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Abstract
Sobolev irregularity of the Bergman projection on a family of domains containing the
Hartogs triangle is shown. On the Hartogs triangle itself, a sub-Bergman projection is
shown to satisfy better Sobolev norm estimates than its Bergman projection.
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1 Introduction

If � ⊂ C
n is an open set, 1 < p < ∞, and k ∈ Z

+, let L p
k (�) denote the usual L p

Sobolev space of order k: the measurable functions f such that

‖ f ‖L p
k (�) =

⎛
⎝∑

|α|≤k

∫
�

|∂α f |p dV
⎞
⎠

1
p

is finite, where derivatives are interpreted in the distributional sense.
This paper continues investigations from [19,20] by demonstrating irregularity in

the L p Sobolev spaces for the Bergman projection associated to domains defined in
(1.2) below. These generalize the Hartogs triangle, which is H1 in (1.2).

The Bergman projection, B = B�, orthogonally projects L2(�) onto the closed
subspaceO(�)∩L2(�),O(�) denoting holomorphic functions. On L2(�) = L2

0(�),
B is represented as an integral operator
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1294 L. D. Edholm, J. D. McNeal

B f (z) =
∫

�

B�(z, w) f (w) dV (w), f ∈ L2(�), (1.1)

where dV denotes Lebesgue measure and B�(z, w) ∈ O(�) ×O(�) is the Bergman
kernel. If f /∈ L2(�) let (1.1) define B f , whenever the integral converges. For many
classes of pseudoconvex domains, precise pointwise estimates on B�(z, w) were
obtained and shown to imply ‖B f ‖L p

k (�) ≤ C‖ f ‖L p
k (�) for all 1 < p < ∞ and

k ∈ Z
+. See [12,23,25–27,30,31]. Thus B is L p

k -regular in these cases. In the special
case p = 2, regularity for all k ∈ Z

+ was shown in [8] whenever � has a plurisubhar-
monic defining function, without establishing pointwise estimates on B�(z, w). This
result was generalized in [9,24]. However L2

k regularity does not always hold. This
irregularity was discovered in connection to Condition R of Bell-Ligocka [5,6]: it is
shown in [4] that B is irregular on L2

k(W ), for large k, on the pseudoconvex “worm”
domains W given in [16].

The irregularity of B demonstrated in [19,20] is somewhat different. It occurs on the
Lebesgue spaces L p(�) = L p

0 (�) for certain p �= 2 and does not involve derivatives.
For γ > 0, define

Hγ = {(z1, z2) ∈ C
2 : |z1|γ < |z2| < 1}. (1.2)

In [20] it is shown that the Bergman projection on Hγ , for any γ , is a degenerate
L p operator, bounded only for p in a proper subinterval of (1,∞). In particular the
situation on H1 is that B : L p (H1) → L p (H1) boundedly if and only if 4

3 < p < 4;
see Theorem 3.1 below for the general situation. The limited range of L p boundedness
has consequences for approximation and duality theory in O

(
Hγ

)
, see [10]. Similar

consequences hold when irregularity can be characterized on norm scales other than
L p.

It turns out B is very degenerate as an L p Sobolev map.

Theorem 1.3 Let γ = m
n ∈ Q

+ and B denote the Bergman projection on Hγ .

(1) B fails to map L2
k(Hγ ) → L2

k(Hγ ), for k ≥ 1 an integer.

(2) Let j, l ∈ Z
+. Then ∂ j+l

∂z j1∂z
l
2

◦ B fails to map C∞(Hγ ) → L p(Hγ ) for

p ≥ 2m + 2n

m(l + 1) + n( j + 1) − 1
.

B also exhibits some regularity in L p Sobolev norms, but only on H1:

Theorem 1.4 B maps L p
1 (H1) → L p

1 (H1) boundedly, for
4
3 < p < 2.

Notice the range on p, for boundedness on L p
1 (H1), is smaller than the range for

boundedness on L p
0 (H1). More general statements than Theorem 1.4 can be made—

for separate directional derivatives and on domains other than H1—but these do not
yield boundedness theorems on the full Sobolev spaces L p

k ; see Sect. 4.
Proving Theorems 1.3 and 1.4 requires understanding how derivatives commute

past the Bergman projection. An initial difficulty is that Hγ is not smoothly bounded,
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Sobolev Mapping of Some Holomorphic Projections 1295

so Stokes’ theorem cannot be applied in the usual way, e.g., as in [28, Lemma 3],
[29, Proposition 3.3], or [30, Lemma 5.1]. We circumvent this by applying Stokes
theorem on appropriately chosen discs and annuli intersecting Hγ . Theorem 1.3 is
proved in Sect. 3. After developing some general tools, Theorem 1.4 is proved as
Corollary 4.19 in Sect. 4. To partially repair irregularity described by Theorem 1.3,
substitute operators related to B are considered in Sect. 5.

There are other papers showing Bergman irregularity on L p
0 (�), for specific pseu-

doconvex�: [1,11,13,34]. A unifying result, explaining irregularity in these cases and
[19,20], is lacking. A weighted regularity result on L p

k (H1), k > 0, related to Theo-
rem 1.3, was obtained in [14]. See also the paper [2] for a nonpseudoconvex domain
with L p

0 -irregularity of its Bergman projection.
When X and Y are expressions involving several variables, write X � Y to mean

X ≤ CY for a constantC independent of certain of these variables. The independence
of which variables is specified in use. X ≈ Y means X � Y � X holds.

