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Abstract

Soboleyv irregularity of the Bergman projection on a family of domains containing the
Hartogs triangle is shown. On the Hartogs triangle itself, a sub-Bergman projection is
shown to satisfy better Sobolev norm estimates than its Bergman projection.
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1 Introduction

IfQ c C"isanopenset,] < p < oo,and k € Z™, let L,f(Q) denote the usual L”
Sobolev space of order k: the measurable functions f such that

P

112 = Z/Q|a“f|f’dv

| <k

is finite, where derivatives are interpreted in the distributional sense.

This paper continues investigations from [19,20] by demonstrating irregularity in
the L? Sobolev spaces for the Bergman projection associated to domains defined in
(1.2) below. These generalize the Hartogs triangle, which is Hj in (1.2).

The Bergman projection, B = Bgq, orthogonally projects L?(2) onto the closed
subspace O(£2) NL2(Q), O(Q) denoting holomorphic functions. On L2(Q) = L%(Q),
B is represented as an integral operator
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B f(z) =/QBQ(Z, w)f(w)dV(w), feL*Q), (1.1)

where d'V denotes Lebesgue measure and Bg(z, w) € O(R2) x m is the Bergman
kernel. If f ¢ L?(R2) let (1.1) define B f, whenever the integral converges. For many
classes of pseudoconvex domains, precise pointwise estimates on Bg(z, w) were
obtained and shown to imply ||Bf||Lkp<Q) < C||f||Lf(Q) forall 1 < p < oo and

k € ZT.See[12,23,25-27,30,31]. Thus B is L,f-regular in these cases. In the special
case p = 2, regularity for all k € Z* was shown in [8] whenever €2 has a plurisubhar-
monic defining function, without establishing pointwise estimates on Bg(z, w). This
result was generalized in [9,24]. However L% regularity does not always hold. This
irregularity was discovered in connection to Condition R of Bell-Ligocka [5,6]: it is
shown in [4] that B is irregular on L%(W), for large k, on the pseudoconvex “worm”
domains W given in [16].

The irregularity of B demonstrated in [19,20] is somewhat different. It occurs on the
Lebesgue spaces L?(2) = Lé' (R2) for certain p # 2 and does not involve derivatives.
For y > 0, define

H, = {(z1,22) € C*: |71 < |z2] < 1}. (1.2)

In [20] it is shown that the Bergman projection on H,,, for any y, is a degenerate
L? operator, bounded only for p in a proper subinterval of (1, 0co). In particular the
situation on Hj is that B : L? (H;) — L? (H;) boundedly if and only if%1 <p<4
see Theorem 3.1 below for the general situation. The limited range of L? boundedness
has consequences for approximation and duality theory in O (Hy), see [10]. Similar
consequences hold when irregularity can be characterized on norm scales other than
LP.
It turns out B is very degenerate as an L?” Sobolev map.

Theorem 1.3 Lety = 7 € QT and B denote the Bergman projection on H,.

(1) B fails to map L,%(Hy).—> L%(Hy),fork > 1 an integer.

. 9+ . =
(2) Let j,1 € Z*. Then EPE o B fails to map C*°(H,,) — L (H,) for
- 2m + 2n
p =

ml+1)+nG+1)—1
B also exhibits some regularity in L? Sobolev norms, but only on H;:
Theorem 1.4 B maps Lf(Hl) — Lf(H]) boundedly, for%1 <p<2

Notice the range on p, for boundedness on Lf (Hy), is smaller than the range for
boundedness on Lg (H;). More general statements than Theorem 1.4 can be made—
for separate directional derivatives and on domains other than H;—but these do not
yield boundedness theorems on the full Sobolev spaces L,f ; see Sect. 4.

Proving Theorems 1.3 and 1.4 requires understanding how derivatives commute
past the Bergman projection. An initial difficulty is that H, is not smoothly bounded,
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Sobolev Mapping of Some Holomorphic Projections 1295

so Stokes’ theorem cannot be applied in the usual way, e.g., as in [28, Lemma 3],
[29, Proposition 3.3], or [30, Lemma 5.1]. We circumvent this by applying Stokes
theorem on appropriately chosen discs and annuli intersecting I, . Theorem 1.3 is
proved in Sect. 3. After developing some general tools, Theorem 1.4 is proved as
Corollary 4.19 in Sect. 4. To partially repair irregularity described by Theorem 1.3,
substitute operators related to B are considered in Sect. 5.

