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1. Introduction

This paper is the first in a series aimed toward better understanding the Leray
transform on smooth, strongly C-convex hypersurfaces. Here, the initial focus is on the
following family of models. For 0 < 8 < 1, define the hypersurface

Sp = {(C1,) € C*: Im(G2) = [1* + BRe((D)} (1.1)
along with the (unbounded) domain lying on its C-convex side
Qp = {(zl,z'g) € C?: Im(z) > |z)* + BRe(z%)} . (1.2)

Let S € CP™ be a strongly C-convex hypersurface bounding a domain 2 on its
C-convex side. The Leray transform Lg (see Remark 2.10 regarding terminology) is a
member of the Cauchy-Fantappié class of integral operators re-capturing key properties
of the familiar one-variable Cauchy transform. Its applications include analysis of the
Hardy space on the domain Q: if o is a measure on S and Ls maps L*(S,0) — L*(S,0)
boundedly, then the transform identity shows how functions in the Hardy space H?(S, o)
are built from certain rational functions.

As is typical in Hardy space constructions, care must be taken to specify the mea-
sure o, especially when S is unbounded. For the Sg defined above, the natural measure
arising from the Leray transform is ¢ = dx; A dy; A dxo, where (1,41, 22,y2) are the
usual affine coordinates on R* = C2. This choice of ¢ is a constant multiple of Feffer-
man hypersurface measure (see [3,4,14,16]) on Sg, and consequently has many desirable
invariance properties. (Note that o is not comparable to the Euclidean surface measure
on 8[3)

The main computation in the first half of the paper is the following:

Theorem 1.3. Let Lg denote the Leray transform of Sg, and o = dx1 Ady, Adxo. Then
Ls: L?(S5,0) — L*(Sp,0) is a bounded operator with norm

1Ll = ——— (1.4)

It is rare to compute exact norms of operators, so this result is interesting in its own
right. But this computation also has significant import since the Sz serve as models in
local geometric considerations. Given a smooth, strongly C-convex hypersurface S C
CP2, the Sp can be used to locally approximate S to two orders of tangency. Indeed for
each fixed ¢* € S, there is an automorphism of CP? — see equation (4.27) — moving ¢*
to the origin such that the degree two Taylor expansion of S after this coordinate change
is given by a unique Sg¢+y, 0 < 3(¢*) < 1. The precise formulation of this statement is
given in Section 2.

The mapping properties of the one-dimensional Cauchy transform are well-studied. In
[17], Kerzman and Stein relate the Cauchy transform, C, on a smooth bounded domain
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Q C C to the Szegd projection and show that the two operators coincide if and only if
Q2 is a disc. It follows that ||C||, > 1 with equality if and only if Q is a disc. However,

it can also be extracted from this work that the essential L2-norm ||C| ., = 1 for every

€ess
smooth Q C C. (Recall that the essential norm — see [13] — measures the distance to the
set of compact operators; it often occurs in localized analysis.) See [5,9,10] for related
results about C.

Much recent work has been done to understand Lgs in dimensions two and higher.
In [7], the first author and Lanzani study the essential spectrum of this operator on a
class of Reinhardt domains in C2, and their results are in the same vein as Theorem 1.3.
Lanzani and Stein have written a series of recent articles exploring many aspects of this
operator. (See [19-23].) In [20], it is shown that the Leray transform of any bounded
strongly C-convex hypersurface S that is at least C1'! smooth maps LP(S) to itself for
all 1 < p < co. Counterexamples to the L?-boundedness of Ls exist if either the strong
C-convexity hypothesis or the C! smoothness hypothesis is dropped. See [7] and [23]
for more information. We note that the Sg are unbounded and fail to be even C! at
infinity (see Remark 3.57).

In [4], the first author shows that the L?-norm of Ls measures the effectiveness of
pairing two natural Hardy spaces associated to a hypersurface S. This is analogous to
the role played by the Cauchy transform in an L?-pairing of functions holomorphic inside
a Jordan curve with functions holomorphic outside the curve. (See David’s appendix in
Meyer’s monograph [24].) Recalling the Lanzani-Stein result in the previous paragraph,
insight into the interaction of these two Hardy spaces is gained by investigating the norm
of LS.

Conjecture 1.5. Let S C CP? be a smooth bounded, strongly C-convex hypersurface and
Ls denote its Leray transform. The essential L?-norm is given by
1

L = e —————
L5 lless Ry pTrow

We postpone further discussion of this conjecture to a subsequent work in this series,

(1.6)

other than a quick run through of evidence for why we believe it to be true. First, note
the similarity between this statement and the situation for the Cauchy transform as
described above. A disc of varying radius will osculate any smooth, bounded domain €2
in the plane. The essential norm of an operator frequently arises in local considerations,
and the fact that |Cp|l, = 1 on every disc D leads to the corresponding result for
the essential L?-norm of the Cauchy transform on €. In two complex dimensions the
osculating hypersurfaces giving local approximation are the Sg, so Theorem 1.3 suggests
the form of this conjecture. Additionally, it is shown in [7] that Conjecture 1.5 holds for
all smooth bounded, strongly convex Reinhardt domains.

After proving Theorem 1.3, we continue to develop the general theory with the use
of projective dual coordinates. These coordinates depend on the choice of a matrix M,
corresponding to a particular affinization of projective space. The Leray transform is
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shown to be given by a universal formula involving projective dual coordinates in Propo-
sition 4.30. On every bounded C-convex hypersurface enclosing the origin, this formula
resembles the form of the Szegd projection of the unit ball — compare the formula (4.13)
with (4.14). On every unbounded C-convex hypersurface which can be written as a graph
of a smooth function over C x R, this formula resembles the form of the Szeg6 projection
of the Siegel upper half space — compare (4.19) with (4.23). This general procedure leads
to the identification of a preferred measure on S in (4.32). It should be emphasized that
while Lg only coincides with the Szegd projection in special cases (affine images of the
unit ball or Siegel upper half space [11]), the resemblance of the formulas suggests a
relationship between the two operators that should be further explored.

The dual coordinates may be used to induce a secondary C'R structure on S, called
the projective dual C'R structure. This is carried out in Section 4.3. From the two CR
structures and the preferred measure mentioned above, we obtain a pair of Hardy spaces

on S, denoted H?(S) and H3 , (S). The restriction Qg of Ls to H3 ,(S) provides an
explicit invertible map HZ2 _(S) — H?(S), and the full map Ls factors through Q.
(Most of the objects mentioned just above depend on the choice of M — with transparent
transformation laws — but the dual CR structure is independent of M.)

The paper is structured as follows. Section 2 collects notation, definitions and neces-
sary background material. It also motivates our problem by recalling results from one
complex variable. Section 3 begins with the analysis of L via one Fourier transform
together with size estimates. We then use certain projective automorphisms of Sg to
obtain a new parametrization of Lg in Section 3.3, leading to the use of a second Fourier
transform in the proof of Theorem 1.3 in Section 3.5. The projective dual coordinates
and related constructions are developed in Section 4. In Sections 5 and 6 we explain the
factorization results for Lg, with special attention drawn to the case of Lg. Appendix A
contains further analysis of automorphisms of S leading to basic L2-estimates related
to Lg.

The authors would like to acknowledge the two anonymous referees for many useful
suggestions to improve this paper.

2. Background

One motivating factor for the study of the Leray transform is the desire for a higher
dimensional analogue of the Cauchy transform in one complex variable. For any smooth
bounded domain 2 C C, recall that the Cauchy transform of a function f defined on the
boundary b2 is given by

T 2omi (—=z

Cf(z):= ! /f(C) dc. (2.1)
b0

Denoting the Cauchy kernel by C(z,() = m d¢, we highlight three essential prop-
erties:
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(i) Reproduction. Given z € Q and f € O(Q), we have Cf(z) = f(2).
(ii) Holomorphicity. For each fixed ¢ € b2, the kernel C(z, () is holomorphic in z, and
thus can be used to construct holomorphic functions.
(iii) Domain Independence. The kernel C(z,() is independent of €2, in that no explicit
reference to a defining function of €2 is made in the coeflicient function of d(.