2 Sobolev Regularity in One Variable

Let D ⊂ C denote the unit disc. The Bergman projection BD is bounded from
L p
k (D) → L p

k (D) for all 1 < p < ∞ and k ∈ Z
+. This is well-known when

k = 0, apparently first proved in [33] using singular integral operator theory; see [17,
Chapter 2]. For any k ∈ Z

+, a proof modeled on arguments in [28] is given below.
This serves as a template for the proof of Theorem 1.4.

The Bergman kernel of D is

BD(z, w) = 1

π

∞∑
j=0

( j + 1)(zw̄) j = 1

π

1

(1 − zw̄)2
. (2.1)

Note BD(z, w) can be viewed as a function of s = zw̄.

2.1 Lp0 Boundedness

A family of integral estimates will be used. When A = 0, the result is often called the
Forelli-Rudin lemma; see [21,32], or [35] for the ‘standard’ proof, based on asymp-
totics of the gamma function. Different proofs are given in [13,19,20], which also
address A �= 0.

Lemma 2.2 Let D ⊂ C be the unit disc, ε ∈ (0, 1) and A < 2. Then for z ∈ D,

∫
D

(1 − |w|2)−ε

|1 − zw̄|2 |w|−A dV (w) � (1 − |z|2)−ε,

for a constant C = C(A, ε) independent of z.

A general version of Schur’s Lemma will also be used. The next result extends
Lemma 2.4 from [19].
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1296 L. D. Edholm, J. D. McNeal

Lemma 2.3 Let � ⊂ C
n be a domain and K : � × � → [0,∞) a kernel function.

Suppose there is an auxiliary function h : � → [0,∞) and numbers 0 ≤ α < β,
0 ≤ γ < δ such that the following two estimates hold: For all ε ∈ [α, β),

∫
�

K (z, w)h(w)−ε dV (w) � h(z)−ε, (2.4)

and for all ε ∈ [γ, δ),

∫
�

K (z, w)h(z)−ε dV (z) � h(w)−ε . (2.5)

Then the operator K, K( f )(z) := ∫
�
K (z, w) f (w) dV (w), maps L p(�) →

L p(�) for all p in the range

γ

β
+ 1 < p <

δ

α
+ 1. (2.6)

Proof Let 1
p + 1

q = 1, g ∈ L p(�) and s ∈ [α, β). Then

|K( f )(z)|p ≤
(∫

�

K (z, w)| f (w)|ph(w)
sp
q dV (w)

)(∫
�

K (z, w)h(w)−s dV (w)

) p
q

�
(∫

�

K (z, w)| f (w)|ph(w)
sp
q dV (w)

)
h(z)−

sp
q .

The first inequality follows from Hölder’s inequality, the second from (2.4). Now

∫
�

|K( f )(z)|p dV (z) �
∫

�

(∫
�

K (z, w)| f (w)|ph(w)
sp
q dV (w)

)
h(z)−

sp
q dV (z)

=
∫

�

| f (w)|p h(w)
sp
q

(∫
�

K (z, w)h(z)−
sp
q dV (z)

)
dV (w).

(2.7)

When s ∈ [α, β) may chosen so that also sp
q ∈ [γ, δ), estimate (2.5) implies

(2.7) �
∫

�

| f (z)|p dV (z),

and thusK : L p(�) → L p(�) boundedly. The existence of such an s is equivalent to
saying both the inequalities q

pγ < β and α <
q
p δ hold. This is equivalent to saying

(2.6) holds, as claimed. 
�
Lemmas 2.2 and 2.3 suffice to show L p

0 (D) boundedness of BD .
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Sobolev Mapping of Some Holomorphic Projections 1297

Corollary 2.8 The Bergman projection BD maps L p(D) to L p(D) for all 1 < p < ∞.
In fact, the operator whose kernel is |BD(z, w)| is bounded on L p(D) for 1 < p <

∞.

Proof Lemma 2.3 is used with K (z, w) = |BD(z, w)| and h(w) = 1 − |w|2 as the
auxiliary function. Lemma 2.2 shows that estimate (2.4) holds for all 0 < ε < 1.
Since BD(z, w) is conjugate symmetric, (2.4) is equivalent to (2.5) with α = γ and
β = δ. Lemma 2.3 then gives the claimed boundedness by setting β = 1 and sending
α → 0+. 
�

2.2 Integration by Parts

Define the vector field

Tw = w̄
∂

∂w̄
− w

∂

∂w
, (2.9)

and write T k
w to mean Tw ◦ · · · ◦ Tw composed k times. If f ∈ L p

k (D), clearly T k
w f ∈

L p(D). If, in addition, f ∈ O(D), a partial converse holds: if Dδ = {z ∈ D : |z| > δ},
then ‖ f ‖L p

k (Dδ)
�
∥∥T k

w f
∥∥
L p(Dδ)

for a constant independent of f .1 This holds since

any first derivative can be written as a linear combination ATw + B ∂
∂w̄

on Dδ , for
bounded functions A and B.

The crucial property Tw satisfies is

Proposition 2.10 Tw annihilates C1 radial functions of w ∈ C.

Proof A C1 radial function g can be written as g(w) = f (|w|2), where f ∈
C1 ([0,∞)). Therefore

Twg = w̄ f ′(|w|2) · w − w f ′(|w|2) · w̄ ≡ 0.