There are other papers showing Bergman irregularity on Lg (2), for specific pseu-
doconvex 2:[1,11,13,34]. A unifying result, explaining irregularity in these cases and
[19,20], is lacking. A weighted regularity result on L,f (Hy), k£ > 0, related to Theo-
rem 1.3, was obtained in [14]. See also the paper [2] for a nonpseudoconvex domain
with Lg -irregularity of its Bergman projection.

When X and Y are expressions involving several variables, write X < Y to mean
X < CY for aconstant C independent of certain of these variables. The independence
of which variables is specified in use. X &~ ¥ means X < Y < X holds.

2 Sobolev Regularity in One Variable

Let D C C denote the unit disc. The Bergman projection Bp is bounded from
L,’:(D) — L,’Z(D) forall 1 < p < oo and k € Z*. This is well-known when
k = 0, apparently first proved in [33] using singular integral operator theory; see [17,
Chapter 2]. For any k € Z*, a proof modeled on arguments in [28] is given below.
This serves as a template for the proof of Theorem 1.4.

The Bergman kernel of D is

1 & S 1
Bo(,w)=—3 (j+Db)! =

> oy g2 @.1)

Note Bp(z, w) can be viewed as a function of s = zw.

2.1 L’(; Boundedness

A family of integral estimates will be used. When A = 0, the result is often called the
Forelli-Rudin lemma; see [21,32], or [35] for the ‘standard’ proof, based on asymp-
totics of the gamma function. Different proofs are given in [13,19,20], which also
address A # 0.

Lemma 2.2 Let D C C be the unit disc, € € (0, 1) and A < 2. Then for z € D,

(1—|wl?)~¢

—w|[TdV(w) < A - [z/H7E,
D |1 —ZU)|2

for a constant C = C(A, €) independent of z.

A general version of Schur’s Lemma will also be used. The next result extends
Lemma 2.4 from [19].
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1296 L.D. Edholm, J. D. McNeal

Lemma 2.3 Let Q C C" be a domain and K : Q x Q — [0, 00) a kernel function.
Suppose there is an auxiliary function h : Q — [0, 00) and numbers 0 < a < B,
0 < y < § such that the following two estimates hold: For all € € [«, B),

/ K(z, w)h(w)~€dV(w) < h(z)~¢, 2.4)
Q
and for all € € [y, d),
/ K(z, w)h(z)"€dV(z) < h(w)~¢. (2.5)
Q

Then the operator IC, K(f)(z) := fQ K(z,w) f(w)dV(w), maps LP(Q2) —
LP(2) for all p in the range

3
Z—i—l<p<—-{-l. (2.6)
B o

Proof Let % + 3 =1,g€LP(Q) ands € [, B). Then

P

KH@IP < ( / K (2, w)l fw)Ph(w) ¥ dV(w)> ( / K, w)h(w)“‘dwm)"
Q Q

P _sp
S </ K(z, w)f w)[Ph(w) 9 dV(w)> h(z) <.
Q

The first inequality follows from Holder’s inequality, the second from (2.4). Now

/|ic(f)(z>|f’dV(z)§/ (/ K(. w)|f<w)|f’h(w>?”dWw))h(z)‘?”dV(z)
Q Q Q

=/ If(w)lph(w)% (/ K(z, w)h(z)f% dV(z)) dV(w).
Q Q
2.7)

When s € [«, ) may chosen so that also Yq—” € [y, 8), estimate (2.5) implies

(2-7)5fgl.f(1)l”dV(Z),

and thus K : LP(2) — LP(£2) boundedly. The existence of such an s is equivalent to
saying both the inequalities %y < Band @ < %8 hold. This is equivalent to saying
(2.6) holds, as claimed. O

Lemmas 2.2 and 2.3 suffice to show Lg (D) boundedness of B p.
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Sobolev Mapping of Some Holomorphic Projections 1297

Corollary 2.8 The Bergman projection Bp maps LP (D) to LP (D) forall1 < p < oo.
In fact, the operator whose kernel is |Bp(z, w)| is bounded on LP (D) for 1 < p <
00.

