numerator and denominator. Now,

(3.5) lim
z→∞

|z|2
ˆ
γ
|C(z, ζ)|2 dσ(ζ) = lim

z→∞

1

4π2

ˆ
γ

dσ(ζ)

| ζz − 1|2
=
σ(γ)

4π2
.

On the other hand,

(3.6) lim
z→∞

1

2π
· |z|2|g′(z)|
1− |g(z)|2

=
1

2π
lim
z→∞

|z2g′(z)|
1− |g(z)|2

=
a1
2π

=
κ(γ)

2π
.

Dividing (3.5) by (3.6) gives the result. □

Remark 3.7. In [8, Theorem 1] Bolt carries out a similar computation, obtaining a lower
bound of the norm of the Kerzman-Stein operator. ♢

3.2. Möbius Invariance. Recall that the holomorphic automorphisms of the Riemann
sphere are precisely the Möbius transformations

(3.8) Φ(z) =
az + b

cz + d
,

where a, b, c, d ∈ C with ad−bc ̸= 0. The Cauchy kernel and transform admit transformation
laws under these maps. See [7, Theorem 3] for an analogous result in Cn (or more accurately
CPn) on the projective invariance of the Leray kernel.

Theorem 3.9. Let γ1 be a simple closed Lipschitz curve in the complex plane oriented
counterclockwise and let Φ be a Möbius transformation whose pole lies off of γ1. Define the
curve γ2 = Φ(γ1) with orientation induced from the orientation of γ1 by Φ; thus γ2 will be
oriented counterclockwise if and only if the pole of Φ lies in Ω−. Let C1

± and C2
± denote

the Cauchy transforms of γ1 and γ2, respectively. Then

(3.10) C1
±

(√
Φ′ · (f ◦ Φ)

)
=

√
Φ′ ·

(
(C2

±f) ◦ Φ
)
, f ∈ L2(γ2).

Proof. Differentiate (3.8) and observe that Φ′ is the square of a meromorphic function
defined on the Riemann sphere. Now choose a value of

√
ad− bc and then set

(3.11)
√
Φ′(ζ) =

√
ad− bc

cζ + d
.

Observe that the map f 7→
√
Φ′ · (f ◦ Φ) is a linear isomorphism from L2(γ2) to L

2(γ1).
Now let f ∈ L2(γ2), ζ ∈ γ1 and ξ = Φ(ζ) ∈ γ2. If z ∈ Ω1

±, then the image point
Φ(z) ∈ Φ(Ω1

±) = Ω2
± and

(C2
±f) ◦ Φ(z) =

1

2πi

˛
γ2

f(ξ)

ξ − Φ(z)
dξ =

1

2πi

˛
γ1

f(Φ(ζ))

Φ(ζ)− Φ(z)
· Φ′(ζ) dζ(3.12)

=
1

2πi

˛
γ1

f(Φ(ζ))
aζ+b
cζ+d − az+b

cz+d

· ad− bc

(cζ + d)2
dζ.(3.13)
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Rearranging,

(3.13) =
1

2πi

˛
γ1

(cz + d)(cζ + d)(ad− bc)

(ad− bc)(ζ − z)(cζ + d)2
f(Φ(ζ)) dζ

=
1

2πi

cz + d√
ad− bc

˛
γ1

√
ad− bc

(cζ + d)

f(Φ(ζ))

(ζ − z)
dζ

=
1

2πi
√

Φ′(z)

˛
γ1

√
Φ′(ζ)f(Φ(ζ))

ζ − z
dζ =

1√
Φ′(z)

C1
±

(√
Φ′(f ◦ Φ)

)
(z),(3.14)

giving the result when z ∈ Ω±.

The argument when z ∈ γ1 follows the same lines except that the integrals must be
interpreted in the principle value sense. For ϵ > 0 let γ1,ϵ := γ1 \D(z, ϵ), i.e., the original
curve with all points within ϵ of z removed. Now start from the integral in (3.14) evaluated
over the truncated curve γ1,ϵ, and work backwards to (3.12):

1

2πi
P.V.

˛
γ1

√
Φ′(ζ)f(Φ(ζ))

ζ − z
dζ = lim

ϵ→0

1

2πi

˛
γ1,ϵ

√
Φ′(ζ)f(Φ(ζ))

ζ − z
dζ(3.15)

= lim
ϵ→0

√
Φ′(z)

2πi

˛
Φ(γ1,ϵ)

f(ξ)

ξ − Φ(z)
dζ.(3.16)

We claim that the integral in (3.16) is also a principle value integral in the ordinary sense.
Indeed, the two endpoints of the truncated curve Φ(γ1,ϵ) approach the point Φ(z) at the
same rate as ϵ → 0 as a consequence of the fact that the image of the disc D(z, ϵ) under
Φ tends asymptotically to the disc D(Φ(z), |Φ′(z)|ϵ) as ϵ → 0. This means that by setting
γ2,δ := γ2 \D(Φ(z), δ) with δ := |Φ′(z)|ϵ,

(3.16) = lim
ϵ→0

√
Φ′(z)

2πi

˛
Φ(γ1,ϵ)

f(ξ)

ξ − Φ(z)
dζ = lim

δ→0

√
Φ′(z)

2πi

˛
γ2,δ

f(ξ)

ξ − Φ(z)
dζ

=

√
Φ′(z)

2πi
P.V.

˛
γ2

f(ξ)

ξ − Φ(z)
dζ.(3.17)

Thus, the string of equalities from (3.15) to (3.17) shows

C1
±

(√
Φ′ · (f ◦ Φ)

)
(z) =

√
Φ′(z) · f(Φ(z))

2
± 1

2πi
P.V.

˛
γ1

√
Φ′(ζ)f(Φ(ζ))

ζ − z
dζ

=

√
Φ′(z) · f(Φ(z))

2
±
√
Φ′(z)

2πi
P.V.

˛
γ2

f(ξ)

ξ − Φ(z)
dζ

=
√
Φ′(z) ·

(
(C2

±f) ◦ Φ
)
(z).

□

Theorem 3.18. Suppose γ1 is simple closed Lipschitz curve in the plane oriented counter-
clockwise and that Φ is a Möbius transformation whose pole lies off of γ1. Define the curve
γ2 = Φ(γ1) (oriented as in Theorem 3.9) and let C1

±(z, ζ) and C2
±(z, ζ) denote the Cauchy

kernels of γ1 and γ2, respectively. Then

(3.19) C1
±(z, ζ) =

√
Φ′(z) · C2

±(Φ(z),Φ(ζ)) ·
√
Φ′(ζ).

