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1. Introduction

This paper is the first in a series aimed toward better understanding the Leray 
transform on smooth, strongly C-convex hypersurfaces. Here, the initial focus is on the 
following family of models. For 0 ≤ β < 1, define the hypersurface

Sβ :=
¶
(ζ1, ζ2) ∈ C2 : Im(ζ2) = |ζ1|2 + β Re(ζ2

1 )
©
, (1.1)

along with the (unbounded) domain lying on its C-convex side

Ωβ :=
¶
(z1, z2) ∈ C2 : Im(z2) > |z1|2 + β Re(z2

1)
©
. (1.2)

Let S ⊂ CPn be a strongly C-convex hypersurface bounding a domain Ω on its 
C-convex side. The Leray transform LS (see Remark 2.10 regarding terminology) is a 
member of the Cauchy-Fantappiè class of integral operators re-capturing key properties 
of the familiar one-variable Cauchy transform. Its applications include analysis of the 
Hardy space on the domain Ω: if σ is a measure on S and LS maps L2(S, σ) → L2(S, σ)
boundedly, then the transform identity shows how functions in the Hardy space H2(S, σ)
are built from certain rational functions.

As is typical in Hardy space constructions, care must be taken to specify the mea-
sure σ, especially when S is unbounded. For the Sβ defined above, the natural measure 
arising from the Leray transform is σ = dx1 ∧ dy1 ∧ dx2, where (x1, y1, x2, y2) are the 
usual affine coordinates on R4 ∼= C2. This choice of σ is a constant multiple of Feffer-
man hypersurface measure (see [3,4,14,16]) on Sβ , and consequently has many desirable 
invariance properties. (Note that σ is not comparable to the Euclidean surface measure 
on Sβ .)

The main computation in the first half of the paper is the following:

Theorem 1.3. Let Lβ denote the Leray transform of Sβ, and σ = dx1 ∧ dy1 ∧ dx2. Then 
Lβ : L2(Sβ , σ) → L2(Sβ , σ) is a bounded operator with norm

‖Lβ‖ = 1
4
√

1 − β2
. (1.4)

It is rare to compute exact norms of operators, so this result is interesting in its own 
right. But this computation also has significant import since the Sβ serve as models in 
local geometric considerations. Given a smooth, strongly C-convex hypersurface S ⊂
CP 2, the Sβ can be used to locally approximate S to two orders of tangency. Indeed for 
each fixed ζ∗ ∈ S, there is an automorphism of CP 2 – see equation (4.27) – moving ζ∗

to the origin such that the degree two Taylor expansion of S after this coordinate change 
is given by a unique Sβ(ζ∗), 0 ≤ β(ζ∗) < 1. The precise formulation of this statement is 
given in Section 2.

The mapping properties of the one-dimensional Cauchy transform are well-studied. In 
[17], Kerzman and Stein relate the Cauchy transform, C, on a smooth bounded domain 
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Ω ⊂ C to the Szegő projection and show that the two operators coincide if and only if 
Ω is a disc. It follows that ‖C‖2 ≥ 1 with equality if and only if Ω is a disc. However, 
it can also be extracted from this work that the essential L2-norm ‖C‖ess = 1 for every 
smooth Ω ⊂ C. (Recall that the essential norm – see [13] – measures the distance to the 
set of compact operators; it often occurs in localized analysis.) See [5,9,10] for related 
results about C.

Much recent work has been done to understand LS in dimensions two and higher. 
In [7], the first author and Lanzani study the essential spectrum of this operator on a 
class of Reinhardt domains in C2, and their results are in the same vein as Theorem 1.3. 
Lanzani and Stein have written a series of recent articles exploring many aspects of this 
operator. (See [19–23].) In [20], it is shown that the Leray transform of any bounded
strongly C-convex hypersurface S that is at least C1,1 smooth maps Lp(S) to itself for 
all 1 < p < ∞. Counterexamples to the L2-boundedness of LS exist if either the strong
C-convexity hypothesis or the C1,1 smoothness hypothesis is dropped. See [7] and [23]
for more information. We note that the Sβ are unbounded and fail to be even C1 at 
infinity (see Remark 3.57).

In [4], the first author shows that the L2-norm of LS measures the effectiveness of 
pairing two natural Hardy spaces associated to a hypersurface S. This is analogous to 
the role played by the Cauchy transform in an L2-pairing of functions holomorphic inside 
a Jordan curve with functions holomorphic outside the curve. (See David’s appendix in 
Meyer’s monograph [24].) Recalling the Lanzani-Stein result in the previous paragraph, 
insight into the interaction of these two Hardy spaces is gained by investigating the norm 
of LS .

Conjecture 1.5. Let S ⊂ CP 2 be a smooth bounded, strongly C-convex hypersurface and 
LS denote its Leray transform. The essential L2-norm is given by

‖LS‖ess = sup
ζ∈S

1
4
√

1 − β(ζ)2
. (1.6)

We postpone further discussion of this conjecture to a subsequent work in this series, 
other than a quick run through of evidence for why we believe it to be true. First, note 
the similarity between this statement and the situation for the Cauchy transform as 
described above. A disc of varying radius will osculate any smooth, bounded domain Ω
in the plane. The essential norm of an operator frequently arises in local considerations, 
and the fact that ‖CD‖2 = 1 on every disc D leads to the corresponding result for 
the essential L2-norm of the Cauchy transform on Ω. In two complex dimensions the 
osculating hypersurfaces giving local approximation are the Sβ, so Theorem 1.3 suggests 
the form of this conjecture. Additionally, it is shown in [7] that Conjecture 1.5 holds for 
all smooth bounded, strongly convex Reinhardt domains.

After proving Theorem 1.3, we continue to develop the general theory with the use 
of projective dual coordinates. These coordinates depend on the choice of a matrix M , 
corresponding to a particular affinization of projective space. The Leray transform is 
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shown to be given by a universal formula involving projective dual coordinates in Propo-
sition 4.30. On every bounded C-convex hypersurface enclosing the origin, this formula 
resembles the form of the Szegő projection of the unit ball – compare the formula (4.13)
with (4.14). On every unbounded C-convex hypersurface which can be written as a graph 
of a smooth function over C×R, this formula resembles the form of the Szegő projection 
of the Siegel upper half space – compare (4.19) with (4.23). This general procedure leads 
to the identification of a preferred measure on S in (4.32). It should be emphasized that 
while LS only coincides with the Szegő projection in special cases (affine images of the 
unit ball or Siegel upper half space [11]), the resemblance of the formulas suggests a 
relationship between the two operators that should be further explored.

The dual coordinates may be used to induce a secondary CR structure on S, called 
the projective dual CR structure. This is carried out in Section 4.3. From the two CR

structures and the preferred measure mentioned above, we obtain a pair of Hardy spaces 
on S, denoted H2(S) and H2

dual(S). The restriction QS of LS to H2
dual(S) provides an 

explicit invertible map H2
dual(S) → H2(S), and the full map LS factors through QS . 

(Most of the objects mentioned just above depend on the choice of M – with transparent 
transformation laws – but the dual CR structure is independent of M .)

The paper is structured as follows. Section 2 collects notation, definitions and neces-
sary background material. It also motivates our problem by recalling results from one 
complex variable. Section 3 begins with the analysis of Lβ via one Fourier transform 
together with size estimates. We then use certain projective automorphisms of Sβ to 
obtain a new parametrization of Lβ in Section 3.3, leading to the use of a second Fourier 
transform in the proof of Theorem 1.3 in Section 3.5. The projective dual coordinates 
and related constructions are developed in Section 4. In Sections 5 and 6 we explain the 
factorization results for LS , with special attention drawn to the case of Lβ . Appendix A
contains further analysis of automorphisms of Sβ leading to basic L2-estimates related 
to Lβ .

The authors would like to acknowledge the two anonymous referees for many useful 
suggestions to improve this paper.

2. Background

One motivating factor for the study of the Leray transform is the desire for a higher 
dimensional analogue of the Cauchy transform in one complex variable. For any smooth 
bounded domain Ω ⊂ C, recall that the Cauchy transform of a function f defined on the 
boundary bΩ is given by

Cf(z) := 1
2πi

∫

bΩ

f(ζ)
ζ − z

dζ. (2.1)

Denoting the Cauchy kernel by C(z, ζ) = 1
2πi(ζ−z) dζ, we highlight three essential prop-

erties:
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(i) Reproduction. Given z ∈ Ω and f ∈ O(Ω), we have Cf(z) = f(z).
(ii) Holomorphicity. For each fixed ζ ∈ bΩ, the kernel C(z, ζ) is holomorphic in z, and 

thus can be used to construct holomorphic functions.
(iii) Domain Independence. The kernel C(z, ζ) is independent of Ω, in that no explicit 

reference to a defining function of Ω is made in the coefficient function of dζ.

Unfortunately, these three properties never simultaneously hold in this form for a 
kernel-operator pair in higher dimensions. See [19] for an excellent survey detailing these 
matters. We shall insist on keeping the reproduction property (i), and will look for higher 
dimensional successors of the Cauchy transform by dropping one of the other conditions. 
The Bochner-Martinelli formula satisfies (i) and (iii), but fails to be holomorphic in the 
parameter z (see [18,26]). Though useful in many respects, this formula cannot be used 
to create holomorphic functions from more general boundary data.

Restricting to strongly C-convex hypersurfaces S ⊂ CPn, we are able to define the 
Leray kernel-operator pair which satisfies properties (i) and (ii). As above, property (ii) 
allows construction of holomorphic functions from rather general boundary data. And 
while the Leray kernel is domain dependent when S is viewed as a subset of CPn, a 
universal description involving projective dual variables is presented in Section 4 (see 
Remark 4.26).

2.1. Strong C-convexity

Underlying the Leray transform is the geometric notion of C-convexity. There are 
several equivalent definitions (see [1]), but we focus here on a differential condition along 
S. We first note the following proposition and refer to Section 5.2 in [4] for its proof.

Proposition 2.2. Let S be a smooth, strongly pseudoconvex real hypersurface in CPn and 
let p ∈ S. Then there is an automorphism of CPn moving p to 0 so that the transformed 
S takes the following form near 0.

Im(ζn) =
n−1∑
j,k=1

αj,kζj ζ̄k+Re

Ñ
n−1∑
j,k=1

βj,kζjζk

é
+cRe(ζn)2+O(‖(ζ1, . . . , ζn−1,Re(ζn))‖3).

The real constant c may be set arbitrarily, but the sum 
∑

αj,kζj ζ̄k + Re (
∑

βj,kζjζk) is 
determined up to a scalar multiple and a C-linear change of coordinates in (ζ1, . . . , ζn−1).

We now use this normal form to set up our definition.

Definition 2.3. Let S be connected and strongly pseudoconvex in CPn and suppose (after 
a projective automorphism) that S is given in the form of Proposition 2.2 above. We say 
that S is strongly C-convex if and only if

n−1∑
αj,kζj ζ̄k + Re

Ñ
n−1∑

βj,kζjζk

é
(2.4)
j,k=1 j,k=1
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is positive definite on (ζ1, . . . , ζn−1). This is equivalent to saying that the complex tangent 
hyperplane Cn−1 × {0} has minimal order of contact with S.

Because the real constant c in Proposition 2.2 may be chosen arbitrarily, set c = 0
and diagonalize the form to

Im(ζn) =
n−1∑
j=1

αj |ζj |2 + Re

Ñ
n−1∑
j=1

βjζ
2
j

é
+ O(‖(ζ1, . . . , ζn−1,Re(ζn))‖3), (2.5)

with each βj ≥ 0. Strong C-convexity at the origin is equivalent to saying that each 
βj < αj . When n = 2, we may set α1 = 1 which leads to our hypersurfaces

Sβ :=
¶
(ζ1, ζ2) ∈ C2 : Im(ζ2) = |ζ1|2 + β Re(ζ2

1 )
©
.