Proof Lemma 2.3 is used with K(z, w) = |Bp(z, w)| and h(w) = 1 — |w|2 as the
auxiliary function. Lemma 2.2 shows that estimate (2.4) holds for all 0 < ¢ < 1.
Since Bp(z, w) is conjugate symmetric, (2.4) is equivalent to (2.5) with « = y and
B = 6. Lemma 2.3 then gives the claimed boundedness by setting 8 = 1 and sending
a — 0t. |

2.2 Integration by Parts

Define the vector field
—-—w—, 2.9)

and write 7¥ to mean 7y, o - - - 0 7, composed k times. If f € LY (D), clearly T} f €
LP(D).If, in addition, f € O(D), apartial converse holds: if Ds = {z € D : |z| > §},
then ”f”Lf(D(;) < ||Tu’ff||L1,(D5) for a constant independent of £.! This holds since

any first derivative can be written as a linear combination A7, + B% on Dg, for
bounded functions A and B.
The crucial property 7y, satisfies is

Proposition 2.10 7, annihilates C' radial functions of w € C.

Proof A C! radial function g can be written as g(w) = f(Jw|?), where f €
C! ([0, 00)). Therefore

Twg = wf (w*) -w — wf'(|w*) - » = 0.
O

Recall that r : C — R is a defining function for Q if {r < 0} = Q and |Vr(w)| # 0
when r = 0. Proposition 2.10 implies, in particular, that 7, annihilates defining func-
tions of discs and annuli centered at the origin along their boundaries. An integration
by parts result follows:

Proposition 2.11 Let 2 C C be either a disc or an annulus centered at the origin.
Thenif f,g € L}(Q) N C (),

fwa-ng=—/f-Zung.
Q Q

1A version of this also holds in several variables. See, e.g., [3,7,22] for a statement of the result, as well
as elementary proofs for p = 2. For general p, see [15].
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1298 L.D. Edholm, J. D. McNeal

Proof Choose a defining function for Q with |Vr(w)| = 1 for all w € bQ2. Stokes’
theorem yields

3 3
/%f-ng=/ af(w)-@g(w)dV(w)—f O ) - we(w) dV (w)
Q Q ow Q ow
J , _ _ or
9 dv o s
+[Qf'£(w8(w)) —/bgfwg'%
3 3
z—/Qf-[ﬁ(u}g(w))—ﬁ(wg(w))]dv+/beg-’Twr(w)dS
—/ f-TygdV.
Q

Here d S denotes induced surface measure on 2. The last boundary integral vanishes
since T,,r = 0 on bQ2. O

2.3 LZ Boundedness fork > 0

Theorem 2.12 The Bergman projection Bp is a bounded operator from L,’:(D) —
LY(D) forallk € Z* and 1 < p < oc.

Proof Fixk, pandlet f € L,’Z (D).Since Bp f € O(K2), only holomorphic derivatives
need to be estimated. For z # 0,

ok Pl
A Bpf(@) = /Bp(z w) f(w)dV (w)
ak
= f 327 (BoG.w) f(w) dV (w)
1 ok
-k
=7 | gar (BoG w)f(w)dV w). (2.13)

The last equality follows because Bp (z, w) can be viewed as a function of the variable
s = zw. Define anew kernel K (z, w), obtained by subtracting away the (k—1)-Taylor
approximation of Bp(z, w) in the s variable, i.e.,

1
Ki(z,w) = — Z(; +1)s/

7r2 3s Z -

_(k+ l)s —ksk+‘
IR

(2.14)
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Sobolev Mapping of Some Holomorphic Projections 1299

Since Ky(z, w) and Bp(z, w) differ by terms annihilated by % and Ky (z, w) is
anti-holomorphic in w,

(2.13) = —/ 0 — (Ki(z w)) f (w) dV (w)

_ _/ TH (e w)) £ (w) dV (w),

(=D "
= Z Ki(z, )T, f(w)dV (w).
Z D

The last equality follows from Proposition 2.11.
The modified kernel Ky (z, w) satisfies a stronger estimate than Bp(z, w). Indeed,
Eq. (2.14) shows

|z[*wl*

Ki(z, ) S —21
K@ wl $ 57— o

for a constant independent of z, w € D. This can be used to counteract the factor zl"
appearing in (2.13). Thus

‘—Bpf(z)

/ﬁ Tk f(w) dV (w)
1
< [ i v

w/ B (2. w)| T f (w) dV (w). 2.15)
D

Since ka € LP(D), Corollary 2.8 says that (2.15) defines an L? (D) function. This

1mphes BDf(z) € LP(D).
For any pos1t1ve 1nteger | < k, the same argument—but for the modified kernel
K(z, w)—shows BDf(z) € L?(D). Thus Bp f € L (D). i

3 Sobolev Irregularity

The starting point is the characterization of Lg boundedness of the Bergman projection
on H,,.
¥

Theorem 3.1 ([20]) Let H,, be defined in (1.2), B denote the Bergman projection on
H,, and1 < p < oo.
(1) Lety = € Q*, with ged(m, n) = 1.