Proof. Since both curves are Lipschitz, tangent vectors exist almost everywhere. If ζ(t)
parameterizes γ1, then Φ(ζ(t)) parameterizes γ2. The unit tangent to γ1 can be written as
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T1(ζ(t)) = ζ ′(t)/|ζ ′(t)|, and so the unit tangent to γ2 can be written

T2(Φ(ζ(t))) =
Φ′(ζ(t)) · ζ ′(t)
|Φ′(ζ(t)) · ζ ′(t)|

=
Φ′(ζ(t))

|Φ′(ζ(t))|
T1(ζ(t)).

Going forward, we omit reference to the parameter t.

Assume Φ takes the form (3.8), with ad − bc ̸= 0, and choose a value of
√
ad− bc as

in (3.11) to obtain a meromorphic square root of Φ defined on all of the Riemann sphere.
From the definition of the Cauchy kernel in (1.2b), we have√

Φ′(z) · C2
±(Φ(z),Φ(ζ)) ·

√
Φ′(ζ) = ±

√
Φ′(z) · T2(Φ(ζ))

Φ(ζ)− Φ(z)
·
√
Φ′(ζ)

= ±
√

Φ′(z)
√
Φ′(ζ)

Φ(ζ)− Φ(z)
T1(ζ).(3.20)

A simple computation now shows

(3.21)

√
Φ′(z)

√
Φ′(ζ)

Φ(ζ)− Φ(z)
=

(ad− bc)

(cζ + d)(cz + d)

(
aζ + b

cζ + d
− az + b

cz + d

)−1

=
1

ζ − z
.

□

We now prove that Λ(γ, z) is Möbius invariant. This in particular shows that Λ(γ, z) is
well-defined when γ is an unbounded Lipschitz curve (recall the discussion of extending Λ
to unbounded curves following Theorem 1.8).

Theorem 3.22. Suppose γ is a simple closed Lipschitz curve in the plane and Φ is a Möbius
transformation whose pole lies off of γ. Then for z in the Riemann sphere,

Λ(γ, z) = Λ(Φ(γ),Φ(z)).

Proof. Under the assumption on Φ, observe that the image curve Φ(γ) is also a simple
closed Lipschitz curve in the plane. Now write γ1 := γ and γ2 := Φ(γ1).

If z ∈ γ1, then Φ(z) ∈ γ2, so by definition Λ(γ1, z) = 1 = Λ(γ2,Φ(z)).

Let Ωj
± be the domains bounded by γj and suppose z ∈ Ω1

±. By Theorem 3.18,∥∥C1
±(z, ·)

∥∥2
L2(γ1)

= |Φ′(z)|
ˆ
γ1

|C2
±(Φ(z),Φ(ζ))|2|Φ′(ζ)| dσ(ζ)

= |Φ′(z)|
ˆ
γ2

|C2
±(Φ(z), ξ)|2 dσ(ξ) = |Φ′(z)| ·

∥∥C2
±(Φ(z), ·)

∥∥2
L2(γ2)

.(3.23)

Now denote the Szegő kernel of H2
±(γj) by S

j
±. Since Φ is a biholomorphism from Ω1

± to

Ω2
±, Proposition 2.12 shows S1

±(z, z) = |Φ′(z)| · S2
±(Φ(z),Φ(z)). This with (3.23) shows

Λ±(γ1, z) =
∥C1(z, ·)∥2L2(γ1)

S1
±(z, z)

=
|Φ′(z)| · ∥C2(Φ(z), ·)∥2L2(γ2)

|Φ′(z)| · S2
±(Φ(z),Φ(z))

= Λ±(γ2,Φ(z)).

The ratio above needs slightly more care in two cases: (i) when z = ∞, meaning that
Φ′(z) = 0, and (ii) when Φ(z) = ∞, implying that Φ′(z) = ∞. In either case, the indeter-
minate ratio is only problematic at this specific z; in a punctured neighborhood of z, the
ratio is valid. The result now follows by working nearby and then taking limits, in which
case we invoke Theorem 3.3 on the continuity of Λ(γ, z) as z → ∞. □
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3.3. Circles and rigidity. Circles are shown to be the unique class of extremal curves
which globally minimize Λ. This leads to interesting rigidity results, including a strength-
ened version of a famous observation made by Kerzman and Stein; see Corollary 3.30.

Proposition 3.24. If γ is a circle (or a line, including the point at ∞), then Λ(γ, ·) ≡ 1.

Proof. First let γ = bD be the unit circle. Then (1.7) and (2.11) show

Λ(bD, 0)2 =
1

4π2SD(0, 0)

ˆ
γ

dσ(ζ)

|ζ|2
=

1

2π
· 2π = 1.

Given z ∈ C\bD, consider the Möbius transformation φz(w) =
z−w
1−zw . If |z| < 1 then φz is an

automorphism of D and if |z| > 1 then φz is a biholomorphic map from D onto Ĉ\D. In either
case φz(0) = z. Theorem 3.22 now shows 1 = Λ(bD, 0) = Λ(φz(bD), φz(0)) = Λ(bD, z). For
z = ∞, use the map ϕ∞(w) = w−1 and repeat the argument above to see Λ(bD,∞) = 1.

Now let γ ⊂ Ĉ be any circle and z ∈ Ω±. Then there is a Möbius transformation taking
γ to bD; see [1, Section 3.3]. Theorem 3.22 implies Λ(γ, z) = Λ(bD,Φ(z)) = 1. Since z was
chosen arbitrarily, we conclude Λ(γ, ·) ≡ 1. □

Theorem 3.25. Let γ be a simple closed Lipschitz curve in the Riemann sphere.

(1) Λ(γ, z) ≥ 1, for all z ∈ Ω±.
(2) If there is a single z ∈ Ω± such that Λ(γ, z) = 1, then Λ(γ, ·) ≡ 1 and γ is a circle

(or a line, including the point at ∞).

Proof. First suppose that γ is a planar curve enclosing the bounded domain Ω+. We may
assume that z ∈ Ω+, thanks to the Möbius invariance of Λ established in Theorem 3.22.

Consider the Riemann map g : D → Ω+ with g(0) = z and g′(0) > 0. Proposition 2.12
and (2.11) show

(3.26)
1

2π
= SD(0, 0) =

√
g′(0)S+(g(0), g(0))

√
g′(0) = g′(0)S+(z, z).

Now let Φz(w) =
1

w−z and define the (unbounded) domain E = {Φz(w) : w ∈ Ω+}, along
with the map h = Φz ◦ g : D → E. The Riesz-Privalov theorem [25, Section 6.3] says that
g′ is contained in the Hardy space H1(bD), so in particular, it is integrable on the circle.
The norm of the Cauchy kernel is thus

∥C(z, ·)∥2L2(γ) =
1

4π2

ˆ
γ

dσ(ζ)

|ζ − z|2
=

1

4π2

ˆ
bD

|g′(ζ)|
|g(ζ)− z|2

dσ(ζ) =
1

4π2

ˆ
bD

|h′(ζ)| dσ(ζ).