Unfortunately, these three properties never simultaneously hold in this form for a
kernel-operator pair in higher dimensions. See [19] for an excellent survey detailing these
matters. We shall insist on keeping the reproduction property (i), and will look for higher
dimensional successors of the Cauchy transform by dropping one of the other conditions.
The Bochner-Martinelli formula satisfies (i) and (iii), but fails to be holomorphic in the
parameter z (see [18,26]). Though useful in many respects, this formula cannot be used
to create holomorphic functions from more general boundary data.

Restricting to strongly C-convex hypersurfaces S C CP”, we are able to define the
Leray kernel-operator pair which satisfies properties (i) and (ii). As above, property (ii)
allows construction of holomorphic functions from rather general boundary data. And
while the Leray kernel is domain dependent when S is viewed as a subset of CP", a
universal description involving projective dual variables is presented in Section 4 (see
Remark 4.26).

2.1. Strong C-convexity

Underlying the Leray transform is the geometric notion of C-convexity. There are
several equivalent definitions (see [1]), but we focus here on a differential condition along
S. We first note the following proposition and refer to Section 5.2 in [4] for its proof.

Proposition 2.2. Let S be a smooth, strongly pseudoconvex real hypersurface in CP™ and
let p € S. Then there is an automorphism of CP™ moving p to 0 so that the transformed
S takes the following form near 0.

n—1 n—1
m(C) = Y arGletRe | Y Bia¢ie | +eRe(G)2+O(I(Cr - -5 nm1, Re(Ga)))-

jk=1 jik=1

The real constant ¢ may be set arbitrarily, but the sum Zaj,kgjfk + Re (3" 55.1CiCk) is
determined up to a scalar multiple and a C-linear change of coordinates in ((1,...,Cn—1)-

We now use this normal form to set up our definition.

Definition 2.3. Let S be connected and strongly pseudoconvex in CP™ and suppose (after
a projective automorphism) that S is given in the form of Proposition 2.2 above. We say
that S is strongly C-convex if and only if

n—1

n—1
D arGle+Re | D BidiG (2.4)

jk=1 jik=1
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is positive definite on ({3, ..., (,—1). This is equivalent to saying that the complex tangent
hyperplane C"~! x {0} has minimal order of contact with S.

Because the real constant ¢ in Proposition 2.2 may be chosen arbitrarily, set ¢ = 0
and diagonalize the form to

n—1

Z a;|¢;* + Re Z B | +O0((Grs- -y Ga1. Re(C)) 1), (2.5)

with each 8; > 0. Strong C-convexity at the origin is equivalent to saying that each
B; < aj. When n = 2, we may set a; = 1 which leads to our hypersurfaces

8= {(G1,G2) € C? :Im(G) = |1 + BRe(¢))} -

Remark 2.6. Every strongly C-convex hypersurface is (by our definition) strongly pseu-
doconvex, and osculating biholomorphic images of the sphere (or of Sy) are a useful
tool in the study of strongly pseudoconvex hypersurfaces. The Leray transform has good
transformation properties under automorphisms of CPP? (but not under general biholo-
morphic maps); working with this smaller set of mappings we need a larger set of models,
and the projective images of the Sg suitably osculate any strongly C-convex hypersur-
face. ¢

2.2. The Leray transform
Let S be a compact strongly C-convex C? hypersurface in C", and let Q be the

bounded domain with boundary S. If f is a function on S, the Leray transform maps f
to a holomorphic function on €2 whenever the following integral makes sense.

Lsf(z /f ) Zs(z,¢), (2.7)

1 9p(¢) A (99p(O))"
@) (0p(Q), (C—2)"

Note that the Leray kernel £s is a form of bi-degree (n,n — 1). Here p is a defining

92”5(2,() =

(2.8)

function for S, and (-, ) is the natural bilinear pairing between (1, 0)-forms and vectors.
This definition is independent of the choice of defining function. See chapter IV of [26]
for more information.

Formula (2.7) can actually be defined for a more general class of hypersurfaces. If S is
bounded and has the property that all complex tangent hyperplanes never intersect 2,
the integral is defined for all z € . Such hypersurfaces are simply called C-convex. (See
Proposition 2.5.9 in [1]. In the context of smooth connected hypersurfaces the notion of
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C-convexity coincides with the notion of C-linear convexity, but these notions diverge in
more general situations — see Chapter 2 in [1] for a complete discussion of these matters.)

Now consider a compact strongly C-convex C? hypersurface S in CP™. The complex
tangent hyperplane to S at some ¢ € S meets S only at ¢ (see Remark 2.5.11 in [1]).
Pushing the hyperplane away from S by a small multiple of the normal vector to S at ¢
we obtain a hyperplane disjoint from S (lying on the concave side of §). This hyperplane
may be sent to the hyperplane at infinity by means of a projective transformation. Thus S
is projectively equivalent to a compact strongly C-convex C? hypersurface in C"; Bolt’s
transformation law (previously mentioned in Remark 3.25 above) can now be used to
define the Leray transform in terms of its Euclidean counterpart.

Once it has been established that (2.7) converges for z € , it is of interest to think
of Ls as a map from functions on S to functions on €2, and to understand the boundary
values of Lsf(z). For z € S, (2.7) is a singular integral and must be interpreted in a
suitable way.

For unbounded C-convex hypersurfaces, it is not a priori clear that (2.7) converges
even for z € (). However when & = S, we show the following hold:

(a) Given f € L*(Sg,0), Lgf is a holomorphic function on Q5. (Appendix A.2.)

(b) Lg is a bounded operator from L*(Sg,0) — L?(Ss,0). (Proposition 3.14.)

(c) ||L5||L2(Sﬁ’a) = ﬁ (Theorem 1.3, proved in Section 3.5.)

(d) The Leray transform of Sg is a projection, i.e., Lg o Lg = Lg. (Corollary 3.56.) It
is not orthogonal, except when § = 0, in which case the Leray transform coincides
with the Szegb projection.

(e) The closure of Sg in complex projective space fails to be C!. (Remark 3.57.)

The measure used above is ¢ = dx1 A dy; N dxo. We postpone the discussion of the
surface measures considered on a more general S until Section 4.

Remark 2.9. Equation (2.7) in dimension one reduces to (2.1). ¢

Remark 2.10. Lg is often referred to in the literature as the Cauchy-Leray transform,
the Leray-Aizenberg transform or the Cauchy transform for convex domains. ¢

2.3. The Fourier transform

The Fourier transform is a standard tool with varying normalizations. We include this
section to collect basic facts for the version used in this paper.

Use F and F~! to denote the Fourier and inverse Fourier transforms on R, respec-
tively, with the following convention: given h € L'(R),

o0 oo

Fh(§) = /h(x)e—%”ﬁdx, Fh(€) ;:/h(x)e2m€dx. (2.11)

— 00 — 00
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It is standard to extend F and F~! to operators on L?(R) using the density of L' N L?
functions in L?. The of placement of the 27 in (2.11) guarantees that both F and F~!
are isometries of L2, i.e., for g € L?(R), we have Plancherel’s identity:

gl = 1Fglly = | F g, - (2.12)

Equations (2.13) and (2.14) below are written using the inverse Fourier transform F~!
because this operator is used extensively in later sections. When dealing with functions
of more than one variable, we often subscript both the transform and the phase space
variables. Starting with a two variable function H (z,y),

oo o0

—00 —00

Also note that the formulas in (2.11) transform convolutions in the following way:
F Y F«G)=F Y F)-F1G). (2.14)

Finally, note the following integral which arises frequently in computations below
o0
/ e 2miTE o — oE” (2.15)
—o00

3. The Leray transform of Sg

The Lanzani-Stein machinery in [20] cannot be directly applied to the Leray transform
of 8g because these models fail to be C1'1 at co. (In fact, they are not even C! at oo;
see Remark 3.57.) In this section, we first use a single Fourier transform along with
size estimates to establish the L2-boundedness of Lg. However, sharpness is lost in the
computation of the exact norm when oscillatory cancellation is ignored. This is remedied
in Section 3.3 when certain projective automorphisms are used to re-parametrize Sg,
ultimately leading to the sharp result given in Theorem 1.3.