�
Recall that r : C → R is a defining function for � if {r < 0} = � and |∇r(w)| �= 0
when r = 0. Proposition 2.10 implies, in particular, that Tw annihilates defining func-
tions of discs and annuli centered at the origin along their boundaries. An integration
by parts result follows:

Proposition 2.11 Let � ⊂ C be either a disc or an annulus centered at the origin.
Then if f , g ∈ L1

1(�) ∩ C
(
�
)
,

∫
�

Tw f · g dV = −
∫

�

f · Twg dV .

1 A version of this also holds in several variables. See, e.g., [3,7,22] for a statement of the result, as well
as elementary proofs for p = 2. For general p, see [15].

123



1298 L. D. Edholm, J. D. McNeal

Proof Choose a defining function for � with |∇r(w)| = 1 for all w ∈ b�. Stokes’
theorem yields

∫
�

Tw f · g dV =
∫

�

∂ f

∂w̄
(w) · w̄g(w) dV (w) −

∫
�

∂ f

∂w
(w) · wg(w) dV (w)

= −
∫

�

f · ∂

∂w̄

(
w̄g(w)

)
dV +

∫
b�

f · w̄g · ∂r

∂w̄
dS

+
∫

�

f · ∂

∂w

(
wg(w)

)
dV −

∫
b�

f wg · ∂r

∂w
dS

= −
∫

�

f ·
[ ∂

∂w̄

(
w̄g(w)

)− ∂

∂w

(
wg(w)

)]
dV +

∫
b�

f g · Twr(w) dS

= −
∫

�

f · Twg dV .

Here dS denotes induced surface measure on b�. The last boundary integral vanishes
since Twr ≡ 0 on b�. 
�

2.3 Lpk Boundedness for k > 0

Theorem 2.12 The Bergman projection BD is a bounded operator from L p
k (D) →

L p
k (D) for all k ∈ Z

+ and 1 < p < ∞.

Proof Fix k, p and let f ∈ L p
k (D). Since BD f ∈ O(�), only holomorphic derivatives

need to be estimated. For z �= 0,

∂k

∂zk
BD f (z) = ∂k

∂zk

∫
D
BD(z, w) f (w) dV (w)

=
∫
D

∂k

∂zk
(
BD(z, w)

)
f (w) dV (w)

= 1

zk

∫
D

w̄k ∂k

∂w̄k

(
BD(z, w)

)
f (w) dV (w). (2.13)

The last equality follows because BD(z, w) can be viewed as a function of the variable
s = zw̄. Define a newkernel Kk(z, w), obtained by subtracting away the (k−1)-Taylor
approximation of BD(z, w) in the s variable, i.e.,

Kk(z, w) := 1

π2

⎡
⎣ 1

(1 − s)2
−

k−1∑
j=0

( j + 1)s j

⎤
⎦

= 1

π2

∂

∂s

⎡
⎣

∞∑
j=k

s j+1

⎤
⎦

= (k + 1)sk − ksk+1

(1 − s)2
. (2.14)
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Sobolev Mapping of Some Holomorphic Projections 1299

Since Kk(z, w) and BD(z, w) differ by terms annihilated by ∂k

∂w̄k and Kk(z, w) is
anti-holomorphic in w,

(2.13) = 1

zk

∫
D

w̄k ∂k

∂w̄k

(
Kk(z, w)

)
f (w) dV (w)

= 1

zk

∫
D
T k

w

(
Kk(z, w)

)
f (w) dV (w),

= (−1)k

zk

∫
D
Kk(z, w)T k

w f (w) dV (w).

The last equality follows from Proposition 2.11.
The modified kernel Kk(z, w) satisfies a stronger estimate than BD(z, w). Indeed,

Eq. (2.14) shows

|Kk(z, w)| � |z|k |w|k
|1 − zw̄|2

for a constant independent of z, w ∈ D. This can be used to counteract the factor 1
zk

appearing in (2.13). Thus

∣∣∣∣
∂k

∂zk
BD f (z)

∣∣∣∣ �
∫
D

|w|k
|1 − zw̄|2 T

k
w f (w) dV (w)

≤
∫
D

1

|1 − zw̄|2 T
k

w f (w) dV (w)

≈
∫
D

|BD(z, w)| T k
w f (w) dV (w). (2.15)

Since T k
w f ∈ L p(D), Corollary 2.8 says that (2.15) defines an L p(D) function. This

implies ∂k

∂zk
BD f (z) ∈ L p(D).

For any positive integer l ≤ k, the same argument—but for the modified kernel

Kl(z, w)—shows ∂l

∂zl
BD f (z) ∈ L p(D). Thus BD f ∈ L p

k (D). 
�

3 Sobolev Irregularity

The starting point is the characterization of L p
0 boundedness of the Bergman projection

on Hγ .

Theorem 3.1 ([20]) Let Hγ be defined in (1.2), B denote the Bergman projection on
Hγ , and 1 < p < ∞.

(1) Let γ = m
n ∈ Q

+, with gcd(m, n) = 1.

Then B : L p
(
Hγ

) → L p
(
Hγ

)
is bounded if and only if p ∈

(
2m+2n
m+n+1 ,

2m+2n
m+n−1

)
.

(2) Let γ > 0 be irrational.
Then B : L p(Hγ ) → L p(Hγ ) is bounded if and only if p = 2.
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1300 L. D. Edholm, J. D. McNeal

Let
(
λ(m, n), ρ(m, n)

) =
(

2m+2n
m+n+1 ,

2m+2n
m+n−1

)
denote the interval of L p boundedness

in (1) above. When Hm/n is fixed, denote this also as I
p
0 .