Now combine this with (3.26):

(3.27) Λ(γ, z)2 =
∥C(z, ·)∥2L2(γ)

S+(z, z)
=
g′(0)

2π

ˆ
bD

|h′(ζ)| dσ(ζ).

The conditions on g show that

1

h(ζ)
= g(ζ)− z = g′(0)ζ +

g′′(0)

2
ζ2 + · · · = g′(0)ζ · F1(ζ),

where F1 is a non-vanishing holomorphic function on D with F1(0) = 1. Thus,

h(ζ) =
1

g′(0)ζ · F1(ζ)
=

1

g′(0)ζ
+ F2(ζ),
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where F2 is holomorphic on the unit disc. Consequently,

(3.28) ζh′(ζ) = − 1

g′(0)ζ
+ ζF ′

2(ζ).

The residue theorem now shows

1 = −Re

(
g′(0)

2πi

˛
bD
ζh′(ζ) dζ

)
= −Re

(
g′(0)

2π

ˆ 2π

0
e2iθh′(eiθ) dθ

)
≤ g′(0)

2π

ˆ 2π

0
|h′(eiθ)| dθ = g′(0)

2π

ˆ
bD

|h′(ζ)| dσ(ζ) = Λ(γ, z)2.

From these computations, Λ(γ, z) = 1 if and only if e2iθh′(eiθ) ≤ 0 for all θ ∈ [0, 2π],
which happens if and only if ϕ(ζ) := ζ2h′(ζ) ≤ 0 for all ζ ∈ bD. Equation (3.28) shows ϕ
extends holomorphically to the origin, with ϕ(0) = −g′(0)−1. Since ϕ is real-valued on bD
the Schwarz Reflection Principle applies, yielding a bounded holomorphic extension of ϕ to
the entire complex plane, which means that ϕ is necessarily constant (ϕ ≡ −g′(0)−1).

Thus h′(ζ) = −g′(0)−1ζ−2, meaning that h(ζ) = g′(0)−1ζ−1 + C for some constant C.
This shows that g(ζ) = z + h(ζ)−1 is a Möbius transformation and therefore γ = g(bD) is
a circle. Proposition 3.24 now shows that Λ(γ, ·) ≡ 1.

Now if γ is a curve passing through ∞ ∈ Ĉ, use a Möbius transformation to send it to
a bounded planar curve. Theorem 3.22 shows that this is well defined and the result now
follows from the previous case. □

3.4. Consequences of rigidity. Using a clever geometric description of their eponymous
operator, Kerzman and Stein proved the following:

Proposition 3.29 ([18], Lemma 7.1). Let Ω be a bounded simply connected planar domain
with smooth boundary. The Cauchy and Szegő kernels coincide if and only if Ω is a disc.

In other words, C(z, ζ) = S(z, ζ) for all z ∈ Ω, ζ ∈ bΩ if and only if Ω is a disc.

Theorem 3.25 implies a much stronger rigidity theorem:

Corollary 3.30. Let Ω be a bounded simply connected planar domain with Lipschitz bound-
ary. If there exists a single z ∈ Ω such that the Cauchy and Szegő kernels satisfy |C(z, ζ)| ≤
|S(z, ζ)| for almost every ζ ∈ bΩ, then Ω is a disc.

Proof. Given z ∈ Ω, consider the square of the L2-distance ∥C(z, ·)− S(z, ·)∥2L2(γ) =ˆ
γ
|C(z, ζ)|2 dσ(ζ) +

ˆ
γ
|S(z, ζ)|2 dσ(ζ)− 2Re

ˆ
γ
C(z, ζ)S(z, ζ) dσ(ζ).

Conjugate symmetry and the Szegő reproducing property show that the second integral in
the previous line evaluates to S(z, z), while the Cauchy integral formula yields

2Re

ˆ
γ
C(z, ζ)S(z, ζ) dσ(ζ) = 2Re

ˆ
γ
C(z, ζ)S(ζ, z) dσ(ζ) = 2ReS(z, z) = 2S(z, z).

Since Ω is a bounded domain, Remark 2.16 says S(z, z) > 0. Thus,

(3.31) ∥C(z, ·)− S(z, ·)∥2L2(γ) = ∥C(z, ·)∥2L2(γ) − S(z, z) = S(z, z)
(
Λ(bΩ, z)2 − 1

)
.

If there exists a z ∈ Ω so that C(z, ζ) = S(z, ζ) for almost every ζ ∈ bΩ, then (3.31) = 0,
meaning that Λ(bΩ, z) = 1. Theorem 3.25 implies that Ω is a disc. □
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Corollary 3.32. Let γ be a simple closed Lipschitz curve in the plane. Then its analytic
capacity κ(γ) and arc length σ(γ) satisfy the following inequality:

(3.33) σ(γ) ≥ 2πκ(γ).

Equality holds if and only if γ is a circle.

Proof. Combining Theorems 3.3 and 3.25, we see that Λ(γ,∞) =
√

σ(γ)
2πκ(γ) ≥ 1, and that

equality holds if and only if γ is a circle. □

Remark 3.34. An estimate due to Ahlfors and Beurling gives a lower bound on the analytic
capacity of a simple closed curve in terms of area enclosed (see, e.g., [26, Chapter 5.3]): Let
γ be a simple closed planar curve enclosing an area of A(γ). Then

(3.35) κ(γ) ≥
√
A(γ)/π,

with equality holding if and only if γ is a circle. Combining (3.33) with (3.35) yields the
isoperimetric inequality σ(γ)2 ≥ 4πA(γ). See [15] for another proof of the isoperimetric
inequality stemming from the Ahlfors-Beurling estimate. ♢

4. The behavior of Λ(γ, z) at the boundary

Our goal here is to prove the following result, which confirms part 2 of Theorem 1.8.

Theorem 4.1. Let γ be a simple closed C1 curve in the Riemann sphere. Then the function

z 7→ Λ(γ, z) is continuous on all of Ĉ. In particular, if ζ0 ∈ γ, then limz→ζ0 Λ(γ, z) = 1.

4.1. Important kernel properties. Let X ⊂ Ĉ be a set and consider f, g : X → [0,∞).
We say f and g are comparable on X and write f(z) ≈ g(z), z ∈ X, if there exist constants
C1, C2 > 0 such that for all z ∈ X,

C1f(z) ≤ g(z) ≤ C2f(z).

Proposition 4.2. Let γ be a simple closed Lipschitz curve in the complex plane and let
δ(z) denote the distance of z to γ. Then S±(z, z) ≈ δ(z)−1, z ∈ Ω+ ∪ {z ∈ Ω− : δ(z) < ℓ}.

