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Abstract. For 1 < p < ∞, we emulate the Bergman projection on Reinhardt domains
by using a Banach-space basis of Lp-Bergman space. The construction gives an integral
kernel generalizing the (L2) Bergman kernel. The operator defined by the kernel is shown
to be absolutely bounded projection on the Lp-Bergman space on a class of domains where
the Lp-boundedness of the Bergman projection fails for certain p ̸= 2. As an application,
we identify the duals of these Lp-Bergman spaces with weighted Bergman spaces.

1. Introduction

1.1. The Bergman projection on Lp. Given a domain Ω ⊂ Cn, the Bergman projection
BΩ is the orthogonal projection from L2(Ω) onto the Bergman space A2(Ω) = L2(Ω)∩O(Ω),
the subspace of square-integrable holomorphic functions. The Bergman projection can be
represented by integration against the Bergman kernel BΩ:

BΩf(z) =

∫
Ω
BΩ(z, w)f(w)dV (w), f ∈ L2(Ω), (1.1)

where dV is Lebesgue measure. The Bergman kernel enjoys remarkable reproducing, in-
variance and extremal properties and is closely related to the ∂̄-Neumann problem (see e.g.
[Ber70, FK72, Kra13]).

Bergman spaces can be naturally defined on all complex manifolds, in contrast with
Hardy spaces, whose construction is tied to distinguished measures on the boundary of a
domain, e.g., the Haar measure on the unit circle in the case of the classical Hardy space
Hp(D) of Lp boundary values of holomorphic functions.

Inspired by Hardy spaces, it is natural to consider the space of p-th power integrable
holomorphic functions Ap(Ω) of a domain Ω ⊂ Cn. These have been known as (Lp-)
Bergman spaces since the 1970s, though S. Bergman only studied the square integrable
setting. In view of M. Riesz’s classical result on the Lp-boundedness of the Szegő projection
for 1 < p < ∞, it is also natural to ask whether the Bergman projection extends to a
bounded linear projection from Lp(Ω) onto Ap(Ω) via the integral formula (1.1). When Ω is
a ball in Cn, this turns out to be the case (see [ZJ64, FR74]); the same remains true in many
classes of smoothly bounded pseudoconvex domains ([PS77, NRSW89, MS94, McN94] etc.)
In these cases, the extended operator turns out to be even absolutely bounded, in the sense
that the associated “absolute” operator (BΩ)+ is bounded on Lp(Ω), where

(BΩ)+f(z) =

∫
Ω

∣∣BΩ(z, w)
∣∣ f(w)dV (w), f ∈ Lp(Ω).

On the other hand, there are examples of domains for which the extended Bergman
projection fails to define a bounded projection from Lp(Ω) onto Ap(Ω) for some (and

2020 Mathematics Subject Classification. 32A36, 46B15, 32A70, 32A25.
The first author was supported in part by US National Science Foundation grant number DMS-2153907,

and by a gift from the Simons Foundation (number 706445).
The second author was supported in part by Austrian Science Fund (FWF): AI0455721.

1



2 DEBRAJ CHAKRABARTI AND LUKE D. EDHOLM

sometimes for all) p ̸= 2; see [Bar84, FKP99, FKP01, Zey13, EM17] and the survey
[Zey20]. Recent studies of the Bergman projection in certain classes of Reinhardt domains
([CZ16a, Edh16, EM16, Che17, CEM19, EM20, HW20, Zha21a, Zha21b, Mon21, BCEM22]
etc.) shed more light on this phenomenon, revealing that the Lp-behavior of the Bergman
projection that one sees on, e.g., smooth bounded strongly pseudoconvex domains breaks
down on bounded Reinhardt domains whose boundary passes through the center of rota-
tional symmetry, a simple example being the Hartogs triangle {|z1| < |z2| < 1} ⊂ C2. In
such a domain it is possible that there are indices 1 < p1 < p2 <∞ such that the linear sub-
space Ap2(Ω) is not dense in the Bergman space Ap1(Ω). This phenomenon can never occur
on smoothly bounded pseudoconvex domains (see [Cat80]), and may constitute a glimpse
of an Lp-function theory where the Banach geometry of Lp replaces the Hilbert space idea
of orthogonality. In the Reinhardt domains studied in this paper, Laurent representations
are used to clarify some of these phenomena. For example, the fact that Ap2(Ω) is not
necessarily dense in Ap1(Ω) is a manifestation of the fact that there may be monomials
whose p1-th power is integrable but not the p2-th power.

1.2. Projection operators associated to bases. Let L be a separable Hilbert space, A
a closed subspace of L and {ej} a complete orthogonal set in A. The orthogonal projection
P from L to A may be represented by the following series (convergent in the norm of L):

P f =
∑
j

⟨f, ej⟩
∥ej∥2

ej , f ∈ L. (1.2)

Since P f is defined geometrically as the point in A nearest to f , this representation is
independent of the choice of complete orthogonal set {ej}. When L = L2(Ω), A = A2(Ω),
(1.2) coincides with the Bergman projection formula given by (1.1).

In a general Banach space, the analog of a complete orthogonal set is a Schauder basis:
a sequence {ej}∞j=1 in a complex Banach space A is a Schauder basis if for each f ∈ A,

there is a unique sequence {cj}∞j=1 of complex numbers such that f =
∑∞

j=1 cjej , where the

series converges in the norm-topology of A (see [LT77]). In this case, there exist bounded
linear functionals aj : A → C such that cj = aj(f), generalizing the Fourier coefficients

aj(f) =
⟨f,ej⟩
∥ej∥2

seen in the Hilbert setting.

When L is a Banach space, A a closed subspace, and {ej}∞j=1 a Schauder basis of A, one

might attempt to define a projection operator from L onto A by emulating (1.2):

P f =
∑
j

ãj(f)ej , f ∈ L, (1.3)

where ãj : L → C is a Hahn-Banach (norm-preserving) extension of aj : A → C. When it
exists, an operator of type (1.3) will be called a basis projection determined by the Schauder
basis; this notion encapsulates the orthogonal projection (1.2) when L is Hilbert. A less
obvious example of a basis projection is seen by considering the unit circle T with the Haar
measure and 1 < p < ∞. The classical Szegő projection from Lp(T) onto the Hardy space
Hp(D) is a basis projection; see Proposition 2.7. In contrast, we show in Proposition 3.15
that for p ̸= 2, the attempt to extend the Bergman projection to Lp by continuity – even
if successful – is never a basis projection. This is an underlying reason for the deficiencies
of the Bergman projection in Lp spaces, and our goal in this paper is to construct basis
projections from Lp(Ω) to Ap(Ω).

1.3. The Monomial Basis Projection. Formula (1.3) is purely formal, as there is no
guarantee that a basis projection onto the subspace determined by a given basis exists.
Several technical points must first be addressed:
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(1) A basis projection depends on both the range subspace A and on the choice of
Schauder basis – or the slightly more general notion of a Banach-space basis (see Section
2.1) – determining the projection. A Banach space need not have such a basis, but in the
Bergman space Ap(Ω) of a Reinhardt domain Ω ⊂ Cn, there is a distinguished basis tied
to geometry and function theory. This is the collection of Laurent monomials in Ap(Ω),
functions z 7→ zα1

1 zα2
2 . . . zαn

n where αj ∈ Z, 1 ≤ j ≤ n. The fact that these monomials
under an appropriate partial ordering give a Banach-space basis of Ap(Ω) was first proved
in [CEM19], and is recalled in a slightly more general form in Theorem 2.12 below. The
projection operator from Lp(Ω) to Ap(Ω) defined in terms of this monomial basis by formula
(1.3) is the main topic of this paper: the Monomial Basis Projection (MBP).

(2) A Hahn-Banach extension of a linear functional in general is far from unique, but
in our application, where we extend coefficient functionals defined on Ap(Ω) to Lp(Ω), we
do have uniqueness; see Propositions 2.3 and 2.4 below. This means the MBP can be
unambiguously defined by (1.3), since the summation procedure is specified by the partial
ordering of our Banach-space basis mentioned in item (1).

(3) None of the above guarantees that the formal series (1.3) converges for f ∈ L. Show-
ing that (1.3) defines a bounded operator on L requires direct estimation to show that the
partial summation operators are uniformly bounded in the operator norm of L. In our
application to Bergman spaces Ap(Ω), the problem is simplified because of the availability
of an integral kernel representation of the MBP.

1.4. Notation, definitions and conventions.

(1) Unless otherwise indicated, Ω will denote a bounded Reinhardt domain in Cn with
center of symmetry at 0, i.e., whenever z ∈ Ω, for every tuple (θ1, . . . , θn) ∈ Rn, we have
(eiθ1z1, . . . , e

iθnzn) ∈ Ω. Let |Ω| ⊂ Rn denote its Reinhardt Shadow, i.e.,

|Ω| = {(|z1| , . . . , |zn|) ∈ Rn : z ∈ Ω}.

(2) The index p satisfies 1 < p < ∞, and denote by q the index Hölder-conjugate to p,
i.e., 1

p + 1
q = 1.

(3) For a domain U ⊂ Cn and a measurable function λ : U → [0,∞] which is positive
a.e. (the weight), we set for a measurable function f ,

∥f∥pLp(U,λ) = ∥f∥pp,λ =

∫
U
|f |p λ dV, (1.4)

where dV denotes Lebesgue measure, and functions equal a.e. are identified. We let Lp(U, λ)
be the space of functions f for which ∥f∥p,λ <∞, which is a Banach space.

Let Ap(U, λ) be the subspace of Lp(U, λ) consisting of holomorphic functions:

Ap(U, λ) = Lp(U, λ) ∩ O(U).

We will only consider weights λ : U → [0,∞] which are admissible in the sense that
Bergman’s inequality holds in Ap(U, λ), i.e., for each compact set K ⊂ U , there is a constant
CK > 0 such that for each f ∈ Ap(U, λ) we have

sup
K

|f | ≤ CK ∥f∥Lp(U,λ) . (1.5)

It is easy to see that if λ is a positive continuous function on U then it is an admissible
weight on U . We treat a class of more general admissible weights in Section 3.2.

If λ is an admissible weight on U , a standard argument shows that Ap(U, λ) is a closed
subspace of Lp(U, λ), and therefore a Banach space. It is called a weighted Bergman space.

(4) We are interested in Reinhardt domains Ω and phenomena which are invariant under
rotational symmetry. Therefore, we consider only weights λ on Ω which are both admissible
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and multi-radial, in the sense that there is a function ℓ on the Reinhardt shadow |Ω| such
that λ(z1, . . . , zn) = ℓ(|z1| , . . . , |zn|).

(5) For α ∈ Zn, we denote by eα the Laurent monomial of exponent α:

eα(z) = zα1
1 . . . zαn

n . (1.6)

(6) We define the set of p-allowable indices to be the collection

Sp(Ω, λ) = {α ∈ Zn : eα ∈ Ap(Ω, λ)} . (1.7)

If λ ≡ 1, we abbreviate Sp(Ω, 1) by Sp(Ω).
(7) The map χp : Cn → Cn defined by

χp(ζ) =
(
ζ1 |ζ1|p−2 , · · · , ζn |ζn|p−2

)
(1.8)

will be referred to as the twisting map. It appears in the definition of the Monomial Basis
Kernel in (1.10), and arises also in the duality pairing (7.5). Given a function f we denote
by χ∗

pf its pullback under χp:

χ∗
pf = f ◦ χp. (1.9)

1.5. The Monomial Basis Kernel. When it exists, the MBP of Ap(Ω, λ) is (by construc-
tion) a bounded surjective projection, which we write PΩ

p,λ : Lp(Ω, λ) → Ap(Ω, λ). To obtain

an integral formula analogous to (1.1), we define the Monomial Basis Kernel of Ap(Ω, λ)
(abbreviated MBK ), as the formal series on Ω× Ω given by

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

eα(z)χ∗
peα(w)

∥eα∥pp,λ
. (1.10)

When p = 2, the MBK coincides with the Bergman kernel of A2(Ω, λ), in which case the
above series is known to converge locally normally on Ω× Ω. For a general 1 < p <∞, we
show in Theorem 3.3 that when Ω is pseudoconvex, the series (1.10) also converges locally
normally on Ω× Ω. In Theorem 3.13 we prove that the MBP admits the representation

PΩ
p,λ(f)(z) =

∫
Ω
KΩ

p,λ(z, w)f(w)λ(w)dV (w), f ∈ Lp(Ω, λ). (1.11)

1.6. Improved Lp-mapping behavior. The main theme of this paper is that the Mono-
mial Basis Projection can have better mapping properties in Lp spaces than the Bergman
projection. In Section 6 we illustrate this on nonsmooth pseudoconvex Reinhardt domains
called monomial polyhedra (see [NP09, BCEM22]). A bounded domain U ⊂ Cn is a mono-
mial polyhedron in our sense, if there are exactly n monomials eα1 , . . . , eαn such that

U = {z ∈ Cn : |eα1(z)| < 1, . . . , |eαn(z)| < 1} .
We recall the Lp-mapping behavior of the Bergman projection on U :

Proposition 1.12 ([BCEM22]). There is a positive integer κ(U ) such that the Bergman
projection on U is bounded in the Lp-norm if and only if

2κ(U )

κ(U ) + 1
< p <

2κ(U )

κ(U )− 1
. (1.13)

Examples of monomial polyhedra in C2 are the (rational) generalized Hartogs triangles
studied in [EM16, EM17]. Define Hγ = {|z1|γ < |z2| < 1}, γ > 0. If γ = m

n is rational,

gcd(m,n) = 1, this domain is a monomial polyhedron with α1 = (m,−n), α2 = (0, 1). In
this case it can be shown that κ(Hm/n) = m+n, yielding the interval p ∈

(
2m+2n
m+n+1 ,

2m+2n
m+n−1

)
from (1.13) on which the Bergman projection is Lp-bounded. We also note the case of Hγ ,



PROJECTIONS ONTO BERGMAN SPACES 5

γ irrational – which is not a monomial polyhedron by our definition. On these domains, it
is shown in [EM17] that the Bergman projection is Lp-bounded if and only if p = 2.