Some ingredients in the proof of Theorem 3.1 are used to prove the irregular-
ity statements in Theorem 1.3. Only consider Hm/n and let B = BHm/n . An index
(α1, α2) ∈ Z

+ × Z is L p-allowable if the monomial zα11 z̃α22 ∈ L p
(
Hm/n

)
, where z̃2

is either z2 or z̄2. This set can be characterized:

Lemma 3.2 ([20], eq. (3.3)) Let p ∈ [1,∞). The L p-allowable indices are

S
(
Hm/n, L

p) =
{
α = (α1, α2) : α1 ≥ 0, nα1 + mα2 ≥

⌊
− 2

p
(m + n) + 1

⌋}
.

See also Lemma 4.4 in [10]. Here �x� = the greatest integer ≤ x . In particular, the
L2 monomials are

S
(
Hm/n, L

2
)

= {(α1, α2) : α1 ≥ 0, nα1 + mα2 ≥ −m − n + 1} . (3.3)

As notation for the ray bounding the sets S
(
Hm/n, L p

)
, let

�
(
Hm/n, L

p) =
{
(x, y) ∈ R

2 : x ≥ 0, nx + my =
⌊
− 2

p
(m + n) + 1

⌋}
.

A consequence of orthogonality is also essential.

Lemma 3.4 ([20], Proposition 5.1) If both (β1, β2), (β1,−β2) ∈ S
(
Hm/n, L2

)
, then

B
(
zβ11 z̄ β2

2

)
= C zβ11 z−β2

2 ,

for a constant C > 0.

The unboundedness statements in Theorem 3.1 for p /∈ I p0 (defined above) are
proved as follows. Let p ≥ ρ(m, n).

(A): Choose (β1, β2) ∈ Z
+ × Z

+ with (β1,−β2) ∈ �
(
Hm/n, L2

)
.

(B): Lemma 3.2 implies zβ11 z−β2
2 /∈ S

(
Hm/n, Lρ(m,n)

)
.

(C): Let f (z1, z2) =: zβ11 z̄β22 ; Lemma 3.4 says B f = Czβ11 z−β2
2 . Thus ‖ f ‖L p < ∞,

while ‖B f ‖L p = ∞.

Duality implies the same conclusion if p ≤ λ(m, n).
The heart of this argument works on Sobolev spaces. But one piece is not transfer-

able: if j, l ∈ Z
+, the operator ∂ j+l

∂z j1∂z
l
2

◦ B is not self-adjoint in the L2 inner product.

As a result, knowing that B is unbounded on L p
k does not automatically imply that B

is unbounded on Lq
k , where

1
p + 1

q = 1. Whether this fact actually allows regularity

of B on Lq
k for small q, e.g., q < λ(m, n), in cases where B is unbounded on L p

k is
uncertain.

However for large p, L p
k regularity certainly does not hold:
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Sobolev Mapping of Some Holomorphic Projections 1301

Theorem 3.5 Letγ = m
n ∈ Q

+, and j, l non-negative integers. Theoperator ∂ j+l

∂z j1∂z
l
2

◦B
fails to map C∞(Hγ ) → L p(Hγ ) for any

p ≥ 2m + 2n

m(l + 1) + n( j + 1) − 1
. (3.6)

Proof Starting from Eq. (3.3), choose β = (β1, β2) ∈ Z
+ × Z

+ with β1 ≥ j and
(β1,−β2) ∈ �

(
Hm/n, L2

)
, i.e., nβ1 − mβ2 = 1 − m − n. Clearly

∂ j+l

∂z j1∂z
l
2

(
zβ11 z−β2

2

)
≈ zβ1− j

1 z−β2−l
2 . (3.7)

To see when this is an L p function, compute

∫
Hγ

|zβ1− j
1 z−β2−l

2 |p dV = 4π2
∫
hγ

r pβ1−pj+1
1 r−pβ2−pl+1

2 dr1 dr2

= 4π2
∫ 1

0
r−pβ2−pl+1
2

∫ rn/m
2

0
r pβ1−pj+1
1 dr1 dr2

≈
∫ 1

0
r−pβ2−pl+1+pnβ1/m−pnj/m+2n/m
2 dr2, (3.8)

where hγ is the Reinhardt shadow of Hγ , i.e., hγ = Hγ ∩ (R≥0 × R
≥0). The integral

in (3.8) is finite if and only if the exponent on the integrand > −1. This is equivalent
to saying

p <
2m + 2n

m(l + 1) + n( j + 1) − 1
. (3.9)

Now consider the monomial f (z) = zβ11 z̄β22 ∈ C∞(Hγ ). Lemma 3.4 says B f =
Czβ11 z−β2

2 . Thus ‖ f ‖L p < ∞, while

∥∥∥∥ ∂ j+l

∂z j1∂z
l
2

◦ B f

∥∥∥∥
L p

= ∞ for those p satisfying

(3.6). 
�
Remark 3.10 Theorem3.5 recovers the L p

0 unboundedness range given in Theorem3.1
part (1). When j = l = 0, the right-hand side of (3.6) is simply ρ(m, n). Since B is
self-adjoint, it must also be unbounded for 1 < p < λ(m, n).

In particular, Theorem 3.5 implies Theorem 1.3 from the Introduction.

Corollary 3.11 Let k ≥ 1 be an integer and γ = m
n ∈ Q

+. The Bergman projection B
fails to map L2

k(Hγ ) → L2
k(Hγ ).