Remark 2.6. Every strongly C-convex hypersurface is (by our definition) strongly pseu-
doconvex, and osculating biholomorphic images of the sphere (or of S0) are a useful 
tool in the study of strongly pseudoconvex hypersurfaces. The Leray transform has good 
transformation properties under automorphisms of CP 2 (but not under general biholo-
morphic maps); working with this smaller set of mappings we need a larger set of models, 
and the projective images of the Sβ suitably osculate any strongly C-convex hypersur-
face. ♦

2.2. The Leray transform

Let S be a compact strongly C-convex C2 hypersurface in Cn, and let Ω be the 
bounded domain with boundary S. If f is a function on S, the Leray transform maps f
to a holomorphic function on Ω whenever the following integral makes sense.

LSf(z) :=
∫

S

f(ζ) LS(z, ζ), (2.7)

LS(z, ζ) := 1
(2πi)n

∂ρ(ζ) ∧ (∂̄∂ρ(ζ))n−1

〈∂ρ(ζ), (ζ − z)〉n . (2.8)

Note that the Leray kernel LS is a form of bi-degree (n, n − 1). Here ρ is a defining 
function for S, and 〈·, ·〉 is the natural bilinear pairing between (1, 0)-forms and vectors. 
This definition is independent of the choice of defining function. See chapter IV of [26]
for more information.

Formula (2.7) can actually be defined for a more general class of hypersurfaces. If S is 
bounded and has the property that all complex tangent hyperplanes never intersect Ω, 
the integral is defined for all z ∈ Ω. Such hypersurfaces are simply called C-convex. (See 
Proposition 2.5.9 in [1]. In the context of smooth connected hypersurfaces the notion of 
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C-convexity coincides with the notion of C-linear convexity, but these notions diverge in 
more general situations – see Chapter 2 in [1] for a complete discussion of these matters.)

Now consider a compact strongly C-convex C2 hypersurface S in CPn. The complex 
tangent hyperplane to S at some ζ ∈ S meets S only at ζ (see Remark 2.5.11 in [1]). 
Pushing the hyperplane away from S by a small multiple of the normal vector to S at ζ
we obtain a hyperplane disjoint from S (lying on the concave side of S). This hyperplane 
may be sent to the hyperplane at infinity by means of a projective transformation. Thus S
is projectively equivalent to a compact strongly C-convex C2 hypersurface in Cn; Bolt’s 
transformation law (previously mentioned in Remark 3.25 above) can now be used to 
define the Leray transform in terms of its Euclidean counterpart.

Once it has been established that (2.7) converges for z ∈ Ω, it is of interest to think 
of LS as a map from functions on S to functions on Ω, and to understand the boundary 
values of LSf(z). For z ∈ S, (2.7) is a singular integral and must be interpreted in a 
suitable way.

For unbounded C-convex hypersurfaces, it is not a priori clear that (2.7) converges 
even for z ∈ Ω. However when S = Sβ , we show the following hold:

(a) Given f ∈ L2(Sβ , σ), Lβf is a holomorphic function on Ωβ. (Appendix A.2.)
(b) Lβ is a bounded operator from L2(Sβ , σ) → L2(Sβ , σ). (Proposition 3.14.)
(c) ‖Lβ‖L2(Sβ ,σ) = 1

4√1−β2 . (Theorem 1.3, proved in Section 3.5.)
(d) The Leray transform of Sβ is a projection, i.e., Lβ ◦ Lβ = Lβ . (Corollary 3.56.) It 

is not orthogonal, except when β = 0, in which case the Leray transform coincides 
with the Szegő projection.

(e) The closure of Sβ in complex projective space fails to be C1. (Remark 3.57.)

The measure used above is σ = dx1 ∧ dy1 ∧ dx2. We postpone the discussion of the 
surface measures considered on a more general S until Section 4.

Remark 2.9. Equation (2.7) in dimension one reduces to (2.1). ♦

Remark 2.10. LS is often referred to in the literature as the Cauchy-Leray transform, 
the Leray-Aizenberg transform or the Cauchy transform for convex domains. ♦

2.3. The Fourier transform

The Fourier transform is a standard tool with varying normalizations. We include this 
section to collect basic facts for the version used in this paper.

Use F and F−1 to denote the Fourier and inverse Fourier transforms on R, respec-
tively, with the following convention: given h ∈ L1(R),

Fh(ξ) :=
∞∫

h(x)e−2πixξ dx, F−1h(ξ) :=
∞∫

h(x)e2πixξ dx. (2.11)

−∞ −∞
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It is standard to extend F and F−1 to operators on L2(R) using the density of L1 ∩ L2

functions in L2. The of placement of the 2π in (2.11) guarantees that both F and F−1

are isometries of L2, i.e., for g ∈ L2(R), we have Plancherel’s identity:

‖g‖2 = ‖Fg‖2 =
∥∥F−1g

∥∥
2 . (2.12)

Equations (2.13) and (2.14) below are written using the inverse Fourier transform F−1

because this operator is used extensively in later sections. When dealing with functions 
of more than one variable, we often subscript both the transform and the phase space 
variables. Starting with a two variable function H(x, y),

F−1
x,yH(ξx, ξy) :=

∞∫

−∞

∞∫

−∞

H(x, y)e2πi(xξx+yξy) dx dy. (2.13)

Also note that the formulas in (2.11) transform convolutions in the following way:

F−1(F ∗G) = F−1(F ) · F−1(G). (2.14)

Finally, note the following integral which arises frequently in computations below

∞∫

−∞

e−πx2
e2πixξ dx = e−πξ2

. (2.15)

3. The Leray transform of Sβ

The Lanzani-Stein machinery in [20] cannot be directly applied to the Leray transform 
of Sβ because these models fail to be C1,1 at ∞. (In fact, they are not even C1 at ∞; 
see Remark 3.57.) In this section, we first use a single Fourier transform along with 
size estimates to establish the L2-boundedness of Lβ . However, sharpness is lost in the 
computation of the exact norm when oscillatory cancellation is ignored. This is remedied 
in Section 3.3 when certain projective automorphisms are used to re-parametrize Sβ, 
ultimately leading to the sharp result given in Theorem 1.3.

The verification that integral (2.7) converges and defines a holomorphic function on 
Ωβ for all f ∈ L2(Sβ , σ) is postponed to Appendix A.

3.1. L2-boundedness via Fourier methods and size estimates

Starting from the definition of Sβ in (1.1), choose defining function ρ(ζ) = |ζ1|2 +
β Re ζ2

1 − Im(ζ2). The pieces of the Leray kernel in (2.8) are calculated to be

1
2 ∂ρ ∧ ∂̄∂ρ(ζ) = 1

2 dζ2 ∧ dζ̄1 ∧ dζ1, (3.1)
(2πi) 8π i
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〈∂ρ(ζ), (ζ − z)〉 = (ζ̄1 + βζ1)(ζ1 − z1) + i
2(ζ2 − z2), (3.2)

and the Leray transform (2.7) takes the form

Lβf(z) = 1
8π2i

∫

Sβ

f(ζ) dζ2 ∧ dζ̄1 ∧ dζ1

[(ζ̄1 + βζ1)(ζ1 − z1) + i
2(ζ2 − z2)]2

. (3.3)

We parametrize Sβ by R3, letting ζj = xj + iyj and zj = uj + ivj . The denominator 
of the integrand becomes 

(
C + i

2 (x2 − u2)
)2, where

C =
(
(1 + β)x1(x1 − u1) + (1 − β)y1(y1 − v1)

)
− 1

2(y2 − v2) (3.4)

+ i
(
(1 + β)x1(y1 − v1) − (1 − β)y1(x1 − u1)

)
.

When both ζ, z ∈ Sβ , this simplifies to

C = 1 + β

2 (u1 − x1)2 + 1 − β

2 (v1 − y1)2 (3.5)

+ i
(
(1 + β)x1(y1 − v1) − (1 − β)y1(x1 − u1)

)
.

In particular, note that Re(C) ≥ 0, with equality if and only if both x1 = u1 and 
y1 = v1.

It can be checked that dζ2 ∧ dζ̄1 ∧ dζ1 = 2i dx1 ∧ dy1 ∧ dx2. Using (3.5), we see

(3.3) = Lβf(u1, v1, u2)

= 1
4π2

∫

R3

f(x1, y1, x2)(
C + i

2 (x2 − u2)
)2 dx1 ∧ dy1 ∧ dx2

= − 1
π2

∫

R2

Å ∞∫

−∞

f(x1, y1, x2)(
(u2 − x2) + 2iC

)2 dx2

ã
dx1 ∧ dy1

= − 1
π2

∫

R2

F ∗G(u2) dx1 ∧ dy1, (3.6)

where F (x2) := f(x1, y1, x2) and G(x2) := 1
(x2+2iC)2 .

We now calculate the inverse Fourier transform of the function G.

Proposition 3.7. Let C be a complex number with Re(C) > 0. The inverse Fourier trans-
form of G(x) = 1

2 is given by
(x+2iC)
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F−1G(ξ) :=
∞∫

−∞

G(x)e2πixξ dx =
{

0 ξ ≥ 0
4π2ξe4πξC ξ < 0.

Proof. The condition Re(C) > 0 means the function H(z) := e2πizξ

(z+2iC)2 has a single pole 
of order 2 in the lower half plane. For any R > 0, the integral

R∫

−R

e2πixξ

(x + 2iC)2 dx

can be thought of as a piece of a contour integral around a semicircle with base on the 
x-axis.

When ξ > 0, consider such a semicircle in the upper half plane traversed counterclock-
wise. The radial portion of the integral tends to 0 as R → 0. On the other hand, this 
function is holomorphic inside the contour. Thus Cauchy’s theorem implies F−1G(ξ) = 0
for ξ > 0.

When ξ < 0, consider a semicircle in the lower half plane traversed clockwise. For 
sufficiently large R, this contour encloses the pole of H. As above, the radial portion of 
this integral tends to 0 as R → 0. Thus, Cauchy’s integral formula shows

lim
R→∞

R∫

−R

e2πixξ

(x + 2iC)2 dx = −2πi d
dx

(
e2πixξ

)∣∣∣∣∣
x=−2iC

= 4π2ξe4πξC . �

Equation (3.6) and Proposition 3.7 now show that

F−1
u2

Lβf(u1, v1, ξu2) =

⎧⎪⎪⎨⎪⎪⎩
0 ξu2 ≥ 0

−4ξu2

∫

R2

F−1
u2

f(x1, y1, ξu2)e4πξu2C dx1 dy1 ξu2 < 0. (3.8)

For ξu2 < 0, equation (3.5) and the triangle inequality show

∣∣F−1
u2

Lβf(x1, y1, ξu2)
∣∣ ≤ ∫

R2

∣∣F−1
u2

f(x1, y1, ξu2)
∣∣K(u1 − x1, v1 − y1, ξu2) dx1dy1

=
∣∣F−1

u2
f(·, ·, ξu2)

∣∣ ∗(u1,v1) K(·, ·, ξu2), (3.9)

where

K(x, y, ξu2) := −4ξu2Exp
[
2πξu2(1 + β)x2 + 2πξu2(1 − β)y2] .

Equation (3.9) is in convolution form because the triangle inequality lets us ignore 
the oscillatory piece of the exponential. Now apply a two-dimensional inverse Fourier 
transform. Making use of integral (2.15), a computation shows



D.E. Barrett, L.D. Edholm / Advances in Mathematics 364 (2020) 107012 11
F−1
u1,v1

K(ξu1,ξv1 , ξu2) = 2√
1 − β2

Exp
ñ

π

2ξu2

Ç
ξ2
u1

1 + β
+

ξ2
v1

1 − β

åô
, (3.10)

and it follows that

sup
{
F−1

u1,v1
K(ξu1,ξv1 , ξu2) : ξu1 ∈ R, ξv1 ∈ R, ξu2 < 0

}
= 2√

1 − β2
. (3.11)

We now deduce that

F−1
u1,v1

[ ∣∣F−1
u2

f(·, ·, ξu2)
∣∣ ∗(u1,v1) K(·, ·, ξu2)

]
= F−1

u1,v1

(∣∣F−1
u2

f
∣∣) (ξu1 , ξv1 , ξu2) ·

2√
1 − β2

Exp
ñ

π

2ξu2

Ç
ξ2
u1

1 + β
+

ξ2
v1

1 − β

åô
. (3.12)

Equations (3.11) and (3.12) give

∥∥∥F−1
u1,v1

[ ∣∣F−1
u2

f(·, ·, ξu2)
∣∣ ∗(u1,v1) K(·, ·, ξu2)

]∥∥∥
L2(R3, σ)

≤ 2√
1 − β2

∥∥∥F−1
u1,v1

( ∣∣F−1
u2

f
∣∣ )(ξu1 , ξv1 , ξu2)

∥∥∥
L2(R3, σ)

. (3.13)

This is now summarized to confirm item (b) from Section 2.2:

Proposition 3.14. The Leray transform Lβ is bounded from L2(Sβ , σ) → L2(Sβ , σ).