This limited Lp-regularity is one of several deficiencies that can arise when the Bergman
projection acts on Lp spaces of nonsmooth domains; other possible defects such as a lack of
surjectivity onto Ap are discussed in Section 8. The Monomial Basis Projection avoids these
defects and is shown to have far more favorable mapping behavior. Define for 1 < p < ∞
the “absolute” operator of Ap(U ) by

(PU
p,1)

+(f)(z) =

∫
U

∣∣∣KU
p,1(z, w)

∣∣∣ f(w) dV (w). (1.14)

Theorem 1.15. Let 1 < p < ∞ and let U ⊂ Cn be a monomial polyhedron. Then the
operator (PU

p,1)
+ is bounded from Lp(U ) to itself.

After setting the stage in Sections 4 and 5, the proof of Theorem 1.15 is finally carried
out in Section 6. An application of this result is given in Section 7, where we represent the
dual space Ap(U )′ as a weighted Bergman space on U ; see Theorem 7.17.

Corollary 1.16. The Monomial Basis Projection is a bounded surjective projection operator
PU
p,1 : L

p(U ) → Ap(U ).

Proof. It is clear that the boundedness of the operator (PU
p,1)

+ on Lp(U ) implies the bound-

edness on Lp(U ) of the integral operator in (1.11). However, in Proposition 3.22, we will
show that whenever this integral operator satisfies Lp estimates, it coincides with the Mono-
mial Basis Projection PU

p,1 : L
p(U ) → Ap(U ). The MBP is a surjective projection operator

whenever its defining series (2.15) converges. □

1.7. Acknowledgements. The authors thank Željko Čučković, Bernhard Lamel, László
Lempert, Jeff McNeal and Brett Wick for their comments and suggestions, which led to
mathematical and organizational improvements in this paper.

2. Basis Projections

2.1. Bases in Banach spaces. Since our application uses bases indexed by multi-indices,
we need a slightly more general notion of a basis in a Banach space than that of a Schauder
basis described in Section 1.2. For a multi-index α ∈ Zn, let |α|∞ = max1≤j≤n |αj |.
Definition 2.1. Let A be a Banach space, n a positive integer and A ⊂ Zn a set of multi-
indices. A collection {eα : α ∈ A} of elements of A is said to form a Banach-space basis of
A if for each f ∈ A, there are unique complex numbers {cα : α ∈ A} such that

f = lim
N→∞

∑
|α|∞≤N
α∈A

cαeα, (2.2)

where the sequence of partial sums converges to f in the norm-topology of A. The sums on
the right hand side of (2.2) whose limit is taken are called square partial sums.

Schauder bases are special cases of this definition corresponding to taking n = 1 and
A the set of positive integers. A related notion is that of a finite dimensional Schauder
decomposition (see [LT77]). A Banach-space basis in our sense determines a Schauder
decomposition of the Banach space A into the finite-dimensional subspaces An = span{eα :
|α|∞ = n}, n ≥ 0.

Adapting a classical proof ([LT77, Proposition 1.a.2]), is not difficult to see that for each
α ∈ A, the map aα : A → C assigning to an element x ∈ A the coefficient cα of the series
(2.2) is a bounded linear functional on A. The collection of functionals {aα : α ∈ A} is
called the set of coefficient functionals dual to the basis {eα : α ∈ A}.
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2.2. Unique Hahn-Banach extension. Recall that a normed linear space is said to be
strictly convex, if for distinct vectors f, g of unit norm, we have ∥f + g∥ < 2.

Proposition 2.3 ([Tay39]). If L is a Banach space such that its normed dual L′ is strictly
convex, and f : A → C is a bounded linear functional on a subspace A ⊂ L, then f admits
a unique norm-preserving extension as a linear functional on L.

Proof. That at least one functional extending f and having the same norm exists is the
content of the Hahn-Banach theorem. Without loss of generality, the norm of f as an
element of A′ is 1. Suppose that f admits two distinct extensions f1, f2 ∈ L′ such that
∥f1∥L′ = ∥f2∥L′ = 1. Then g = 1

2(f1 + f2) is yet another extension of f to an element of
L′, so ∥g∥L′ ≥ ∥f∥A′ = 1. On the other hand, thanks to the strict convexity of L′, we have

∥g∥L′ < 1
2 · 2 = 1. This contradiction shows that f1 = f2. □

The examples of unique Hahn-Banach extensions in this paper arise from the following:

Proposition 2.4. Let (X,F , µ) be a measure space, and 1 < p <∞. The dual of Lp(µ) is
strictly convex.

Proof. Since the dual of Lp(µ) can be isometrically identified with Lq(µ) where q is the
exponent conjugate to p, it suffices to check that Lq(µ) is strictly convex. Let f, g be distinct
elements of Lq(µ) such that ∥f∥q = ∥g∥q = 1. Suppose we have ∥f + g∥q = 2 = ∥f∥q+∥g∥q,
so that we have equality in the Minkowski triangle inequality for Lq(µ). It is well-known
that equality occurs in the Minkowski triangle inequality only if f = cg for some c > 0. But
since ∥f∥q = ∥g∥q = 1 this gives that c = 1, which is a contradiction since f ̸= g. Therefore

∥f + g∥q < 2 showing that Lq(µ) is strictly convex. □

2.3. Basis projections. Let L be a Banach space such that its dual is strictly convex, A
be a closed subspace, the collection {eα : α ∈ A} a Banach-space basis of A in the sense
of Definition 2.1, and let {aα : α ∈ A} be the coefficient functionals dual to this basis. Let
ãα : L → C be the unique Hahn-Banach extension of the functional aα : A → C, where
uniqueness follows by Propositon 2.3.

Definition 2.5. A bounded linear projection operator P from L onto A is called the basis
projection determined by {eα : α ∈ A}, if for each f ∈ L, we have a series representation
convergent in the norm of L given by

P f = lim
N→∞

∑
|α|∞≤N
α∈A

ãα(f)eα. (2.6)

2.4. The Szegő projection. Let 1 < p < ∞, L = Lp(T), the Lp-space of the circle with
the normalized Haar measure 1

2πdθ, and A = Hp(D), the Hardy space of the unit disc,
the subspace of Lp(T) consisting of those elements of Lp(T) which are boundary values of
holomorphic functions in the disc. Let τα(e

iθ) = eiαθ, α ∈ Z, denote the α-th trigonometric
monomial on T. It is well-known that {τα : α ≥ 0} is a (normalized) Schauder basis of
Hp(D), i.e., the partial sums of the Fourier series of a function in Hp(D) converge in the
norm Lp(T). Notice that Schauder bases are simply Banach-space bases in the sense of
Definition 2.1 where A is the set of positive integers.

Proposition 2.7. For 1 < p <∞, the basis projection from Lp(T) onto Hp(D) determined
by the Schauder basis {τα}∞α=0 exists, and coincides with the Szegő projection.

Proof. The coefficient functionals on Hp(D) dual to the Schauder basis {τα : α ≥ 0} are
precisely the Fourier coefficient functionals {aα}∞α=0:

aα(f) =

∫ 2π

0
f(eiθ)e−iαθ dθ

2π
, f ∈ Hp(D). (2.8)
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Notice that for f ∈ Hp(D), we have

|aα(f)| ≤
∫ 2π

0

∣∣∣f(eiθ)∣∣∣ dθ
2π

≤ ∥f∥Lp(T) ∥1∥Lq(T) = ∥f∥Lp(T) , (2.9)

where q is the Hölder conjugate of p, and we use Hölder’s inequality along with the fact
that the measure is a probability measure. Therefore ∥aα∥ ≤ 1. But since ∥τα∥Lp(T) = 1,

and aα(τα) = 1, it follows that ∥aα∥ = 1. We now claim that the Hahn-Banach extension
ãα : Lp(T) → C of the coefficient functional aα : Hp(D) → C is still the Fourier coefficient
functional:

ãα(f) =

∫ 2π

0
f(eiθ)e−iαθ dθ

2π
, f ∈ Lp(T).

Indeed, ãα is an extension of aα, and repeating the argument of (2.9) shows ∥ãα∥ = 1, and
thus it is a Hahn-Banach extension. Uniqueness follows from Propositions 2.3 and 2.4.

Let S denote the basis projection from Lp(T) onto Hp(D) and let f ∈ Lp(T) be a
trigonometric polynomial. Then formula (2.6) in this case becomes:

Sf(eiϕ) =

∞∑
α=0

(∫ 2π

0
f(eiθ)e−iαθ dθ

2π

)
eiαϕ =

∫ 2π

0

f(eiθ)

1− ei(ϕ−θ)
· dθ
2π
.

This shows that on the trigonometric polynomials, the basis projection coincides with the
Szegő projection, which is known to be represented by the singular integral at the end of the
above chain of equalities. But as the Szegő projection is bounded from Lp(T) onto Hp(D),
it follows that the basis projection exists and equals the Szegő projection on Lp(T). □

2.5. The Monomial Basis Projection. On a Reinhardt domain Ω ⊂ Cn each holomor-
phic function f ∈ O(Ω) has a unique Laurent expansion

f =
∑
α∈Zn

cαeα, (2.10)

where cα ∈ C and the series converges locally normally, i.e., for each compact K ⊂ Ω, the
sum

∑
α ∥cαeα∥K <∞, where ∥·∥K = supK |·| is the sup norm (see e.g. [Ran86]). It follows

that (2.10) converges uniformly on compact subsets of Ω. Define

aα : O(Ω) → C, aα(f) = cα (2.11)

where cα is as above in (2.10). The functional aα is called the α-th Laurent coefficient
functional of the domain Ω.

The following result shows that the Laurent monomials (under an appropriate ordering)
form a basis of the Bergman space Ap(Ω, λ), where λ is an admissible multi-radial weight.
The unweighted version of this result (the case λ ≡ 1) was proved in [CEM19], inspired
by the case of the disc considered in [Zhu91]. The more general Theorem 2.12 is proved in
exactly the same way, by replacing the implicit weight λ ≡ 1 in [CEM19, Theorem 3.11]
with a general multi-radial weight λ. A key ingredient of the proof, the density of Laurent
polynomials in Ap(Ω, λ), can also be proved using Cesàro summability of power series (see
[CD22, Theorem 2.5].) Recall that the notation and conventions established in Section 1.4
are in force throughout the paper.

Theorem 2.12. The collection of Laurent monomials {eα : α ∈ Sp(Ω, λ)} forms a Banach-
space basis of Ap(Ω, λ). The functionals dual to this basis are the coefficient functionals
{aα : α ∈ Sp(Ω, λ)}, and the norm of aα : Ap(Ω, λ) → C is given by

∥aα∥Ap(Ω,λ)′ =
1

∥eα∥p,λ
. (2.13)
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Thus, if f ∈ Ap(Ω, λ), the Laurent series of f written as
∑

α∈Zn aα(f)eα consists only of
terms corresponding to monomials eα ∈ Ap(Ω, λ), i.e., if α ̸∈ Sp(Ω, λ), then aα(f) = 0.

We are ready to formally define the main object of this paper:

Definition 2.14. A bounded linear projection PΩ
p,λ from Lp(Ω, λ) onto Ap(Ω, λ) is called the

Monomial Basis Projection ofAp(Ω, λ), if for f ∈ Lp(Ω, λ) it admits the series representation
convergent in the norm of Lp(Ω, λ) given by

PΩ
p,λ(f) = lim

N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(f)eα, (2.15)

where ãα : Lp(Ω, λ) → C is the unique Hahn-Banach extension of the coefficient functional
aα : Ap(Ω, λ) → C.

Remark 2.16. The surjectivity onto the space Ap(Ω, λ) is built in to the definition of the
Monomial Basis Projection, since it acts as the identity operator there. Notice that the
MBP is a basis projection in the sense of Definition 2.5, when L = Lp(Ω), A = Ap(Ω) and
{eα} is the monomial basis of Ap(Ω, λ). ♢

3. The monomial basis kernel

3.1. Existence of the kernel function. The Monomial Basis Kernel of Ap(Ω, λ) was
introduced as a formal series in (1.10). Using (1.8) and (1.9), we can write

χ∗
peα(w) = eα(w) |eα(w)|p−2 , (3.1)

which allows for the re-expression of the MBK as

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

eα(z)eα(w) |eα(w)|p−2

∥eα∥pp,λ
. (3.2)

A sufficient condition for the convergence of this series is now given.

Theorem 3.3. Let Ω be a pseudoconvex Reinhardt domain in Cn and λ be an admissible
multi-radial weight function on Ω. The series (3.2) defining KΩ

p,λ(z, w) converges locally
normally on Ω× Ω.

We need two lemmas for the proof of this result. The first is an analog for Laurent series
of Abel’s lemma on the domain of convergence of a Taylor series ([Ran86, p. 14]):

Lemma 3.4. Let Ω ⊂ Cn be a Reinhardt domain, define S(Ω) = {α ∈ Zn : eα ∈ O(Ω)},
and for coefficients aα ∈ C, α ∈ S(Ω), let∑

α∈S(Ω)

aαeα (3.5)

be a formal Laurent series on Ω. Suppose that for each z ∈ Ω there is a C > 0 such that
for each α ∈ S(Ω) we have |aαeα(z)| ≤ C. Then (3.5) converges locally normally on Ω.