Proof. Let D(z, δ) be the disc centered at z of radius δ(z) = δ. The Szegő kernel of this
disc is calculated using the unit disc formula (2.11) and an appropriate affine map in the
transformation law (2.13). From Szegő kernel monotonicity in Proposition 2.17 we now
obtain

(4.3) S±(z, z) ≤ SD(z,δ)(z, z) =
1

2πδ(z)
.

For the other direction, consider first a point z ∈ Ω+ and the Riemann map Φ : Ω+ → D
with Φ(z) = 0, Φ′(z) > 0. Using (2.11) and (2.13) again we have S+(z, z) =

Φ′(z)
2π . Applying

the (rescaled) Koebe one-quarter theorem [26, Theorem 5.3.3] to Φ−1 we obtain

δ(z) ≥ 1

4

(
Φ−1

)′
(0) =

1

4Φ′(z)
,

and so

(4.4) S+(z, z) =
Φ′(z)

2π
≥ 1

8πδ(z)
.

Combining (4.3) with (4.4) we have S+(z, z) ≈ δ(z)−1, z ∈ Ω+.

To treat z ∈ Ω− close to γ, pick z0 ∈ Ω+ and ℓ > 0 so that the map η(z) := 1
z−z0

satisfies
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• η is a bi-Lipschitz map from Uℓ := {z ∈ Ω− : δ(z) < ℓ} to η(Uℓ)

and

• |η′(z)| ≈ 1 on Uℓ.

Setting δ̃(w) to be the distance from w to η(γ) we have from our work above (with η(Ω−)
replacing Ω+) along the transformation law (2.13) that

S−(z, z) ≈ Sη(Ω−)(η(z), η(z))

≈ δ̃(η(z))

≈ δ(z)

for z ∈ Uℓ, completing the proof of the proposition. □

Proposition 4.5. Let T1,T2 be bounded projection operators from L2(γ) onto H2
±(γ), each

represented by an integral kernel Kj : Ω± × γ → C, such that for f ∈ L2(γ) and z ∈ Ω±,

Tjf(z) =

ˆ
γ
f(ζ)Kj(z, ζ) dσ(ζ).

Additionally, assume Kj(z, ·) ∈ L2(γ) for z ∈ Ω±. Then the following holds for a.e. ζ ∈ γ:

(4.6) T ∗
2

(
K1(z, ·)

)
(ζ) = K2(z, ζ).

Proof. Since T2 is bounded on L2(γ), there is a corresponding bounded adjoint T ∗
2 . By

assumption, K1(z, ·) ∈ L2(γ) and so T ∗
2

(
K1(z, ·)

)
∈ L2(γ). Thus for f ∈ L2(γ),

(4.7)
〈
f,T ∗

2

(
K1(z, ·)

)〉
=
〈
T2(f),K1(z, ·)

〉
= T1 ◦ T2f(z) = T2f(z),

since T2f ∈ H2
±(γ) and T1 is a projection onto H2

±(γ). On the other hand,

(4.8)
〈
f,K2(z, ·)

〉
= T2f(z),

by definition. Equating (4.7) and (4.8) we see that T ∗
2

(
K1(z, ·)

)
− K2(z, ·) ∈ L2(γ) is

orthogonal to all of L2(γ), and is therefore almost everywhere zero. □

Corollary 4.9. The Cauchy kernel and Szegő kernels of H2
±(γ) are related as follows:

C∗
±(S±(·, z))(ζ) = C±(z, ζ), z ∈ Ω±, ζ ∈ γ,(4.10a)

S±

(
C±(z, ·)

)
(ζ) = S±(ζ, z), z ∈ Ω±, ζ ∈ γ.(4.10b)

Proof. Apply Proposition 4.5 with T1 = S± and T2 = C± for (4.10a). Switch the roles of
the operators and use the self-adjointness of the Szegő projection to deduce (4.10b). □

4.2. The Berezin transform and the Kerzman-Stein operator.

4.2.1. The Berezin transform. Let γ be a simple closed Lipschitz curve in the plane oriented
counterclockwise. Given z ∈ Ω± \ {∞}, define the unit vector s±z ∈ H2

±(γ) ⊂ L2(γ) by
normalizing the Szegő kernel as follows:

(4.11) s±z (ζ) :=
S±(ζ, z)√
S±(z, z)

.
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Lemma 4.12. Let γ be a simple closed Lipschitz curve in the plane and z ∈ C\{γ}. The
unit vectors s±z ∈ H2

±(γ) tend weakly to 0 as z approaches γ.

Proof. If f ∈ L2(γ) is perpendicular to H2
±(γ), observe that

⟨f, s±z ⟩ = S±(z, z)
−1/2S±f(z) = 0.

It is therefore sufficient to test only against functions f in the Hardy space.

If f ∈ H2
±(γ) and z ∈ Ω±\{∞}, the Szegő reproducing property gives

(4.13) ⟨f, s±z ⟩ = S±(z, z)
−1/2f(z).

By Remark 2.2 the subspace Aα(Ω±) = O(Ω±) ∩ Cα(Ω±) is dense in H2
±(γ), so we may

choose a sequence of functions {fn} ⊂ Aα(Ω±) tending to f in the L2(γ)-norm. Then

|f(z)− fn(z)| =
∣∣∣∣ˆ

γ
S±(z, ζ)(f(ζ)− fn(ζ)) dσ(ζ)

∣∣∣∣ ≤ S±(z, z)
1/2∥f − fn∥,

which implies |S±(z, z)−1/2f(z)− S±(z, z)
−1/2fn(z)| ≤ ∥f − fn∥. Thus,

|S±(z, z)−1/2f(z)| ≤ |S±(z, z)−1/2f(z)− S±(z, z)
−1/2fn(z)|+ |S±(z, z)−1/2fn(z)|

≤ ∥f − fn∥+ S±(z, z)
−1/2|fn(z)|.

Now given ϵ > 0, we may choose N large enough so that ∥f − fN∥ < ϵ
2 . Since fN ∈

Cα(Ω±), |fN | assumes a maximum value on the closure. And since S±(z, z) ≈ δ(z)−1

(Proposition 4.2), z can be taken sufficiently close to γ to ensure that

S±(z, z)
−1/2|fN (z)| ≤ S±(z, z)

−1/2 sup |fN | < ϵ

2
.

Now combining the above inequalities with (4.13), we have

|⟨f, s±z ⟩| = |S±(z, z)−1/2f(z)| < ϵ

for z sufficiently close to γ. Since ϵ was arbitrary, we conclude that s±z tends weakly to 0
as z is sent to γ. □

Suppose T is a bounded operator on L2(γ). We define its Berezin transform to be the

function T̃ : Ω±\{∞} → C given by the formula

(4.14) T̃ (z) :=
〈
T s±z , s

±
z

〉
, z ∈ Ω±\{∞}.