The verification that integral (2.7) converges and defines a holomorphic function on
Qp for all f € L?(Ss,0) is postponed to Appendix A.

3.1. L?-boundedness via Fourier methods and size estimates

Starting from the definition of Sz in (1.1), choose defining function p(¢) = [¢1|* +
BRe(? —Im((2). The pieces of the Leray kernel in (2.8) are calculated to be

1

_ 1 _
@) dp N 99p(C) = %d@ A dGy A dG, (3.1)
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(0p(€), (¢ = 2)) = (C1 + BG)(G — 21) + (G — 22), (3.2)

and the Leray transform (2.7) takes the form

Lof(s) = /[( J(©) 6o N dGy A dG 53

- SW%S G+ B6) (G — 21) + 5(Ce — 22))2

]
We parametrize S by R3, letting ¢j = xj +1y; and z; = u; + tv;. The denominator

of the integrand becomes (C + %(z2 — UQ))Q, where

C = (L4 Barfer — u) + (1= Byalyn —v1)) = 52— v2) (3.4)

1

2

+i((L+ Bar (g — o) = (1= By —w)).
When both (, z € Sg, this simplifies to

1;ﬂ(u1_x1)2+1;6

+ i((l +B)z1(yr —v1) — (1 = By (21 — u1)>.

- (01 — ) (35)

In particular, note that Re(C) > 0, with equality if and only if both z1 = u; and

Y1 = V1.
It can be checked that déy A d(y A d¢y = 2idxy A dy; A dxo. Using (3.5), we see

(3.3) = Ly f(u1,v1, uz)

:L/ f(z1, 91, 22)
4 (C+ &(x2 — u2))

3 dxy N\ dyi N dxo

R3

- _% ( 7 (( flz1, 91, 22) )2 dx2>dx1 A dyy

R2 e Ug — 1’2) + 2iC

1
=" F x G(ug) dzy A dys, (3.6)
R2

where F(z2) := f(x1,y1,22) and G(xz) := m

We now calculate the inverse Fourier transform of the function G.

Proposition 3.7. Let C be a complex number with Re(C) > 0. The inverse Fourier trans-
form of G(x) = m is given by
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o

, 0 >0
FG(e) = / G(z)e*™ " dx = {47r2£€47rgc §<0.

—00

p2mizé

Proof. The condition Re(C) > 0 means the function H(z) := Grzic)z has a single pole
of order 2 in the lower half plane. For any R > 0, the integral

R p2mizé
——dx
/ (z + 2iC)2
-R
can be thought of as a piece of a contour integral around a semicircle with base on the
T-axis.

When £ > 0, consider such a semicircle in the upper half plane traversed counterclock-
wise. The radial portion of the integral tends to 0 as R — 0. On the other hand, this
function is holomorphic inside the contour. Thus Cauchy’s theorem implies F~1G(&) = 0
for £ > 0.

When & < 0, consider a semicircle in the lower half plane traversed clockwise. For
sufficiently large R, this contour encloses the pole of H. As above, the radial portion of
this integral tends to 0 as R — 0. Thus, Cauchy’s integral formula shows

e2m‘x§ d omizt 24 4mEC
ngnoo / md‘f = —27'('7,%(6 ) =4 56 . O

—R z=—2iC
Equation (3.6) and Proposition 3.7 now show that
0 &u, 20
F_IL U1, 01, &y — - - 3.8
ws Bf( 1, V1 5 2) _4571,2 /]:u;f(-rlaylafuz)64 Eus C day dyl guz <0. ( )
R2
For &,, < 0, equation (3.5) and the triangle inequality show
‘ 1Lﬁf xhyhfuz | —/| f$17y1,€u2 |KU1—$1,U1 ylaguz)dxldyl
R2
= }]:u_zlf(aaquM *(ul,vl) K('Wafug)a (39)

where

K(x,y,&,,) = —4&,Exp [27r§U2(1 +B)a* + 27€y, (1 — ﬁ)yﬂ .

Equation (3.9) is in convolution form because the triangle inequality lets us ignore
the oscillatory piece of the exponential. Now apply a two-dimensional inverse Fourier
transform. Making use of integral (2.15), a computation shows
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2 m " B
ul,'ul (gul,gvlafuz) - 1 _BZEXP |:2§u2 (1 +ﬁ + 1 ﬂ>:| 5 (310)

and it follows that

2

VI=F

sup { For Ly K (Gun € 6ua) 5 €y € R, €0y ER, €y <0 = (3.11)

We now deduce that

Fur vl[} i F (e un) |*(u1,v1)K('v'7§ug)]

2 T 2 2
= Forror ([Fa F1) (Gurs €ons ) - — Exp {2&” (1115 + 1%)} . (3.12)

Equations (3.11) and (3.12) give

1P, [ 17 £ )] o) K o) |

L2(R3, 0)

Folfl) € o) (3.13)

L2(R%,0)

<l

This is now summarized to confirm item (b) from Section 2.2:
Proposition 3.14. The Leray transform Lg is bounded from L*(Sz,0) — L?(Sg,0).

Proof. First note that from repeated application of Plancherel’s identity (2.12), we have
that
1f (w1, v1,u2) [ 2 (ms, o) = ||f1:21f(“171’1’§u2)”L2(R3 o)
R AT 0 | P

- H u1 ul _21f|)(§u17§1117guz)HLQ(R370) .

Since F 'Ly f(u1,v1,&u,) = 0 for &, > 0, we only need to consider &,, < 0 in the
norm computations below. Now,

||Lﬁf(ulaUlau2)”L2(R3’a—) = H-/_'.u_zlLBf(ulaU1,£u2)||L2(R370)

< H'fu,_lf(v 'a§u2)| *(ul,vl) K(-, "€u2)HL2(R3,a) (315)

‘ ul,v1|: 1/,_21f('?'7§u2)‘*(ul,v1)K(""€u2):H

L2(R%,0)

3.16
L2(R3, o) (3.16)

Folf]) € o)

o (
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2

ﬁ ||f(ulvvlvu2)”L2(R3,a) :

This is equivalent to saying

2
ILsll12s,, o) < Wieyk (3.17)

Inequality (3.15) follows from (3.9) and (3.16) is just (3.13). O
Note. A version of (3.17) was shown previously to the first author by Jennifer Brooks.