Proof. See Lemma 1.6.3 and Proposition 1.6.5 of [JP08, Section 1.6]. □

Given a Reinhardt domain Ω ⊂ Cn and a number m > 0, define the m-th Reinhardt
power of Ω to be the Reinhardt domain

Ω(m) =
{
z ∈ Cn :

(
|z1|

1
m , . . . , |zn|

1
m

)
∈ Ω

}
. (3.6)
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If Ω is pseudoconvex, then for each m > 0 the domain Ω(m) is pseudoconvex. Indeed, recall
the logarithmic shadow of Ω, the subset log(Ω) of Rn given by

log(Ω) = {(log |z1| , . . . , log |zn|) : z ∈ Ω}. (3.7)

Recall also that Ω is pseudoconvex if and only if the set log(Ω) is convex, and Ω is “weakly
relatively complete” ([JP08, Theorem 1.11.13 and Proposition 1.11.6]). It is easily seen that
the condition of weak relative completeness is preserved by the construction of Reinhardt
powers, and

log
(
Ω(m)

)
= {(m log |z1| , . . . ,m log |zn|) : z ∈ Ω} = m log(Ω)

is itself convex, if log(Ω) is convex. So Ω(m) is pseudoconvex if and only if Ω is pseudoconvex.
The second result needed in the proof of Theorem 3.3 is the following:

Lemma 3.8. Let A be a Banach space of holomorphic functions on Ω and suppose that
for each z ∈ Ω the evaluation functional ϕz : A → C given by ϕz(f) = f(z) for f ∈ A is

continuous. Then for m > 0, the following series converges locally normally on Ω(m):∑
α∈Zn

eα∈A

eα
∥eα∥mA

.

Proof. Let z ∈ Ω(m) so that there is ζ ∈ Ω such that |zj | = |ζj |m for each j. If ϕζ : A → C
is the evaluation functional, there is a constant C > 0 such that |ϕζ(f)| ≤ C ∥f∥A for each
f ∈ A. Then for each α ∈ Zn such that eα ∈ A we have

|eα(z)|
∥eα∥mA

=

(
|eα(ζ)|
∥eα∥A

)m

=

(
ϕζ(eα)

∥eα∥A

)m

≤ Cm.

The result now follows by Lemma 3.4. □

Proof of Theorem 3.3. Let tj = zjwj |wj |p−2, 1 ≤ j ≤ n, and t = (t1, . . . , tn). Then the
series for the MBK given in (3.2) assumes the form

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

tα

∥eα∥pp,λ
. (3.9)

Since Bergman’s inequality (1.5) holds for admissible weights by definition, point evaluations
are bounded on Ap(Ω, λ). Lemma 3.8 therefore guarantees the series in (3.9) above converges

locally normally on Ω(p) defined in (3.6). It thus suffices to show that the image of the map
Ω× Ω → Cn given by

(z, w) 7−→ (t1, . . . , tn)

coincides with Ω(p), since then the image of a compact set K ⊂ Ω× Ω is a compact subset
of Ω(p), on which the series (3.9) is known to converge normally.

Now consider the logarithmic shadow log(Ω × Ω) = log(Ω) × log(Ω) defined in (3.7).
Due to the log-convexity of pseudoconvex Reinhardt domains, what we want to prove is
equivalent to saying that the map from log(Ω)× log(Ω) → Rn given by

(ξ, η) 7−→ ξ + (p− 1)η (3.10)

has image exactly p log(Ω) = {pθ : θ ∈ log(Ω)} = log
(
Ω(p)

)
. But since log(Ω) is convex,

the map on log(Ω)× log(Ω) given by

(ξ, η) 7−→ 1
pξ +

(
1− 1

p

)
η

has image contained in log(Ω). Taking ξ = η we see that the image is exactly log(Ω).
Therefore the image of (3.10) is precisely p log(Ω) and we have proved that the series (3.2)
converges locally normally on Ω× Ω. □
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3.2. More general admissible weights. Continuous positive functions λ are always ad-
missible weights in the sense of Section 1.4, item (3). In Sections 4, 5, 6 and 7 below, we
encounter more general multi-radial weights which vanish or blow up along the axes. Let
Z ⊂ Cn denote the union of the coordinate hyperplanes

Z = {z ∈ Cn : zj = 0 for some 1 ≤ j ≤ n}.

Proposition 3.11. Let U be a domain in Cn and let U∗ = U \ Z. Suppose that λ : U →
[0,∞] is a measurable function on U such that the restriction λ|U∗ is an admissible weight
on U∗. Then λ is an admissible weight on U .

Proof. Assume that U ∩Z ̸= ∅, since otherwise there is nothing to show, and set λ∗ = λ|U∗ .
If f ∈ Ap(U, λ), then since λ∗ is admissible on U∗, if a compact K is contained in U∗, there
exists a CK > 0 such that

sup
K

|f | ≤ CK ∥f∥Ap(U∗,λ∗) = CK ∥f∥Ap(U,λ) .

To complete the proof, we need to show that for each ζ ∈ U ∩ Z, there is a compact
neighborhood K of ζ in U such that (1.5) holds for each f ∈ Ap(U, λ). Now, there is a
polydisc P centered at ζ given by P = {z ∈ Cn : |zj − ζj | < r, 1 ≤ j ≤ n} such that the

closure P is contained in U . We can assume further that the radius r > 0 is chosen so that
it is distinct from each of the nonnegative numbers |ζj | , 1 ≤ j ≤ n. Then the “distinguished
boundary”

T = {z ∈ Cn : |zj − ζj | = r, 1 ≤ j ≤ n}
of this polydisc satisfies the condition that T ⊂ U∗. Therefore for each f ∈ O(U) and each
w ∈ P , we have the Cauchy representation:

f(w) =
1

(2πi)n

∫
T

f(z1, . . . , zn)

(z1 − w1) . . . (zn − wn)
dz1 . . . dzn (3.12)

where the integral is an n-times repeated contour integral on T . Now suppose that K is a
compact subset of P containing the center ζ, and let ρ > 0 be such that |zj − wj | ≥ ρ for
each z ∈ T and w ∈ K. Then for w ∈ K, a sup-norm estimate on (3.12) gives

|f(w)| ≤ 1

(2π)n
· supT |f |

ρn
(2πr)n ≤

(
r

ρ

)n

· ∥f∥Ap(U∗,λ∗) =

(
r

ρ

)n

· ∥f∥Ap(U,λ)

where we used the fact that λ∗ is admissible on U∗. The result follows. □

3.3. Integral representation of the Monomial Basis Projection.

Theorem 3.13. If the Monomial Basis Projection PΩ
p,λ : Lp(Ω, λ) → Ap(Ω, λ) exists, then

PΩ
p,λ(f)(z) =

∫
Ω
KΩ

p,λ(z, w)f(w)λ(w)dV (w), f ∈ Lp(Ω, λ), (3.14)

and for each z ∈ Ω, we have KΩ
p,λ(z, ·) ∈ Lq(Ω, λ).

When p = 2, this is simply the representation of the Bergman projection BΩ
λ of A2(Ω, λ)

by its Bergman kernel. But the existence of the MBP of Ap(Ω, λ) for p ̸= 2 is not guaranteed
by abstract Hilbert-space theory. We note a related consequence of Theorem 3.13, which
should be contrasted with Proposition 2.7:

Corollary 3.15. Suppose the Bergman projection BΩ
λ : L2(Ω, λ) → A2(Ω, λ) extends by

continuity to a bounded operator BΩ
λ : Lp(Ω, λ) → Ap(Ω, λ), p ̸= 2. The extension is not

the basis projection determined by the monomial basis {eα : α ∈ Sp(Ω, λ)}.

Proof. This is immediate, since the Bergman kernel is distinct from the MBK for p ̸= 2. □
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By Proposition 2.4, the dual space of Lp(Ω, λ) is strictly convex. Proposition 2.3 thus
guarantees that each coefficient functional in the set {aα : α ∈ Sp(Ω, λ)} dual to the
monomial basis {eα : α ∈ Sp(Ω, λ)} has a unique Hahn-Banach extension to a functional
ãα : Lp(Ω, λ) → C. We now identify this extension:

Proposition 3.16. For α ∈ Sp(Ω, λ), let gα be the function defined on Ω by

gα =
χ∗
peα

∥eα∥pp,λ
=
eα |eα|p−2

∥eα∥pp,λ
. (3.17)

Then the unique Hahn-Banach extension ãα : Lp(Ω, λ) → C of the coefficient functional
aα : Ap(Ω, λ) → C is given by

ãα(f) =

∫
Ω
f · gαλdV, f ∈ Lp(Ω, λ). (3.18)

Proof. First we compute the norm of gα in Lq(Ω, λ):

∥gα∥qq,λ =
1

∥eα∥pqp,λ

∫
Ω
|eα|(p−1)q λ dV =

1

∥eα∥pqp,λ
∥eα∥pp,λ =

1

∥eα∥pq−p
p,λ

=
1

∥eα∥qp,λ
.

It follows that gα ∈ Lq(Ω, λ) and the linear functional in (3.18) satisfies ãα ∈ Lp(Ω, λ)′ with
norm is given by

∥ãα∥Lp(Ω,λ)′ = ∥gα∥q,λ =
1

∥eα∥p,λ
. (3.19)

By (2.13), we have ∥aα∥Ap(Ω,λ)′ = ∥ãα∥Lp(Ω,λ)′ . To complete the proof it remains to show

that ãα is an extension of aα.
By Theorem 2.12, the linear span of {eβ : β ∈ Sp(Ω, λ)} is dense in Ap(Ω, λ). Therefore

we only need to show that for each β ∈ Sp(Ω, λ), we have ãα(eβ) = aα(eβ). Since λ is multi-
radial, there is a function ℓ on the Reinhardt shadow |Ω| such that λ(z) = ℓ(|z1| , . . . , |zn|).
And since gα ∈ Lq(Ω, λ) and eβ ∈ Lp(Ω, λ), the product eβgα ∈ L1(Ω, λ). Fubini’s theorem
therefore implies∫

Ω
eβgαλdV =

1

∥eα∥pp,λ

∫
|Ω|
rβ(rα)p−1

(∫
Tn

ei⟨β−α,θ⟩dθ

)
r1r2 . . . rnℓdr1 . . . drn, (3.20)

where dθ = dθ1 . . . dθn is the natural volume element of the unit torus Tn. First suppose
that β ̸= α, so that the integral over Tn on the right hand side of (3.20) vanishes. Then we
have

∫
Ω eβgαλdV = 0 = aα(eβ). If β = α, (3.20) gives∫

Ω
eαgαλdV =

(2π)n

∥eα∥pp,λ
·
∫
|Ω|

(rα)pr1r2 . . . rnℓdr1 . . . drn =
1

∥eα∥pp,λ
· ∥eα∥pp,λ = 1 = aα(eα).

It follows that ãα is a norm preserving extension of aα. Since this extension is unique, the
result follows. □

Observe that by combining (3.2) and (3.17), the MBK of Ap(Ω, λ) can be written as

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

eα(z)gα(w). (3.21)

We now establish our necessary and sufficient condition for the existence of the MBP:

Proposition 3.22. Define an integral operator on Cc(Ω) by

Qf(z) =

∫
Ω
KΩ

p,λ(z, w)f(w)λ(w)dV (w), f ∈ Cc(Ω). (3.23)
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The MBP of Ap(Ω, λ) exists if and only if Q satisfies Lp-estimates, i.e., there is a constant
C > 0 such that for each f ∈ Cc(Ω) we have the inequality

∥Qf∥p,λ ≤ C ∥f∥p,λ . (3.24)

Proof. Recall that Ω ⊂ Cn is a pseudoconvex Reinhardt domain and λ is an admissible
multi-radial weight. The function KΩ

p,λ is continuous on Ω × Ω by Theorem 3.3, so the

integral in (3.23) exists for each z ∈ Ω. Since the function z 7→ KΩ
p,λ(z, w) is holomorphic

for each w ∈ Ω, Qf is holomorphic for f ∈ Cc(Ω), for instance, by applying Morera’s
theorem in each variable, or equivalently, by applying ∂̄ to both sides.

Let f ∈ Cc(Ω). Since the series for KΩ
p,λ converges absolutely and uniformly on the

compact subset {z} × supp(f) ⊂ Ω× Ω, equation (3.21) gives

Qf(z) =

∫
Ω

( ∑
α∈Sp(Ω,λ)

eα(z)gα(w)

)
f(w)λ(w) dV (w)

=
∑

α∈Sp(Ω,λ)

(∫
Ω
f(w)gα(w)λ(w) dV (w)

)
eα(z) =

∑
α∈Sp(Ω,λ)

ãα(f)eα(z). (3.25)

The series (3.25) converges unconditionally and is the Laurent series of the holomorphic
function Qf . It is therefore uniformly convergent for z in compact subsets of Ω.

Suppose now that the MBP PΩ
p,λ : Lp(Ω, λ) → Ap(Ω, λ) exists, which by Definition 2.14

is a bounded, surjective, linear projection given by the following limit of partial sums,
convergent in Ap(Ω, λ):

PΩ
p,λf = lim

N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(f)eα, f ∈ Lp(Ω, λ). (3.26)

Since convergence in Ap(Ω, λ) implies uniform convergence on compact subsets, it follows
that for f ∈ Cc(Ω), Qf = PΩ

p,λf . Therefore Q satisfies Lp-estimates, i.e. (3.24) holds.