The Berezin transform is important in the study of Toeplitz and Hankel operators in
Bergman and Hardy space settings. There is an extensive body of literature on this topic;
see, e.g., the survey [31] and the references therein.

Lemma 4.15. Let γ be a simple closed Lipschitz curve and T a compact operator on L2(γ).

Then the Berezin transform T̃ (z) tends to 0 as z is sent to γ.

Proof. Since compact operators are completely continuous and s±z tends weakly to 0 as z is
sent to γ, we have that ∥T s±z ∥ → 0. Now observe that∣∣T̃ (z)

∣∣ = |⟨T s±z , s±z ⟩| ≤
∥∥T s±z ∥∥∥∥s±z ∥∥ ≤

∥∥T s±z ∥∥,
which completes the proof. □
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Now suppose that T1 and T2 are bounded operators on L2(γ). We define a function
B(γ,T1,T2) : C\{γ} → C by the formula

(4.16) B(γ,T1,T2)(z) :=

{〈
T1s

+
z , s

+
z

〉
, z ∈ Ω+,〈

T2s
−
z , s

−
z

〉
, z ∈ Ω−\{∞}.

We refer to B(γ,T1,T2) as a concatenated Berezin transform. This allows the consider-
ation of two different operators on Ω+ and Ω− simultaneously.

4.2.2. Kerzman-Stein operators. Define the operator

(4.17) A± = C± −C∗
±.

Kerzman and Stein [18] showed that the singularities of the Cauchy kernel and its adjoint
cancel out as long as the associated curve is smooth. Lanzani [21] improved the applicability
of this result to C1 curves.

Proposition 4.18. Let γ be a C1 curve in the complex plane. Then A± is a compact
operator on L2(γ).

Proof. See [18] for the original proof for C∞ domains and Lanzani’s work [21] for the proof
on C1 curves. Also see Bell’s book [5] for a different perspective on the C∞ setting. □

Proposition 4.19. Let γ be a simple closed Lipschitz curve in the complex plane. The
following computations hold for z ∈ C\{γ}:

B(γ,A+,A−)(z) ≡ 0,(4.20a)

B(γ,A2
+,A

2
−)(z) = 1− Λ(γ, z)2,(4.20b)

where A2
± = A± ◦A±.

Proof. Let z ∈ Ω±\{∞}. For (4.20a), we need only note that C± fixes sz. Thus,

B(γ,A+,A−)(z) = ⟨A±s
±
z , s

±
z ⟩ = ⟨(C± −C∗

±)s
±
z , s

±
z ⟩

= ⟨C±s
±
z , s

±
z ⟩ − ⟨s±z ,C±s

±
z ⟩ = ⟨s±z , s±z ⟩ − ⟨s±z , s±z ⟩ = 0.

For (4.20b), we have that since both C± and C∗
± are projections

B(γ,A2
+,A

2
−)(z) = ⟨(C± −C∗

±)
2s±z , s

±
z ⟩

= ⟨(C2
± −C∗

±C± −C±C
∗
± + (C∗

±)
2)s±z , s

±
z ⟩

= ⟨C±s
±
z , s

±
z ⟩ − ⟨C∗

±C±s
±
z , s

±
z ⟩ − ⟨C±C

∗
±s

±
z , s

±
z ⟩+ ⟨C∗

±s
±
z , s

±
z ⟩

= ⟨s±z , s±z ⟩ − ⟨C±s
±
z ,C±s

±
z ⟩ − ⟨C±C

∗
±s

±
z , s

±
z ⟩+ ⟨s±z ,C±s

±
z ⟩

= 1−
∥∥C∗

±s
±
z

∥∥2.(4.21)

But notice that

(4.22)
∥∥C∗

±sz
∥∥2 = 1

S±(z, z)

∥∥C∗
±
(
S±(·, z)

)∥∥2 = 1

S±(z, z)

∥∥∥C±(z, ·)
∥∥∥2 = Λ±(γ, z)

2,

where the second equality follows from (4.10a) and the last equality is by definition. Com-
bining (4.21) and (4.22) gives the result. □

Proof of Theorem 4.1. First assume that γ is a simple closed C1 curve in the plane. It is
clear from the definition that z 7→ Λ(γ, z) is continuous on C\{γ}, while continuity at ∞
has already been verified in Theorem 3.3. It thus remains to check what happens near the
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curve (by definition, Λ(γ, ζ0) = 1 for ζ0 ∈ γ). Proposition 4.18 says A± is compact, so A2
±

is also compact. Lemma 4.15 thus implies that

B(γ,A2
+,A

2
−)(z) = ⟨A2

±s
±
z , s

±
z ⟩ → 0

as z ∈ Ω± tends to any ζ0 ∈ γ. But by Proposition 4.19, this is equivalent to saying
Λ±(γ, z)

2 → 1 as z ∈ Ω± tends to ζ0 ∈ γ. Since Λ±(γ, z) is positive, we conclude that
limz→ζ0 Λ(γ, z) = 1 = Λ(γ, ζ0).

If γ is a C1 curve in the Riemann sphere passing through the point at infinity, then we
use a Möbius transformation Φ to map it to a bounded C1 curve Φ(γ). Möbius invariance
combined with the above argument now completes the proof. □

5. Examples

5.1. Wedges. Given θ ∈ (0, π), define two complementary wedges

Wθ = {reiφ ∈ C : r > 0, |φ| < θ},(5.1a)

Vθ = {reiφ ∈ C : r > 0, θ < φ < 2π − θ}.(5.1b)

It suffices to consider θ ∈ (0, π2 ), so that Wθ is a convex set and Vθ is non-convex. Let γθ
parameterize the boundary bWθ:

(5.1c) γθ(t) =


−teiθ, t ∈ (−∞, 0),

te−iθ, t ∈ [0,∞),

∞, t = ∞.

We now have a partition of the Riemann sphere Ĉ = Wθ ∪ Vθ ∪ γθ. In the notation of
previous sections, we have Wθ = Ω+ and Vθ = Ω−. Thus we write

Λ+(γθ, re
iφ) =

1

4π2SWθ
(reiφ, reiφ)

ˆ
γθ

dσ(ζ)

|ζ − reiφ|2
, r > 0, φ ∈ (−θ, θ),(5.2a)

Λ−(γθ, re
iφ) =

1

4π2SVθ
(reiφ, reiφ)

ˆ
γθ

dσ(ζ)

|ζ − reiφ|2
, r > 0, φ ∈ (θ, 2π − θ).(5.2b)

5.1.1. Szegő kernels. The Szegő kernels ofWθ and Vθ, can be computed from their Riemann
maps. For α ∈ (0, π), let Wα be the (possibly non-convex) wedge given by (5.1a). It is
straightforward to verify that the Riemann map Ψα :Wα → D takes the form

(5.3) Ψα(z) =
1− z

π
2α

1 + z
π
2α

,

where the fractional power z
π
2α refers to the branch preserving the positive real axis.