Proof. First note that from repeated application of Plancherel’s identity (2.12), we have 
that

‖f(u1, v1, u2)‖L2(R3, σ) =
∥∥F−1

u2
f(u1, v1, ξu2)

∥∥
L2(R3, σ)

=
∥∥|F−1

u2
f(u1, v1, ξu2)|

∥∥
L2(R3, σ)

=
∥∥F−1

u1,v1
(|F−1

u2
f |)(ξu1 , ξv1 , ξu2)

∥∥
L2(R3, σ) .

Since F−1
u2

Lβf(u1, v1, ξu2) = 0 for ξu2 ≥ 0, we only need to consider ξu2 < 0 in the 
norm computations below. Now,

‖Lβf(u1, v1, u2)‖L2(R3, σ) =
∥∥F−1

u2
Lβf(u1, v1, ξu2)

∥∥
L2(R3, σ)

≤
∥∥|F−1

u2
f(·, ·, ξu2)| ∗(u1,v1) K(·, ·, ξu2)

∥∥
L2(R3, σ) (3.15)

=
∥∥∥F−1

u1,v1

[ ∣∣F−1
u2

f(·, ·, ξu2)
∣∣ ∗(u1,v1) K(·, ·, ξu2)

]∥∥∥
L2(R3, σ)

≤ 2√
2

∥∥∥F−1
u1,v1

( ∣∣F−1
u2

f
∣∣ )(ξu1 , ξv1 , ξu2)

∥∥∥
L2(R3, σ)

(3.16)

1 − β
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= 2√
1 − β2

‖f(u1, v1, u2)‖L2(R3, σ) .

This is equivalent to saying

‖Lβ‖L2(Sβ , σ) ≤
2√

1 − β2
. (3.17)

Inequality (3.15) follows from (3.9) and (3.16) is just (3.13). �
Note. A version of (3.17) was shown previously to the first author by Jennifer Brooks.

Remark 3.18. The bound on ‖Lβ‖2 given in equation (3.17) is never sharp, given the 
validity of Theorem 1.3. When β = 0, we can sharpen the estimate ‖L0‖2 < 2 simply by 
observing the Leray transform is identical to the Szegő projection on S0 – see equation 
(4.23). Consequently, ‖L0‖2 = 1. The operators do not coincide for β �= 0. Note that 
while Sβ is biholomorphically equivalent to S0 via the map (z1, z2) �→ (z1, z2 − iβz2

1), 
they are not projectively equivalent. Cf. Remark 3.25. ♦

Remark 3.19. While Proposition 3.14 is weaker than Theorem 1.3, it is included for two 
reasons. First, it is worthwhile to see that the L2-boundedness of Lβ follows straight-
forwardly from the application of a single Fourier transform (3.8), without the use of 
the second transform facilitated by the re-parametrization of Sβ in Section 3.2 below. 
Additionally, it is of great interest to the authors to understand how much sharpness is 
lost when applying the triangle inequality in (3.9) and similar situations. For instance, 
is the sharp norm directly attainable from equation (3.8)? Sβ may be identified with 
the Heisenberg group (the boundary of the Siegel upper half space) when β = 0. This 
allows for the use of the Weyl transform, which is tailored to handle the twisted con-
volution occurring in (3.8). See chapter 1 of [15] for more information on these topics. 
This machinery gives a direct way to show that ‖L0‖2 = 1 (as opposed to the indirect 
observation in the preceding remark), but (yet again) does not apply in the β �= 0 case. ♦

3.2. Parametrizing Sβ with projective automorphisms

The work in this section is inspired by what is known in the case of the Heisenberg 
group, which corresponds to S0. Immediately from its definition in equation (1.1), we 
see that Sβ is invariant under translations of the form (ζ1, ζ2) �→ (ζ1, ζ2 + s), where s is 
a real number. We would like to find less trivial automorphisms of this hypersurface. We 
seek maps φ : Sβ → Sβ of the form φ(ζ1, ζ2) = (ζ1 + c, ·), c ∈ C. The second component 
is now determined.

Proposition 3.20. Let c ∈ C and s ∈ R. A complex affine map preserving Sβ which 
translates the first coordinate ζ1 �→ ζ1 + c must be of the form
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φ(c,s)(ζ1, ζ2) =
(
ζ1 + c, ζ2 + 2i(c̄ + βc)ζ1 + i

(
|c|2 + β Re(c2)

)
+ s

)
. (3.21)

Proof. Write φ(c,s)(ζ1, ζ2) = (ζ1 + c, φ2(ζ1, ζ2)). Since the image of this map lies in Sβ ,

Im(φ2(ζ1, ζ2)) = |ζ1 + c |2 + β Re
(
(ζ1 + c)2

)
= |ζ1|2 + |c|2 + 2 Re(ζ1c̄) + β Re(ζ2

1 ) + 2β Re(ζ1c) + β Re(c2)

= Im(ζ2) + 2 Re((c̄ + βc)ζ1) + |c|2 + β Re(c2).

Since φ2 is holomorphic, we must have

φ2(ζ1, ζ2) = ζ2 + 2i(c̄ + βc)ζ1 + i
(
|c|2 + β Re(c2)

)
+ s(ζ1, ζ2),

where s(ζ1, ζ2) is a real valued function. But this implies s(ζ1, ζ2) = s is constant. �
We now see how these maps compose.

Proposition 3.22. Let φ(c,s) : Sβ → Sβ be defined as in equation (3.21) above. Then 
composition of these maps gives

φ(c1,s1) ◦ φ(c2,s2) = φ(c1+c2, s1+s2−2Im((c̄1+βc1)c2)). (3.23)

Proof. From equation (3.21),

φ(c1,s1) ◦ φ(c2,s2)(ζ) = φ(c1,s1)

Å
ζ1 + c2 , ζ2 + 2i(c̄2 + βc2)ζ1 + i

(
|c2|2 + β Re(c22)

)
+ s2

ã
=

Å
ζ1 + (c1 + c2) , ζ2 + 2i(c̄2 + βc2)ζ1 + i

(
|c2|2 + β Re(c22)

)
+ s2

(3.24)

+ 2i(c̄1 + βc1)(ζ1 + c2) + i
(
|c1|2 + β Re(c21)

)
+ s1

ã
.

From here, the second component in equation (3.24) can be written as

ζ2 + 2i (c1 + c2 + β(c1 + c2)) ζ1 + i
(
|c1 + c2|2 + β Re

(
(c1 + c2)2

))
+ (s1 + s2) − 2 Im ((c̄1 + βc1)c2) . �

Remark 3.25. Note that the automorphisms described above are affine maps preserving 
both volume and our distinguished boundary measure σ = dx1∧dy1∧dx2. Thus, it is un-
necessary to rescale the Leray transform of Sβ when the hypersurface is re-parametrized 
using these maps. Affine maps form a subgroup of the automorphisms of CPn. In [8], 
Bolt proves a transformation law of the Leray kernel under projective automorphisms, 
when the kernel is expressed in terms of Fefferman hypersurface measure. We return to 
this point in Appendix A.1. ♦
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It will be desirable to consider an abelian subgroup of the group of the automorphisms 
defined by equation (3.21). Notice that the term −2 Im((c̄1 +βc1)c2) vanishes when both 
c1, c2 ∈ R. This immediately implies the following corollary, where we’ve changed all 
instances of c to r to emphasize this parameter is now restricted to real values.

Corollary 3.26. The collection of automorphisms G :=
{
φ(r,s) : r, s ∈ R

}
is a closed 

abelian subgroup of Aut(Sβ). In fact, given two maps in this subgroup,

φ(r1,s1) ◦ φ(r2,s2) = φ(r1+r2,s1+s2). (3.27)

We now use the action of G on a one-dimensional curve γ lying in Sβ to re-parametrize 
this hypersurface.

Theorem 3.28. Consider the curve γ : R → Sβ given by γ(t) =
(
it, i(1 − β)t2

)
. The 

action of the group G =
{
φ(r,s) : r, s ∈ R

}
on the image of γ gives a parametrization of 

Sβ, i.e., for each ζ ∈ Sβ, there is a unique (r, s, t) ∈ R3 such that ζ = φ(r,s)(γ(t)).

Proof. From equation (3.21) we can check that

φ(r,s)(γ(t)) =
(
r + it, s− 2(1 + β)rt + i

[
(1 + β)r2 + (1 − β)t2

])
. (3.29)

The first coordinate can attain any complex number by specifying the parameters r and 
t. Once these values are decided, we can appropriately choose s to adjust the real part 
of the second coordinate. �
3.3. Re-parametrizing the Leray kernel

We now make use of the automorphisms in the previous subsection. Recall that

Lβf(z) = 1
8π2i

∫

Sβ

f(ζ) dζ2 ∧ dζ̄1 ∧ dζ1

[(ζ̄1 + βζ1)(ζ1 − z1) + i
2 (ζ2 − z2)]2

. (3.30)

In order to circumvent the loss of sharpness on the norm coming from application of 
the triangle inequality, re-write (3.30) in terms of the parameterization described in 
Theorem 3.28. For notational purposes, we use (rz, sz, tz) and (rζ , sζ , tζ) to correspond 
to the respective z and ζ variables. In other words,

z =
(
rz + itz, sz − 2(1 + β)rztz + i

[
(1 + β)r2

z + (1 − β)t2z
])

,

ζ =
(
rζ + itζ , sζ − 2(1 + β)rζtζ + i

[
(1 + β)r2

ζ + (1 − β)t2ζ
])

.

The wedge product of differentials appearing in the numerator of equation (3.30) can 
be written as
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dζ2 ∧ dζ̄1 ∧ dζ1 = 2i dsζ ∧ drζ ∧ dtζ . (3.31)

The major advantage of using this parametrization is seen when considering the denom-
inator of the integrand in (3.30). After the change of variables,

(ζ̄1 + βζ1)(ζ1 − z1) = ((1 + β)rζ − i(1 − β)tζ) ((rζ − rz) + i(tζ − tz))

= (1 + β)rζ(rζ − rz) + (1 − β)tζ(tζ − tz) (3.32)

+ i [(1 + β)rζ(tζ − tz) − (1 − β)tζ(rζ − rz)] ,

and

i

2(ζ2 − z2) = −1
2
[
(1 + β)(r2

ζ − r2
z) + (1 − β)(t2ζ − t2z)

]
(3.33)

+ i

2 [(sζ − sz) − 2(1 + β)(rζtζ − rztz)] .

Putting the pieces together, we obtain

(3.32) + (3.33) = 1 + β

2 (rz − rζ)2 + i(rz − rζ)(tz + tζ + β(tz − tζ)) (3.34)

+ 1 − β

2 (tz − tζ)2 −
i

2(sz − sζ)

:= A− i

2(sz − sζ),

where we’ve collected all terms not involving (sz − sζ) into the temporary label

A = 1 + β

2 (rz − rζ)2 + 1 − β

2 (tz − tζ)2 + i(rz − rζ)(tz + tζ + β(tz − tζ)). (3.35)

The fact that the term involving the s variables appears in convolution form suggests 
the use of an (inverse) Fourier transform in this variable. Note that all terms involving 
the r variables also appear in convolution form. But rather than performing a two-
dimensional inverse Fourier transform, we make use of the computations in Section 3.1. 
From (3.30), (3.31) and (3.34),

Lβf(rz, sz, tz) = 1
4π2

∫

R3

f (rζ , sζ , tζ)(
A− i

2 (sz − sζ)
)2 dsζ ∧ drζ ∧ dtζ (3.36)

= − 1
π2

∫

R2

Ñ ∞∫

−∞

f (rζ , sζ , tζ)
((sz − sζ) + 2iA)2

dsζ

é
drζ ∧ dtζ

= − 1
π2

∫

R2

F ∗G(sz) drζ ∧ dtζ , (3.37)
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where F (s) := f(rζ , s, tζ) and G(s) := 1
(s+2iA)2 .