Conversely, suppose that (3.24) holds. Then Q can then be extended by continuity to an

operator Q̃ on Lp(Ω, λ) with the same norm. We claim that Q̃ is the MBP.
If f ∈ Lp(Ω, λ), we can find a sequence {fj} ⊂ Cc(Ω) such that fj → f in Lp(Ω, λ). Each

Qfj ∈ Ap(Ω, λ) and (by definition) Qfj → Q̃f in Lp(Ω, λ). But this implies Qfj → Q̃f

uniformly on compact subsets, so the limit Q̃f is holomorphic, and thus the range of Q̃ is

contained in Ap(Ω, λ). A direct computation now shows Q̃eα = eα for α ∈ Sp(Ω, λ), and it

follows that Q̃ is a surjective projection from Lp(Ω, λ) to Ap(Ω, λ).

If f ∈ Cc(Ω), then Qf = Q̃f ∈ Ap(Ω, λ) and by Theorem 2.12 the Laurent series

expansion of Q̃f given by (3.25) converges (as a sequence of square partial sums) in Ap(Ω, λ):

Q̃f = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(f)eα. (3.27)

For a general g ∈ Lp(Ω, λ), Q̃g ∈ Ap(Ω, λ) and so again by Theorem 2.12,

Q̃g = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

aα(Q̃g)eα. (3.28)
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It follows that on Cc(Ω) we have the identity aα ◦ Q = ãα. This relation extends by

continuity to give aα ◦ Q̃ = ãα as functionals on Lp(Ω, λ). Then (3.28) becomes

Q̃g = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(g)eα.

In other words, Q̃ is the MBP, as we wanted to show. □

Proof of Theorem 3.13. Since the MBP exists, by Proposition 3.22 the operator Q of (3.23)
satisfies Lp-estimates. Then, by the continuity of point-evaluation in Ap(Ω, λ), for each
z ∈ Ω the map g 7→ Qg(z) is a bounded linear functional on Lp(Ω, λ). Formula (3.23)
representing this functional now shows that KΩ

p,λ(z, ·) ∈ Lq(Ω, λ). Standard techniques of

real analysis (cutting off and mollification) gives us a sequence {fj} ⊂ Cc(Ω) such that
fj → f in Lp(Ω, λ). Therefore for each z ∈ Ω, the sequence {KΩ

p,λ(z, ·)fj(·)} ⊂ Cc(Ω)

converges in L1(Ω, λ) to the limit KΩ
p,λ(z, ·)f(·). Since integration against the weight λ is a

bounded linear functional on L1(Ω, λ), we obtain (3.14) in the limit. □

4. The one dimensional case

In this section we compute Monomial Basis Kernels on the unit disc D and punctured unit
disc D∗ – specifically, the MBKs of the spaces Ap(D, µγ) and Ap(D∗, µγ) where µγ(z) = |z|γ .
From these formulas it is shown that the corresponding Monomial Basis Projections are
absolutely bounded integral operators. We begin with a more general computation of certain
subkernels that are needed in Section 6.

4.1. Arithmetic progression subkernels on D and D∗. Let a, b ∈ Z with b positive,
U = D or D∗, 1 < p <∞ and µγ(z) = |z|γ , γ ∈ R. Consider the set of integers

A(U, p, γ, a, b) = {α ∈ Z : α ≡ a mod b} ∩ Sp(U, µγ), (4.1)

where as usual, Sp(U, µγ) ⊂ Z is the set of α such that eα ∈ Ap(U, µγ). Notice that a is
determined only modulo b, so we can always assume that 0 ≤ a ≤ b− 1. Notice also that if
b = 1 and a = 0 we have A(U, p, γ, 0, 1) = Sp(U, µγ). We now identify A(U, p, γ, a, b) with
an arithmetic progression:

Proposition 4.2. Let U, p, γ, a, b be as above. There is an integer θ such that

A(U, p, γ, a, b) = {θ + νb : ν ≥ 0, ν ∈ Z}. (4.3)

Proof. Let U = D∗. We claim that α ∈ Sp(D∗, µγ) if and only if pα+ γ + 2 > 0. Indeed,

∥eα∥pp,µγ
=

∫
D∗

|z|pα+γ dV = 2π

∫ 1

0
rpα+γ+1 dr =

2π

pα+ γ + 2
, (4.4)

as long as pα+ γ+2 > 0, otherwise the integral diverges. Now let θ be the smallest integer
such that (i) θ ≡ a mod b, and (ii) pθ + γ + 2 > 0. Clearly (4.3) holds.

The case U = D is nearly identical, but the condition that eα belongs to Ap(D, µγ) means
that α must be nonnegative. If θ is the smallest integer in the set Sp(D, µγ), it is determined
now by three conditions: (i) θ ≡ a mod b, (ii) pθ + γ + 2 > 0, and (iii) θ ≥ 0. □

Remark 4.5. For U, p, γ, a, b as above (with 0 ≤ a ≤ b− 1), we can determine θ explicitly:

θ =

{
a+ bℓ, U = D∗

max{a+ bℓ, a}, U = D,
where ℓ =

⌊
−γ + 2

pb
− a

b
+ 1

⌋
.

♢
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Now define for z, w ∈ U the arithmetric progression subkernel

kUp,γ,a,b(z, w) =
∑

α∈A(U,p,γ,a,b)

eα(z)χ∗
peα(w)

∥eα∥pp,µγ

=
∑

α∈A(U,p,γ,a,b)

tα

∥eα∥pp,µγ

, (4.6)

where χ∗
p is defined by (1.9) and t = zw |w|p−2. Notice that kUp,γ,0,1 is the MBK of Ap(U, µγ).

Proposition 4.7. For z, w ∈ U and other notation as specified above, we have

kUp,γ,a,b(z, w) =
tθ

2π
· (pθ + γ + 2)− (γ + 2 + p(θ − b))tb

(1− tb)2
. (4.8)

Proof. The calculation in (4.4) shows that if α ∈ Sp(U, µγ), then

∥eα∥pp,µγ
=

2π

pα+ γ + 2
.

Now combining (4.6) with Proposition 4.2, we see that

kUp,γ,a,b(z, w) =
∑

α∈A(U,p,γ,a,b)

tα

∥eα∥pp,µγ

=
tθ

2π

∞∑
ν=0

(p(θ + bν) + γ + 2)tbν

=
tθ

2π

(
p

∞∑
ν=0

(bν + 1)tbν + (pθ + γ + 2− p)
∞∑
ν=0

tbν

)
.

Writing this in closed form yields

kUp,γ,a,b(z, w) =
tθ

2π
· (pθ + γ + 2)− (γ + 2 + p(θ − b))tb

(1− tb)2
.

□

Corollary 4.9. The arithmetic progression kernel kUp,γ,a,b admits the bound∣∣kUp,γ,a,b(z, w)∣∣ ≤ C
(|z||w|p−1)θ

|1− zbwb|w|(p−2)b|2
,

where C > 0 is independent of z, w ∈ U .

Proof. This follows from (4.8), on noting that (pθ + γ + 2) is necessarily positive. □

Setting a = 0, b = 1 in Proposition 4.7 yields the MBKs of Ap(D∗, µγ) and A
p(D, µγ):

Corollary 4.10. Let γ ∈ R, µγ(z) = |z|γ and t = zw |w|p−2. The Monomial Basis Kernels
of Ap(D∗, µγ) and A

p(D, µγ) are given, respectively, by

(1) KD∗
p,µγ

(z, w) =
1

2π
· (pℓ+ γ + 2)tℓ − (γ + 2 + p(ℓ− 1))tℓ+1

(1− t)2
, where ℓ =

⌊
−γ+2

p + 1
⌋
.

(2) KD
p,µγ

(z, w) =
1

2π
· (pL+ γ + 2)tL − (γ + 2 + p(L− 1))tL+1

(1− t)2
, where L = max{ℓ, 0}.

4.2. Two tools. We now recall two important results.

Proposition 4.11. For 1 ≤ j ≤ N , let Dj be a domain in Rnj , let Kj : Dj ×Dj → [0,∞)
be a positive kernel on Dj, and let λj be an a.e. positive weight on Dj. Suppose that for

each j, there exist a.e. positive measurable functions ϕj , ψj on Dj and constants Cj
1 , C

j
2 > 0

such that the following two estimates hold:

(1) For every z ∈ Dj,

∫
Dj

Kj(z, w)ψj(w)
qλj(w) dV (w) ≤ Cj

1ϕj(z)
q.



PROJECTIONS ONTO BERGMAN SPACES 15

(2) For every w ∈ Dj,

∫
Dj

ϕj(z)
pKj(z, w)λ

j(z) dV (z) ≤ Cj
2ψj(w)

p.

Now let D = D1×· · ·×DN be the product of the domains, let K(z, w) =
∏N

j=1Kj(zj , wj),

where zj , wj ∈ Dj, z = (z1, . . . , zN ) ∈ D, w = (w1, . . . , wN ) ∈ D, and let λ(w) =∏N
j=1 λ

j(wj). Then the following operator is bounded on Lp(D,λ):

T f(z) =

∫
D
K(z, w)f(w)λ(w)dV (w).

Proof. When N = 1, this is the classical Schur’s test for boundedness of integral operators
on Lp-spaces (see [Zhu07, Theorem 3.6]). The case N ≥ 2 reduces to the case N = 1, if

we let ϕ(z) =
∏N

j=1 ϕj(zj) and ψ(z) =
∏N

j=1 ψj(zj) and using the Tonelli-Fubini theorem to
represent integrals over D as repeated integrals over the product representations. □

Proposition 4.12 (Lemma 3.4 of [EM16]; also see [FR74] for β = 0). Let U = D or D∗,
0 < ϵ < 1 and β > −2. There exists C > 0 such that∫

U

(1− |w|2)−ϵ

|1− zw|2
|w|β dV (w) ≤ C(1− |z|2)−ϵ. (4.13)

4.3. Lp-boundedness of operators. We now prove that arithmetic progression subkernels
represent absolutely bounded operators. In particular, the existence and absolute bound-
edness of the Monomial Basis Projections of Ap(D∗, µγ) and A

p(D, µγ) are established.

Proposition 4.14. Define the following auxiliary functions on U :

ϕ(z) = |z|
θ
q (1− |z|2b)−

1
pq , ψ(w) = |w|

θ
q (1− |w|2b(p−1))

− 1
pq .

There exist constants C1, C2 > 0, such that the following estimates hold:

(1) For z ∈ U ,

∫
U

∣∣kUp,γ,a,b(z, w)∣∣ψ(w)qµγ(w) dV (w) ≤ C1ϕ(z)
q.

(2) For w ∈ U ,

∫
U
ϕ(z)p

∣∣kUp,γ,a,b(z, w)∣∣µγ(z) dV (z) ≤ C2ψ(w)
p.

Proof. Throughout this proof, C will denote a positive number depending on p, γ, a, b but
independent of z, w ∈ U . Its value will change from step to step.

From the kernel bound in Corollary 4.9, we obtain∫
U

∣∣kUp,γ,a,b(z, w)∣∣ψ(w)qµγ(w) dV (w) ≤ C

∫
U

(|z||w|p−1)θ

|1− zbwb|w|(p−2)b|2
ψ(w)qµγ(w) dV (w)

= C|z|θ
∫
U

(
1− |w|2b(p−1)

)− 1
p

|1− zbwb|w|(p−2)b|2
|w|pθ+γ dV (w). (4.15)

Set ζ = wb|w|(p−2)b, so |ζ| = |w|(p−1)b, |w| = |ζ|
q−1
b and dV (w) =

(
q−1
b2

)
|ζ|

2(q−1)
b

−2dV (ζ).

This change of variable shows

(4.15) ≤ C|z|θ
∫
U

(1− |ζ|2)−
1
p

|1− zbζ|2
|ζ|

qθ
b
+

(γ+2)(q−1)
b

−2 dV (ζ). (4.16)

This integral converges if and only if qθ + (γ + 2)(q − 1) > 0. Multiplying by the positive
number p

q , we see this condition is equivalent to requiring that pθ + γ + 2 > 0, which is

guaranteed to hold. Indeed, in the proof of Proposition 4.2, θ was shown to be the smallest
integer such that (i) θ ≡ a mod b, and (ii) pθ + γ + 2 > 0. Now apply Proposition 4.12:

(4.16) ≤ C|z|θ(1− |z|2b)−
1
p = C

(
|z|

θ
q (1− |z|2b)−

1
pq

)q
= Cϕ(z)q,
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giving us estimate (1) upon taking the final constant C to be C1. Now consider∫
U

∣∣kUp,γ,a,b(z, w)∣∣ϕ(z)pµγ(z) dV (z) ≤ C

∫
U

(|z||w|p−1)θ

|1− zbwb|w|(p−2)b|2
ϕ(z)pµγ(z) dV (z)

= C|w|(p−1)θ

∫
U

(1− |z|2b)−
1
q

|1− wb|w|(p−2)bzb|2
|z|(1+

p
q
)θ+γ

dV (z). (4.17)

Set ξ = zb, which says that |z| = |ξ|
1
b and dV (z) = b−2|ξ|

2
b
−2dV (ξ). This shows that

(4.17) ≤ C|w|(p−1)θ

∫
U

(1− |ξ|2)−
1
q

|1− wb|w|(p−2)bξ|2
|ξ|

pθ
b
+ γ+2

b
−2 dV (ξ), (4.18)

This integral converges since pθ + γ + 2 > 0 (this is the same condition as before). Now
apply Proposition 4.12 again to see

(4.18) ≤ C|w|(p−1)θ
(
1− |w|2b(p−1)

)− 1
q = C

(
|w|

θ
q (1− |w|2b(p−1))

− 1
pq

)p
= Cψ(z)p,

giving estimate (2) upon taking the final constant C to be C2. □

Corollary 4.19. The following operator is bounded on Lp(U, µγ):

T U
p,γ,a,b(f)(z) =

∫
U

∣∣kUp,γ,a,b(z, w)∣∣ f(w)µγ(w)dV (w). (4.20)

Proof. Estimates (1) and (2) in Proposition 4.14 allow for immediate application of Propo-
sition 4.11 with N = 1, proving the result. □

Corollary 4.21. The Monomial Basis Projections of the spaces Ap(D, µγ) and Ap(D∗, µγ)
exist and are absolutely bounded.