Setting α = θ and z = reiφ, the transformation law in Proposition 2.12 and (2.11) show

(5.4a) SWθ
(reiφ, reiφ) =

1

8rθ
sec
(πφ
2θ

)
, r > 0, φ ∈ (−θ, θ).

The Szegő kernel for Vθ is computed similarly. First observe that the map z 7→ −z sends
Vθ to Wπ−θ. From here, apply the map Ψπ−θ to obtain the Riemann map from Vθ to D.

(5.4b) SVθ
(reiφ, reiφ) =

1

8r(π − θ)
sec

(
π

2

(π − φ)

(π − θ)

)
, r > 0, φ ∈ (θ, 2π − θ).
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5.1.2. L2-norm of the Cauchy kernel. Computation of the integrals in (5.2a) and (5.2b) is
assisted by the following

Lemma 5.5. Let α ∈ (0, 2π) and r > 0. Then

(5.6) I(r, α) :=
ˆ ∞

0

dx

|x− reiα|2
=

1

r sinc(π − α)
,

where

sinc(t) :=


sin(t)

t
, t ̸= 0

1, t = 0.

Proof. If α = π, the fundamental theorem of calculus gives the result. When α ∈ (0, π),

I(r, α) =
ˆ ∞

0

dx

x2 + r2 − 2xr cosα
=

1

r2 sin2 α

ˆ ∞

0

dx

1 +
(
x−r cosα
r sinα

)2
=

1

r sinα

ˆ ∞

−cotα

du

1 + u2

=
1

r sinα

(π
2
+ arctan(cotα)

)
.(5.7)

Elementary trigonometry now confirms that (5.6) holds in this case. For α ∈ (π, 2π),
reflection across the horizontal axis reveals that I(r, α) = I(r, 2π − α). Combining this
with the earlier result for α ∈ (0, π] shows that (5.6) holds for α ∈ (0, 2π). □

Fix θ ∈ (0, π2 ) and take z = reiφ ∈ Wθ, with r > 0, φ ∈ (−θ, θ). Using Lemma 5.5 it is
easily verified that (just draw a picture)∥∥C(reiφ, ·)∥∥2

L2(γθ)
=

1

4π2
(I(r, θ − φ) + I(r, θ + φ))

=
1

4π2r

(
1

sinc(π − (θ − φ))
+

1

sinc(π − (θ + φ))

)
.(5.8a)

Similarly, take z = reiφ ∈ Vθ, with r > 0 and φ ∈ (θ, 2π − θ). Then Lemma 5.5 gives∥∥C(reiφ, ·)∥∥2
L2(γθ)

=
1

4π2
(I(r, φ− θ) + I(r, 2π − θ − φ))

=
1

4π2r

(
1

sinc(π − (φ− θ))
+

1

sinc(π − (φ+ θ))

)
.(5.8b)

5.1.3. The Λ-function. From Theorem 3.22 we easily see Λ(γθ, re
iφ) is independent of r >

0. Alternately, by canceling factors of r−1 in the quotients of (5.8a) and (5.8b) by the
corresponding results from (5.4a) and (5.4b) we obtain the following

Theorem 5.9. For θ ∈ (0, π2 ), the function reiφ 7→ Λ(γθ, re
iφ)2 is computed on Wθ = Ω+

and Vθ = Ω−.

(a) Let z = reiθ ∈Wθ, so that r > 0 and φ ∈ (−θ, θ). Then

Λ+(γθ, re
iφ)2 =

2θ

π2

(
1

sinc(π − (θ − φ))
+

1

sinc(π − (θ + φ))

)
cos
(πφ
2θ

)
.

(b) Let z = reiθ ∈ Vθ, so that r > 0 and φ ∈ (θ, 2π − θ). Then

Λ−(γθ, re
iφ)2 =

2(π − θ)

π2

(
1

sinc(π − (φ− θ))
+

1

sinc(π − (φ+ θ))

)
cos

(
π

2

(π − φ)

(π − θ)

)
.
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5.1.4. Remarks on the formula. Since Λ(γθ, re
iφ) is independent of r > 0, let us define

L(θ, φ) := Λ(γθ, e
iφ).

Theorem 1.11 tells us that ∥C∥L2(γθ)
≥ sup{L(θ, φ) : φ ∈ [−θ, 2π − θ)}.

• In [9] Bolt observes that a Möbius transformation maps the wedge Wθ onto a lens with
vertices at ±1. This lens has boundary length σ(γ) = 4θ csc θ and capacity κ(γ) = π/(2(π−
θ)), and Bolt uses this information to obtain a lower bound on ∥A∥; see Remark 3.7. The
closely related lower bound on ∥C∥ given by Λ(γ,∞) in Theorem 3.3 together with the
Möbius invariance of Λ shows

∥C∥L2(γθ)
≥

√
σ(γ)

2πκ(γ)
=

2

π

√
(π − θ)θ csc θ := B(θ).

• The graphs of L(θ, φ) and B(θ) for θ = π
8 ,

π
4 are displayed in Figure 1. B(θ) agrees with

the maximum value (at φ = 0) of L(θ, φ) when the angles correspond to the interior domain
Wθ, but is strictly less than the maximum value when φ is taken from the exterior Vθ.

Figure 1. Behavior of φ 7→ L(θ, φ) for θ = π
8 and θ = π

4 .

• When z ∈ Wθ ∪ Vθ, Theorem 3.25 guarantees that Λ(γθ, z) > 1. But the formulas in
Theorem 5.9 show that Λ(γ0, z) → 1 as z = reiφ tends to any smooth point on the curve
γθ (meaning that r > 0 and φ → −θ, θ or 2π − θ). This is illustrated in Figure 1 when
θ = π

8 ,
π
4 , and should be compared with the continuity result given in Theorem 4.1.

• Since the non-smooth boundary points 0,∞ ∈ γθ can be approached from any angle
φ ∈ (−θ, 2π − θ), the function reiφ 7→ Λ(γθ, re

iφ) is discontinuous at both. In light of
the relationship between Λ, the Berezin transform and the Kerzman-Stein operator A in
Section 4.2.2, lack of continuity shows that A is not compact. Bolt and Raich [10] show
that A is never compact when corners are present.

5.2. Ellipses. The next family of curves we consider are ellipses. For r ≥ 1, define

(5.10) Er =
{
x+ iy ∈ C :

x2

r2
+ y2 = 1

}
.

As usual Er is oriented counterclockwise, so that Ωr
+ is the filled in ellipse.