Then B : L? (H,) — LP (H,)) is bounded if and only if p € ( T )

(2) Lety > 0 be irrational.
Then B : LP(H,) — LP (M) is bounded if and only if p = 2.
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1300 L.D. Edholm, J. D. McNeal

Let (A (m, n), p(m, n)) = (i’ﬁ:i"l i’frz” ) denote the interval of L? boundedness

in (1) above. When Hj,,/, is fixed, denote this also as Ié’ .
Some ingredients in the proof of Theorem 3.1 are used to prove the irregular-
ity statements in Theorem 1.3. Only consider H,,/, and let B = By, In An index

(a1, a2) € Zt x Z is LP-allowable if the monomial z{'Z5* € L? (H, /s ), where Zp
is either z5 or z». This set can be characterized:

Lemma 3.2 ([20], eq. (3.3)) Let p € [1, 00). The LP-allowable indices are
2
S (Hypyn. L7) = {a = (a1, @) sy 20, naj+may > L——(m +n)+ IJ} .
p

See also Lemma 4.4 in [10]. Here |x] = the greatest integer < x. In particular, the
L?* monomials are

S (B 12) = (@1, 02) 101 2 0, nay +mey = —m—n+1). (33)

As notation for the ray bounding the sets S (Hm /> LP ) let

2
E(Hm/n,L”) = {(x,y) eR?>: x>0, nx+my= L——(m+n)+1J}.
p

A consequence of orthogonality is also essential.

Lemma 3.4 ([20], Proposition 5.1) If both (Bi. B2), (B1, —B2) € S (Hyyn. L?), then
B (Zﬁl Zfz) — CZ/1‘51 Zz—ﬁz’

for a constant C > Q.

The unboundedness statements in Theorem 3.1 for p ¢ I(f (defined above) are
proved as follows. Let p > p(m, n).

(A): Choose (B1, B2) € ZT x Z* with (B1, —2) € € (Hyyn, L?).
(B): Lemma 3.2 implies 75!z, ¢ S (H,,, LP™™).
(C): Let f(z1,22) = z’f‘ zfz,Lemmas 4says Bf = CzP' 2P Thus || f|l L < oo,
while || B fll;» =
Duality implies the same conclusion if p < A(m, n).
The heart of this argument Works on Sobolev spaces. But one piece is not transfer-

able: if j, [ € Z*, the operator - o B is not self-adjoint in the L? inner product.

+1

41 0112
As a result, knowing that B is unbounded on L ,f does not automatically imply that B
is unbounded on LZ, where l + l = 1. Whether this fact actually allows regularity
of B on Lq for small ¢, e.g., q < k(m n), in cases where B is unbounded on Lk is
uncertain.

However for large p, L,f regularity certainly does not hold:
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Sobolev Mapping of Some Holomorphic Projections 1301

Theorem 3.5 Lety =7 € Qt, and j, l non-negative integers. The operator 3a§:1 )
2194
fails to map C*°(H,)) — LP(H,) for any
2m + 2n
P (3.6)

> .
“mld+D)4n(+1)—1

Proof Starting from Eq. (3.3), choose 8 = (B1, B2) € ZT x Z* with f; > j and
(B, —B2) € £ (Hpyn, L?), 1., np1 —mpP, = 1 —m — n. Clearly

aj+l

Jq.l
821312

(Z}lglzz—lsz) ~ Zf]*jzz_ﬁz_l' (37)
To see when this is an L? function, compute

—j_—pa—1 —pj+1_—pBr—pl+1
/ IZ’?I JZ2I32 |”dV:4n2/ riUﬁl pi+ rzpﬁz pl+ drydra
H,, hy

n/m

1 r.
By — 2 i
= 4712/ Ty ph le/ rf)ﬂl pj+ldr1 dry
0 0

~

1
~ / py PP By mmpni 2/ g, (3 8)
0

where 1, is the Reinhardt shadow of H,, i.e., h, = H, N (R=% x R=Y). The integral
in (3.8) is finite if and only if the exponent on the integrand > —1. This is equivalent
to saying

2m + 2n
m+1D+n(+1) -1

p= (3.9)

Now consider the monomial f(z) = Zflg§2 c COO(}HT,). Lemma 3.4 says B f =
C' 25" Thus || £l < oo, while
(3.6).