Proof. Absolute boundedness (which by Theorem 3.13 implies existence) follows from Corol-
lary 4.19 on noting that the MBK of Ap(U, µγ) coincides with the subkernel kUp,γ,0,1. □

5. Transformation formula

5.1. The canonical-bundle pullback. If ϕ : Ω1 → Ω2 is a finite-sheeted holomorphic
map of domains in Cn, and f is a function on Ω2, we define a function on Ω1 by setting

ϕ♯(f) = f ◦ ϕ · detϕ′, (5.1)

where ϕ′(z) : Cn → Cn is the complex derivative of the map ϕ at z ∈ Ω1. If we think of
Ω1,Ω2 as subsets of R2n and ϕ as a smooth mapping, we can also consider the 2n × 2n
real Jacobian Dϕ of ϕ. Using the well-known relation detDϕ = |detϕ′|2 between the two
Jacobians, we see that ϕ♯ is a continuous linear mapping of Hilbert spaces ϕ♯ : L2(Ω2) →
L2(Ω1), and restricts to a map A2(Ω2) → A2(Ω1). We will refer to ϕ♯ as the canonical-
bundle pullback induced by ϕ, or informally as the ♯-pullback, in order to distinguish it from
a second pullback to be introduced in Section 5.3. If ϕ is a biholomorphism, then ϕ♯ is
an isometric isomorphism of Hilbert spaces L2(Ω2) ∼= L2(Ω1) that restricts to an isometric
isomorphism A2(Ω2) ∼= A2(Ω1).

5.2. Proper maps of quotient type. In the classical theory of holomorphic mappings,
one considers proper holomorphic mappings, and extends the biholomorphic invariance of
Bergman spaces to such mappings via Bell’s transformation formula (see [Bel81, Bel82,
DF82, BC82]). In our applications, we are concerned with a specific class of proper holo-
morphic mappings. We begin with the following definition (see [BCEM22]):
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Definition 5.2. Let Ω1,Ω2 ⊂ Cn be domains, let Φ : Ω1 → Ω2 be a proper holomorphic
mapping and Γ ⊂ Aut(Ω1) a finite group of biholomorphic automorphisms of Ω1. We say
Φ is of quotient type with respect to Γ if

(1) there exist closed lower-dimensional complex-analytic subvarieties Zj ⊂ Ωj , j = 1, 2,
such that Φ restricts to a covering map Φ : Ω1 \ Z1 → Ω2 \ Z2, and

(2) for each z ∈ Ω2 \ Z2, the action of Γ on Ω1 restricts to a transitive action on the
fiber Φ−1(z).

The group Γ is called the group of deck transformations of Φ.

The restricted map Φ : Ω1 \Z1 → Ω2 \Z2 is a regular covering map (see [Mas91, page 135
ff.]); i.e., it gives rise to a biholomorphism between Ω2 \ Z2 and the quotient (Ω1 \ Z1)/Γ,
where it can be shown that Γ acts properly and discontinuously on Ω1 \Z1. It follows that
Γ is the full group of deck transformations of the covering map Φ : Ω1 \ Z1 → Ω2 \ Z2,
and that this covering map has exactly |Γ| sheets, where |Γ| is the size of the group Γ. By
analytic continuation, the relation Φ ◦ σ = Φ holds for each σ in Γ on all of Ω1.

Definition 5.3. Given a domain Ω ⊂ Cn, a group Γ ⊂ Aut(Ω) and a space F of functions
on Ω, we define

[F]Γ = {f ∈ F : f = σ♯(f) for all σ ∈ Γ}, (5.4)

where σ♯ is the canonical-bundle pullback induced by σ as in (5.1). We say that functions
in this space are said to be Γ-invariant in the ♯ sense, or simply ♯-invariant.

If L,M are Banach spaces, by a homothetic isomorphism T : L→M we mean a bijection
such that there is a C > 0 satisfying

∥T f∥M = C ∥f∥L , for every f ∈ L. (5.5)

Fix 1 < p < ∞ and consider a proper holomorphic mapping Φ : Ω1 → Ω2 of quotient
type with respect to group Γ. Define the function

λp = |detΦ′|2−p. (5.6)

This function arises as a weight in naturally occuring Lp-spaces. Indeed, in Proposition 4.5
of [BCEM22] it was shown that the map

Φ♯ : Lp(Ω2) → [Lp(Ω1, λp)]
Γ (5.7)

is a homothetic isomorphism with∥∥∥Φ♯(f)
∥∥∥p
Lp(Ω1,λp)

= |Γ| · ∥f∥pLp(Ω2)
, (5.8)

which restricts to a homothetic isomorphism of the holomorphic subspaces

Φ♯ : Ap(Ω2) → [Ap(Ω1, λp)]
Γ. (5.9)

5.3. Density-bundle pullbacks. Let Ω1,Ω2 be open sets in Rd, and ϕ : Ω1 → Ω2 a
smooth map. Given a function f on Ω2, define the density-bundle pullback, or ♭-pullback, of
f to be the function on Ω1 given by

ϕ♭f = f ◦ ϕ · |detDϕ|
1
2 , (5.10)

where as before, Dϕ denotes the d× d Jacobian matrix of ϕ. From the change of variables
formula, it follows that if ϕ : Ω1 → Ω2 is a diffeomorphism, then the induced map ϕ♭ :
L2(Ω2) → L2(Ω1) is an isometric isomorphism of Hilbert spaces. When Ω1,Ω2 are domains
in a complex Euclidean space Cn and the map ϕ : Ω1 → Ω2 is holomorphic, then

ϕ♭f = f ◦ ϕ ·
∣∣detϕ′∣∣ , (5.11)

where as before, ϕ′ denotes the complex derivative.
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Definition 5.12. Given a domain Ω ⊂ Cn, group Γ ⊂ Aut(Ω) and function space F
consisting of functions on Ω, define the subspace

[F]Γ = {f ∈ F : f = σ♭(f) for all σ ∈ Γ}, (5.13)

where σ♭ is the density-bundle pullback in (5.11). Functions in [F]Γ are said to be Γ-invariant
in the ♭ sense, or simply ♭-invariant when Γ is clear from context.

The behavior of the ♭-pullback regarding Lp-spaces and ♭-invariant functions is analogous
to the ♯-pullback regarding Lp-spaces and ♯-invariant functions:

Proposition 5.14. Let 1 < p <∞, Ω1,Ω2 be domains in Cn and Φ : Ω1 → Ω2 be a proper
holomorphic map of quotient type with respect to the group Γ ⊂ Aut(Ω1). Then

Φ♭ : L
p(Ω2) → [Lp(Ω1, λp)]Γ (5.15)

is a homothetic isomorphism.

Proof. Let f ∈ Lp(Ω2). By Definition 5.2, there exist varieties Z1 ⊂ Ω1, Z2 ⊂ Ω2 such that
Φ : Ω1\Z1 → Ω2\Z2 is a regular covering map of order |Γ|. Using the change of variables
formula (accounting for the fact that Φ is a |Γ|-to-one mapping), we see

|Γ| ∥f∥pLp(Ω2)
= |Γ|

∫
Ω2\Z2

|f |p dV =

∫
Ω1\Z1

|f ◦ Φ|p|detΦ′|2 dV = ∥Φ♭(f)∥
p
Lp(Ω1,λp)

, (5.16)

which shows Φ♭(f) ∈ Lp(Ω1, λp). Observe also that for any σ ∈ Γ,

σ♭(f ◦ Φ · | detΦ′|) = f ◦ (Φ ◦ σ) · | det(Φ ◦ σ)′| = f ◦ Φ · | detΦ′|,

showing that Φ♭(f) ∈ [Lp(Ω1, λp)]Γ. This shows Φ♭ is a homothetic isomorphism of Lp(Ω2)
onto a subspace of [Lp(Ω1, λp)]Γ.

It remains to show that this image is the full space. By a partition of unity argument,
it is sufficient to show that a function g ∈ [Lp(Ω1, λp)]Γ is in the range of Φ♭, provided the

support of g is contained in a set of the form Φ−1(U), where U is an connected open subset
of Ω2 \Z2 evenly covered by the covering map Φ. Notice that Φ−1(U) is a disjoint collection
of connected open components each biholomorphic to U , and if U0 is one of them, Φ−1(U)
is the disjoint union

⋃
σ∈Γ σ(U0). Let Ψ : U → U0 be the local inverse of Φ onto U0. Define

f0 on U by f0 = Ψ♭ (g|U0). We claim that f0 is defined independently of the choice of the
component U0 of Φ−1(U). Indeed, any other choice is of the form σ(U0) for some σ ∈ Γ
and the corresponding local inverse is σ ◦Ψ. But we have

(σ ◦Ψ)♭
(
g|σ(U0)

)
= Ψ♭ ◦ σ♭

(
g|σ(U0)

)
= Ψ♭ (g|U0) = f0,

where we have used the fact that σ♭g = g since g ∈ [Lp(Ω1, λp)]Γ. A partition of unity
argument completes the proof. □

5.4. Monomial maps. Consider an n×n integer matrix A whose element in the j-th row

and k-th column of A is ajk. Let aj denote the j-th row of A, and ak the k-th column.
Letting the rows of A correspond to monomials eaj , define for z ∈ Cn the matrix power

zA =

ea1(z)...
ean(z)

 =

z
a11
1 z

a12
2 · · · za

1
n

n
...

z
an1
1 z

an2
2 · · · za

n
n

n

 , (5.17)

provided each component is defined. Define the monomial map ΦA to be the rational map
on Cn given by

ΦA(z) = zA. (5.18)
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The following properties of monomial maps are known in the literature and references to
their proofs are given at the end of the list. Three pieces of notation must first be explained:
The element-wise exponential map exp : Cn → (C∗)n is given by exp(z) = (ez1 , . . . , ezn); if
z = (z1, . . . , zn), w = (w1, . . . , wn) are points in Cn, define their component-wise product
to be z⊙w = (z1w1, z2w2, . . . , znwn); 1 ∈ Z1×n is a row vector with 1 in each component.

(1) The following formula generalizes the familiar power-rule:

detΦ′
A = detA · e1A−1. (5.19a)

(2) If A is an invertible n × n matrix of nonnegative integers, then ΦA : Cn → Cn is a
proper holomorphic map of quotient type with respect to the group

ΓA = {σν : σν(z) = exp
(
2πiA−1ν

)
⊙ z, ν ∈ Zn×1}. (5.19b)

(3) The group ΓA has exactly | detA| elements.
(4) The canonical-bundle pullback of the monomial eα via the element σν ∈ ΓA is

σ♯ν(eα) = e2πi(α+1)A
−1ν · eα. (5.19c)

(5) The set of monomials that are ΓA-invariant in the ♯ sense as defined by (5.4) is

{eα : α = βA− 1, β ∈ Z1×n}. (5.19d)

Proof. Property (1) is proved in both [NP09, Lemma 4.2] and [BCEM22, Lemma 3.8].
Properties (2) and (3) can be found in [BCEM22, Theorem 3.12]. See also [Zwo00, NP21]
for related results. Properties (4) and (5) are found in [BCEM22, Proposition 6.12]. □

5.5. Conditions for the transformation formula. For the remainder of Section 5, we
assume the following conditions in the statements of our results:

The domain Ω2 ⊂ Cn is pseudoconvex and Reinhardt, A is an n × n matrix of nonneg-
ative integers such that detA ̸= 0, and Ω1 = Φ−1

A (Ω2), the inverse image of Ω2 under the
monomial map ΦA : Cn → Cn defined in (5.18).

This set-up has several immediate consequences:

(1) We obtain by restriction a proper holomorphic map

ΦA : Ω1 → Ω2,

which is of quotient type with respect to the group ΓA defined in (5.19b).
(2) The domain Ω1 is pseudoconvex and Reinhardt.
(3) The weight λp from (5.6) is given by

λp(ζ) = |detΦ′
A(ζ)|2−p = |detA|2−p

n∏
k=1

|ζk|(1·ak−1)(2−p), (5.20)

where as before 1 ∈ Z1×n has 1 in each component and ak is the k-th column of A.
(4) By Proposition 3.11, the weight λp is admissible in the sense of Section 1.4.
(5) By (5.7) the canonical-bundle pullback gives a homothetic isomorphism

Φ♯
A : Lp(Ω2) → [Lp(Ω1, λp)]

ΓA ,

which by (5.9) restricts to a homothetic isomorphism of the holomorphic subspaces

Φ♯
A : Ap(Ω2) → [Ap(Ω1, λp)]

ΓA .
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5.6. Γ-invariant subkernel. Assuming the conditions and set-up established in Section 5.5,
define the following subset of p-allowable indices which are Γ-invariant in the ♯ sense. (We
often suppress reference to the matrix A in our notation, writing ΦA = Φ, ΓA = Γ, etc.)