Remark 3.18. The bound on ||Lg||, given in equation (3.17) is never sharp, given the
validity of Theorem 1.3. When = 0, we can sharpen the estimate || Lol|, < 2 simply by
observing the Leray transform is identical to the Szegd projection on Sy — see equation
(4.23). Consequently, || Lo||, = 1. The operators do not coincide for 8 # 0. Note that
while S is biholomorphically equivalent to Sy via the map (21, 22) — (21,22 — i82%),
they are not projectively equivalent. Cf. Remark 3.25. ¢

Remark 3.19. While Proposition 3.14 is weaker than Theorem 1.3, it is included for two
reasons. First, it is worthwhile to see that the L2-boundedness of Lg follows straight-
forwardly from the application of a single Fourier transform (3.8), without the use of
the second transform facilitated by the re-parametrization of Sg in Section 3.2 below.
Additionally, it is of great interest to the authors to understand how much sharpness is
lost when applying the triangle inequality in (3.9) and similar situations. For instance,
is the sharp norm directly attainable from equation (3.8)7 Sg may be identified with
the Heisenberg group (the boundary of the Siegel upper half space) when 5 = 0. This
allows for the use of the Weyl transform, which is tailored to handle the twisted con-
volution occurring in (3.8). See chapter 1 of [15] for more information on these topics.
This machinery gives a direct way to show that ||Lg||, = 1 (as opposed to the indirect
observation in the preceding remark), but (yet again) does not apply in the 5 # 0 case. ¢

3.2. Parametrizing Sg with projective automorphisms

The work in this section is inspired by what is known in the case of the Heisenberg
group, which corresponds to Sp. Immediately from its definition in equation (1.1), we
see that Sg is invariant under translations of the form ({1, (2) + (¢1,¢2 + s), where s is
a real number. We would like to find less trivial automorphisms of this hypersurface. We
seek maps ¢ : Sg — Sg of the form ¢((1,(2) = (G1 +¢,+), ¢ € C. The second component
is now determined.

Proposition 3.20. Let ¢ € C and s € R. A complex affine map preserving Sz which
translates the first coordinate (4 — (1 + ¢ must be of the form



D.E. Barrett, L.D. Edholm / Advances in Mathematics 364 (2020) 107012 13

Ple,)(C15 G2) = (G + ¢, o +2i(E+ Be) G+ i([e]? + BRe(c)) + 5). (3.21)

Proof. Write ¢ 5 (C1,¢2) = (¢1 + ¢, ¢2(C1,(2)). Since the image of this map lies in Sg,

Im(¢2(1,¢2)) =[G + ¢ > + BRe (G +¢)?)
= |C1]? + |¢|* + 2Re(¢16) + BRe(¢?) + 28 Re(Cic) + BRe(c?)
=1Im(¢2) + 2Re((c + Be)(1) + |c|2 + BRe(cQ).

Since ¢ is holomorphic, we must have

$2(C1,C2) = G2 +2i(c + Be)G +i(|c]* + BRe(c?)) + 5(C1, C2),

where s((1,(2) is a real valued function. But this implies s(¢1,{2) = s is constant. O
We now see how these maps compose.

Proposition 3.22. Let ¢ .5 @ Sg — Sp be defined as in equation (3.21) above. Then
composition of these maps gives

Qb(cl,sl) © ¢(02,32) = ¢(c1+cQ,31+82—21m((61+[3’cl)02))~ (323)

Proof. From equation (3.21),

Der,s1) © Plens2)(C) = ey ,s1) (Cl +¢2, o+ 2i(G2 + Be2)Cr +i(|ea|® + BRe(c3)) + 82)

= (Cl —+ (Cl —+ CQ) s <2 —+ 22(52 —+ BCQ)Cl —+ i(|02|2 + ﬂRe(Cg)) -+ So
(3.24)

+2i(¢1 + Ber) (G + e2) +i(Jer|* + BRe(c])) + 81>.
From here, the second component in equation (3.24) can be written as

Co+2i(c1 + e+ Bler +¢2)) G +i (Jer + ca* + BRe ((e1 + c2)?))
+ (81 =+ 82) — 21111((51 =+ ﬂcl)CQ) .0

Remark 3.25. Note that the automorphisms described above are affine maps preserving
both volume and our distinguished boundary measure o = dz; Ady; Adzs. Thus, it is un-
necessary to rescale the Leray transform of Sg when the hypersurface is re-parametrized
using these maps. Affine maps form a subgroup of the automorphisms of CP”™. In [g],
Bolt proves a transformation law of the Leray kernel under projective automorphisms,
when the kernel is expressed in terms of Fefferman hypersurface measure. We return to
this point in Appendix A.1. {
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It will be desirable to consider an abelian subgroup of the group of the automorphisms
defined by equation (3.21). Notice that the term —2Im((¢1 4 B¢ )c2) vanishes when both
c1,c2 € R. This immediately implies the following corollary, where we’ve changed all
instances of ¢ to r to emphasize this parameter is now restricted to real values.

Corollary 3.26. The collection of automorphisms G := {d)(r,s) 17,8 € R} is a closed
abelian subgroup of Aut(Sg). In fact, given two maps in this subgroup,

¢(T17S1) ° ¢(T2,32) = ¢(r1+r2,sl+32)~ (3.27)

We now use the action of G on a one-dimensional curve v lying in Sg to re-parametrize
this hypersurface.

Theorem 3.28. Consider the curve v : R — Sg given by v(t) = (it,i(l —ﬁ)t2), The
action of the group G = {qﬁ(m) RURENS R} on the image of v gives a parametrization of
Sg, i.e., for each ( € Sg, there is a unique (r,s,t) € R® such that ¢ = ) (V(1))-
Proof. From equation (3.21) we can check that

G5 (V1) = (r+it, s —2(1+ B)rt +i [(1+ B)r* + (1 — B)t?]). (3.29)
The first coordinate can attain any complex number by specifying the parameters r and

t. Once these values are decided, we can appropriately choose s to adjust the real part
of the second coordinate. O

3.3. Re-parametrizing the Leray kernel

We now make use of the automorphisms in the previous subsection. Recall that

Lsf(z2)

1 / F(Q)déa Adéy A da (3.30)

8772i8 (G4 BE) (G — 21) + 5(6 — 22)]2
5
In order to circumvent the loss of sharpness on the norm coming from application of
the triangle inequality, re-write (3.30) in terms of the parameterization described in
Theorem 3.28. For notational purposes, we use (7, s;,t,) and (r¢, s¢,t¢) to correspond
to the respective z and ( variables. In other words,

z=(ro+it., s. — 21+ B)rot. +i [(L+B)r2 + (1= B)t2]),
(= (TC +ite, S¢ — 2(1+ ,B)Tctg +1 [(1 + B)Tg +(1- ﬂ)ta) .

The wedge product of differentials appearing in the numerator of equation (3.30) can
be written as
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d¢e AN dCi AdGy = 2idse Adre A dte. (3.31)

The major advantage of using this parametrization is seen when considering the denom-
inator of the integrand in (3.30). After the change of variables,

(G +B6) (G —21) = (14 B)re —i(1 = B)te) ((r¢ — r2) + it — t2))
=1+ B)re(re —r2) + (1= Bte(te —t2) (3.32)
+i[(1+ B)re(te —tz) — (1 = B)te(re —r2)],

and

(G- m) = —5 [+ O =12+ (1= )t — )] (33)

+ = [(s¢ —s2) = 2(1 + B)(rete —rat2)].

N | .

Putting the pieces together, we obtain

1+
2

(3.32) + (3.33) = (re — 1) +i(rs —re)(ts +te+ B(ts —te))  (3.34)

1-5

(= 10)? = (s = s0)

)
=A- 5(82’ - SC)7

where we’ve collected all terms not involving (s, — s¢) into the temporary label

_1+5

A==

1-p .
(re = 7e)* + =5 (te = t0)* +ilra = 1) (t +tc + Bt — ). (3.35)
The fact that the term involving the s variables appears in convolution form suggests
the use of an (inverse) Fourier transform in this variable. Note that all terms involving
the r variables also appear in convolution form. But rather than performing a two-
dimensional inverse Fourier transform, we make use of the computations in Section 3.1.

From (3.30), (3.31) and (3.34),

1 t
Lsf(ra,s.,t.) = 4_2/ f(’f’s@ 3 S dsc Adre A dte (3.36)
s (A= 3(s: = s0))
1 T '
=-— / f(TC’SC’ C) 2d8< dTC/\dtC
i a B ((SZ — Sc) —+ 2’LA)

1
= fF/F*G(sz)drg/\dtC, (3.37)
R2
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where F(s) := f(r¢,s,t¢) and G(s) := m.
At this point we compare (3.6) to (3.37) and see that they are identical except that
A = (3.35) and C = (3.5) are different.