Proof If k = j + l ≥ 1, then m(l + 1) + n( j + 1) − 1 > m + n. 
�
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The notion of a lattice point diagram associated to the domains Hγ was introduced
in [20]. The diagrams record exponents of all monomials zα11 zα22 ∈ S

(
Hm/n, L p

)
, as p

varies. These diagrams are thus Newton diagrams, but of the entire space Ap(Hγ ) =
O(Hγ ) ∩ L p(Hγ ) rather than of an individual f ∈ Ap(Hγ ). Several lattice point
diagrams succinctly illustrate Theorem 3.5 and Corollary 3.11.

α1

α2
L2L4/3

L2

L3/2

L6/5

L2L3/2L6/5

∂1

∂2

(0,0)

γ = 1
2

γ = 1 γ = 2

Three lattice point diagrams onHγ , corresponding to γ = m
n = 1

2 , 1, 2, are shown.
The indices α ∈ S

(
Hm/n, L2

)
are exactly those lattice points on and above the line

labeled L2 for the corresponding γ . The dotted lines, labeled L p, are lines parallel to
their corresponding L2 lines but passing through the lattice points in �

(
Hm/n, L p

)
.

Any lattice point strictly below the dotted lines correspond to monomials /∈ L p for the
given Hm/n .

Notice that (up to a constant) z1 derivatives of fourth quadrant monomials are
represented by a shift left and z2 derivatives by a shift down in the lattice point diagram.
These operations are labeled ∂1, ∂2 in the diagram. The content of Corollary 3.11 is
easily seen in this lattice point diagram: monomials on the L2 line are driven below to
a corresponding L p line (p < 2) by a single application of ∂1 or ∂2. The more precise
Theorem 3.5 may also be visualized in this way.

Remark 3.12 The precise non-isotropic (in terms of derivatives) irregularity in The-
orem 3.5 seems noteworthy. The two derivative operations ∂1, ∂2 are not symmetric
with respect to how they drive monomials out of the boundedness interval I p0 , depend-
ing on whether γ > 1 or γ < 1. This is very clear in the diagrams: if γ > 1 (a “fat
Hartogs triangle” in the terminology of [18]), more ∂1 derivatives are allowed, while
if γ < 1 (a “thin Hartogs triangle”), more ∂2 derivatives are allowed.
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Sobolev Mapping of Some Holomorphic Projections 1303

4 Sobolev Regularity

Aclass of kernels on the domainsHm/n , containing theBergmankernel Bm/n(z, w) and
its derivatives, can be analyzed via Lemma 2.3. The next result generalizes Proposition
4.2 of [20], which required c = d.

Lemma 4.1 Let K : Hm/n × Hm/n → C be an integral kernel satisfying

|K (z1, z2, w1, w2)| � |z2|c|w2|d
|1 − z2w̄2|2|zn2w̄n

2 − zm1 w̄m
1 |2 , (4.2)

and let K be the operator defined by K( f )(z) := ∫
Hm/n

K (z, w) f (w) dV (w).
Suppose the following conditions on c and d hold:

c > 2n

(
1 − 1

m

)
− 2, d > 2n

(
1 − 1

m

)
− 2, c + d > 2n

(
2 − 1

m

)
− 2.

(4.3)

ThenK : L p(Hm/n) → L p(Hm/n) is bounded operator for all p ∈ (1,∞) satisfy-
ing

2m + 2n

2m + 2n + dm − 2mn
< p <

2m + 2n

2mn − cm
. (4.4)

Remark 4.5 If the exponent c ≥ 2n, the upper bound in (4.4) can be taken to be ∞.
This follows since |z2|c ≤ |z2|2n for all z = (z1, z2) ∈ Hm/n . Similarly if d ≥ 2n, the
lower bound in (4.4) is 1.

Note that the conditions in (4.3) are necessary to ensure the range of p in (4.4) is a
non-degenerate subinterval of (1,∞).

Proof of Lemma 4.1 Apply Lemma 2.3, with h(w) = |w2|R(|w2|2n − |w1|2m)(1 −
|w2|2) as the auxiliary function. The parameters R ≥ 0 and ε ∈ (0, 1) are numbers
specified later in the proof. It follows that

(2.4) =
∫
Hm/n

|K (z, w)|h(w)−ε dV (w)

�
∫
Hm/n

|z2|c|w2|d−Rε(|w2|2n − |w1|2m)−ε(1 − |w2|2)−ε

|1 − z2w̄2|2|zn2w̄n
2 − zm1 w̄m

1 |2 dV (w)

=
∫
D∗

|z2|c|w2|d−Rε(1 − |w2|2)−ε

|1 − z2w̄2|2
[∫

W

(|w2|2n − |w1|2m)−ε

|zn2w̄n
2 − zm1 w̄m

1 |2 dV (w1)

]
dV (w2),

(4.6)
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1304 L. D. Edholm, J. D. McNeal

where D∗ is the punctured unit disc and the integral in brackets is taken over the region
W = {w1 : |w1| < |w2|n/m}. Denote this inner integral by I .