SΓ
p (Ω1, λp) = {α ∈ Sp(Ω1, λp) : σ

♯(eα) = eα for all σ ∈ Γ}. (5.21)

We use this to define the “Γ-invariant subkernel” of the Monomial Basis Kernel:

KΩ1
p,λp,Γ

(z, w) =
∑

α∈SΓ
p (Ω1,λp)

eα(z)χ∗
peα(w)

∥eα∥pp,λp

. (5.22)

Proposition 5.23. The following sets are equal{
eβ : β ∈ SΓ

p (Ω1, λp)
}
=
{

1
detAΦ

♯(eα) : α ∈ Sp(Ω2)
}
.

Proof. Thinking of α as an element of Z1×n, a computation shows that eα◦ΦA = eαA. Thus
Φ♯(eα) = (detA)e(α+1)A−1, so we have{

1
detAΦ

♯(eα) : α ∈ Sp(Ω2)
}
= {e(α+1)A−1 : α ∈ Sp(Ω2)}. (5.24)

Since the image of Ap(Ω2) under Φ
♯ is the space [Ap(Ω1, λp)]

Γ, we see

{e(α+1)A−1 : α ∈ Sp(Ω2)} ⊂ {eβ : β ∈ Sp(Ω1, λp), σ
♯(eβ) = eβ for all σ ∈ Γ}.

But since the map Φ♯ : Ap(Ω2) → [Ap(Ω1, λp)]
Γ is linear, Φ♯(f) must have more than one

term in its Laurent expansion if f has more than one term in its Laurent expansion. Thus

{e(α+1)A−1 : α ∈ Sp(Ω2)} = {eβ : β ∈ Sp(Ω1, λp), σ
♯(eβ) = eβ for all σ ∈ Γ}

=
{
eβ : β ∈ SΓ

p (Ω1, λp)
}
,

completing the proof. □

5.7. Transforming operators with positive kernels. We prove here a transformation
law for the “absolute” operator involving the MBK:

(PΩ2
p,1 )

+f(z) =

∫
Ω2

∣∣∣KΩ2
p,1(z, w)

∣∣∣ f(w) dV (w), f ∈ Cc(Ω2). (5.25)

This operator is defined on Cc(Ω2), but can be extended to Lp(Ω2) when L
p-estimates are

shown to hold. Define a related operator using the Γ-invariant subkernel from (5.22):

(PΩ1
p,λp,Γ

)+f(z) =

∫
Ω1

∣∣∣KΩ1
p,λp,Γ

(z, w)
∣∣∣ f(w)λp(w)dV (w), f ∈ Cc(Ω1). (5.26)

These operators are closely related via the ♭-pullback of Section 5.3:

Theorem 5.27. The following statements are equivalent:

(1) (PΩ2
p,1 )

+ extends to a bounded operator (PΩ2
p,1 )

+ : Lp(Ω2) → Lp(Ω2).

(2) (PΩ1
p,λp,Γ

)+ extends to a bounded operator (PΩ1
p,λp,Γ

)+ : [Lp(Ω1, λp)]Γ → [Lp(Ω1, λp)]Γ.

When these equivalent statements hold,

Φ♭ ◦ (PΩ2
p,1 )

+ = (PΩ1
p,λp,Γ

)+ ◦ Φ♭ (5.28)

as operators on Lp(Ω2), which is to say, that the following diagram commutes

Lp(Ω2) Lp(Ω1, λp)Γ

Lp(Ω2) Lp(Ω1, λp)Γ.

Φ♭

∼=

(P
Ω2
p,1 )

+ (P
Ω1
p,λp,Γ

)+

Φ♭

(5.29)
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The following kernel transformation formula can be thought of as a generalization of the
classical biholomorphic transformation formula for the Bergman kernel.

Proposition 5.30. The Monomial Basis Kernel admits the transformation law

KΩ1
p,λp,Γ

(z, w) =
1

|Γ|
detΦ′(z) ·KΩ2

p,1(Φ(z),Φ(w)) ·
|detΦ′(w)|p

detΦ′(w)
. (5.31)

Proof. Starting from the series representation for KΩ2
p,1(z, w) in (3.2), we have

KΩ2
p,1(Φ(z),Φ(w)) =

∑
α∈Sp(Ω2)

eα(Φ(z))eα(Φ(w))|eα(Φ(w))|p−2

∥eα∥pLp(Ω2)

= |Γ|
∑

α∈Sp(Ω2)

eα(Φ(z))eα(Φ(w))|eα(Φ(w))|p−2

∥Φ♯(eα)∥pLp(Ω1,λp)

, (5.32)

since by (5.8), the homothetic isomorphism Φ♯ scales norms uniformly for each f ∈ Lp(Ω2)
by |Γ| · ∥f∥pLp(Ω2)

=
∥∥Φ♯(f)

∥∥p
Lp(Ω1,λp)

. Now use the definition of Φ♯ to write

(5.32) = |Γ| detΦ′(w)

detΦ′(z)| detΦ′(w)|p
∑

α∈Sp(Ω2)

Φ♯(eα)(z)Φ♯(eα)(w)|Φ♯(eα)(w)|p−2

∥Φ♯(eα)∥pLp(Ω1,λp)

= |Γ| detΦ′(w)

detΦ′(z)| detΦ′(w)|p
∑

β∈SΓ
p (Ω1,λp)

eβ(z)eβ(w)|eβ(w)|p−2

∥eβ∥pLp(Ω1,λp)

(5.33)

= |Γ| detΦ′(w)

detΦ′(z)| detΦ′(w)|p
·KΩ1

p,λp,Γ
(z, w). (5.34)

Equation (5.33) follows from Proposition 5.23, and (5.34) follows from the definition of the
Γ-invariant MBK given in (5.22). This completes the proof. □

Proof of Theorem 5.27. Proposition 5.14 and (5.16) show that Φ♭ : L
p(Ω2) → Lp(Ω1, λp)Γ

is a homothetic isomorphism with ∥Φ♭f∥
p
Lp(Ω1,λp)

= |Γ| ∥f∥pLp(Ω2)
. Now for f ∈ Cc(Ω2),

Φ♭ ◦ (PΩ2
p,1 )

+f(z) = |detΦ′(z)|
∫
Ω2

∣∣∣KΩ2
p,1(Φ(z), w)

∣∣∣ f(w) dV (w)

=
|detΦ′(z)|

|Γ|

∫
Ω1

∣∣∣KΩ2
p,1(Φ(z),Φ(w))

∣∣∣ f(Φ(w)) · | detΦ′(w)|2 dV (w)

=

∫
Ω1

∣∣∣KΩ1
p,λp,Γ

(z, w)
∣∣∣Φ♭f(w)λp(w) dV (w) (5.35)

= (PΩ1
p,λp,Γ

)+ ◦ Φ♭f(z).

Equality in (5.35) uses the kernel transformation law (5.31), and the final line makes sense
since the properness of Φ guarantees Φ♭f ∈ [Cc(Ω1)]Γ. The fact that Cc(Ω2) is dense in
Lp(Ω2), along with the fact that its image Φ♭ (Cc(Ω2)) = [Cc(Ω1)]Γ is dense in [Lp(Ω1, λp)]Γ
shows that statements (1) and (2) are equivalent. When these statements hold, equation
(5.28) and Diagram (5.29) follow immediately. □

6. Monomial Polyhedra

In this section we prove Theorem 1.15, which says that if U is a monomial polyhedron and
1 < p <∞, the Monomial Basis Projection of Ap(U ) is absolutely bounded. As discussed in
Section 1.6, this stands in contrast with the limited Lp-regularity of the Bergman projection.
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6.1. Matrix representation. We denote the spaces of row and column vectors with in-

teger entries by Z1×n and Zn×1, respectively. Suppose B = (bjk) ∈ Mn×n(Z) is a matrix of

integers with detB ̸= 0, with rows written as bj = (bj1, . . . , b
j
n) ∈ Z1×n. Define

UB = {z ∈ Cn : |ebj (z)| < 1, 1 ≤ j ≤ n} , (6.1)

and call it the monomial polyhedron associated to the matrix B, provided it is bounded.
This gives a compact notation for the domains defined in Section 1.6

The matrix B in (6.1) is far from unique. If B′ is obtained from B by permuting rows
or by multiplying any row by a positive integer, then UB = UB′ . We recall the following
observation, originally proved in [BCEM22, Proposition 3.2]:

Proposition 6.2. Suppose that UB is a bounded monomial polyhedron as in (6.1), where
detB ̸= 0. Without loss of generality we may assume

(1) detB > 0.
(2) each entry in the inverse matrix B−1 is nonnegative.

Given the monomial polyhedron UB, we will assume for the rest of the paper that B
satisfies both properties (1) and (2) of Proposition 6.2. Observe that Cramer’s rule combined
with property (2) says that the adjugate A = (detB)B−1 is a matrix of nonnegative integers.

The following representation of monomial polyhedra as quotients was first proved in
[BCEM22, Theorem 3.12].

Proposition 6.3. Let A = (detB)B−1 ∈Mn×n(Z). There exists a product domain

Ω = U1 × · · · × Un ⊂ Cn, (6.4)

each factor Uj either a unit disc D or a unit punctured disc D∗, such that the monomial
map ΦA : Cn → Cn of (5.18) restricts to a proper holomorphic map ΦA : Ω → UB. This
map is of quotient type with respect to group ΓA, which is given in (5.19b).

The conditions of Section 5.5 are satisfied, if we take Ω1 = Ω, Ω2 = UB, and A,ΦA,ΓA as
above in Proposition 6.3. In the present situation, the source domain Ω1 = Ω is a product
and the weight λp = |detΦ′

A|
2−p of (5.20) admits a tensor product structure:

λp(ζ) =
∣∣detΦ′

A(ζ)
∣∣2−p

= (detA)2−p
n∏

j=1

µγj (ζj), (6.5)

where µγj is the weight on Uj given by

µγj (z) = |z|γj , where γj = (1 · aj − 1)(2− p), (6.6)

1 ∈ Z1×n is the row vector with 1 in each component and aj ∈ Zn×1 the j-th column of A.
We can remove the absolute value from detA since detA = (detB)n · 1

detB = detBn−1 > 0.

6.2. Absolute boundedness of the Monomial Basis Projection. We now give a de-
composotion of the the Γ-invariant subkernel defined in (5.22).

Proposition 6.7. Let d = detA (a positive integer). The Γ-invariant subkernel defined in
(5.22) admits the decomposition

KΩ
p,λp,Γ(z, w) =

dn−1∑
i=1

Ki(z, w), (6.8)

where each Ki is a tensor product of n arithmetic progression subkernels defined in (4.6):

Ki(z, w) = dp−2
n∏

j=1

k
Uj

p,γj ,αi,j ,d
(zj , wj), (6.9)
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where the γj is determined by (6.6) and αi,j ∈ Z/dZ is determined by the group Γ.

Proof. Following (5.22), the Γ-invariant subkernel KΩ
p,λp,Γ

(z, w) is found by summing over

the p-allowable indices, Γ-invariant in the ♯ sense. From (5.21), this set can be written as

SΓ
p (Ω, λp) = {α ∈ Sp(Ω, λp) : σ

♯(eα) = eα for all σ ∈ Γ} = Sp(Ω, λp) ∩ [Zn]Γ, (6.10)

where [Zn]Γ is defined to be the subset of Z1×n consisting of exactly those indices for which
the corresponding monomials are Γ-invariant, i.e.,

[Zn]Γ = {α ∈ Z1×n : σ♯(eα) = eα for all σ ∈ Γ}.

By (5.19d), we see that [Zn]Γ = {α ∈ Z1×n : α = βA − 1, β ∈ Z1×n}, so after translating
by 1, we have

[Zn]Γ + 1 = Z1×nA = {βA : β ∈ Z1×n} ⊂ Z1×n.

We make two observations: first, it is known (see Lemma 3.3 of [NP21]) that Z1×nA is a
sublattice of Z1×n with index ∣∣Z1×n/(Z1×nA)

∣∣ = detA = d.

Second, we claim that Z1×nA contains dZ1×n = {dβ : β ∈ Z1×n} as a sublattice. Consider
a vector v = dy, for some y ∈ Z1×n and check that v ∈ Z1×nA. Since A is invertible, there
is a solution x ∈ Q1×n with v = dy = xA. Write A in terms of its rows a1, · · · , an ∈ Z1×n

as A = [a1, · · · , an]T . Cramer’s rule shows the j-th component of x is

xj =
det
(
[a1, · · · , aj−1, dy, aj+1, · · · , an]T

)
detA

= det
(
[a1, · · · , aj−1, y, aj+1, · · · , an]T

)
∈ Z,

confirming that x ∈ Z1×n, and therefore that dZ1×n is a sublattice of Z1×nA.
Since the index

∣∣Z1×n/dZ1×n
∣∣ = dn, the Third Isomorphism Theorem for groups says

∣∣Z1×nA/dZ1×n
∣∣ = ∣∣Z1×n/dZ1×n

∣∣
|Z1×n/Z1×nA|

= dn−1.

It now follows that we have a representation of the group Z1×nA as a disjoint union of dn−1

cosets of the subgroup dZ1×n, i.e., there are ℓi ∈ Z1×nA, such that we have

Z1×nA = [Zn]Γ + 1 =
dn−1⊔
i=1

(dZ1×n + ℓi),

where
⊔

denotes disjoint union. Therefore, we have

[Zn]Γ =

dn−1⊔
i=1

(dZ1×n + ℓi)

− 1 =
dn−1⊔
i=1

(
dZ1×n + (ℓi − 1)

)
.