5.2.1. Families of special functions. Elliptic integrals, elliptic functions and Jacobi theta
functions comprise a deep and beautiful area of mathematics. In what follows, the reader
is not assumed to have prior background and all necessary definitions are given. References
to properties relevant to our computations of Λ(Er, z) are also interspersed as needed.
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The elliptic integrals of the first, second and third kinds (K,E,Π, respectively) make
up a canonical set to which all other elliptic integrals can be reduced. In what follows,
variables k ∈ (0, 1) and n ∈ R are called the elliptic modulus and characteristic, respectively.
We follow conventions used by Whittaker and Watson [30, Chapter 22.7], but the reader
is cautioned that other conventions are also in common use (especially in mathematical
software; e.g., Mathematica implements these as functions of k2, not k):

K(k) =

ˆ 1

0

dt√
(1− t2)(1− k2t2)

,(5.11a)

E(k) =

ˆ 1

0

√
1− k2t2

1− t2
dt,(5.11b)

Π(n, k) =

ˆ 1

0

dt

(1− nt2)
√
(1− t2)(1− k2t2)

.(5.11c)

Next, recall the Jacobi theta functions, where z ∈ C and |q| < 1 (see [30, Chapter 21]):

ϑ1(z, q) = 2q
1
4

∞∑
j=0

(−1)jqj(j+1) sin[(2j + 1)z],(5.12a)

ϑ2(z, q) = 2q
1
4

∞∑
j=0

qj(j+1) cos[(2j + 1)z],(5.12b)

ϑ3(z, q) = 1 + 2

∞∑
j=1

qj
2
cos(2jz),(5.12c)

ϑ4(z, q) = 1 + 2

∞∑
j=1

(−1)jqj
2
cos(2jz).(5.12d)

Theta functions also admit elegant infinite product expansions; see [30, Chapter 21.3].

Define for k ∈ [0, 1], the elliptic nome q(k) by

(5.13a) q(k) = exp

[
−πK(

√
1− k2)

K(k)

]
.

This function is strictly increasing with q(0) = 0 and q(1) = 1. The inverse nome k(q) is
defined for q ∈ [0, 1) by an infinite product, or equivalently by a ratio of theta functions:

(5.13b) k(q) = 4
√
q

∞∏
j=1

[
1 + q2j

1 + q2j−1

]4
=
ϑ2(0, q)

2

ϑ3(0, q)2
.

A slight abuse of notation lets us write k(q(k)) = k and q(k(q)) = q on [0, 1); also
limq→1 k(q) = 1, though the infinite product/theta function formula is not valid at q = 1.

Finally, define Jacobi’s elliptic sn function in terms of the above functions

(5.14) sn(u, k) =
ϑ3(0, q(k))

ϑ2(0, q(k))
·
ϑ1

(
u

ϑ3(0, q(k))2
, q(k)

)
ϑ4

(
u

ϑ3(0, q(k))2
, q(k)

) .
The function u 7→ sn(u, k) is is meromorphic and doubly periodic with quarter periods K :=

K(k) and iK ′ := iK(
√
1− k2), i.e., sn(u, k) = sn(u+4K, k) and sn(u, k) = sn(u+4iK ′, k).
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5.2.2. The norm of the Cauchy kernel. For z ∈ Ωr
+∪Ωr

−, we write the norm ∥C±(z, ·)∥L2(Er)
as an integral over [−1, 1]. First parametrize the top and bottom halves of Er by

(5.15) ζ±(t) = rt± i
√
1− t2, −1 ≤ t ≤ 1.

Writing the arc length differential dσ(ζ) in terms of this parametrization gives

(5.16) dσ(ζ) = |dζ(t)| = r

√
1− (1− 1

r2
)t2

1− t2
dt.

If z = α+ iβ, with α, β ∈ R, then (5.15) implies

|ζ±(t)− z|2 = |(rt− α)± i
(√

1− t2 ∓ β
)
|2

= α2 + β2 + 1− 2rαt+ (r2 − 1)t2 ∓ 2β
√

1− t2.

Now combine this with (5.16) to see

∥C(z, ·)∥2 = 1

4π2

ˆ
Er

dσ(ζ)

|ζ − z|2

=
1

4π2

ˆ 1

−1

|dζ(t)|
|ζ+(t)− α− iβ|2

+
1

4π2

ˆ 1

−1

|dζ(t)|
|ζ−(t)− α− iβ|2

=
r

2π2

ˆ 1

−1

α2 + β2 + 1− 2rαt+ (r2 − 1)t2

(α2 + β2 + 1− 2rαt+ (r2 − 1)t2)2 − 4β2(1− t2)

√
1− (1− 1

r2
)t2

1− t2
dt.(5.17)

In the special case in which α = β = 0, (5.17) reduces to

∥C(0, ·)∥2L2(Er) =
1

2π2r

ˆ 1

−1

r2 − (r2 − 1)t2

1 + (r2 − 1)t2
1√

(1− t2)(1− (1− 1
r2
)t2)

dt

=
1

π2r

ˆ 1

0

(
r2 + 1

1− (1− r2)t2
− 1

)
1√

(1− t2)(1− (1− 1
r2
)t2)

dt

=
1

π2r

(
(r2 + 1) ·Π

(
1− r2,

√
1− 1

r2

)
−K

(√
1− 1

r2

))
.(5.18)

5.2.3. The Szegő kernel of the interior domain. The Riemann map of the ellipse Θr : Ω
r
+ →

D, takes the following form (see, e.g., [24, Chapter VI] or [29]):

(5.19) Θr(z) =
√
kr · sn

(
2K(kr)

π
arcsin

(
z√
r2 − 1

)
, kr

)
.

Here sn(·, ·) is the elliptic function (5.14), K is the elliptic integral (5.11a). The elliptic
modulus kr ∈ [0, 1) is the unique value (determined by (5.13b)) satisfying

(5.20) q(kr) =

(
r − 1

r + 1

)2

.

The value of kr in (5.19) is determined by the eccentricity of Er, while the factor
√
r2 − 1

appearing in the arcsine accounts for the fact that the foci of Er are at (±(r2 − 1), 0).

From [30, Example 21.6.5], it can be seen that

(5.21)
2K(k)

π
= ϑ3

(
0, q(k)

)2
,

√
k =

ϑ2(0, q(k))

ϑ3(0, q(k))
.
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Equations (5.20), (5.21) and the definition of sn(·, ·) in (5.14) lets us rewrite (5.19):

Θr(z) =
ϑ2
(
0,
(
r−1
r+1

)2)
ϑ3
(
0,
(
r−1
r+1

)2) · sn
(
ϑ3

(
0,

(
r − 1

r + 1

)2)2

arcsin

(
z√
r2 − 1

)
, kr

)

=

ϑ1

(
arcsin

(
z√
r2 − 1

)
,

(
r − 1

r + 1

)2
)

ϑ4

(
arcsin

(
z√
r2 − 1

)
,

(
r − 1

r + 1

)2
) .(5.22)

The Szegő transformation formula (2.12) gives S+(z, z) in terms of Θr and Θ′
r

S+(z, z) =
|Θ′

r(z)|
2π(1− |Θr(z)|2)

.(5.23)

When z = 0, this formula simplifies. Indeed, (5.22) shows that Θr(0) = 0 and (letting ϑ′1
denote differentiation in the first slot), the quotient rule gives

(5.24) Θ′
r(0) =

ϑ′1

(
0,
(
r−1
r+1

)2)
√
r2 − 1 · ϑ4

(
0,
(
r−1
r+1

)2) .
In [30, Section 21.4], Whittaker and Watson establish the following “remarkable result”

of Jacobi, saying “several proofs have been given, but none are simple”:

ϑ′1(0, q) = ϑ2(0, q)ϑ3(0, q)ϑ4(0, q).