At this point we compare (3.6) to (3.37) and see that they are identical except that 
A = (3.35) and C = (3.5) are different.

Remark 3.38. A glance at equation (3.35) shows Re(A) ≥ 0, with equality if and only 
if both rz = rζ and tz = tζ . When Re(A) = 0, F ∗ G is defined by a singular integral 
that should be interpreted in a principal-value sense. This is reminiscent of the Cauchy 
transform and relates to topics like the Plemelj jump formula as described in [25]. We 
can sidestep this issue, however, since Re(A) vanishes only on a set of three-dimensional 
measure zero. ♦

Re (A) > 0 almost everywhere and for all such A, Proposition 3.7 says the inverse 
Fourier transform of G(s) = 1

(s+2iA)2 is given by

F−1
s G(ξs) :=

∞∫

−∞

G(s)e2πisξs ds =

⎧⎨⎩0 ξs ≥ 0

4π2ξse
4πξsA ξs < 0.

(3.39)

As a consequence of equations (2.12) and (2.14), we are able to reduce the dimension 
of the integral in calculation of the L2-norm of Lβf(rz, sz, tz). Starting from (3.37), the 
inverse Fourier transform in the s variable yields a statement equivalent to (3.8):

F−1
s Lβf(rz, ξs, tz) =

⎧⎪⎪⎨⎪⎪⎩
0 ξs ≥ 0

−4 ξs
∫

R2

F−1
s f(rζ , ξs, tζ) e4πξsA drζ dtζ ξs < 0. (3.40)

3.4. A second inverse Fourier transform and Hilbert-Schmidt operators

The payoff to the re-parametrization in the previous subsection comes from the fact 
that A = (3.35) is in convolution form in the r variables. Motivated by (3.39), for ξs < 0
we define

H(r) := −4 ξs e2πξs[(1+β)r2+(1−β)(tz−tζ)2+2ir(tz+tζ+β(tz−tζ))]. (3.41)

Now take the inverse Fourier transform. Using the scaling r �→
√

−2ξs(1 + β) r and 
integral (2.15), a computation shows that for ξs < 0,

F−1
r H(ξr) = −4 ξs

∞∫

−∞

e2πir ξre2πξs[(1+β)r2+(1−β)(tz−tζ)2+2ir(tz+tζ+β(tz−tζ))] dr
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= 2
√

2
√
−ξs√

1 + β
Exp

ï
π

2(1 + β)ξs
(
ξ2
r + 4(1 + β)(ξsξrtz + 2ξ2

s t
2
z)

+ 4(1 − β)(ξsξrtζ + 2ξ2
s t

2
ζ)
)ò

= 2
√

2
√
−ξs√

1 + β
Exp

ï
π

2(1 + β)ξs

ß
ξ2
r + 8(1 + β)ξ2

s

Å
tz + ξr

4ξs

ã2
− (1 + β)ξ2

r

2

+ 8(1 − β)ξ2
s

Å
tζ + ξr

4ξs

ã2
− (1 − β)ξ2

r

2

™ò
= 2

√
2
√
−ξs√

1 + β
Exp

ñ
4πξs

Å
tz + ξr

4ξs

ã2ô
· Exp

ñ
4πξs(1 − β)

1 + β

Å
tζ + ξr

4ξs

ã2ô
.

(3.42)

The key observation from (3.42) is that the tz and tζ variables are decoupled, i.e., 
F−1

r H(ξr) breaks into a product of functions of these respective variables. Now define

m0,ξr,ξs(tz) := m0(tz) = 2
√

2
√
−ξs√

1 + β
Exp

ñ
4πξs

Å
tz + ξr

4ξs

ã2ô
· 1{ξs< 0} (3.43)

and

m1,ξr,ξs(tζ) := m1(tζ) = Exp
ñ

4π(1 − β)ξs
1 + β

Å
tζ + ξr

4ξs

ã2ô
· 1{ξs< 0}, (3.44)

where 1{ξs< 0} is the indicator function of the interval (−∞, 0) in the ξs variable. These 
definitions were set up so that for each ξs < 0,

F−1
r H(ξr) = m0(tz)m1(tζ). (3.45)

Now (3.40), (3.41) and (3.45) give that

F−1
r F−1

s Lβf(ξr, ξs, tz) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ξs ≥ 0

m0(tz)
∞∫

−∞

m1(tζ)F−1
r F−1

s f(ξr, ξs, tζ) dtζ ξs < 0.

(3.46)

We finish our analysis by studying the family of operators Mξr,ξs := M defined by

M g(tz) := m0(tz)
∞∫

m1(tζ)g(tζ) dtζ . (3.47)

−∞
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Proposition 3.48. For each ξr ∈ R, ξs < 0, the operator Mξr,ξs = M is rank-one Hilbert-
Schmidt with norm

‖M ‖HS = 1
4
√

1 − β2
.

Proof. Observe

‖M ‖2
HS =

∫

R2

|m0(tz)m1(tζ)|2 dtzdtζ

= −8 ξs
1 + β

Ñ ∞∫

−∞

Exp
ñ
8πξs

Å
tz + ξr

4ξs

ã2ô
dtz

é

·

Ñ ∞∫

−∞

Exp
ñ

8π(1 − β)ξs
1 + β

Å
tζ + ξr

4ξs

ã2ô
dtζ

é

= −8 ξs
1 + β

Å 1
2
√

2
√
−ξs

ã
·
Ç

1
2
√

2
√
−ξs

 
1 + β

1 − β

å
= 1√

1 − β2
.

Taking square roots, we are done. �
We are ready to prove Theorem 1.3, but first consider the action of Mξr,ξs = M

on a function gξr,ξs = g ∈ L2(R) for a fixed pair ξr ∈ R, ξs < 0. Recall that the 
Hilbert-Schmidt norm of an operator dominates its operator norm. Indeed,

‖M g‖2
L2(R) =

∞∫

−∞

∣∣∣∣∣∣m0(tz)
∞∫

−∞

m1(tζ)g(tζ) dtζ

∣∣∣∣∣∣
2

dtz

≤

Ñ ∞∫

−∞

|m0(tz)|2 dtz

éÑ ∞∫

−∞

|m1(tζ)|2 dtζ

éÑ ∞∫

−∞

|g(tζ)|2 dtζ

é
(3.49)

= 1√
1 − β2

‖g‖2
L2(R) ,

with equality in (3.49) holding if and only if g is a multiple of m1, i.e.,

gξr,ξs(·) = ϕ(ξr, ξs)m1,ξr,ξs(·). (3.50)
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3.5. Proof of Theorem 1.3

The reparametrization in Section 3.3 from (3.30) through (3.36) shows that
‖Lβf‖L2(Sβ ,σ) = ‖Lβf(rz, sz, tz)‖L2(R3,σ). By repeated application of Plancherel’s iden-
tity (2.12),

‖Lβf(rz, sz, tz)‖L2(R3,σ) =
∥∥F−1

s Lβf(rz, ξs, tz)
∥∥
L2(R3,σ)

=
∥∥F−1

r F−1
s Lβf(ξr, ξs, tz)

∥∥
L2(R3,σ)

=
∥∥Mξr,ξs

(
F−1

r F−1
s f(ξr, ξs, ·)

)
(tz)

∥∥
L2(R3,σ)

≤ 1
4
√

1 − β2

∥∥F−1
r F−1

s f(ξr, ξs, tz)
∥∥
L2(R3,σ) (3.51)

= 1
4
√

1 − β2
‖f(rz, sz, tz)‖L2(R3,σ) .

Noting that ‖f(rz, sz, tz)‖L2(R3,σ) = ‖f‖L2(Sβ ,σ) shows 1
4√1−β2 is an upper bound.

The norm of Lβ is achieved when equality holds in (3.51). By (3.50), this happens if 
and only if we choose f ∈ L2(Sβ , σ) so that

F−1
r F−1

s f(ξr, ξs, ·) = ϕ(ξr, ξs)m1,ξr,ξs(·). (3.52)

The square-integrability of f ensures ϕ must satisfy

∞∫

−∞

0∫

−∞

1√
−ξs

|ϕ(ξr, ξs)|2 dξs dξr < ∞. (3.53)

This completes the proof and establishes item (c) on the list given in Section 2.2. �
3.6. The Leray transform of Sβ is a projection operator

We establish item (d) from Section 2.2 by showing Lβ ◦Lβ = Lβ .

Proposition 3.54. For each ξr ∈ R, ξs < 0, the operator Mξr,ξs = M defined by equation 
(3.47) is a projection.

Proof. Let g ∈ L2(R), and m0 and m1 be given by equations (3.43) and (3.44), respec-
tively.

(M ◦ M ) (g)(tη) = m0(tη)
∞∫

m1(tz)

Ñ
m0(tz)

∞∫
m1(tζ)g(tζ) dtζ

é
dtz
−∞ −∞
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= m0(tη)
∞∫

−∞

m1(tζ)g(tζ) dtζ
∞∫

−∞

m1(tz)m0(tz) dtz. (3.55)

A computation shows that

∞∫

−∞

m1(tz)m0(tz) dtz = 2
√

2
√
−ξs√

1 + β

∞∫

−∞

Exp
ñ

8πξs
1 + β

Å
tz + ξr

4ξs

ã2ô
dtz

= 1,

and thus (3.55) = M g(tη). �
Corollary 3.56. Lβ is a projection operator from L2(Sβ , σ) → L2(Sβ , σ).

Proof. After Proposition 3.54, this amounts to symbol pushing

Lβ ◦Lβ = Fs ◦ Fr ◦ F−1
r ◦ F−1

s ◦Lβ ◦ Fs ◦ Fr ◦ F−1
r ◦ F−1

s ◦Lβ

= Fs ◦ Fr ◦
(
M ◦ F−1

r ◦ F−1
s

)
◦ Fs ◦ Fr ◦

(
M ◦ F−1

r ◦ F−1
s

)
= Fs ◦ Fr ◦ M ◦ M ◦ F−1

r ◦ F−1
s

= Fs ◦ Fr ◦ M ◦ F−1
r ◦ F−1

s

= Fs ◦ Fr ◦ F−1
r ◦ F−1

s ◦Lβ = Lβ .

A deeper analysis of these operators is provided in Section 5.2. �
Remark 3.57. To see that the closure of Sβ in projective space fails to be a C1 hyper-
surface when 0 < β < 1, apply the projective automorphism z1 = z̃1/z̃2, z2 = 1/z̃2; then 
the behavior of

S̃β :=
®

(z̃1, z̃2) ∈ C2 : − Im(z̃2) = |z̃1|2 + β Re
Ç
z̃2

z̃2
z̃ 2
1

å´
near the origin captures the behavior of Sβ at infinity.

Setting z̃j = x̃j + iỹj , the cubic formula can be used to represent ỹ2 as a function of 
(x̃1, ỹ1, x̃2). Computing with the formula one can check that ∂ỹ2

∂x̃2
→ 0 along every line 

through the origin, whereas ∂ỹ2
∂x̃2

is a non-zero constant along the parabola x̃2 = x̃2
1, ̃y2 =

0; thus ∂ỹ2
∂x̃2

is discontinuous at the origin. ♦

3.7. Higher dimensional hypersurfaces

The natural generalization of Sβ to higher dimensions are hypersurfaces parametrized 
by vectors (β1, . . . , βn−1) as follows. Independently set each 0 ≤ βj < 1 and define
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S(β1,...,βn−1) :=

⎧⎨⎩(ζ1, . . . , ζn) ∈ Cn : Im(ζn) =
n−1∑
j=1

Ä
|ζj |2 + βj Re(ζ2

j )
ä⎫⎬⎭ . (3.58)

This form is suggested by equation (2.5), as such hypersurfaces give local projective 
approximations to any strongly C-convex hypersurface to two orders of tangency. A 
hypersurface of this kind can be converted to a bounded hypersurface using a projective 
automorphism. However, the point at ∞ is always mapped to a point which is less than 
C1-smooth – unless βj = 0 for all j. With the exception of this special case – in which 
(3.58) is the Heisenberg surface – the Lanzani-Stein results in [20] fail to imply the 
L2-boundedness of the Leray transform because they require C1,1 smoothness.