I = 1

|z2|2n|w2|2n+2nε

∫
W

(
1 −

∣∣∣∣
wm
1

wn
2

∣∣∣∣
2
)−ε ∣∣∣∣∣1 −

(
zm1
zn2

)(
wm
1

wn
2

)∣∣∣∣∣
−2

dV (w1)

= |w2|2n/m−2n−2nε

m|z2|2n
∫
D

(1 − |u|2)−ε

|1 − zm1 z
−n
2 ū|2 |u|2/m−2dV (u), (4.7)

after the m-to-1 integral transformation u = wm
1

wn
2
. Lemma 2.2 yields the estimate

(4.7) � |w2|2n/m−2n−2nε

|z2|2n
(
1 −

∣∣∣∣
zm1
zn2

∣∣∣∣
2
)−ε

= |z2|2nε−2n|w2|2n/m−2n−2nε
(
|z2|2n − |z1|2m

)−ε

. (4.8)

Now insert (4.8) into (4.6):

(4.6) � |z2|c+2nε−2n
(
|z2|2n − |z1|2m

)−ε
∫
D∗

(
1 − |w2|2

)−ε

|1 − z2w̄2|2 |w2|A dV (w2),

where the exponent A = d + 2n
m − 2n − (2n + R)ε is required to be strictly greater

than −2 in order for the D∗ integral to converge. This is equivalent to requiring

ε <
1

2n + R

(
d + 2n

m
− 2n + 2

)
. (4.9)

At this stage, fix R large enough to ensure the right-hand side of (4.9)< 1. Lemma 2.2
now applies, since ε ∈ (0, 1). Doing this yields,

∫
Hm/n

|K (z, w)|h(w)−ε dV (w) � |z2|c+2nε−2n
(
|z2|2n − |z1|2m

)−ε (
1 − |z2|2

)−ε

< |z2|−Rε
(
|z2|2n − |z1|2m

)−ε (
1 − |z2|2

)−ε

= h(z)−ε,

as long as the exponent c + 2nε − 2n > −Rε. This is equivalent to saying

ε >
2n − c

2n + R
. (4.10)

Inequalities (4.9) and (4.10) give the interval [α, β) in Lemma2.3. Indeed, it suffices
to take α = 2n−c

2n+R and β = 1
2n+R

(
d + 2n

m − 2n + 2
)
.
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Sobolev Mapping of Some Holomorphic Projections 1305

To generate the interval [γ, δ) needed in Lemma 2.3, simply switch the roles
of c and d in the argument above. This leads to taking γ = 2n−d

2n+R and δ =
1

2n+R

(
c + 2n

m − 2n + 2
)
. Lemma 2.3 now gives the claimed result. 
�

4.1 Mapping of the Differentiated Projection

Boundedness of theBergmanprojection associated toH1 on theSobolev space L
p
1 (H1)

can now be given. In [18], the Bergman kernel of H1/n, n ∈ Z
+, is computed as

B1/n(z, w) = 1

π2

zn2w̄
n
2

(1 − z2w̄2)2(zn2w̄
n
2 − z1w̄1)2

. (4.11)

Throughout the section, subscripts on the projection B1/n and the kernel B1/n(z, w)

are dropped.

Theorem 4.12 On H1/n, n ∈ Z
+, it holds that

(1) ∂
∂z1

◦ B maps L p
1 (H1/n) → L p(H1/n) for p ∈

(
1, 2n+2

2n

)
.

(2) ∂
∂z2

◦ B maps L p
1 (H1/n) → L p(H1/n) for p ∈

(
2n+2
n+3 , 2

)
.

Proof The spirit is similar to the proof of Theorem 2.12. Let f ∈ L p
1 (H1/n) for

1 < p < ∞, and j = 1, 2.

∂

∂z j
B f (z) = ∂

∂z j

∫
H1/n

B(z, w) f (w) dV (w)

= 1

z j

∫
H1/n

w̄ j
∂

∂w̄ j
(B(z, w)) f (w) dV (w)

= 1

z j

∫
H1/n

Tw j (B(z, w)) f (w) dV (w), (4.13)

since B(z, w) is anti-holomorphic in w.
The z1 and z2 derivatives are handled slightly differently. Consider the z2 derivative

first. Equation (4.13) says

∂

∂z2
B f (z) = 1

z2

∫ |w1|=1

|w1|=0

{∫
A
Tw2 (B(z, w)) f (w) dV (w2)

}
dV (w1), (4.14)

where the inner integral is over A = {w2 : |w1|1/n < |w2| < 1} for each fixed w1.
SinceA is an annulus centered at the origin, Proposition 2.11 transfers the vector field
Tw2 onto f without picking up a boundary integral:
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1306 L. D. Edholm, J. D. McNeal

(4.14) = − 1

z2

∫ |w1|=1

|w1|=0

{∫
A
B(z, w)Tw2 f (w) dV (w2)

}
dV (w1)

= − 1

z2

∫
H1/n

B(z, w)Tw2 f (w) dV (w)

=
∫
H1/n

w2

z2
B(z, w)

∂ f

∂w2
(w) dV (w) −

∫
H1/n

w̄2

z2
B(z, w)

∂ f

∂w̄2
(w) dV (w),

(4.15)

derivatives interpreted distributionally. Since f ∈ L p
1 (H1/n) ,

∂ f
∂w2

,
∂ f
∂w̄2

∈ L p
(
H1/n

)
.

By (4.11), the integral kernels in (4.15) satisfy

∣∣∣∣
w2

z2
B(z, w)

∣∣∣∣ =
∣∣∣∣
w̄2

z2
B(z, w)

∣∣∣∣ ≈ |z2|n−1|w2|n+1

|1 − z2w̄2|2|zn2w̄n
2 − z1w̄1|2 .

Therefore Lemma 4.1, with c = n − 1, d = n + 1, and m = 1, shows

∥∥∥∥
∂

∂z2
◦ B f

∥∥∥∥
L p(H1/n)

�
∥∥∥∥

∂ f

∂w2

∥∥∥∥
L p

+
∥∥∥∥

∂ f

∂w̄2

∥∥∥∥
L p

≤ ‖ f ‖L p
1 (H1/n)

for p ∈
(
2n+2
n+3 , 2

)
. This establishes part (2) of the theorem.