Jg.l
0210z, Lp

a/.;l oBf = oo for those p satisfying

Remark 3.10 Theorem 3.5 recovers the Lg unboundedness range given in Theorem 3.1
part (1). When j = [ = 0, the right-hand side of (3.6) is simply p(m, n). Since B is
self-adjoint, it must also be unbounded for 1 < p < A(m, n).

In particular, Theorem 3.5 implies Theorem 1.3 from the Introduction.

Corollary 3.1 Letk > 1 be an integer and y = - € Q™. The Bergman projection B
fails to map L,%(Hy) — L%(Hy).

Proof Ifk=j+I1>1,thenm(I+1)+n(j+1)—1>m+n. O
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1302 L.D. Edholm, J. D. McNeal

The notion of a lattice point diagram associated to the domains I, was introduced
in [20]. The diagrams record exponents of all monomials z{"z5% € S (Hy/u, L), as p
varies. These diagrams are thus Newton diagrams, but of the entire space A (H,,) =
O, ) N LP(H,) rather than of an individual f € AP(H,,). Several lattice point
diagrams succinctly illustrate Theorem 3.5 and Corollary 3.11.

0,0) >

o2

Three lattice point diagrams on H, , corresponding to y = % = %, 1, 2, are shown.
The indices @ € S (Hm /ns L2) are exactly those lattice points on and above the line
labeled L? for the corresponding y. The dotted lines, labeled L7, are lines parallel to
their corresponding L? lines but passing through the lattice points in £ (Hm /> LP )
Any lattice point strictly below the dotted lines correspond to monomials ¢ L? for the
given i, /.

Notice that (up to a constant) z; derivatives of fourth quadrant monomials are
represented by a shift left and z, derivatives by a shift down in the lattice point diagram.
These operations are labeled 91, 9 in the diagram. The content of Corollary 3.11 is
easily seen in this lattice point diagram: monomials on the L line are driven below to
a corresponding L? line (p < 2) by a single application of 9; or d;. The more precise

Theorem 3.5 may also be visualized in this way.

Remark 3.12 The precise non-isotropic (in terms of derivatives) irregularity in The-
orem 3.5 seems noteworthy. The two derivative operations 91, d> are not symmetric
with respect to how they drive monomials out of the boundedness interval Ié’ , depend-
ing on whether y > 1 or y < 1. This is very clear in the diagrams: if y > 1 (a “fat
Hartogs triangle” in the terminology of [18]), more d; derivatives are allowed, while
if y < 1 (a “thin Hartogs triangle”), more 9, derivatives are allowed.
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Sobolev Mapping of Some Holomorphic Projections 1303

4 Sobolev Regularity

A class of kernels on the domains IH, /,, containing the Bergman kernel By, /,, (z, w) and
its derivatives, can be analyzed via Lemma 2.3. The next result generalizes Proposition
4.2 of [20], which required ¢ = d.

Lemma4.1 Let K : Hy/n x Hy/ — C be an integral kernel satisfying

221 wa|?

|K (z1, z2, wi, w2)| < 4.2)

11— zowa|?2|Z5w) — z[ w1’

and let IC be the operator defined by K(f)(z) := me/n Kz, w) f(w)dV(w).
Suppose the following conditions on ¢ and d hold:

1 1 1
c>2n<1——)—2, d>2n(1——)—2, c+d>2n<2——>—2.
m m m

(4.3)

Then IC : LY (H,/,) — L? (. /n) is bounded operator for all p € (1, 00) satisfy-
ing

2m + 2n 2m + 2n
<
2m +2n +dm — 2mn p

4.4)

< —
2mn — cm

Remark 4.5 If the exponent ¢ > 2n, the upper bound in (4.4) can be taken to be oo.
This follows since |z2|¢ < |z2|2" forall z = (z1, z2) € Hy . Similarly if d > 2n, the
lower bound in (4.4) is 1.