This can be inserted into (5.24) to show

(5.25) S+(0, 0) =
|Θ′

r(0)|
2π

=
ϑ2

(
0,
(
r−1
r+1

)2)
ϑ3

(
0,
(
r−1
r+1

)2)
2π

√
r2 − 1

.

5.2.4. Calculation of Λ(Er, 0) and Λ(Er,∞).

Theorem 5.26. Let r ≥ 1. The function z 7→ Λ(Er, z)2 assumes the following values.

Λ(Er,∞)2 =
4r

π(r + 1)
E
(√

1− 1
r2

)
,(5.27a)

Λ(Er, 0)2 =
2

π

√
1− 1

r2
·
(r2 + 1) ·Π

(
1− r2,

√
1− 1

r2

)
−K

(√
1− 1

r2

)
ϑ2

(
0,
(
r−1
r+1

)2)
ϑ3

(
0,
(
r−1
r+1

)2) .(5.27b)

Proof. The z = ∞ formula follows from the definition of Λ in (1.7). (Recall that Theorem
3.3 shows that Λ(Er, z) is continuous at z = ∞.) It is known (see [26, Table 5.1]) that the
capacity κ of the ellipse {x2/a2 + y2/b2 = 1} is a+b

2 , so κ(Er) = r+1
2 . On the other hand,

(5.16) shows the arc length of Er is given by

σ(Er) =
ˆ
Er
dσ(ζ) = 2r

ˆ 1

−1

√
1− (1− 1

r2
)t2

1− t2
dt = 4rE

(√
1− 1

r2

)
.

For the z = 0 formula, simply divide (5.18) by (5.25). □
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5.2.5. Remarks. We discuss properties of Λ(Er, 0) and Λ(Er,∞) as r varies, giving special
attention to the endpoint cases of r → 1 and ∞. Both values give “asymptotically sharp”
estimates on ∥C∥ as r → 1, though Λ(Er, 0) is larger and thus “sharper” (see Figure 2). We
also briefly discuss Λ(Er, z) for other z values.

Figure 2. Comparison of r 7→ Λ(Er, 0) and r 7→ Λ(Er,∞) for r ≥ 1.

• Behavior of Λ(Er,∞) and Λ(Er, 0). Using well known asymptotic behavior of elliptic
integrals and theta functions (see [12]) we expand Λ(Er,∞) and Λ(Er, 0) near r = 1:

Λ(Er,∞) = 1 + 1
32(r − 1)2 − 1

32(r − 1)3 + 3
128(r − 1)4 +O(|r − 1|5)(5.28a)

Λ(Er, 0) = 1 + 1
32(r − 1)2 − 1

32(r − 1)3 + 7
200(r − 1)4 +O(|r − 1|5).(5.28b)

(For the reader interested in working out these details by hand, it is convenient to re-write
Λ(Er, 0) using the so-called Heuman Lambda function; see [12, page 225]).

In [8], Bolt shows that the spectrum of the Kerzman-Stein operator A on an ellipse
consists of eigenvalues ±iλl, where each ±iλl has multiplicity 2 and λ1 ≥ λ2 ≥ · · · ≥ 0. He
then provides asymptotics of the eigenvalues as the eccentricity tends to zero. The largest
number on the list is λ1 = ∥A∥ =

√
||C||2 − 1, and we deduce from Bolt’s estimates that,

as r → 1,

(5.29) ∥C∥ ≈
√
1 + 1

4

(
r−1
r+1

)2
= 1 + 1

32(r − 1)2 +O(|r − 1|3).

Comparing (5.29) to (5.28a) and (5.28b), we see the expansions for Λ(Er,∞) and Λ(Er, 0)
are both asymptotically sharp as r → 1. But if we then compare the coefficients of (r−1)4,
we see that Λ(Er, 0) is the better lower bound on ∥C∥ near r = 1 (since 7

200 >
3

128). This
information proves Theorem 1.13.

Known asymptotic expansions of elliptic integrals and theta functions also yield the
behavior of Λ(Er,∞) and Λ(Er, 0) as r → ∞:

lim
r→∞

Λ(Er, 0) =
2√
π
= lim

r→∞
Λ(Er,∞).

Remark 5.30. The Mathematica generated plot in Figure 2 suggests Λ(Er, 0) > Λ(Er,∞)
for all r ≥ 1, and it would be interesting to prove this. It also appears in the plot that both
functions are strictly increasing in r. This is relatively straightforward to prove in the case
of Λ(Er,∞), but the Λ(Er, 0) case seems to be harder. ♢
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Remark 5.31. The above information should be considered together with a known upper
bound on the norm of C. Adapting results by Feldman, Krupnik and Spitkovsky in [14],
we see that for r ≥ 1,

(5.32) ∥C∥L2(Er) ≤
√
1 +

(
r−1
r+1

)2
.

In particular, the norm of the Cauchy transform on any ellipse is always less than
√
2. ♢

Figure 3. For α ∈ R, plot of α 7→ Λ(E2, α) shows maximum at α = 0.

• Values of Λ(Er, z) for z ̸= 0,∞. The formulas provided in (5.17), (5.22) and (5.23) are
valid for z ∈ Ωr

+. Numerical evidence for specific r values suggests that z = 0 may in fact
maximize Λ+(Er, z). This is illustrated in Figure 3, when r = 2 and z = α is real valued.
In this picture, the interior domain corresponds to α ∈ (−2, 2).

To compute Λ−(Er, z), we need the exterior Riemann map. The map from the unit disc
D to Ωr

− (the complement of the solid ellipse) is given by a Joukowski map (see [24, page
270]). Such maps can be inverted explicitly and the desired Ψr : Ωr

− → D obtained. The
particular map used to generate the figure (the r = 2 case) for |α| > 2 is given by

Ψ2(z) =
3

z +
√
z2 − 3

,

from which the exterior Szegő kernel S−(z, z) can be obtained. This is then combined with
the Cauchy norm computation in (5.17) to yield the exterior Λ-function.
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