The L2-boundedness of the Leray transform of (3.58) may be seen, however, by mirror-
ing the arguments in Section 3.1. A sketch is now given. As usual, define the Leray trans-
form L(β1,...,βn−1) = L by (2.7). L resembles (3.3) and the measure ∂ρ(ζ) ∧ ∂̄∂ρ(ζ)(n−1)

is a constant multiple of

σ = dx1 ∧ dy1 ∧ · · · ∧ dxn−1 ∧ dyn−1 ∧ dxn.

Here the coordinates (ζ1, . . . , ζn) have been identified with (x1, y1, . . . , xn, yn). Parametriz-
ing S(β1,...,βn−1) by R2n+1 in this way gives the Leray transform as a one-variable 
convolution as in (3.6). Apply the Fourier transform in this variable and use the tri-
angle inequality to avoid the oscillatory pieces of the integral à la (3.9). This facilitates 
use of the Fourier transform in the remaining variables much like (3.10). Following 
this blueprint through to (3.17) lets us deduce the following: The Leray transform is a 
bounded operator on L2 (S(β1,...,βn−1), σ

)
with

‖L‖ ≤ 2n−1»
(1 − β2

1)(1 − β2
2)...(1 − β2

n−1)
.

Remark 3.59. Computing the exact norm of the Leray transform of (3.58) in higher 
dimensions presents more difficulties than when n = 2. One may start by studying 
affine automorphisms of S(β1,...,βn−1) analogous those in Section 3.2. When n = 2, the 
payoff is seen in Proposition 3.28 when Sβ is re-parametrized by a (real) 2-dimensional 
abelian group of automorphisms acting on a (real) 1-dimensional curve in Sβ. The higher 
dimensional version is a re-parametrization of S(β1,...,βn−1) by an n-dimensional abelian 
group of automorphisms acting on a (n − 1)-dimensional surface in S(β1,...,βn−1). It is 
unclear whether this approach will produce the exact norm of the Leray transform for 
n > 2. ♦

Remark 3.60. The Lp-regularity (p �= 2) of the Leray transform on Sβ and the higher 
dimensional hypersurfaces in (3.58) is an interesting open question. These hypersurfaces 
are less than C1-smooth at ∞, so the Lanzani-Stein machinery [20] is unable to imply 
any Lp-regularity. In [23], the same authors provide explicit examples of hypersurfaces 
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which are Cm-smooth, 1 < m < 2, but for which to the Lp-regularity of the Leray 
transform fails for every 1 < p < ∞. One might hope that a Calderón-Zygmund style 
approach to this problem will yield Lp results, but at this point the details are unclear 
and likely to involve non-trivial modifications. Nonetheless, this problem is worthy of 
further pursuit. ♦

4. Projective dual CR structures

In this section we reinterpret the Leray transform LS with the use of projective 
dual coordinates and the projective dual CR structure on a general strongly C-convex 
hypersurface S. The dual coordinates depend, in our presentation, on the choice of a 
matrix M , but the dual CR structure will be independent of that choice. (This follows 
from Lemma 4.28 below.)

Let

M =
(
c1 a1 a2
b1 m11 m12
b2 m21 m22

)
(4.1)

be an invertible 3-by-3 complex matrix. Use M to define a map ΦM : C2 ×C2 → C by

((z1, z2), (w1, w2)) �→ (1 w1 w2 )M
( 1
z1
z2

)

= c1 + a1z1 + a2z2 + b1w1 + b2w2 + (w1 w2 )
Å
m11 m12
m21 m22

ãÅ
z1
z2

ã
.

Given a smooth real hypersurface S ⊂ C2 with defining function ρ along with ζ ∈ S, 
let

μ1(ζ) = ∂ρ

∂ζ2
(ζ) (4.2a)

μ2(ζ) = − ∂ρ

∂ζ1
(ζ) (4.2b)

and note that

L := μ1(ζ)
∂

∂ζ1
+ μ2(ζ)

∂

∂ζ2

is a non-vanishing type-(1,0) vector field tangent to S. The (affine) complex tangent line 
for S at ζ may be described parametrically by a map from C → C2 sending

υ �→ ζ + υ(μ1(ζ), μ2(ζ)), (4.3)

or equivalently by
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ß
(z1, z2) : ∂ρ

∂ζ1
(ζ)(ζ1 − z1) + ∂ρ

∂ζ2
(ζ)(ζ2 − z2) = 0

™
. (4.4)

Definition 4.5. We say the hypersurface S is M -admissible if for all ζ ∈ S,

det
Å
m11μ1(ζ) + m12μ2(ζ) m11ζ1 + m12ζ2 + b1
m21μ1(ζ) + m22μ2(ζ) m21ζ1 + m22ζ2 + b2

ã
�= 0 (4.6)

The motivation behind this definition comes from the following lemma.

Lemma 4.7. If S is M -admissible then there are uniquely-determined functions w1,M and 
w2,M on S with the property that the complex tangent line to S at ζ is given by{

(z1, z2) : ΦM

(
(z1, z2), (w1,M (ζ), w2,M (ζ))

)
= 0

}
. (4.8)

Proof. The set (4.8) is either a complex line or the empty set (corresponding to the 
projective “line at infinity”). To prove the lemma, it suffices to check via (4.3) that 
there are uniquely-determined w1,M (ζ), w2,M (ζ) so that the set (4.8) contains both ζ
and ζ + (μ1(ζ), μ2(ζ)); this is equivalent to the system

(m11ζ1 + m12ζ2 + b1)w1,M (ζ) + (m21ζ1 + m22ζ2 + b2)w2,M (ζ)=−c1 − a1ζ1 − a2ζ2

(m11μ1(ζ) + m12μ2(ζ))w1,M (ζ) + (m21μ1(ζ) + m22μ2(ζ))w2,M (ζ)=−a1μ1(ζ)−a2μ2(ζ).

Condition (4.6) guarantees that this system is uniquely solvable for w1,M (ζ), w2,M (ζ). �
We note that since ζ belongs to the tangent line (4.8) we have

ΦM

(
(ζ1, ζ2), (w1,M (ζ), w2,M (ζ))

)
= 0. (4.9)

4.1. Examples of M -admissibility

Example 4.10. Setting

M1 =
(−1 0 0

0 1 0
0 0 1

)

we find that S is M1-admissible if and only if ζ1μ2(ζ) �= ζ2μ1(ζ) on S; using (4.3) we 
find that this is equivalent to the condition that no complex tangent line passes through 
the origin.

Every compact strongly C-convex S enclosing the origin is M1-admissible. See [6] and 
Section 2.5 in [1] for further discussion.

Note also that in this case (4.8) reads as

z1w1,M1(ζ) + z2w2,M1(ζ) = 1 (4.11)
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for z in the complex tangent line. Similarly (4.9) becomes

ζ1w1,M1(ζ) + ζ2w2,M1(ζ) = 1. (4.12)

Comparing (4.11) to (4.4) we see that we may (and must) take

w1,M1(ζ) =
∂ρ
∂ζ1

(ζ)
ζ1

∂ρ
∂ζ1

(ζ) + ζ2
∂ρ
∂ζ2

(ζ)

w2,M1(ζ) =
∂ρ
∂ζ2

(ζ)
ζ1

∂ρ
∂ζ1

(ζ) + ζ2
∂ρ
∂ζ2

(ζ)
,

where the non-vanishing of the denominators follows from the M1-admissibility. It follows 
now that

〈∂ρ(ζ), (ζ − z)〉 =
Å
ζ1

∂ρ

∂ζ1
(ζ) + ζ2

∂ρ

∂ζ2
(ζ)

ã
(1 − z1w1,M1(ζ) − z2w2,M1(ζ)) ,

where the left hand side appears in the denominator of equation (2.8). Thus, the Leray 
kernel

LS(z, ζ) = 1
(2πi)2

∂ρ(ζ) ∧ ∂̄∂ρ(ζ)
〈∂ρ(ζ), (ζ − z)〉2

may be written as

1
(2πi)2

Ä
ζ1

∂ρ
∂ζ1

(ζ) + ζ2
∂ρ
∂ζ2

(ζ)
ä−2

∂ρ(ζ) ∧ ∂̄∂ρ(ζ)

(1 − z1w1,M1(ζ) − z2w2,M1(ζ))
2 .

To rewrite the numerator further we note thatÅ
ζ1

∂ρ

∂ζ1
(ζ) + ζ2

∂ρ

∂ζ2
(ζ)

ã−1
∂ρ(ζ) = w1,M1 dζ1 + w2,M1 dζ2,

from which we may deduce thatÅ
ζ1

∂ρ

∂ζ1
(ζ) + ζ2

∂ρ

∂ζ2
(ζ)

ã−2
∂ρ(ζ) ∧ ∂̄∂ρ(ζ)

= (w1,M1 dζ1 + w2,M1 dζ2) ∧
(
∂w1,M1 ∧ dζ1 + ∂w2,M1 ∧ dζ2

)
=
(
w2,M1 ∂w1,M1 − w1,M1 ∂w2,M1

)
∧ dζ1 ∧ dζ2

= (w2,M1 dw1,M1 − w1,M1 dw2,M1) ∧ dζ1 ∧ dζ2,

so that
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LS(z, ζ) = 1
(2πi)2

(w2,M1 dw1,M1 − w1,M1 dw2,M1) ∧ dζ1 ∧ dζ2

(1 − z1w1,M1 − z2w2,M1)
2 . (4.13)

In the special case when S is the unit sphere in C2, we have

w1,M1(ζ) = ζ1

w2,M1(ζ) = ζ2

LS(z, ζ) = 1
(2πi)2

(
ζ2 dζ1 − ζ1 dζ2

)
∧ dζ1 ∧ dζ2(

1 − z1ζ1 − z2ζ2
)2 . (4.14)

We note that this formula coincides with the Szegő kernel for the unit sphere. �
Example 4.15. Setting

M2 =
( 0 0 i

0 2 0
−i 0 0

)

we find that S is M2-admissible if and only if μ1(ζ) = ∂ρ
∂ζ2

(ζ) �= 0 on S; equivalently, 
S has no “vertical” complex tangents. Every S arising as a graph of a smooth function 
over C ×R is M2-admissible.

In this case (4.8) reads as

2z1w1,M2(ζ) + iz2 − iw2,M2(ζ) = 0 (4.16)

for z in the complex tangent line. Similarly, (4.9) becomes

2ζ1w1,M2(ζ) + iζ2 − iw2,M2(ζ) = 0. (4.17)

Comparing (4.16) to (4.4) we find

w1,M2(ζ) = i

2

∂ρ
∂ζ1

(ζ)
∂ρ
∂ζ2

(ζ)
, (4.18a)

w2,M2(ζ) =
ζ1

∂ρ
∂ζ1

(ζ) + ζ2
∂ρ
∂ζ2

(ζ)
∂ρ
∂ζ2

(ζ)
, (4.18b)

and

〈∂ρ(ζ), (ζ − z)〉 = i
∂ρ

∂ζ2
(ζ) · (2z1w1,M2(ζ) + iz2 − iw2,M2(ζ)) .

Thus,
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∂ρ(ζ) ∧ ∂̄∂ρ(ζ)
〈∂ρ(ζ), (ζ − z)〉2

=
−
Ä

∂ρ
∂ζ2

(ζ)
ä−2

∂ρ(ζ) ∧ ∂̄∂ρ(ζ)

(2z1w1,M2(ζ) + iz2 − iw2,M2(ζ))
2 .