Remark 3.38. A glance at equation (3.35) shows Re(A) > 0, with equality if and only
if both r, = r¢ and t, = t.. When Re(A) = 0, F' * G is defined by a singular integral
that should be interpreted in a principal-value sense. This is reminiscent of the Cauchy
transform and relates to topics like the Plemelj jump formula as described in [25]. We
can sidestep this issue, however, since Re(A) vanishes only on a set of three-dimensional
measure zero.

Re(A) > 0 almost everywhere and for all such A, Proposition 3.7 says the inverse
Fourier transform of G(s) = m is given by

£ =20

i 0
FIG(E,) = / G(s)e2misEs s — (3.39)
s 4r2€ et A € < 0.

As a consequence of equations (2.12) and (2.14), we are able to reduce the dimension
of the integral in calculation of the L% -norm of Lgf(r,,s,,t.). Starting from (3.37), the
inverse Fourier transform in the s variable yields a statement equivalent to (3.8):

0 £ =0

F'Lgf(re & ts) = (3.40)

—455/]-";1f(7"<,£5,t¢)64”55‘4 dredte €5 < 0.
]RQ

3.4. A second inverse Fourier transform and Hilbert-Schmidt operators

The payoff to the re-parametrization in the previous subsection comes from the fact
that A = (3.35) is in convolution form in the r variables. Motivated by (3.39), for £, < 0
we define

H(r) = —4¢, e2mE[(L4B)r? +(1=B) (t2 —tc)* +2ir (tz +tc+8(t—1c))] (3.41)

Now take the inverse Fourier transform. Using the scaling r — /—2&,(1+ 8)r and
integral (2.15), a computation shows that for £ < 0,

o0

FILH(E) = —4€, / e2mir &r 2mE[(L4+B)r? +(1=B) (tz —t) 2 +2ir (ta+tc+B(t~t))] g

— 00
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_2V2VE w
Vi EXP{2(1+ﬂ)§S

(& +4(1 4 B)(Esbrt +26282)

41— et +2620)]

_ 228 ™ 2 2 & 1+ 8
=173 Exp{2(1+6>§s {£T+8(1+[3)§s (tz+4fs) B
2 _ 2
81— (4 22 ) - L8
_2V2—E, &\ A, (1 - B) %
= Tep O {4”55 (tz * 45) } Exp {W <t< * 4—5) -
(3.42)

The key observation from (3.42) is that the ¢, and ¢, variables are decoupled, i.e.,
FLH(&,) breaks into a product of functions of these respective variables. Now define

_ V28

mo,¢, & (tz) = mo(tz) m gr

2
4_53) } “Tye, <oy (3.43)

Exp |:47Tfs (tz +

and

4m(1 — B)&s 2
%5)5 (tc * g_) } Mpecop (3.44)

mig, ¢, (tc) == mi(te) = Exp { 1€

where ¢ <) is the indicator function of the interval (—oc,0) in the £, variable. These
definitions were set up so that for each £; < 0,

Fr H(&) = molts) ma(t). (3.45)

Now (3.40), (3.41) and (3.45) give that

0 £ =0
TP L f(&r &arts) = i
ﬁf(g ¢ ) mo(t2) / ml(tC)ffllef(gragsvtC) dt¢ & <0.
- (3.46)

We finish our analysis by studying the family of operators .#, ¢ := .# defined by

Ayl = mo(ts) [ milte)ate) dtc (3.47)
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Proposition 3.48. For each & € R, § < 0, the operator My, ¢, = M is rank-one Hilbert-

Schmidt with norm

1
s = 77—

el

Proof. Observe

otV = [ Tono(t) o (1) e

i
_ ;i 5; _7 Exp {871'&3 (tz + fg)T dt,
[ e SO0 (1 &)
:—855< 1 )( 1 m>
1+ 8 \2v2y/=&, 2W2/—E 1-8
1

VI-p%

Taking square roots, we are done. 0O
We are ready to prove Theorem 1.3, but first consider the action of #¢, ¢, = A

on a function ge. ¢, = g € L*(R) for a fixed pair & € R, & < 0. Recall that the
Hilbert-Schmidt norm of an operator dominates its operator norm. Indeed,

o0 o0 2
93wy = [ |molte) [ mittolatedee| .
<[ mateor ae ) ([ i dec ) ([ lateoP die
(3.49)
1

2
= ﬁ ||9||L2(R) )

with equality in (3.49) holding if and only if g is a multiple of my, i.e.,

Gere. () = (&, Es)mue, e, () (3.50)
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3.5. Proof of Theorem 1.3

The reparametrization in Section 3.3 from (3.30) through (3.36) shows that
HL@fHLQ(Sﬁ o) = 1Lpf(rz,s2,t:)l p2gs - By repeated application of Plancherel’s iden-
tity (2.12),

||L,5‘f(Tz7SZatz)HLZ(RS;r) - ||f;1L5f(rz’gs’tZ)HLz(R?’vU)
= | F L f (6 o t)|| o o
= H:/fg,mgs (]:T_l}_s_lf(frvg& )) (tZ)HLQ(Rs,U)

1 —1 -1
S {I/T—/BQ ||‘F7" fs f(§7"7637t2)||L2(R3’0_) (351)
1

S Viie 1f(rzy sz t)ll paqms o) -

Noting that ||f(rz, sz, t.)ll 2rs o) = I/l 12(s,,0) Shows ﬁ is an upper bound.

The norm of Lg is achieved when equality holds in (3.51). By (3.50), this happens if
and only if we choose f € L?*(Sg,0) so that

FFT (& &) = 06, E)mag, e, (). (3.52)

The square-integrability of f ensures ¢ must satisfy

co 0
/ / ig [o(&r, &6) |7 dEs dEy < oo (3.53)

~00 —00
This completes the proof and establishes item (c) on the list given in Section 2.2. O
3.6. The Leray transform of S is a projection operator

We establish item (d) from Section 2.2 by showing Lg o Lz = Lg.

Proposition 3.54. For each &, € R, £ < 0, the operator My, ¢, = M defined by equation
(3.47) is a projection.

Proof. Let g € L?(R), and mg and my be given by equations (3.43) and (3.44), respec-

tively.

(M 0 ) (9)(ty) = mo(ty) / ma(ts) ( mo(t=) / ma(t)g(te) dtc | db.

— 00
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b)) / m(t)g(te) die / ma(t)mo(t)dt.. (3.55)
A computation shows that

2VBVE [ 87, %
/m1 Ymo(t,)dt, = m Exp L"‘ﬁ(t —1—458) } dt,

— 00

=1

and thus (3.55) = Zg(t,). O
Corollary 3.56. L is a projection operator from L*(Ss,0) — L*(Sg,0).
Proof. After Proposition 3.54, this amounts to symbol pushing

LsoLs=F,0F.0F *oF,;YoLgoF,oF, o F, Lo F, oLy
=FoFo(MoF L oF ) oF,0F o(MoF  oF )
=F,oF ol oM oF: "' oF, !
=FoF, ol o F o F !
=FsoF.0oF YoF oLy = Lg.