Note that the conditions in (4.3) are necessary to ensure the range of p in (4.4) is a
non-degenerate subinterval of (1, 0o).

lwa R (Jwa > — w; [*™)(1 —
0 and € € (0, 1) are numbers

Proof of Lemma 4.1 Apply Lemma 2.3, with h(w)
|wo|?) as the auxiliary function. The parameters R
specified later in the proof. It follows that

vl

24) = / K (z, w)|h(w)~ € dV (w)
Hm/n

- / 221 [wal R (wa " — Jwi )= (1 — Jun*)~
™ S B 11— 22w |? |25 ws — 2w |2

[ |zl Twal TR — Jwy?) (lwa ™ — Jwi ™) =€
_/* 11— zowo|? [ w o lhwh — 2wl

dV(w)

dV(wl)j| dV(wy),
4.6)

@ Springer



1304 L.D. Edholm, J. D. McNeal

where D* is the punctured unit disc and the integral in brackets is taken over the region
W = {w; : |wi| < |w2|"/™}. Denote this inner integral by 1.

— _ 2
I ! / 1 ‘wiln \ I (ZT><“’T> dV (wy)
= — — - — —_— wq
|22 [wa |21 +21€ Jyy wh 25 ) \wy
|w2|2n/m—2n—2ne (1- |u|2)—5 B
= — — 2|u|2/'" 24V (u), 4.7
m|z2| p 11 =2z, "ul

after the m-to-1 integral transformation u = % Lemma 2.2 yields the estimate
2

- |w2|2n/m72n72ne ZT 2\ ~¢
wns = m—(1- |5
|22 2
—€
— |Z2|2n6—2n|w2|2n/m—2n—2ne (|Z2|2n _ |Z]|2m> . (48)

Now insert (4.8) into (4.6):

2\ €
(46) < |Z2|C+2ne—2n (|Z2|2n _ |Z1|2m)7€/\ m
~ p+ 11— 2zw?

w2l dV (w2),
where the exponent A = d + 3,,—" — 2n — (2n 4 R)e is required to be strictly greater
than —2 in order for the D* integral to converge. This is equivalent to requiring

LR (PR L P 4.9)
€< — — 4n . .
2n + R m

At this stage, fix R large enough to ensure the right-hand side of (4.9) < 1. Lemma 2.2
now applies, since € € (0, 1). Doing this yields,

—€ —€
[ iKGwin < avw S e (i - ) (- zP)
Hm/n

—€ —€
<l ™R (J2 = 1 P") (1= 1222)
=h()",
as long as the exponent ¢ 4+ 2ne — 2n > —Re. This is equivalent to saying

2n —c

€ > ) (4.10)
2n+ R
Inequalities (4.9) and (4.10) give the interval [¢, 8) in Lemma 2.3. Indeed, it suffices
totake o = 3% and B = 51z (d + 22 — 2n +2).
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Sobolev Mapping of Some Holomorphic Projections 1305

To generate the interval [y, §) needed in Lemma 2.3, simply switch the roles

of ¢ and d in the argument above. This leads to taking y = 222;% and § =

TR + R (c + = —2n + 2). Lemma 2.3 now gives the claimed result. O

4.1 Mapping of the Differentiated Projection

Boundedness of the Bergman projection associated to H; on the Sobolev space Lf (Hy)
can now be given. In [18], the Bergman kernel of H; /,, n € 7, is computed as

W)

72 (1 — 22wp)? (25 wy — zyw)?’

Bijn(z, w) = 4.11)

Throughout the section, subscripts on the projection B/, and the kernel By, (z, w)
are dropped.

Theorem 4.12 On H,,, n € Z™, it holds that

(1) ai o B maps LP(Hl/n) — LP(H,,) for p € (1 2"+2).

(2) 3% o B maps Ly (Hy;,) — LP(H,,) for p € (2nn:-r32’ 2)

Proof The spirit is similar to the proof of Theorem 2.12. Let f € Lf (Hy ) for
l<p<oo,and j =1,2.

—Bf(Z) -0 B(z, w) f(w)dV(w)
9z Zj azj Hy/n
= i u)]
Hl/n a

(B(Z w)) f(w)dV(w)

l ij (B(z, w)) f(w)dV (w), 4.13)
Zj JHim

since B(z, w) is anti-holomorphic in w.
The z; and z, derivatives are handled slightly differently. Consider the z» derivative
first. Equation (4.13) says

1l

—Bf( {/;‘Twz(B(Z,w))f(w)dV(WZ)}dv(wl), (4.14)

ZZ |lwq|=0

where the inner integral is over 4 = {w; : lwi|Y" < |ws| < 1} for each fixed w;.
Since A is an annulus centered at the origin, Proposition 2.11 transfers the vector field