But note that Å
∂ρ

∂ζ2
(ζ)

ã−1
∂ρ(ζ) = 2

i
w1,M2 dζ1 + dζ2,

from which we obtainÅ
∂ρ

∂ζ2
(ζ)

ã−2
∂ρ(ζ) ∧ ∂̄∂ρ(ζ) =

Å2
i
w1,M2 dζ1 + dζ2

ã
∧ 2

i
∂w1,M2 ∧ dζ1

= −2i dw1,M2 ∧ dζ1 ∧ dζ2,

and so

LS(z, ζ) = 1
2π2i

dw1,M2 ∧ dζ1 ∧ dζ2

(2z1w1,M2(ζ) + iz2 − iw2,M2(ζ))
2 . (4.19)

In the special case when S = Sβ we have

w1,M2(ζ) = ζ1 + βζ1 (4.20)

w2,M2(ζ) = 2
i
ζ1(ζ1 + βζ1) + ζ2 (4.21)

Lβ(z, ζ) = 1
2π2i

dζ1 ∧ dζ1 ∧ dζ2

(2z1w1,M2(ζ) + iz2 − iw2,M2(ζ))
2

= 1
8π2i

dζ2 ∧ dζ̄1 ∧ dζ1(
(ζ̄1 + βζ1)(ζ1 − z1) + i

2 (ζ2 − z2)
)2 , (4.22)

which recovers the form of the Leray kernel given in (3.3). When β = 0, this becomes

w1,M2(ζ) = ζ1

w2,M2(ζ) = 2
i
ζ1ζ1 + ζ2 = ζ2

L0(z, ζ) = 1
2π2i

dζ1 ∧ dζ1 ∧ dζ2(
2z1ζ1 + iz2 − iζ2

)2
= 1

π2
dx1 ∧ dy1 ∧ dx2(

2z1ζ1 + iz2 − iζ2
)2 . (4.23)

Since this is conjugate-CR with respect to ζ we find that L0 is the Szegő kernel of S0
with respect to the measure dx1 ∧ dy1 ∧ dx2. (See Chapter 10 in [12].) �
Remark 4.24. The non-zero entries in M2 are tailored specifically for use with Sβ . ♦
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Remark 4.25. Setting

M3 =
( 0 i 0
−i 0 0
0 0 2

)
,

(or any such matrix with non-zero entries in the same slots) we find that S is M3-
admissible if and only if S has no “horizontal” complex tangents. In particular, each 
point in S has a neighborhood that is M2-admissible or M3-admissible. ♦

Remark 4.26. The formulas (4.13) and (4.19) reveal that the Leray transform does have 
some form of the domain independence property from Section 2 if we allow the use of 
the dual variables. Any two M -admissible hypersurfaces have identical Leray kernels in 
the variables (z, w) = (z1, z2, w1,M , w2,M ). The w variables, of course, are hypersurface 
dependent. ♦

4.2. Universal dual coordinate description of the Leray transform

Recall that a projective automorphism is a (partially-defined) map from C2 to C2

extending to an automorphism of projective space. These have the form

Υ∗ : (w1, w2) �→
Å (1, w1, w2)Υ1

(1, w1, w2)Υ0
,
(1, w1, w2)Υ2

(1, w1, w2)Υ0

ã
, (4.27)

where Υ0, Υ1, Υ2 are the columns of an invertible 3-by-3 matrix Υ.

Lemma 4.28. If S is both M -admissible and M ′-admissible, then there is a projective 
automorphism Υ∗ so that (w1,M ′ , w2,M ′) = Υ∗(w1,M , w2,M ).

Proof. The hypothesis guarantees that each complex tangent line for S may be writ-
ten uniquely as the zero set of (1, w1,M , w2,M )M (1, z1, z2)T or of (1, w1,M ′ , w2,M ′)
M ′ (1, z1, z2)T ; thus there is a relation of the form (1, w1,M ′ , w2,M ′)M ′ = κ(w1,M , w2,M ) ·
(1, w1,M , w2,M )M or

(1, w1,M ′ , w2,M ′ ) = κ(w1,M , w2,M ) · (1, w1,M , w2,M )M(M ′)−1. (4.29)

A computation shows that this works if we let Υ = M(M ′)−1 and set κ(w1,M , w2,M ) =
1

(1,w1,M ,w2,M )Υ0
. The non-vanishing of the denominator follows from (4.29). �

We now obtain the universal dual coordinate description of the Leray transform.

Proposition 4.30. If S is an M -admissible strongly C-convex hypersurface in C2 then the 
Leray integral from (2.7) may be written as
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LSf(z) =
∫

ζ∈S

f(ζ) νM(
(1, w1,M , w2,M )M(1, z1, z2)T

)2 , (4.31)

where

νM := 1
(2πi)2

Ç
(dw1,M , dw2,M )

Å
m11 m12
m21 m22

ãÅ
a2
−a1

ã
+

∣∣∣∣m11 m12
m21 m22

∣∣∣∣ (w2,M dw1,M − w1,M dw2,M )
å

∧ dζ1 ∧ dζ2. (4.32)

Here aj and mjk are given by (4.1).

Note that from the examples in Section 4.1, we already have this result for the special 
matrices M1 and M2. In particular,

νM2 = 1
2π2i

dw1,M2 ∧ dζ1 ∧ dζ2. (4.33)

Proof. The result is local. Suppose that S is M2-admissible at a particular point. The 
transformation laws from the proof of Proposition 4.28 (with M ′ = M2) yield

νM = 1
2π2i

(
(1, w1,M , w2,M )Υ0

)2
d

Å (1, w1,M , w2,M )Υ1

(1, w1,M , w2,M )Υ0

ã
∧ dζ1 ∧ dζ2,

with

Υ =
( −ia2

a1
2 ic1

−im12
m11
2 ib1

−im22
m21
2 ib2

)
.

Routine computation then reduces νM to the form given in (4.32). If S fails to be M2-
admissible at some point then by Remark 4.25 it will be M3-admissible there and a 
similar computation will yield the result. �
Remark 4.34. Similarly, in the setting of Lemma 4.28 we have the transformation law

νM =
(
(1, w1,M , w2,M )Υ0

)2
νM ′

with (1, w1,M , w2,M )Υ0 non-vanishing. ♦

Proposition 4.35. If S is an M -admissible strongly C-convex hypersurface in C2 then the 
form νM from (4.32) is nowhere-vanishing as a 3-form on S.

Proof. In view of Remarks 4.25 and 4.34 it suffices to consider the case M = M2 (or the 
similar case M = M3). The claim is equivalent to the non-vanishing of dρ ∧ νM2 along 
S.
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Recalling (4.33) and (4.18) (and using subscripts to denote derivatives) we have

dρ ∧ νM2 = 1
4π2

Ä
ρζ̄1 dζ̄1 + ρζ̄2 dζ̄2

ä
∧ d

Å
ρζ1
ρζ2

ã
∧ dζ1 ∧ dζ2

= 1
4π2 ρ

−2
ζ2

Ä
ρζ̄1 dζ̄1 + ρζ̄2 dζ̄2

ä
∧
(
ρζ2

Ä
ρζ1ζ̄1 dζ̄1 + ρζ1ζ̄2 dζ̄2

ä
− ρζ1

Ä
ρζ2ζ̄1 dζ̄1 + ρζ2ζ̄2 dζ̄2

ä)
∧ dζ1 ∧ dζ2

= 1
4π2 ρ

−2
ζ2

det

Ñ
0 ρζ̄1 ρζ̄2
ρζ1 ρζ1ζ̄1 ρζ1ζ̄2
ρζ2 ρζ2ζ̄1 ρζ2ζ̄2

é
dζ1 ∧ dζ2 ∧ dζ̄1 ∧ dζ̄2. (4.36)

Since S is strongly C-convex, it is also strongly pseudoconvex – see Remark 2.6 – and 
strong pseudoconvexity is well-known to be equivalent to the negativity of the determi-
nant above. This establishes the claim. �
Remark 4.37. In view of Proposition 4.35, we write νM in the form τ(νM ) · |νM | where 
τ(νM ) is a unimodular scalar function on S (the phase function for νM ) and |νM | is a 
positive 3-form on S. (We may view |νM | as a measure on S that is a smooth positive 
multiple of the surface area measure.)

From Remark 4.34 we have

|νM | =
∣∣(1, w1,M , w2,M )Υ0

∣∣2 |νM ′ |,

τ(νM ) =
(
(1, w1,M , w2,M )Υ0

)2∣∣(1, w1,M , w2,M )Υ0
∣∣2 τ(νM ′).

For future reference we note that if S is M2-admissible with defining function ρ that 
is independent of Re(ζ2) then ρζ2 is purely imaginary and non-vanishing and thus S may 
be written locally in the form Im(ζ2) = λ(ζ1, ζ̄1) (and thus S is (locally) rigid in the sense 
of Baouendi, Rothschild and Trèves – see [2]). From (4.36) we see that in this situation 
the 4-form dρ ∧ νM2 is positive along S; equivalently, νM2 is positive as a 3-form on S
and hence |νM | = νM , τ(νM ) = 1. ♦

4.3. Projective dual CR-structures

Recall the non-vanishing type-(1, 0) tangent vector field (refer to (4.2))

L = μ1(ζ)
∂

∂ζ1
+ μ2(ζ)

∂

∂ζ2
. (4.38)

Lemma 4.39. Lw1,M and Lw2,M do not vanish simultaneously.
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Proof. If S is M2-admissible then from (4.33) and Proposition 4.35 we have dw1,M2 ∧
dζ1∧dζ2 �= 0 as a 3-form on S. It follows that dw1,M2 fails to be C-linear on the maximal 
complex subspace at any point of S, that is, Lw1,M2 �= 0. A similar argument works if S
is M3-admissible. The general case follows now from Remark 4.25 and Lemma 4.28. �
Lemma 4.40. There is a uniquely (and locally) determined smooth function η on S so 
that if we set

Ldual = L− ηL

Ldual = L− ηL,

we have Ldualw1,M = 0 = Ldualw2,M for all M for which S is M -admissible.

Proof. At points where S is M2-admissible, Lemma 4.28 allows us to assume that M =
M2.

From (4.2) and (4.18) we obtain w1,M2(ζ) =
μ2(ζ)

2iμ1(ζ) and hence

2i(Lζ1)w1,M2 = Lζ2. (4.41)

Applying L to (4.17) and using (4.41), we find that

0 = 2(Lζ1)w1,M2 + 2ζ1(Lw1,M2) − iLw2,M2 + iLζ2

= 2ζ1(Lw1,M2) − iLw2,M2 (4.42a)

0 = 2ζ1(Lw1,M2) − iLw2,M2 . (4.42b)

By the proof of Lemma 4.39 we have Lw1,M2 �= 0, allowing us to define

η = Lw1,M2

Lw1,M2

, (4.43)

so that Ldualw1,M2 = 0. From (4.42a), (4.42b) we see that also Ldualw2,M2 = 0 as required.
A similar argument holds in the M3-admissible case, and the general case follows as 

before by application of Remark 4.25. �
We now define the (projective) dual CR-structure on S:

Definition 4.44. We declare Ldual to be dual-type (1, 0); thus a function f on S is dual-CR

if and only if Ldualf = 0. Note that this definition is set up so that w1,M and w2,M are 
dual-CR for all choices of M for which S is M -admissible.

Referring now to Proposition 4.30 (or to (4.19) or (4.13)) we see that LSf(z) is 
obtained by integrating f against the dual-CR function 

(
(1, w1,M , w2,M )M(1, z1, z2)T

)−2

with respect to the 3-form νM . This may be compared with the corresponding Szegő 
projection, obtained by integrating against a conjugate-CR function.
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5. Factorization of LS

For any M -admissible strongly C-convex hypersurface S, the three-form νM , the mea-
sure |νM | and the phase function τ(νM ) are defined in (4.32) and Remark 4.37.