Fix an i, 1 ≤ i ≤ dn−1 and write ℓi = (ℓi1, . . . , ℓ
i
n) with ℓ

i
j ∈ Z. Then we have

dZ1×n + (ℓi − 1) = {(d · ν1 + ℓi1 − 1, . . . , d · νn + ℓin − 1) : ν1, . . . , νn ∈ Z}

=
n∏

j=1

{α ∈ Z : α ≡ ℓij − 1 mod d}, (6.11)

where in the last line we have the Cartesian product of n sets of integers.
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We now analyze the other intersecting set Sp(Ω, λp) in (6.10). Let α ∈ Zn. Combining
the representation of λp from (6.5) with the fact that eα(z) =

∏n
j=1 eαj (zj), we can write

the norm of eα on Ω in terms of the norms of the eαj on the factors Uj :

∥eα∥pLp(Ω,λp)
= d2−p

n∏
j=1

∥∥eαj

∥∥p
Lp(Ujµγj )

. (6.12)

The left-hand side is finite, i.e., α ∈ Sp(Ω, λp), if and only if each factor on the right-hand
side is finite, i.e., for each 1 ≤ j ≤ n we have αj ∈ Sp(Uj , µγj ). Consequently we obtain a
Cartesian product representation of the set

Sp(Ω, λp) =
n∏

j=1

Sp(Uj , µγj ). (6.13)

Therefore by (6.10), we have

SΓ
p (Ω, λp) = Sp(Ω, λp) ∩

dn−1⊔
i=1

(
(dZ1×n + ℓi)− 1

) =

dn−1⊔
i=1

Li,

where

Li = Sp(Ω, λp) ∩
(
(dZ1×n + ℓi)− 1

)
by definition

=

 n∏
j=1

Sp(Uj , µγj )

⋂ n∏
j=1

{α ∈ Z : α ≡ ℓij − 1 mod d}

 by (6.11) and (6.13)

=
n∏

j=1

(
Sp(Uj , µγj ) ∩ {α ∈ Z : α ≡ ℓij − 1 mod d}

)
=

n∏
j=1

A(Uj , p, γj , ℓ
i
j − 1, d), (6.14)

and the last equality follows from the definition (4.1). We now define

Ki(z, w) =
∑
α∈Li

eα(z)χ∗
peα(w)

∥eα∥pp,λp

, (6.15)

which immediately gives (6.8), since absolute convergence permits rearrangement of the

series defining KΩ1
p,λp,Γ

. Now from (6.12), we see that for α ∈ Li we have

eα(z)χ∗
peα(w)

∥eα∥pp,λp

= dp−2
n∏

j=1

eαj (zj)χ
∗
peαj (wj)∥∥eαj

∥∥p
p,µγj

, (6.16)

where for each j, we have αj ∈ A(Uj , p, γj , ℓ
i
j −1, d), and on the right hand side χp : C → C

is the one-dimensional version of the map (1.8). Using (6.14) and (6.16), we can rearrange
the sum (6.15) as

Ki(z, w) = dp−2
n∏

j=1

 ∑
αj∈A(Uj ,p,γj ,ℓij−1,d)

eαj (zj)χ
∗
peαj (wj)∥∥eαj

∥∥p
p,µγj

 (6.17)

= dp−2
n∏

j=1

k
Uj

p,γj ,ℓij−1,d
(zj , wj)
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where the rearrangement in (6.17) is justified since each of the n factor series on the right
hand side is absolutely convergent. The final line is just the definition given in (4.6). □

Proof of Theorem 1.15. Theorem 5.27 says (PU
p,1)

+ : Lp(U ) → Lp(U ) is a bounded oper-

ator if and only if (PΩ
p,λp,Γ

)+ : [Lp(Ω, λp)]Γ → [Lp(Ω, λp)]Γ is bounded. From (6.8), we see

that ∣∣∣KΩ
p,λp,Γ(z, w)

∣∣∣ ≤ dn−1∑
i=1

|Ki(z, w)| . (6.18)

From formula (5.26) defining the operator (PΩ
p,λp,Γ

)+, it would be sufficient to prove that

for each 1 ≤ i ≤ n, the operator

f 7→
∫
Ω
|Ki(·, w)| f(w)λp(w)dV (w)

is bounded on (the full space) Lp(Ω, λp). Formula (6.9) now gives

|Ki(z, w)| = dp−2
n∏

j=1

∣∣∣kUj

p,γj ,αi,j ,d
(zj , wj)

∣∣∣ .
Proposition 4.14 now says that for each 1 ≤ j ≤ n, there exist functions ϕj , ψj and constants

Cj
1 , C

j
2 such that ∫

Uj

∣∣∣kUj

p,γj ,αi,j ,d
(z, w)

∣∣∣ψj(w)
qµγj (w) dV (w) ≤ Cj

1ϕj(z)
q,∫

Uj

ϕj(z)
p
∣∣∣kUj

p,γj ,αi,j ,d
(z, w)

∣∣∣µγj (z) dV (z) ≤ Cj
2ψj(w)

p.

Proposition 4.11 now finishes the proof. □

7. Duality theory of Bergman spaces

7.1. Properties of the twisting map. In this section, Ω will denote an arbitrary Rein-
hardt domain in Cn. We return now to the twisting map χp introduced in (1.8), and use
it to present a duality theory for Bergman spaces on Reinhardt domains. This leads to a
concrete description for all 1 < p < ∞ of the duals of the Ap-Bergman spaces when the
Monomial Basis Projection is absolutely bounded; this is new on all monomial polyhedral
domains (including the Hartogs triangle), and even new in the case of the punctured disc.

Proposition 7.1. The twisting map χp : Cn → Cn has the following properties.

(1) It is a homeomorphism of Cn with itself, and its inverse is the map χq.
(2) It is a diffeomorphism away from the set

⋃n
j=1{zj = 0} and its Jacobian determinant

(as a mapping of the real vector space Cn) is given by

ηp(ζ) = det(Dχp) = (p− 1)n |ζ1 · · · · · ζn|2p−4 . (7.2)

(3) It restricts to a homeomorphism χp : Ω → Ω(p−1) with inverse χq : Ω(p−1) → Ω,

where Ω(p−1) is a Reinhardt power of Ω as in (3.6).

Proof. For item (1), notice that if w = χp(z), then for each j we have

wj |wj |q−2 = zj |zj |p−2 ·
∣∣zj |zj |p−2

∣∣q−2
= zj |zj |p−2+(p−1)(q−2) = zj ,

since p − 2 + (p − 1)(q − 2) = pq − p − q = 0. So χq ◦ χp is the identity, and similarly
χp ◦χq is also the identity. Item (2) follows from direct computation. Item (3) follows upon

noting that in each coordinate, the map z 7→ z |z|p−2 is represented in polar coordinates as

reiθ 7→ rp−1eiθ. The claim follows from the definition of Ω(p−1). □
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Proposition 7.3. The Monomial Basis Kernels of Ap(Ω) and Aq
(
Ω(p−1), ηq

)
are related

via the twisting map in the following way:

KΩ
p,1 (χq(z), w) = KΩ(p−1)

q,ηq (χp(w), z), z ∈ Ω(p−1), w ∈ Ω. (7.4)

This “twisted” symmetry generalizes the conjugate symmetry of the Bergman kernel on Ω.

Proof. Recalling equation (3.1) above, observe that∣∣χ∗
qeα(ζ)

∣∣p = |eα(χq(ζ))|p = |eα(ζ)|(q−1)p = |eα(ζ)|q .

Now using χq to change of variables, we have

∥eα∥pLp(Ω) =

∫
Ω(p−1)

|eα(χq(ζ))|p ηq(ζ) dV (ζ) = ∥eα∥qLq(Ω(p−1),ηq)
,

which in particular shows the equality of the sets Sp(Ω) = Sq

(
Ω(p−1), ηq

)
of allowable indices.

Thus, for z ∈ Ω(p−1) and w ∈ Ω, we have

KΩ
p,1 (χq(z), w) =

∑
α∈Sp(Ω)

eα(χq(z))χ∗
peα(w)

∥eα∥pLp(Ω)

=
∑

α∈Sq(Ω(p−1),ηq)

eα(χp(w))χ∗
qeα(z)

∥eα∥qLq(Ω(p−1),ηq)

= KΩ(p−1)

q,ηq (χp(w), z).

By setting p = 2, (7.4) recaptures the conjugate symmetry of the Bergman kernel. □

7.2. Adjoints and Duality. We now use the map χp to give a “twisted” L2-style pairing

of the spaces Lp(Ω) and Lq(Ω(p−1), ηq):

{f, g}p =
∫
Ω
f · χ∗

p(g) dV, f ∈ Lp(Ω), g ∈ Lq(Ω(p−1), ηq). (7.5)

Proposition 7.6. The map (f, g) 7→ {f, g}p, is an isometric duality pairing of Lp(Ω) and

Lq
(
Ω(p−1), ηq

)
. In other words, through {·, ·}p we obtain the dual space identification

Lp(Ω)′ ≃ Lq
(
Ω(p−1), ηq

)
,

where the operator norm of the functional {·, g}p ∈ Lp(Ω)′ is equal to the norm of its

representative function g ∈ Lq
(
Ω(p−1), ηq

)
.

Proof. It is a classical fact that the ordinary L2-style pairing of Lp(Ω) with Lq(Ω) given by

(f, h) 7→
∫
Ω
f · h dV, f ∈ Lp(Ω), g ∈ Lq(Ω)

is an isometric duality pairing. Proposition 7.1 says that χq : Ω(p−1) → Ω is a diffeomor-

phism outside a set of measure zero, with inverse χp : Ω → Ω(p−1), itself a diffeomorphism
outside a set of measure zero. It therefore suffices to show that

χ∗
q : L

q(Ω) → Lq(Ω(p−1), ηq) (7.7)

is an isometric isomorphism of Banach spaces. Calculation shows

∥h∥qLq(Ω) =

∫
Ω(p−1)

|h ◦ χq(w)|q ηq(w)dV (w) =
∥∥χ∗

q(h)
∥∥q
Lq(Ω(p−1),ηq)

. (7.8)

Since the inverse map χ∗
p of χ∗

q exists, it is surjective and the result follows by the closed-
graph theorem. □
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Proposition 7.9. Suppose the Monomial Basis Projection of Ap(Ω) is absolutely bounded
on Lp(Ω). Then under the pairing {·, ·}p defined in (7.5), its adjoint is the Monomial Basis

Projection of Aq(Ω(p−1), ηq), which is itself absolutely bounded in Lq(Ω(p−1), ηq); i.e.,{
PΩ
p,1f, g

}
p
=
{
f,PΩ(p−1)

q,ηq g
}
p
, for all f ∈ Lp(Ω), g ∈ Lq(Ω(p−1), ηq).

Proof. Suppose that f ∈ Lp(Ω) and g ∈ Lq(Ω(p−1), ηq):{
PΩ
p,1f, g

}
p
=

∫
Ω
PΩ
p,1f · χ∗

pg dV =

∫
Ω

(∫
Ω
KΩ

p,1(z, w)f(w) dV (w)

)
g(χp(z)) dV (z) (7.10)

=

∫
Ω

(∫
Ω
KΩ

p,1(z, w)g(χp(z))dV (z)

)
f(w) dV (w), (7.11)

where the change in order of integration can be justified as follows. By the assumption that
PΩ
p,1 is absolutely bounded on Lp(Ω), we see that the function on Ω given by

z 7−→
∫
Ω

∣∣KΩ
p,1(z, w)

∣∣ · |f(w)| dV (w)

is in Lp(Ω). Since g ∈ Lq(Ω(p−1), ηq), using Tonelli’s theorem we see that∫
Ω×Ω

∣∣KΩ
p,1(z, w)g(χp(z))f(w)

∣∣ dV (z, w)

=

∫
Ω

(∫
Ω

∣∣KΩ
p,1(z, w)

∣∣ · |f(w)| dV (z)

)
|g(χp(z))| dV (w) <∞,

by Proposition 7.6. Fubini’s theorem gives that (7.10) = (7.11). Now change variables in

the inner integral of (7.11) by setting z = χq(ζ), where ζ ∈ Ω(p−1) to obtain

(7.11) =

∫
Ω

(∫
Ω(p−1)

KΩ
p,1(χq(ζ), w)g(ζ) ηq(ζ) dV (ζ)

)
f(w)dV (w)

=

∫
Ω

(∫
Ω(p−1)

KΩ(p−1)

q,ηq (χp(w), ζ)g(ζ) ηq(ζ)dV (ζ)

)
f(w)dV (w) (7.12)

=

∫
Ω
f(w)PΩ(p−1)

q,ηq g(χp(w)) dV (w) (7.13)

=

∫
Ω
f · χ∗

p

(
PΩ(p−1)

q,ηq g
)
dV =

{
f,PΩ(p−1)

q,ηq g
}
p
.