Tw, onto f without picking up a boundary integral:
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1306 L.D. Edholm, J. D. McNeal

| [lo=t
4.14) = —— {/ B(z, u))Twzf(w)dV(wz)} dV(wy)
22 Jwy|=0 A
1
=—— B(z, )Ty, f(w) dV (w)
22 Hl/n
w 0 w 0
= / 2 Bz, w) L) av ) —/ " Biew) 2L wyaviw),
Hyjp 22 dwz Hyjm 22 dwy
(4.15)
derivatives interpreted distributionally. Since f € L (Hy/n) sz 3 u{z eLP (]Hh /n)
By (4.11), the integral kernels in (4.15) satisfy
w2 wo 221" wo|" !
—B(z,w)| = |—B(z,w)| = - - —.
2 ¢ )’ ’ 2 ( )‘ 11— zawa|?|25wh — z1wq|?
Therefore Lemma 4.1, withc =n—1,d =n + 1, and m = 1, shows
‘ ! Bf H H < sl
5 < »
822 Lp(Hl/n) 3w2 Lp 0 » Ll (Hl/n)
for p € (2;:32, 2). This establishes part (2) of the theorem.
Consider the z; derivative. Equation (4.13) says
1 [l
—Bf( {/ T, (B(z, w))f(w)dV(wl)}dV(wz), (4.16)
T lwal=0 UJD

where the inner integral is taken over D = {w; : |wi| < |wz|"} for each fixed w>.
Estimating this term requires more care than was necessary for the z, derivative. As
in the proof of Lemma 2.12, define a kernel by subtracting from B(z, w) the term
B((0, z2), (0, w)). Equation (4.11) shows

K(z, w) := B(z, w) — B((0, 22), (0, w2))

1 ZHWy 1

T x? [(1 — 20X AWy —ziw)?  Bwi(l— Z2w2)2]

1 2z1w 4 Wh — Z3w? @.17)
T 22 2w (1 — 2wn)X (8w — z1w1)?” '

Since B((O, z2), (0, wz)) is independent of w; and w1, K (z, w) may be substituted
for B(z, w) in Eq. (4.16). Since D is a disc centered at the origin, Proposition 2.11
applies:
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[w2|=1

4.16) = —i {/D K (z, w)Twlf(w)dV(wl)} dV(wy)

21 J{ws|=0

1
=—— K (z, w)Ty, f(w)dV(w)
21 JHyp
af

:f ﬂK(z,w)—(w)dWw)—/ Dk w2
Hl/n alU] I/n 21

8—_(w) dV(w),
<1 aw]
(4.18)

derivatives interpreted distributionally, as before. By hypothesis, the functions
af af »
—— o2 c L (H] /n)~

dwy’ dwq

From (4.17), the kernels in (4.18) satisfy

- - 22
wi Wy wi 2z1w125w5 — zjit|

‘_K(va)‘:‘_K(va)‘% | nlaA |7 T~ |21 51T T2

21 2 z1 | |z2|*wal"1 — z2wa |*|z5 w5 — zywi|
wy |zil[willz2|" w2l

Mz | lzaMwel" 1 — zowa 2| wh — zywi]?

lwo |

11— zown P |ZA W — zywg

The last two inequalities hold because z, w € H/,. Lemma 4.1, withc = 0, d = 2n,
and m = 1, shows

‘ 2 Bf S A
o = P
8Zl LP(Hl/n) b (Hl/n)
for p € (1, 212), establishing part (1) of the theorem. O

Corollary 4.19 The Bergman projection B is a bounded operator from Lf (Hy) —
Lf(Hl),for all % <p<2

Proof Setn = 1 in Theorem 4.12 and intersect the two intervals of L? boundedness.
It follows that D o B is L? bounded for 1 < p < 2 for any first derivative D. Since
B itself is L? bounded for %‘ < p < 4 (Theorem 3.1), the result follows. ]

5 A Substitute Operator on the Hartogs Triangle
In light of Theorem 1.3, it is natural to seek operators related to B which have better
Sobolev mapping behavior than B itself. Pursuing an idea in [10], a sub-Bergman
operator is constructed on H; with such improved behavior. H; is taken only for
simplicity; the general pattern below extends to other domains.