In the special case of Sβ we have |νM2 | = νM2 = π−2 dx1 ∧ dy1 ∧ dx2 and τ(νM2) = 1
(with notation as in Section 3.1). In fact, from Remark 4.37 we have τ(νM2) = 1 for all 
rigid hypersurfaces, and the proof of Proposition 4.35 (see equation (4.36)) can be used 
to check that τ(νM2) is constant only for hypersurfaces that are ζ2-rotations of rigid 
hypersurfaces.

For the remainder of this section, all L2-norms are defined using the measure |νM |
where M is a matrix for which S is M -admissible. The dependence of |νM | (and τ(νM )) 
on the choice of M was explained in Remark 4.37.

5.1. Orthogonal and skew projections

Focus now on the case of smooth bounded strongly C-convex S (which will be M1-
admissible after a translation). Let Ω denote the domain bounded by S. Lanzani and 
Stein’s main result in [20] guarantees that LS defines a bounded projection operator from 
L2(S, |νM |) onto the Hardy space H2(S, |νM |) of L2 boundary values of holomorphic 
functions on Ω. We often omit the measure when writing these spaces. In particular, we 
have that LS ◦LS = LS and

H2(S) = ker (LS − I) = LS
(
L2(S)

)
.

Let P S denote the orthogonal projection from L2(S) onto (kerLS)⊥. Define the space 
WM (S) = W (S) by

W (S) =
¶
τ(νM )h : h ∈ (kerLS)⊥

©
, (5.1)

and let RS : L2(S) → W (S) denote the surjective operator given by f �→ τ(νM ) · P Sf . 
Note that ‖RS‖ = ‖P S‖ = 1. For each z ∈ S, define the dual-CR function

gz(ζ) = ΦM

(
(z1, z2), (w1,M (ζ), w2,M (ζ))

)−2

=
(
(1, w1,M (ζ), w2,M (ζ))M(1, z1, z2)T

)−2
. (5.2)

Lemma 5.3. The conjugate space W (S) is the closed span of {gz : z ∈ Ω}.

Proof. From Proposition 4.30, LSf(z) =
∫
S fνMgz =

∫
S f |νM | τ(νM )gz. Hence, LSf =

0 if and only if

f ⊥L2(S,|νM |)
¶
τ(νM )gz : z ∈ Ω

©
.



32 D.E. Barrett, L.D. Edholm / Advances in Mathematics 364 (2020) 107012
Consequently, (kerLS)⊥ is the closed span of 
¶
τ(νM )gz : z ∈ Ω

©
and thus W (S) is the 

closed span of {gz : z ∈ Ω}. The claim follows. �
Remark 5.4. We will show below in Proposition 6.5 that W (S) is in fact the Hardy space 
H2

dual(S) corresponding to the projective dual CR structure. ♦

For f ∈ L2(S), h ∈ (kerLS)⊥ we have τ(νM )h ∈ W (S) and thus

∫

S

f νM τ(νM )h =
∫

S

f |νM |h =
∫

S

(P Sf) |νM |h

=
∫

S

(RSf) |νM | τ(νM )h.

Recalling Proposition 4.30 and setting τ(νM )h = gz above, we find that

LSf(z) =
∫

S

f νM gz =
∫

S

(RSf) |νM | gz =
∫

S

τ(νM ) (RSf) νM gz

= LS
Ä
τ(νM ) (RSf)

ä
(z). (5.5)

Theorem 5.6. Define the operator QS : W (S) → H2(S) by f �→ LS
Ä
τ(νM ) · f

ä
. Then

(5.7a) LS = QS ◦RS
(5.7b) ‖LS‖ = ‖QS‖
(5.7c) QS is invertible.

Proof. The factorization (5.7a) follows from (5.5).
To prove (5.7b) note that ‖QS‖ ≤ ‖LS‖ from the definition of QS and that ‖LS‖ ≤

‖QS‖ from (5.7a) and ‖RS‖ = 1.
To prove (5.7c) note first that surjectivity of QS follows from (5.7a). To verify injec-

tivity, note that f = τ(νM )h ∈ W (S), QSf = 0 implies h ∈ (kerLS)⊥ and LSh = 0
hence h = 0 = f . �

Suppose now that S is the M -admissible strongly C-convex boundary of an unbounded
domain Ω. As before, equip S with the measure |νM |. Define LS , gz etc. as above, and 
suppose that the following hold:

(5.8a) ‖gz‖L2(S) is a locally bounded function of z ∈ Ω, hence LS maps L2(S) → O(Ω);

(5.8b) Taking boundary values, we obtain a projection operator LS : L2(S) → L2(S).



D.E. Barrett, L.D. Edholm / Advances in Mathematics 364 (2020) 107012 33
If we then define the Hardy space H2(S) ⊂ L2(S) to be the range of this operator 
we find that Theorem 5.6 and the preceding discussion carries over immediately. When 
S = Sβ , compare (5.8a) with Corollary A.22.

5.2. Factorization of Lβ

Restrict focus now to Sβ with the measure σ = dx1 ∧dy1 ∧dx2, though we often omit 
σ below. Recall that Sβ is M2-admissible and observe that σ = π2|νM2 |. From Section 3.4
we have the Paley-Wiener-type result that

◊�H2(Sβ) := F−1
r F−1

s

(
H2(Sβ)

)
is the set of square-integrable functions h(ξr, ξs, t) = ϕ(ξr, ξs)m0,ξr,ξs(t). Recalling that 
m0,ξr,ξs(t) vanishes for ξs ≥ 0,

‖h‖2
L2(R3) =

∞∫

−∞

0∫

−∞

∞∫

−∞

|ϕ(ξr, ξs)m0,ξr,ξs(t)|2 dt dξs dξr

= 2
√

2
1 + β

∞∫

−∞

0∫

−∞

√
−ξs · |ϕ(ξr, ξs)|2 dξs dξr < ∞. (5.9)

Recalling the general formula f̂(ξ) = f̂(−ξ) and noting that m1,ξr,ξs(t) = m1,ξr,ξs(t)
we similarly find that the spaces from Section 5.1 correspond to

◊�L2(Sβ) = L2(R3), (5.10a)

÷kerLβ =

⎧⎨⎩ψ ∈ L2(R3) :
∫

R

ψ(ξr, ξs, t)m1,ξr,ξs(t) dt = 0 a.e. (ξr, ξs) ∈ R2

⎫⎬⎭ ,

(5.10b)Ÿ�(kerLβ)⊥ = ◊�W (Sβ) (5.10c)

=
®
ϕ(ξr, ξs)m1,ξr,ξs(t) :

∞∫

−∞

0∫

−∞

1√
−ξs

|ϕ(ξr, ξs)|2 dξs dξr < ∞
´
,

◊�
W (Sβ) =

®
ϕ(ξr, ξs)m1,−ξr,−ξs(t) :

∞∫

−∞

∞∫

0

1√
ξs
|ϕ(ξr, ξs)|2 dξs dξr < ∞

´
. (5.10d)

Similarly, the operators correspond to
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”Lβ = M (5.11a)”Rβ = ”P β : ψ �→ m1,ξr,ξs(t)
‖m1,ξr,ξs(·)‖2

L2(R)

∫

R

ψ(ξr, ξs, u)m1,ξr,ξs(u) du (5.11b)

”Qβ = M
∣∣∣ÿ�W (Sβ)

(5.11c)

respectively. The following diagram keeps track of these spaces and operators.

L2(Sβ)
F−1

r F−1
s−−−−→ L2(R3)

W (Sβ) H2(Sβ) FsFr←−−−− ◊�W (Sβ) ◊�H2(Sβ)

P β = Rβ

Lβ

Qβ

”Rβ

”Lβ = M

”Qβ

It is easy to use these formulas to provide a separate verification of the assertions of 
Theorem 5.6 adapted to Sβ. In fact, even more is true in this special case.

Theorem 5.12. The operator 4
√

1 − β2 Qβ : W (Sβ) → H2(Sβ) is an isometry.

This follows immediately from equation (3.52).

6. Dual Hardy spaces

Theorem 6.1. If S ⊂ C2 is an M -admissible compact strongly C-convex hypersurface 
bounding a domain Ω, then the map wM = (w1,M , w2,M ) is a diffeomorphism from S
onto a compact strongly C-convex hypersurface Sdual bounding a domain Ωdual ⊂ C2.

Note that Sdual and Ωdual depend on M . Whatever the choice of M , the CR functions 
on a relatively open subset of Sdual pull back with respect to wM to functions on a 
relatively open subset of S that are dual-CR as defined in 4.44.

Proof. This is proved in Proposition 2.5.12 of [1]. �
Remark 6.2. It is also true that Sdual is MT -admissible and that the map wMT for Sdual
is the inverse of the map wM for S (see Section 6 in [4]). ♦

6.1. Pullback operators and function spaces

Continuing with the assumptions of Theorem 6.1, a function on a relatively open 
subset of Sdual will be CR if and only if its pullback via wM is CR with respect to 
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the projective dual CR-structure described in Section 4.3. The pullback H2
dual(S) :=

w∗
M

(
H2(Sdual)

)
is the projective dual Hardy space for S. The functions in H2

dual(S) are 
L2 boundary values of holomorphic functions on Ωdual.

Remark 6.3. It should be emphasized that while the norms of functions in H2
dual(S)

depend on our choice of matrix M , the functions themselves are independent of this 
choice. ♦

The operator LSdual pulls back to an operator Ldual
S : L2(S) → L2(S) satisfying

Ldual
S ◦Ldual

S = Ldual
S

and

H2
dual(S) = ker

Ä
Ldual

S − I
ä

= Ldual
S

(
L2(S)

)
.

Proposition 6.4. For f, g ∈ L2(S) we have
∫

S

(LSf) νM g =
∫

S

f νM
Ä
Ldual

S g
ä

Proof. This is Theorem 25 in [4]. �
Proposition 6.5. The space W (S) defined by equation (5.1) satisfies W (S) = H2

dual(S).

Proof. We start by noting that

f ∈ kerLS ⇔
∫

S

(LSf)νM g = 0 for all g ∈ L2(S)

⇔
∫

S

f νM
Ä
Ldual

S g
ä

= 0 for all g ∈ L2(S) [by Proposition 6.4]

⇔ fτ(νM ) ⊥ H2
dual(S)

⇔ f ⊥ τ(νM )H2
dual(S).

Thus (kerLS)⊥ = τ(νM )H2
dual(S).

Multiplying both sides by τ(νM ) we have W (S) = H2
dual(S), as required. �

Combining this with Lemma 5.3 we find that span {gz : z ∈ Ω} is dense in H2
dual(S). 

Dualizing, we find it also true that the space span {hw : w ∈ Ωdual} is dense in H2(S), 
where

hw(ζ) = ΦM

(
(ζ1, ζ2), (w1, w2)

)−2
.
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The diagram below depicts the operators P S , RS , QS introduced in Section 5.1, when 
the Leray transform is decomposed into factors. We now see that this factorization passes 
through the conjugate dual Hardy space.

L2(S)

(kerLS)⊥ H2
dual(S) H2(S)

P S LSRS

(f �→ τ(νM ) · f) QS

6.2. The dual hypersurface of Sβ

Turning attention now to the Sβ, the assumptions of Theorem 6.1 do not apply but 
we have from (4.20) and (4.21) that

wM2 : (ζ1, ζ2) �→
Å
ζ̄1 + βζ1,

2
i
ζ1(ζ1 + βζ1) + ζ2

ã
=

Ä
ζ̄1 + βζ1, ζ2 − iβζ2

1 + iβζ1
2ä

,

with inverse

(w1, w2) �→
Å
w1 − βw1

1 − β2 , w2 + 2iw1(w1 − βw1)
1 − β2

ã
.

This leads to

Sβ,dual :=
¶
(w1, w2) ∈ C2 : −(1 − β2)Im(w2) = |w1|2 − β Re(w2

1)
©
.

Note that Sβ,dual is linearly equivalent to Sβ via the map (w1, w2) �→
(

iw1√
1−β2 ,−w2

)
. 