A deeper analysis of these operators is provided in Section 5.2. O

Remark 3.57. To see that the closure of Ss in projective space fails to be a C! hyper-
surface when 0 < 8 < 1, apply the projective automorphism z; = Zz1 /23, 20 = 1/25; then
the behavior of

Sp = {(zl,zg)ecc?: —Im(%) = 52+ 8 Re(zQ ~2>}
%)

near the origin captures the behavior of S3 at infinity.
Setting z; = x; + 1y;, the cubic formula can be used to represent y» as a function of
(T1, 71, T2). Computing with the formula one can check that 8y2 — 0 along every line

9y

through the origin, whereas 32 is a non-zero constant along the parabola To=72%,02 =

0; thus % is discontinuous at the origin. ¢
3.7. Higher dimensional hypersurfaces

The natural generalization of Sg to higher dimensions are hypersurfaces parametrized
by vectors (f1,. .., Bn—1) as follows. Independently set each 0 < 8; < 1 and define
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Stprspn ) =1 (Clov ey Ca) € C™: Im(Gy) = Z (I + 8 Re(¢)) ¢ - (3.58)
j=1

This form is suggested by equation (2.5), as such hypersurfaces give local projective
approximations to any strongly C-convex hypersurface to two orders of tangency. A
hypersurface of this kind can be converted to a bounded hypersurface using a projective
automorphism. However, the point at oo is always mapped to a point which is less than
C'-smooth — unless §; = 0 for all j. With the exception of this special case — in which
(3.58) is the Heisenberg surface — the Lanzani-Stein results in [20] fail to imply the
L?-boundedness of the Leray transform because they require C'! smoothness.

The L2-boundedness of the Leray transform of (3.58) may be seen, however, by mirror-
ing the arguments in Section 3.1. A sketch is now given. As usual, define the Leray trans-
form Lg, . g, ,) = L by (2.7). L resembles (3.3) and the measure dp(¢) A 20p(¢)—1
is a constant multiple of

o=dry ANdyy N+ - ANdxp_1 ANdyn—1 ANdz,.

Here the coordinates (¢, . . ., (,) have been identified with (z1,y1, ..., Tn, yn). Parametriz-
ing Ses,,...8,.1) by R27*1 in this way gives the Leray transform as a one-variable
convolution as in (3.6). Apply the Fourier transform in this variable and use the tri-
angle inequality to avoid the oscillatory pieces of the integral a la (3.9). This facilitates
use of the Fourier transform in the remaining variables much like (3.10). Following
this blueprint through to (3.17) lets us deduce the following: The Leray transform is a
bounded operator on L? (S(s,,.. 5, ,),0) with

2n—1

1L < .
V=B —53)..(1—-82_,)

Remark 3.59. Computing the exact norm of the Leray transform of (3.58) in higher
dimensions presents more difficulties than when n = 2. One may start by studying
affine automorphisms of S, ... 5, ,) analogous those in Section 3.2. When n = 2, the
payoff is seen in Proposition 3.28 when Sg is re-parametrized by a (real) 2-dimensional
abelian group of automorphisms acting on a (real) 1-dimensional curve in Sg. The higher

dimensional version is a re-parametrization of S(g,, .. g, ,) by an n-dimensional abelian

.....

group of automorphisms acting on a (n — 1)-dimensional surface in S, .. g, ,). It is

.....

unclear whether this approach will produce the exact norm of the Leray transform for
n>2 ¢

Remark 3.60. The LP-regularity (p # 2) of the Leray transform on Sg and the higher
dimensional hypersurfaces in (3.58) is an interesting open question. These hypersurfaces
are less than C'-smooth at oo, so the Lanzani-Stein machinery [20] is unable to imply
any LP-regularity. In [23], the same authors provide explicit examples of hypersurfaces



22 D.E. Barrett, L.D. Edholm / Advances in Mathematics 364 (2020) 107012

which are C™-smooth, 1 < m < 2, but for which to the LP-regularity of the Leray
transform fails for every 1 < p < oo. One might hope that a Calderén-Zygmund style
approach to this problem will yield LP results, but at this point the details are unclear
and likely to involve non-trivial modifications. Nonetheless, this problem is worthy of
further pursuit. ¢

4. Projective dual C'R structures

In this section we reinterpret the Leray transform Lgs with the use of projective
dual coordinates and the projective dual C'R structure on a general strongly C-convex
hypersurface S. The dual coordinates depend, in our presentation, on the choice of a
matrix M, but the dual CR structure will be independent of that choice. (This follows
from Lemma 4.28 below.)

Let

C1 a1 as
M=1|b mi1 m (4.1)
by ma1 Mo
be an invertible 3-by-3 complex matrix. Use M to define a map ®,; : C2 x C2 — C by
1
((21,22),(w1,w2))r—>(1 w1 U)Q)M 21
22

miyy m z
=1+ a1z1 + asze + bywy + bawg + (wy wQ)(m; m;z)(zi)

Given a smooth real hypersurface S C C? with defining function p along with ¢ € S,
let

p(¢) = g—g(é) (4.2a)
p2(0) =~ 5 ) (4.2b)
and note that
L= m(Q) g + 12O

is a non-vanishing type-(1,0) vector field tangent to S. The (affine) complex tangent line
for S at ¢ may be described parametrically by a map from C — C? sending

v = CHo(pa(Q), p2(C)), (4.3)

or equivalently by
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dp ap }
D - — —29)=0¢. 44
{1 G206 -2+ FE OG- ) =0 (1.4
Definition 4.5. We say the hypersurface S is M-admissible if for all { € S,

mapn (C) +migpa(C)  miiCy +miala + by
det (m21ﬂi(4) + mzzM(O m21<1 + m22C2 + bg) ?é 0 (46)

The motivation behind this definition comes from the following lemma.

Lemma 4.7. If S is M -admissible then there are uniquely-determined functions wi pr and
wo, m on S with the property that the complex tangent line to S at ¢ is given by

{(21,22): @ar((21, 22), (w1,m(C), w200 (C))) = 0} . (4.8)

Proof. The set (4.8) is either a complex line or the empty set (corresponding to the
projective “line at infinity”). To prove the lemma, it suffices to check via (4.3) that
there are uniquely-determined wi ps(¢), w20 (¢) so that the set (4.8) contains both ¢
and ¢ + (u1(¢), p2(Q)); this is equivalent to the system

(m11G1 + ma2Ce + b1)wi a () + (Mma1Ca + Mmaale + ba)wa p(()=—c1 — a1C1 — a2l
(ma1pa(€) + mazpa(C))wi, v (€) + (m21p1(C) + mazp2(C))w2,m (€)= —a1p1(¢) —azp2().

Condition (4.6) guarantees that this system is uniquely solvable for wy s (¢), wo,p (). O
We note that since ¢ belongs to the tangent line (4.8) we have
P s ((¢1,¢2), (w0 (C), wa,m(€))) = 0. (4.9)

4.1. Examples of M -admissibility

-1 0 0
Mi=[0 10
0 0 1

we find that S is Mj-admissible if and only if (3u2(¢) # Cap1(¢) on S; using (4.3) we
find that this is equivalent to the condition that no complex tangent line passes through

Example 4.10. Setting

the origin.

Every compact strongly C-convex S enclosing the origin is Mj-admissible. See [6] and
Section 2.5 in [1] for further discussion.

Note also that in this case (4.8) reads as

ziwia, (€) + 22wz 0, () = 1 (4.11)
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for z in the complex tangent line. Similarly (4.9) becomes

Grwi,am, (€) + Gwaar, (€) = 1. (4.12)

Comparing (4.11) to (4.4) we see that we may (and must) take

w (€)= %(O
ST 2 (0 + G RE(Q)
FE(¢)
_ 9¢a
”LUZ,Ml(C) Claa_cpl(C) —|—<25—CPZ(C),

where the non-vanishing of the denominators follows from the M;-admissibility. It follows
now that

(0p(€), (( —2)) = (Q@(C) + Cz—(C)) (1 = z1w1,a1, () — 20w2 21, (€))

G

where the left hand side appears in the denominator of equation (2.8). Thus, the Leray
kernel

0 ra0n0)
Zs(2.0) = (2mi)2 (9p(C), (¢ — 2))°

may be written as

9 9 —2 5
1 (GEEQ+GEEQ) ~ 9p(Q) A 00p(Q)
2mi)* (1 - znwian Q) — 2w, (€))7

To rewrite the numerator further we note that

o

—1
26 (C)) 0p(Q) = w1, v, dC1 + w2 ar, dC2,

dp
(apt©+6

from which we may deduce that
(6:2200)+220)) 0p(c) 7 20p(0)
1 oG 2 oG p P
= (wLM1 d¢i + wa, M, dCQ) A (571/17]\41 Ad( + 571)271\41 A d<2)
= (we,nr, Owr,ar, — Wi ar, Owa g, ) A dCy A dGa

= (w2, p, dwi pm, — Wi a, dwa,ay ) A dC A dCa,

so that
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1 (wo,n, dwi a, — w1 m, dwa ar ) AdG A déo
ZS(ZaC) = (271_2)2 : : .