Consider the z1 derivative. Equation (4.13) says

∂

∂z1
B f (z) = 1

z1

∫ |w2|=1

|w2|=0

{∫
D
Tw1 (B(z, w)) f (w) dV (w1)

}
dV (w2), (4.16)

where the inner integral is taken over D = {w1 : |w1| < |w2|n} for each fixed w2.
Estimating this term requires more care than was necessary for the z2 derivative. As
in the proof of Lemma 2.12, define a kernel by subtracting from B(z, w) the term
B
(
(0, z2), (0, w2)

)
. Equation (4.11) shows

K (z, w) := B(z, w) − B
(
(0, z2), (0, w2)

)

= 1

π2

[
zn2w̄

n
2

(1 − z2w̄2)2(zn2w̄
n
2 − z1w̄1)2

− 1

zn2w̄
n
2 (1 − z2w̄2)2

]

= 1

π2

2z1w̄1zn2w̄
n
2 − z21w̄

2
1

zn2w̄
n
2 (1 − z2w̄2)2(zn2w̄

n
2 − z1w̄1)2

. (4.17)

Since B
(
(0, z2), (0, w2)

)
is independent ofw1 and w̄1, K (z, w)may be substituted

for B(z, w) in Eq. (4.16). Since D is a disc centered at the origin, Proposition 2.11
applies:
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(4.16) = − 1

z1

∫ |w2|=1

|w2|=0

{∫
D
K (z, w)Tw1 f (w) dV (w1)

}
dV (w2)

= − 1

z1

∫
H1/n

K (z, w)Tw1 f (w) dV (w)

=
∫
H1/n

w1

z1
K (z, w)

∂ f

∂w1
(w) dV (w) −

∫
H1/n

w̄1

z1
K (z, w)

∂ f

∂w̄1
(w) dV (w),

(4.18)

derivatives interpreted distributionally, as before. By hypothesis, the functions
∂ f
∂w1

,
∂ f
∂w̄1

∈ L p
(
H1/n

)
.

From (4.17), the kernels in (4.18) satisfy

∣∣∣∣
w1

z1
K (z, w)

∣∣∣∣ =
∣∣∣∣
w̄1

z1
K (z, w)

∣∣∣∣ ≈
∣∣∣∣
w1

z1

∣∣∣∣ ·
∣∣2z1w̄1zn2w̄

n
2 − z21w̄

2
1

∣∣
|z2|n|w̄2|n|1 − z2w̄2|2|zn2w̄n

2 − z1w̄1|2

�
∣∣∣∣
w1

z1

∣∣∣∣ ·
|z1||w1||z2|n|w2|n

|z2|n|w2|n|1 − z2w̄2|2|zn2w̄n
2 − z1w̄1|2

≤ |w2|2n
|1 − z2w̄2|2|zn2w̄n

2 − z1w̄1|2 .

The last two inequalities hold because z, w ∈ H1/n . Lemma 4.1, with c = 0, d = 2n,
and m = 1, shows

∥∥∥∥
∂

∂z1
◦ B f

∥∥∥∥
L p(H1/n)

� ‖ f ‖L p
1 (H1/n)

for p ∈ (
1, 2n+2

2n

)
, establishing part (1) of the theorem. 
�

Corollary 4.19 The Bergman projection B is a bounded operator from L p
1 (H1) →

L p
1 (H1), for all

4
3 < p < 2.

Proof Set n = 1 in Theorem 4.12 and intersect the two intervals of L p boundedness.
It follows that D ◦ B is L p bounded for 1 < p < 2 for any first derivative D. Since
B itself is L p bounded for 4

3 < p < 4 (Theorem 3.1), the result follows. 
�

5 A Substitute Operator on the Hartogs Triangle

In light of Theorem 1.3, it is natural to seek operators related to B which have better
Sobolev mapping behavior than B itself. Pursuing an idea in [10], a sub-Bergman
operator is constructed on H1 with such improved behavior. H1 is taken only for
simplicity; the general pattern below extends to other domains.

Consider the set of bounded monomials on H1:

S(H1, L
∞) = {α = (α1, α2) : α1 ≥ 0, α1 + α2 ≥ 0} .
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1308 L. D. Edholm, J. D. McNeal

Lemma 3.2 shows that S(H1, L∞) = S(H1, L p) for p ≥ 4 and S(H1, L∞) �

S(H1, L2). Following [10], define the L∞ sub-Bergman kernel

B̃∞(z, w) :=
∑

α∈S(H1,L∞)

zαw̄α

‖zα‖2
L2(H1)

. (5.1)

Notice the series in (5.1) is only part of the usual series that defines the Bergman
kernel. The L∞ sub-Bergman projection is

B̃∞ f (z) :=
∫
H1

B̃∞(z, w) f (w) dV (w) (5.2)

whenever the integral converges; f is taken from certain L p
k (H1) classes below.

A rational expression for (5.1) follows from [10, Proposition 4.33]:

B̃∞(z, w) = 1

π2

2z22w̄
2
2 − z32w̄

3
2

(z2w̄2 − z1w̄1)2(1 − z2w̄2)2
.