Consider the set of bounded monomials on H:

SH;, L®) ={a = (o1, 22) a1 =0, o1 +ap > 0}.
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1308 L.D. Edholm, J. D. McNeal

Lemma 3.2 shows that S(H;, L*°) = S(H, L?) for p > 4 and S(H;, L*°) C
S(H;, Lz). Following [10], define the L*° sub-Bergman kernel

— 7% w¥
aeS(H;, L) L2(H))

Notice the series in (5.1) is only part of the usual series that defines the Bergman
kernel. The L°° sub-Bergman projection is

BTf(2) = / BX(z, w) f(w)dV (w) (5.2)

T,

whenever the integral converges; f is taken from certain L,f (H) classes below.
A rational expression for (5.1) follows from [10, Proposition 4.33]:

1 ZZ% u’)% — z% 11)3

/3535(1, w) = — - = —
72 (zow2 — z1w1)2 (1 — z2w2)?

This immediately yields the bound

2 2
E\o_g(z7 w)‘ S |z2|* w2 | (5.3)

lzowz — z1wi 2|1 — 22wy |?’

Lemma 4.1 withm =n = 1 and ¢ = d = 2 shows for each fixed 1 < p < oo,

[5=7]

Lr ) Sl s f e LP(Hy). (54

Derivatives are now considered. Mapping properties of 725 © B*° may be obtained

by following the proof of Theorem 4.12 With/B?og(z, w) replacing B(z, w). The steps
leading up to (4.15) show, for f € Lf (Hy),

O BE (o) = / VB w) L (w) v (w)
9022 o, 22 dwsz

—/ DB w) 2L () dV ().
Hy, 22 dwy

Thus the operator % o BX is controlled by the kernels

|22][wa |?
lzowp — z1w1 2|1 — zow;)?

‘%Tﬁo/(z, w)‘ = ‘%?%, w)‘ < (5.5)
22 22
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Lemma 4.1 (and Remark 4.5) withm =n =1, ¢ = 1, d = 3, shows for each fixed
1<p<4,

af

— o B®
°BTI Lp Hau_)z

022

57

= ”f”Lf(Hl) . (5~6)

LP(Hy) H dws Ly

Mapping properties of % oﬁ\o_gmay be obtained by considering

K®(z, w) := B¥(z, w) — BX((0, 22), (0, w»))

o[ ada-gel  aded- el
(I = 22w2)% (22w — z1w1)?  Z3Ww3(1 — 2o1))?

1 ziw (4z2w2 — 223W35 — 2210 + 211 22W2)

72 (1 — 22w2)2(zown — z1w1)?

Simple estimation shows that K°°(z, w) satisfies a stronger estimate than (5.3):

[z1llwil|z2llwa]
11— z2w2 |2 |22 — 2111 |2

GEOE

Repeating the steps from (4.16) to (4.1 8)—With/K\°?(z, w) replacing K (z, w)—shows,
for f € L (H)),

By = / U, w)i(w)dV(w)
071 H, 21

—f VIR, w)—f(w>dV(w>
H; <1

Thus the operator 3371 o B is controlled by the kernels

|z2]|w2]?
1 — zows|2|z2w2 — z1 w1 ]2

W —— W1 ——
‘—1K°°(z, w)‘ = ‘—IKOO(z, w)‘ N
21 <1

This bound is identical to the bound in (5.5). Consequently, for each fixed 1 < p < 4,

af
ow

Combining (5.4), (5.6), and (5.7) proves the following

a
—oBoof

i < flra,- G

LP(H)) H dw LP

Corollary 5.8 /li\ogmaps Lf(H]) — Lf (Hy) boundedly forall 1 < p < 4.

It is not difficult to verify that B fails to map LY (H;) — L} (H;) for p > 4: take
the monomial f(z) = z1Z2 and follow the arguments given in Sect. 3. The interested
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1310 L.D. Edholm, J. D. McNeal

reader is invited to extend Corollary 5.8 to higher order derivatives. The statements
are

Corollary 5.9 B maps LY (H,) — LL (H,) boundedly for all 1 < p < 2.

Corollary 5.10 Eogmaps Lg(Hl) — Lg(Hl) boundedly forall 1 < p < %,

Remark 5.11 Formulas (5.1) and (5.2) can be modified to define the L°° sub-Bergman
kernel and projection on a general Reinhardt domain R. More generally, for fixed
p € [2,00), LP sub-Bergman kernels and projections (B”(z, w) and B”) may be
defined on R by formulas analogous to (5.1), where the sum is taken over indices
a € S(R, LP)—see [10, Section 3.6].

In [10, Section 4.2.2], the B? are constructed for each H;,/, and shown to stabilize
into m +n representatives. These operators are more regular on Lg than B is—see [10,
Theorem 4.3]. This improved regularity has consequences for holomorphic duality and
approximation—see [10, Section 4.4].
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