(1 = z1w1,m, = 22w2,01,)
In the special case when S is the unit sphere in C2, we have

w1, (€) =G

wa 1, (C) = (o
1 (CodCy — ¢y dCy) AdCy AdGs _

Ls(2,0) = 75— - -
S(Z C) (27.”)2 (1 _ 21C1 _ 22C2)2

We note that this formula coincides with the Szegd kernel for the unit sphere.

Example 4.15. Setting
0 0 ¢
My=|(0 2 0
;0 0

we find that S is Ms-admissible if and only if 11 (¢) = 5

25

(4.13)

(4.14)

O

92 (¢) # 0 on S; equivalently,

S has no “vertical” complex tangents. Every S arising as a graph of a smooth function

over C x R is Ms-admissible.
In this case (4.8) reads as

2z1w1, M, (€) + 122 — fwa a, (() =0

for z in the complex tangent line. Similarly, (4.9) becomes

21 w10, (¢) + iCa — dwa,ar, () = 0.

Comparing (4.16) to (4.4) we find

i 520
s V2 C 5 % )
() 1 ¢y 2
wo i (0) = 276 (CSL é o)
9

and

@010, (¢~ 2)) =52

Thus,

(4.16)

(4.17)

(4.18a)

(4.18b)

92(0) - (22110 (0) + 120 — i0mana (€))
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() ndop(c)  —(22(0) 8p(¢) A DD(O)

0p(0), (C—2))*  (2z1w1,a0,(Q) + 22 — w201, (€))*

But note that

) -t 2
(a—g(o) dp(¢) = ZWLM; d¢y + dda,

from which we obtain

ap .\ 5 2 25
(a_g(g)) 8p(<) N c’)ap(() = (;'wl,M'z d¢ + d<2> A ; awl,Mg Ad(

= -2 d’le\/[2 A dCl N ng,

and so
1 dwq My N dcl A dCQ
= J . 4.19
L0 =0 (2z1w101, (C) + iz — w2, ap, (€))° (419
In the special case when & = Sg we have
wi (€)= ¢ + BG (4.20)
9  _
w2, (€) = Z GGy + 5G) + G2 (4.21)
1 dCy A d¢y A dCo
fﬂ(za g) - 27T2i (2Z1w1,M2 (C) + iZQ _ 7;’LU2’M2 (C))Q
1 dGe AN dC1 A dCy 7 (4.22)

ST (G4 AO)(G — )+ (G — )

which recovers the form of the Leray kernel given in (3.3). When 8 = 0, this becomes

w1, (€) =G

9 _ _
wa ar, (C) = ;Clﬁ +G=(

1 d¢y Ad¢y A dGy
272 (221?1 +iz9 — izz)z
1 dxy ANdyy Ndx
=5—a 2 (4.23)
T (221C, 4 iz — iCy)

fo(z, C) =

Since this is conjugate-C'R with respect to ¢ we find that % is the Szeg6 kernel of Sy
with respect to the measure dzy A dyy A dxa. (See Chapter 10 in [12].) O

Remark 4.24. The non-zero entries in My are tailored specifically for use with Sg. ¢
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Remark 4.25. Setting

0 i 0
My=|-i 0 0],
0 0 2

(or any such matrix with non-zero entries in the same slots) we find that S is Ms-
admissible if and only if S has no “horizontal” complex tangents. In particular, each
point in S has a neighborhood that is Ms-admissible or Ms-admissible. ¢

Remark 4.26. The formulas (4.13) and (4.19) reveal that the Leray transform does have
some form of the domain independence property from Section 2 if we allow the use of
the dual variables. Any two M-admissible hypersurfaces have identical Leray kernels in
the variables (z,w) = (21, 22, w1 p, w2 a). The w variables, of course, are hypersurface
dependent. ¢

4.2. Universal dual coordinate description of the Leray transform

Recall that a projective automorphism is a (partially-defined) map from C? to C?2
extending to an automorphism of projective space. These have the form

(1, wi,w2) Yy (17w17w2)T2)

T
(wlan) = ((17’(1}1,’(1)2)TO’ (17w17w2)T0

(4.27)

where Yo, Y1, Yo are the columns of an invertible 3-by-3 matrix T.

Lemma 4.28. If S is both M-admissible and M'-admissible, then there is a projective
automorphism T* so that (wi pv,we pr) = T (w10, W nr)-

Proof. The hypothesis guarantees that each complex tangent line for S may be writ-
ten uniquely as the zero set of (1,w17M,w27M)M(1,21722)T or of (1,w1 apv,wo pr)
M’ (1, z, zQ)T; thus there is a relation of the form (1, w1 p, wo ) M = k(w1 pmr, wa,n)-
(]., wl,M; ng) M or

(1, w1, mr, wanr ) = K(wi ar, waar) - (1, w100, wa ) M(M') L (4.29)

A computation shows that this works if we let T = M (M’)~! and set r(wi pr, wo,n) =
1

oo To- Lhe non-vanishing of the denominator follows from (4.29). O
w1, m,w2, 01 ) Yo

We now obtain the universal dual coordinate description of the Leray transform.

Proposition 4.30. If S is an M -admissible strongly C-convex hypersurface in C? then the
Leray integral from (2.7) may be written as
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fes e - ) 4.31
sf(2) CE/S ( )((LIUl,M,’LUQ,M)M(l’Zl,ZQ)T)2 ( )
where
1
vy o= (2mi)? ((deM,dwz,M) (;nl; EZ) (7421)

mi1 M2
ma1  Ma22

('LUQ’M d’LULM —Wi,M d'LUQ’M) ) A dCI A dCQ (432)

Here aj and mjj, are given by (4.1).

Note that from the examples in Section 4.1, we already have this result for the special
matrices M7 and Ms. In particular,

1
U, = ﬁ dU)L]\J2 AdC AdCs. (433)

Proof. The result is local. Suppose that S is Ms-admissible at a particular point. The
transformation laws from the proof of Proposition 4.28 (with M’ = M>) yield

_ 1
272

(1, w1, a1, wo,0r) Y1
(1, w1, a1, wa, 1) Yo

VM ((17w1,M7w2,M)T0)2d< ) AdC A dC,

with

S0

—iaz % iCl
T = 7im12 miL ibl .

—imgg = ibg

[\

Routine computation then reduces vy to the form given in (4.32). If S fails to be Ma-
admissible at some point then by Remark 4.25 it will be Mjs-admissible there and a
similar computation will yield the result. O

Remark 4.34. Similarly, in the setting of Lemma 4.28 we have the transformation law
2
va = (1, w,ar, w2,00)Yo)” varr
with (1, w1, ar, wa,ar) Yo non-vanishing. ¢

Proposition 4.35. If S is an M -admissible strongly C -convex hypersurface in C? then the
form vy from (4.32) is nowhere-vanishing as a 3-form on S.