This immediately yields the bound

∣∣∣̃B∞(z, w)

∣∣∣ � |z2|2|w2|2
|z2w̄2 − z1w̄1|2|1 − z2w̄2|2 . (5.3)

Lemma 4.1 with m = n = 1 and c = d = 2 shows for each fixed 1 < p < ∞,

∥∥∥̃B∞ f
∥∥∥
L p(H1)

� ‖ f ‖L p(H1)
, f ∈ L p(H1). (5.4)

Derivatives are now considered. Mapping properties of ∂
∂z2

◦ B̃∞ may be obtained

by following the proof of Theorem 4.12 with B̃∞(z, w) replacing B(z, w). The steps
leading up to (4.15) show, for f ∈ L p

1 (H1),

∂

∂z2
B̃∞ f (z) =

∫
H1

w2

z2
B̃∞(z, w)

∂ f

∂w2
(w) dV (w)

−
∫
H1

w̄2

z2
B̃∞(z, w)

∂ f

∂w̄2
(w) dV (w).

Thus the operator ∂
∂z2

◦ B̃∞ is controlled by the kernels

∣∣∣∣
w2

z2
B̃∞(z, w)

∣∣∣∣ =
∣∣∣∣
w̄2

z2
B̃∞(z, w)

∣∣∣∣ � |z2||w2|3
|z2w̄2 − z1w̄1|2|1 − z2w̄2|2 . (5.5)
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Lemma 4.1 (and Remark 4.5) with m = n = 1, c = 1, d = 3, shows for each fixed
1 < p < 4,

∥∥∥∥
∂

∂z2
◦ B̃∞ f

∥∥∥∥
L p(H1)

�
∥∥∥∥

∂ f

∂w2

∥∥∥∥
L p

+
∥∥∥∥

∂ f

∂w̄2

∥∥∥∥
L p

≤ ‖ f ‖L p
1 (H1)

. (5.6)

Mapping properties of ∂
∂z1

◦ B̃∞ may be obtained by considering

K̃∞(z, w) := B̃∞(z, w) − B̃∞((0, z2), (0, w2)
)

= 1

π2

[
2z22w̄

2
2 − z32w̄

3
2

(1 − z2w̄2)2(z2w̄2 − z1w̄1)2
− 2z22w̄

2
2 − z32w̄

3
2

z22w̄
2
2(1 − z2w̄2)2

]

= 1

π2

z1w̄1
(
4z2w̄2 − 2z22w̄

2
2 − 2z1w̄1 + z1w̄1z2w̄2

)
(1 − z2w̄2)2(z2w̄2 − z1w̄1)2

.

Simple estimation shows that K̃∞(z, w) satisfies a stronger estimate than (5.3):

∣∣∣̃K∞(z, w)

∣∣∣ � |z1||w1||z2||w2|
|1 − z2w̄2|2|z2w̄2 − z1w̄1|2 .

Repeating the steps from (4.16) to (4.18)—with K̃∞(z, w) replacing K (z, w)—shows,
for f ∈ L p

1 (H1),

∂

∂z1
B̃∞ f (z) =

∫
H1

w1

z1
K̃∞(z, w)

∂ f

∂w1
(w) dV (w)

−
∫
H1

w̄1

z1
K̃∞(z, w)

∂ f

∂w̄1
(w) dV (w).

Thus the operator ∂
∂z1

◦ B̃∞ is controlled by the kernels

∣∣∣∣
w1

z1
K̃∞(z, w)

∣∣∣∣ =
∣∣∣∣
w̄1

z1
K̃∞(z, w)

∣∣∣∣ � |z2||w2|3
|1 − z2w̄2|2|z2w̄2 − z1w̄1|2 .

This bound is identical to the bound in (5.5). Consequently, for each fixed 1 < p < 4,

∥∥∥∥
∂

∂z1
◦ B̃∞ f

∥∥∥∥
L p(H1)

�
∥∥∥∥

∂ f

∂w1

∥∥∥∥
L p

+
∥∥∥∥

∂ f

∂w̄1

∥∥∥∥
L p

≤ ‖ f ‖L p
1 (H1)

. (5.7)

Combining (5.4), (5.6), and (5.7) proves the following

Corollary 5.8 B̃∞ maps L p
1 (H1) → L p

1 (H1) boundedly for all 1 < p < 4.

It is not difficult to verify that B̃∞ fails to map L p
1 (H1) → L p

1 (H1) for p ≥ 4: take
the monomial f (z) = z1 z̄2 and follow the arguments given in Sect. 3. The interested
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1310 L. D. Edholm, J. D. McNeal

reader is invited to extend Corollary 5.8 to higher order derivatives. The statements
are

Corollary 5.9 B̃∞ maps L p
2 (H1) → L p

2 (H1) boundedly for all 1 < p < 2.

Corollary 5.10 B̃∞ maps L p
3 (H1) → L p

3 (H1) boundedly for all 1 < p < 4
3 .

Remark 5.11 Formulas (5.1) and (5.2) can be modified to define the L∞ sub-Bergman
kernel and projection on a general Reinhardt domain R. More generally, for fixed
p ∈ [2,∞), L p sub-Bergman kernels and projections (B̃ p(z, w) and B̃ p) may be
defined on R by formulas analogous to (5.1), where the sum is taken over indices
α ∈ S(R, L p)—see [10, Section 3.6].

In [10, Section 4.2.2], the B̃ p are constructed for each Hm/n and shown to stabilize
intom+n representatives. These operators are more regular on L p

0 than B is—see [10,
Theorem4.3]. This improved regularity has consequences for holomorphic duality and
approximation—see [10, Section 4.4].
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