The space H2
dual(Sβ) and operator Ldual

Sβ
are induced from H2(Sβ,dual) and LSβ,dual as 

above. The proof of Proposition 6.5 carries over to show that we still have W (Sβ) =
H2

dual(Sβ).
We previously discussed the inverse Fourier transforms of both this space and the orig-

inal H2(Sβ) in Section 5.2. For reference, we include them below. Recall that m0,ξr,ξs(t)
and m1,ξr,ξs(t) are defined in (3.43) and (3.44).

◊�H2(Sβ) =

⎧⎨⎩ϕ(ξr, ξs)m0,ξr,ξs(t) :
∞∫

−∞

0∫

−∞

√
−ξs · |ϕ(ξr, ξs)|2 dξsdξr < ∞

⎫⎬⎭ , (6.6)

Ÿ�H2
dual(Sβ) =

⎧⎨⎩ϕ(ξr, ξs)m1,−ξr,−ξs(t) :
∞∫

−∞

∞∫

0

1√
ξs

· |ϕ(ξr, ξs)|2 dξsdξr < ∞

⎫⎬⎭ . (6.7)
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Note that the space ◊�H2(Sβ) and the conjugate dual space Ÿ�
H2

dual(Sβ) coincide when 
β = 0.

Appendix A. L2-norms of the kernel function

Like the Cauchy transform in one complex variable, the Leray transform on a bounded 
C-convex hypersurface S constructs holomorphic functions on the C-convex domain it 
bounds. But dealing with unbounded hypersurfaces requires more delicacy. This ap-
pendix shows that Lβ constructs holomorphic functions on Ωβ from boundary functions 
in L2(Sβ , σ).

A.1. Automorphisms of Ωβ

Partition Ωβ as an infinite union of translates of Sβ. For all ε ≥ 0, define the hyper-
surface

S ε
β := {(z1, z2) : (z1, z2 − iε) ∈ Sβ},

and note that if z ∈ S ε
β , then Im(z2) = |z1|2 + β Re(z2

1) + ε. It is clear that S0
β = Sβ and 

Ωβ = ∪ε>0 S ε
β . The maps φ(c,s) defined by equation (3.21) extend to automorphisms of 

Ωβ . In fact, they preserve each shell:

Proposition A.1. The affine map

φ(c,s)(z1, z2) =
(
z1 + c, z2 + 2i(c̄ + βc)z1 + i

(
|c|2 + β Re(c2)

)
+ s

)
(A.2)

is an automorphism of each S ε
β for all choices of c ∈ C and s ∈ R.

Proof. Choose any z ∈ S ε
β . Then Im(z2) = |z1|2 + β Re(z2

1) + ε. Writing the components 
of φ(c,s)(z1, z2) as (φ1, φ2), we see

|φ1|2 = |z1|2 + |c|2 + 2 Re(z̄1c), β Re(φ2
1) = β Re(z2

1) + 2β Re(z1c) + β Re(c2),

and

Im(φ2) = Im(z2) + β Re(z2
1) + ε + 2 Re(z̄1c) + 2β Re(z1c) + |c|2 + β Re(c2).

This means φ(c,s)(z1, z2) = (φ1, φ2) ∈ S ε
β . �

Corollary A.3. Fix z ∈ S ε
β . There is a unique φ(c(z), s(z)) which sends z = (z1, z2) �→

(0, iε).
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Proof. It can be verified that the choice of

c(z) = −z1, s(z) = −Re(z2) − 2βIm(z2
1) (A.4)

sends z �→ (0, iε). Uniqueness follows from the form of (A.2). �
It was mentioned in Remark 3.25 that the maps φ(c,s) preserve both volume and the 

boundary measure σ = dx1∧dy1∧dx2. The Leray kernel LS is defined in equation (2.8)
as an (n, n − 1)-form, but when S = Sβ we may think of as Lβ(z, ζ) = �β(z, ζ)σ(ζ), 
where �β is a function (i.e. a (0, 0)-form) times the measure σ. This coefficient function 
satisfies the following invariance property:

Theorem A.5. Let �β denote the coefficient function of Lβ written with respect to the 
measure σ. Fix a point z ∈ Ωβ, choose the unique ε such that z ∈ S ε

β , and let φ∗ =
φ(c(z),s(z)) denote the map in Corollary A.3 sending z �→ (0, iε). Then

�β(φ∗(z), φ∗(ζ)) = �β(z, ζ). (A.6)

Proof. Following the parametrization of Sβ with the automorphisms φ(r,s) in Section 3.3, 
write the points z ∈ S ε

β , ζ ∈ Sβ as

z =
(
rz + itz, sz − 2(1 + β)rztz + i

[
(1 + β)r2

z + (1 − β)t2z + ε
])

,

ζ =
(
rζ + itζ , sζ − 2(1 + β)rζtζ + i

[
(1 + β)r2

ζ + (1 − β)t2ζ
])

.

Starting from the definition of Lβf(z) in equation (3.30), we first note that

dζ2 ∧ dζ̄1 ∧ dζ1 = 2i dsζ ∧ drζ ∧ dtζ

= 2i σ(ζ).

Repeating the steps from (3.32) through (3.36) – with the only difference arising from 
the fact that now z ∈ S ε

β – we find that Lβf(z) =
∫
Sβ

f(ζ)�β(z, ζ)σ(ζ), where

�β(z, ζ) = π−2
[(

(1 + β)(rz − rζ)2 + (1 − β)(tz − tζ)2 + ε
)

(A.7)

+ i
(
2(rz − rζ)(tz + tζ + β(tz − tζ)) − (sz − sζ)

)]−2
.

Written with respect to this parametrization, the subscripts of the map φ∗ =
φ(c(z),s(z)) defined in (A.4) take the form

c(z) = −rz − itz, s(z) = −sz + 2(1 − β)rztz. (A.8)

By construction, φ∗(z) = (0, iε). This is equivalent to saying φ∗ maps
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rz �→ 0, tz �→ 0, sz �→ 0. (A.9)

Calculating φ∗(ζ) is more involved, but starting from (A.2) and (A.8) it is seen that

φ∗(ζ) =
(
(rζ − rz) + i(tζ − tz) , sζ − sz + 2(rz − rζ)

(
(1 − β)tz + (1 + β)tζ

)
+ i

(
(1 + β)(rz − rζ)2 + (1 − β)(tz − tζ)2

))
.

This is equivalent to saying that φ∗ maps

rζ �→ rζ − rz, tζ �→ tζ − tz, sζ �→ sζ − sz + 4tz(rz − rζ). (A.10)

Substituting (A.9) and (A.10) into (A.7) shows

�β(φ∗(z), φ∗(ζ)) = π−2
[(

(1 + β)(rz − rζ)2 + (1 − β)(tz − tζ)2 + ε
)

+ i
(
2(β − 1)(rz − rζ)(tz − tζ) + sζ − sz + 4tz(rz − rζ)

)]−2

= π−2
[(

(1 + β)(rz − rζ)2 + (1 − β)(tz − tζ)2 + ε
)

+ i
(
2(rz − rζ)(tz + tζ + β(tz − tζ)) − (sz − sζ)

)]−2
.

This last line equals �β(z, ζ). �
Theorem A.5 shows that for fixed ε > 0, the L2(Sβ , σ) norm of �(z, ·) remains constant 

as z varies in S ε
β . Indeed, the map φ∗ = φ(c(z),s(z)) maps the point z to (0, iε). Because 

the maps φ(c,s) – and their inverses, which have the same form – preserve the measure 
σ,

∫

Sβ

|�β(z, ζ)|2σ(ζ) =
∫

Sβ

|�β(φ∗(z), φ∗(ζ))|2 σ(ζ)

=
∫

Sβ

|�β((0, iε), ζ)|2 σ(ζ). (A.11)

Remark A.12. It can be shown that σ is a constant multiple of Fefferman hypersurface 
measure (see [3,4,14,16]) on Sβ . Theorem A.5 can be deduced from the general transfor-
mation law given in [8] applying to LS written with respect to Fefferman measure. ♦

Remark A.13. For α > 0, consider the non-isotropic dilation map

δα(z1, z2) =
(√

α z1, αz2
)
. (A.14)
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It can be checked that these maps are automorphisms of both Sβ and Ωβ . More generally, 
δα is a bijection from Sε

β → Sαε
β . These maps no longer preserve volume or the surface 

measure σ, but the transformation law in [8] still applies to action of δα. ♦

A.2. Each f ∈ L2(Sβ , σ) generates a holomorphic function Lβf on Ωβ

Building on the identity (A.11), we state the following proposition.

Proposition A.15. The integral

∫

Sβ

|�β((0, iε), ζ)|2 σ(ζ) = 1
4π2ε2

√
1 − β2

.

The proof of Proposition A.15 is split into the following two computational lemmas.

Lemma A.16. For each ε > 0,

∫

Sβ

|�β((0, iε), ζ)|2 σ(ζ) = 1
ε2

∫

Sβ

|�β((0, i), ζ)|2 σ(ζ).

Proof. From (A.7), �β((0, iε), ζ) may be written by setting rz = tz = sz = 0.

∫

Sβ

|�β((0, iε), ζ)|2 σ(ζ) = 1
π4

∫

R3

dsζ ∧ drζ ∧ dtζ∣∣∣(1 + β)r2
ζ + (1 − β)t2ζ + ε + i (sζ − 2(1 − β)rζtζ)

∣∣∣4
= 1

ε2π4

∫

R3

dsζ ∧ drζ ∧ dtζ∣∣∣(1 + β)r2
ζ + (1 − β)t2ζ + 1 + i (sζ − 2(1 − β)rζtζ)

∣∣∣4
(A.17)

= 1
ε2

∫

Sβ

|�β((0, i), ζ)|2 σ(ζ). � (A.18)

Remark A.19. The change of variable (rζ , sζ , tζ) �→ (
√
ε rζ , ε sζ , 

√
ε tζ) used in (A.17) is 

the non-isotropic dilation δε in (A.14). It is also possible to use the transformation law 
alluded to in Remark A.13 to immediately deduce Lemma A.16. ♦

Lemma A.20. The integral

∫
|�β((0, i), ζ)|2 σ(ζ) = 1

4π2
√

1 − β2
.

Sβ
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Proof. Setting a(rζ , tζ) = (1 + β)r2
ζ + (1 − β)t2ζ + 1, equation (A.18) shows that

π4
∫

Sβ

|�β((0, i), ζ)|2 σ(ζ) =
∫

R2

⎡⎣∫
R

Ä
a(rζ , tζ)2 + (sζ − 2(1 − β)rζtζ)2

ä−2
dsζ

⎤⎦ drζ ∧ dtζ

:=
∫

R2

I(rζ , tζ) drζ ∧ dtζ . (A.21)

A computation shows that for each rζ , tζ ∈ R, the quantity in brackets

I(rζ , tζ) = π

2
Ä
(1 + β)r2

ζ + (1 − β)t2ζ + 1
ä3 .

Making the change of variable (rζ , tζ) �→
Ä

rζ√
1+β

,
tζ√
1−β

ä
, we see that

(A.21) = π

2
√

1 − β2

∫

R2

drζ ∧ dtζ
(r2

ζ + s2
ζ + 1)3 = π2

4
√

1 − β2
.

Dividing by π4 gives the result. �
Corollary A.22. The function Ωβ → R given by z �→

∫
Sβ

|�β(z, ζ)|2σ(ζ) is uniformly 
bounded on compact subsets of Ωβ.

Proof. Every compact subset of Ωβ is contained in a union of shells ∪ε>ε0 S ε
β with ε0 > 0. 

The desired conclusion then follows from (A.11) and Proposition A.15. �
We are ready to prove the main result of Appendix A. This will verify item (a) from 

the list in Section 2.2.

Theorem A.23. Lβf ∈ O(Ωβ) for each f ∈ L2(Sβ , σ).

Proof. It will suffice to prove that Lβf is holomorphic on U for each relatively compact 
ball U ⊂ Ωβ .

In the special case of compactly-supported f this follows from a standard differentiate-
the-integral argument.

To handle general f we pick a sequence of compactly supported fj ∈ L2(Sβ , σ) with 
fj → f in L2. Then with the use of Corollary A.22 we find that Lβfj → Lβf uniformly 
on U and thus that Lβf is indeed holomorphic on U . �
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