The second equality above follows from (7.4). The fact that (7.13) = (7.12) can be justified

as follows. For g ∈ Lq
(
Ω(p−1), ηq

)
, the quantity in (7.12) is finite for each f ∈ Lp(Ω), since

by the above computations it is equal to the finite quantity {PΩ
p,1f, g}p. Therefore we see

that for each g ∈ Lq(Ω(p−1), ηq), we have that the function(
w 7−→

∫
Ω(p−1)

KΩ(p−1)

q,ηq (χp(w), ζ)g(ζ)ηq(ζ) dV (ζ)

)
∈ Lq(Ω),

so that the linear map

g 7−→
∫
Ω(p−1)

KΩ(p−1)

q,ηq (χp(·), ζ)g(ζ)ηq(ζ) dV (ζ)

is bounded from Lq(Ω(p−1), ηq) to Lq(Ω) by the closed graph theorem (since the integral
operator is easily seen to be closed). Composing with the (isometric) bounded linear map
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χ∗
q : L

q(Ω) → Lq(Ω(p−1), ηq), we see that the operator on Lq(Ω(p−1), ηq) given by

g 7−→
∫
Ω(p−1)

KΩ(p−1)

q,ηq (·, ζ)g(ζ)ηq(ζ) dV (ζ)

is bounded on Lq(Ω(p−1), ηq). Now Proposition 3.22 shows (7.13) = (7.12). □

Proposition 7.14. Suppose the Monomial Basis Projection of Ap(Ω) is absolutely bounded

on Lp(Ω). Then the duality pairing of Lp(Ω) and Lq(Ω(p−1), ηq) by {·, ·}p restricts to a
duality pairing of the holomorphic subspaces. In other words, we can identify the dual space

Ap(Ω)′ ≃ Aq
(
Ω(p−1), ηq

)
.

Proof. We claim that the conjugate-linear continuous map Aq(Ω(p−1), ηq) → Ap(Ω)′ given
by h 7→ {·, h}p,1 is a homeomorphism of Banach spaces. To see surjectivity, let ϕ ∈ Ap(Ω)′,

let ϕ̃ : Lp(Ω) → C be its Hahn-Banach extension, and let g ∈ Lq(Ω(p−1), ηq) be such

that ϕ̃(f) = {f, g}p,1. The existence of g follows from Proposition 7.6. We see from
Proposition 7.9 that for each f ∈ Ap(Ω) we have

ϕ(f) = ϕ̃(f) = {f, g}p = {PΩ
p,1f, g}p = {f,PΩ(p−1)

q,ηq g}p

so the surjectivity follows since PΩ(p−1)

q,ηq g ∈ Aq
(
Ω(p−1), ηq

)
. Now if h ∈ Aq

(
Ω(p−1), ηq

)
is in

the null-space of this map, i.e., for each f ∈ Ap(Ω) we have {f, h}p = 0, then for g ∈ Lp(Ω):

{g, h}p = {g,PΩ(p−1)

q,ηq h}p = {PΩ
p,1g, h}p = 0.

This shows that h = 0, so the mapping is injective. □

7.3. Dual spaces on monomial polyhedra. The duality pairing in Section 7.2 should
be contrasted with the usual Hölder duality pairing of Lp and Lq. On the disc D, the
Hölder pairing restricts to a duality pairing of the holomorphic subspaces, yielding the
identification Ap(D)′ ≃ Aq(D). On the punctured disc, the Hölder pairing fails to restrict to
a holomorphic duality pairing and any attempt to identify Ap(D∗)′ with Aq(D∗) fails. This
is discussed further in Section 8.3. For similar results, see [ČZ16b].

Theorem 7.15. Let U = D∗ or D. The dual space of Ap(U) admits the identification

Ap(U)′ ≃ Aq(U, ηq), ηq(ζ) = (q − 1)|ζ|2q−4,

via the pairing (7.5), sending (f, g) 7→ {f, g}p, where f ∈ Ap(U), g ∈ Aq(U, ηq).

Proof. It was shown in Corollary 4.21 that the MBP of Ap(U) is absolutely bounded. Re-

calling the definition of a Reinhart power in (3.6), it it clear that in our case U (m) = U for
every m > 0, so in particular for m = p− 1. Proposition 7.14 now gives the result. □

The same behavior regarding Reinhardt powers seen on the disc and punctured disc
continues to hold on all monomial polyhedra:

Proposition 7.16. Let U ⊂ Cn be a monomial polyhedron of the form (6.1). Then for

each m > 0, the Reinhardt power U (m) = U .

Proof. Write U = UB, where the rows of B are given by bj = (bj1, . . . , b
j
n) ∈ Z1×n. From

the definition of the Reinhardt power of a domain given in (3.6), we see

U (m) = {z ∈ Cn : (|z1|
1
m , . . . , |zn|

1
m ) ∈ U }

= {z ∈ Cn : |ebj
(
|z1|

1
m , . . . , |zn|

1
m
)
| < 1, 1 ≤ j ≤ n}

=
{
z ∈ Cn : |ebj (z)|

1
m < 1, 1 ≤ j ≤ n

}
=
{
z ∈ Cn : |ebj (z)| < 1, 1 ≤ j ≤ n

}
= U .

□
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Theorem 7.17. Let U be a monomial polyhedron in Cn. The dual space of Ap(U ) admits
the identification

Ap(U )′ ≃ Aq(U , ηq), ηq(ζ) = (q − 1)|ζ1 · · · ζn|2q−4,

via the pairing (7.5), sending (f, g) 7→ {f, g}p, where f ∈ Ap(U ), g ∈ Aq(U , ηq).

Proof. The absolute boundedness of the MBP of Ap(U ) seen in Theorem 1.15 allows for

the use of Proposition 7.14. In this setting U (p−1) = U by Proposition 7.16, which yields
the result. □

8. Comparing the MBP to the Bergman projection on Lp

Let Ω ⊂ Cn be a bounded Reinhardt domain such that the origin lies on its boundary. In
even the simplest example, the punctured disc D∗ = {z ∈ C : 0 < |z| < 1}, special features of
the holomorphic function theory can be seen in the Riemann removable singularity theorem.
Higher dimensional versions of this phenomenon was noticed by Sibony in [Sib75] on the
Hartogs triangle and later generalized in [Cha19].

8.1. The Lp-irregularity of the Bergman projection. In understanding the Lp func-
tion theory Ω, it is useful to consider the behavior of the sets of p-allowable indices intro-
duced in Section 1.4: Sp(Ω) = {α ∈ Zn : eα ∈ Lp(Ω)}, as p traverses the interval (1,∞). It
is clear that the sets can only shrink as p increases, as fewer monomials become integrable
due to increase in the exponent p in the integral

∫
Ω |eα|p dV . However, the set Sp(Ω) is

always nonempty, since Nn ⊂ Sp(Ω), Ω being bounded.
For example on the punctured disc, if p < 2, then Sp(D∗) = {α ∈ Z : α ≥ −1}, and if

p ≥ 2, then Sp(D∗) = {α ∈ Z : α ≥ 0}. The exponent p = 2 where the set of indices shrinks
is a threshold. The Lp-irregularity of the Bergman projection is closely related with these
thresholds. It was shown in [BCEM22], that on a monomial polyhedron U , the Bergman
projection is bounded in Lp if and only if p ∈ (q∗, p∗), where p∗ = p∗(U ) is the smallest
threshold of U bigger than 2 and q∗ = q∗(U ) is its Hölder conjugate. Explicit values of p∗

and q∗ are given in Proposition 1.12.
Outside the interval (q∗, p∗), the Lp-boundedness of the Bergman projection on the mono-

mial polyhedron U fails in different ways depending on whether p ≥ p∗ or p ≤ q∗. Since
U is bounded, we have Lp(U ) ⊂ L2(U ) if p ≥ p∗ > 2, so the integral operator defining
the Bergman projection in (1.1) is defined for each f ∈ Lp(U ). The failure of boundedness
of the Bergman projection corresponds to the fact that there are functions f ∈ Lp(U )
for which the projection BU f is not in Ap(U ). It is easy to give an explicit example
when U = H, the Hartogs triangle. Suppose p ≥ p∗(H) = 4 and let f(z) = z2, which is
bounded and therefore in Lp(H). A computation shows that there is a constant C such that
BHf(z) = Cz2

−1 /∈ Lp(H). This idea can be generalized to an arbitrary monomial polyhe-
dron U to show that if p ≥ p∗, there is a function in Lp(U ) which projects to a monomial
which is in L2(U ) but not in Lp(U ). In [CZ16a] the range of the map BH : Lp(H) → L2(H)
for p ≥ 4 was identified as a weighted Lp-Bergman space strictly larger than Lp(H), and a
similar result holds on any monomial polyhedron. Recent work of Huo and Wick [HW20]
shows that BH is of weak-type (4,4), and this has been extended to generalized Hartogs
triangles in [CK23]. For p ≤ q∗, the situation is worse:

Proposition 8.1. Let 1 < p ≤ q∗(U ) and z ∈ U . There is a function f ∈ Lp(U ) such
that the integral ∫

U
BU (z, w)f(w) dV (w)

diverges. Consequently, there is no way to extend the Bergman projection to Lp(U ) using
its integral representation.
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Proof. Let q denote the Hölder conjugate of p so that q ≥ p∗. The holomorphic function on
the Reinhardt domain U given by g(ζ) = B(ζ, z) has Laurent expansion

g(ζ) =
∑

α∈S2(U )

zα

∥eα∥2
ζα.

Since q ≥ p∗, and the set of integrable monomials shrinks at p∗, it follows that there is a
monomial eα ∈ A2(U ) \Aq(U ). Since this non-Aq monomial appears in the above Laurent
series with a nonzero coefficient, and by Theorem 2.12, the Laurent expansion of a function
in Aq can only have monomials which are in Aq, it follows that g /∈ Aq(U ). By symmetry
therefore, B(z, ·) ̸∈ Lq(U ). It now follows that there is a function f ∈ Lp(U ) such that the
integral above does not converge. □

When U = H, one can show by explicit computation that if 1 < p < 4
3 = q∗(H), we can

take f(w) = w−3
2 in the above result for each z ∈ H. It was shown in [HW20] that BH fails

to be weak-type (43 ,
4
3), and this was extended in [CK23] to generalized Hartogs triangles.

But in light of Proposition 8.1, we see that BH does not even exist as an everywhere defined
operator on L4/3(H).

In contrast with the above, Theorem 1.15 guarantees that for 1 < p < ∞ and U a
monomial polyhedron, that the MBP PU

p,1 is a bounded operator from Lp(U ) onto Ap(U ),

and Theorem 3.13 says that for z ∈ U , the function KU
p,1(z, ·) ∈ Lq(U ), where 1

p + 1
q = 1.

8.2. Failure of surjectivity. Even if the Bergman projection can be given a bounded
extension to Lp, it need not be surjective onto Ap for p < 2, as one sees in the case of the
punctured disc. Here, since A2(D∗) and A2(D) are identical, the Bergman kernels have the
same formula. The Bergman projection on D∗ consequently extends to a bounded operator
on Lp(D∗) for every 1 < p < ∞, but fails to be surjective onto Ap(D∗) for p ∈ (1, 2).
This happens because the range of the Bergman projection can be naturally identified with
Ap(D), and when 1 < p < 2, the space Ap(D) is a strict subspace of Ap(D∗) (for example
the function g(z) = z−1 belongs to Ap(D∗) \Ap(D)). In particular, BD∗

is not the identity
on Ap(D∗) and its nullspace is the one-dimensional span of g(z) = z−1.

On the Hartogs triangle, the Bergman projection is bounded on Lp(H) for 4
3 < p < 4, but

is not surjective onto Ap(H) for 4
3 < p < 2. Let N ⊂ Ap(H) be the closed subspace spanned

by the monomials in Ap(H) \ A2(H). One sees from a computation that the monomials
in Ap(H) \ A2(H) are eα with α1 ≥ 0 and α1 + α2 = −2. Then one can verify using
orthogonality of Lp and Lq monomials that the nullspace of BH restricted to Ap(H) is N .

In contrast, the MBP of Ap(U ) accounts for all monomials appearing in the Banach-
space basis {eβ : β ∈ Sp(U )}, and Corollary 1.16 shows that for 1 < p < ∞, PU

p,1 is a

bounded surjective projection of Lp(U ) onto Ap(U ).

8.3. The Bergman projection and holomorphic dual spaces. The following is a
reformulation of [CEM19, Theorem 2.15]:

Theorem 8.2. Suppose that the following two conditions hold on a domain U ⊂ Cn.

(1) The absolute Bergman operator (BU )+ : Lp(U) → Lp(U) is bounded.
(2) The Bergman projection acts as the identity operator on both Ap(U) and Aq(U).

Then the sesquilinear Hölder pairing restricts to a duality pairing of Ap(U) with Aq(U):

⟨f, g⟩ =
∫
U
fg dV, f ∈ Ap(U), g ∈ Aq(U), (8.3)

providing the dual space identification Ap(U)′ ≃ Aq(U).
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Conditions (1) and (2) both hold, for instance, on smoothly bounded strongly pseudo-
convex domains (see [PS77] and [Cat80]), thus yielding the dual space identification. But
when one of the conditions (1) or (2) fails, the conclusion can fail.

On the punctured disc D∗ ⊂ C, (1) always holds but (2) fails for all p ̸= 2; it can be shown
that under the pairing (8.3), Ap(D∗)′ can only be identified with Aq(D∗) if p = q = 2. On
the Hartogs triangle H, (1) holds if 4

3 < p < 4, but (2) never holds for a p in this range, as

we saw in Section 8.2. The pairing (8.3) is not a duality pairing on H for 4
3 < p < 4 unless

p = 2. The mapping Aq(H) → Ap(H)′ given by the pairing is not injective if 2 < p < 4 and
not surjective if 4

3 < p < 2.
In contrast with the above, the duality theory of Section 7.2 characterizes duals of

Bergman spaces of Reinhardt domains via the pairing (7.5) whenever the MBP is abso-
lutely bounded. We saw that Theorem 7.15 gives a concrete description of the dual space
of Ap(D∗), and for monomial polyhedra Theorem 7.17 does the same.
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