Proof. In view of Remarks 4.25 and 4.34 it suffices to consider the case M = M (or the
similar case M = M3). The claim is equivalent to the non-vanishing of dp A vy, along

S.
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Recalling (4.33) and (4.18) (and using subscripts to denote derivatives) we have

(e G + gy do) nd (20) ny A s
Pea

1
dp/\l/Mzzﬁ

1 _ _
= Hpﬁzz (pfl dy + Pe, dc2>

A (ng (pCl(,:l dél P66 déZ) — PG (pC251 dél T Pty déQ) ) A dGi A dCa

1 _9 0 pEl pfz _ _
= 4 5P det Pe Poén Peid dCl A\ dCQ N d(l N d(z (436)
Pz Pty Peale

Since § is strongly C-convex, it is also strongly pseudoconvex — see Remark 2.6 — and
strong pseudoconvexity is well-known to be equivalent to the negativity of the determi-
nant above. This establishes the claim. O

Remark 4.37. In view of Proposition 4.35, we write vps in the form 7(var) - [var| where
7(var) is a unimodular scalar function on S (the phase function for vy) and |y is a
positive 3-form on S. (We may view |vjps| as a measure on S that is a smooth positive
multiple of the surface area measure.)

From Remark 4.34 we have

‘VMl - |(1 Wi, M, W2 M)T()’ |Z/M/|
2
VM ( 1 w17M,w27M)T0>2 T(VM/).
(1, w1, a7, w2,00) Yo

For future reference we note that if S is Ms-admissible with defining function p that
is independent of Re({2) then pe, is purely imaginary and non-vanishing and thus S may
be written locally in the form Im(¢2) = A(¢1,¢1) (and thus S is (locally) rigid in the sense
of Baouendi, Rothschild and Tréves — see [2]). From (4.36) we see that in this situation
the 4-form dp A vay, is positive along S; equivalently, vy, is positive as a 3-form on S
and hence |vy| = var, 7(var) = 1. 0

4.8. Projective dual C R-structures

Recall the non-vanishing type-(1,0) tangent vector field (refer to (4.2))

0 0
L= p1(¢) 7 G

3, (4.38)

+ p2(¢)

Lemma 4.39. fwl,M and szM do not vanish simultaneously.
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Proof. If S is Ms-admissible then from (4.33) and Proposition 4.35 we have dwi ar, A
dCi NdCa # 0 as a 3-form on S. It follows that dw; a, fails to be C-linear on the maximal
complex subspace at any point of S, that is, Lwy a7, # 0. A similar argument works if S
is M3z-admissible. The general case follows now from Remark 4.25 and Lemma 4.28. O

Lemma 4.40. There is a uniquely (and locally) determined smooth function n on S so
that if we set

Lgual = L — 7L
zdual =L~— nz7

we have fdualwl,M =0= fdua|’w27M for all M for which S is M -admissible.

Proof. At points where S is My-admissible, Lemma 4.28 allows us to assume that M =

M.
From (4.2) and (4.18) we obtain wy a,(¢) = ijl(%g) and hence
2i(LC1)U}17M2 = L(Q (441)

Applying L to (4.17) and using (4.41), we find that

0 = 2(L¢)wi,ar, + 2¢1 (Lwy ar, ) — iLwa ar, + 1LCo
= 2¢1 (Lw v, ) — iLwa ar, (4.42a)
0= 241 (ZUJLMQ) — isz,Mg' (442b)

By the proof of Lemma 4.39 we have Lw; ar, # 0, allowing us to define

L
= ZWLM, (4.43)
LU)LJW2

so that Lquaiw ar, = 0. From (4.42a), (4.42b) we see that also Lyyaiwe, ar, = 0 as required.
A similar argument holds in the Mjs-admissible case, and the general case follows as
before by application of Remark 4.25. O

We now define the (projective) dual CR-structure on S:

Definition 4.44. We declare Ly, to be dual-type (1,0); thus a function f on S is dual-CR
if and only if Lquaf = 0. Note that this definition is set up so that wy,pm and wy pr are
dual-CR for all choices of M for which S is M-admissible.

Referring now to Proposition 4.30 (or to (4.19) or (4.13)) we see that Lsf(z) is
obtained by integrating f against the dual-C' R function ((1, wi,m, wo, )M (1, 21, 22)T> -2
with respect to the 3-form vy;. This may be compared with the corresponding Szeg6
projection, obtained by integrating against a conjugate-C'R function.
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5. Factorization of Lg

For any M-admissible strongly C-convex hypersurface S, the three-form vy, the mea-
sure |vps| and the phase function 7(vys) are defined in (4.32) and Remark 4.37.

In the special case of Sg we have |var, | = va, = 72 dzy Adyy Adzs and T(vp,) =1
(with notation as in Section 3.1). In fact, from Remark 4.37 we have 7(vaz,) = 1 for all
rigid hypersurfaces, and the proof of Proposition 4.35 (see equation (4.36)) can be used
to check that 7(vpz,) is constant only for hypersurfaces that are (-rotations of rigid
hypersurfaces.

For the remainder of this section, all L?-norms are defined using the measure |vy/|
where M is a matrix for which S is M-admissible. The dependence of |vps| (and 7(var))
on the choice of M was explained in Remark 4.37.

5.1. Orthogonal and skew projections

Focus now on the case of smooth bounded strongly C-convex S (which will be M-
admissible after a translation). Let 2 denote the domain bounded by S. Lanzani and
Stein’s main result in [20] guarantees that Ls defines a bounded projection operator from
L?(S,|vas|) onto the Hardy space H?(S, |var|) of L? boundary values of holomorphic
functions on 2. We often omit the measure when writing these spaces. In particular, we
have that Ls o Ls = Ls and

H?*(S) =ker (Ls — I) = Ls (L*(S)) .

Let P denote the orthogonal projection from L2(S) onto (ker Ls)™. Define the space
Wy (S) = W(S) by

W(S) = {r(var)h: h € (ker Ls)*} (5.1)

and let Rg: L?(S) — W(S) denote the surjective operator given by f +— 7(vas) - Psf.
Note that ||Rs|| = ||Ps|| = 1. For each z € S, define the dual-CR function

9:() = Par (21, 22), (w10 (C)y wa e (€))) >

= ((Lwl,M(C)aw2,M(<))M(1731722)T)72

Lemma 5.3. The conjugate space W (S) is the closed span of {g.: z € Q}.

Proof. From Proposition 4.30, Lsf(z) = fs fvmg. = fs flvam|T(var)g.. Hence, Lsf =
0 if and only if

fLras o) {Tloan)gz: 2 € Q).



32 D.E. Barrett, L.D. Edholm / Advances in Mathematics 364 (2020) 107012

Consequently, (ker Lg)" is the closed span of {T(VM)gZ: z € Q} and thus W(S) is the
closed span of {g;: z € Q}. The claim follows. O

Remark 5.4. We will show below in Proposition 6.5 that W (S) is in fact the Hardy space
H2

dual

(8) corresponding to the projective dual C'R structure. ¢

For f € L%(S),h € (ker Ls)* we have 7(vy)h € W(S) and thus
/fqu L /f|uM|h /(Psfwum
— [ Raf)lvas| 7o
S

Recalling Proposition 4.30 and setting 7(vpr)h = g, above, we find that

Lsf(z /fVMgz—/(RSf)|VM|gz:/m(R8f)VMgz

S

=Ls (tlom) Bsf)) (). (55)
Theorem 5.6. Define the operator Qg : W(S) — H%(S) by f + Ls (T(VM) . f) Then

(5.7a) Ls = Qs o Rs
(5.70) || Ls| = [Qsll
(5.7¢) Qg is invertible.

Proof. The factorization (5.7a) follows from (5.5).

To prove (5.7b) note that ||Qg|| < || Ls|| from the definition of Qg and that ||Ls| <
IQs] from (5.7a) and ||Rs]|| = 1.

To prove (5.7¢) note first that surjectivity of Qg follows from (5.7a). To verify injec-
tivity, note that f = 7(vp)h € W(S), Qsf = 0 implies h € (ker Ls)" and Lsh = 0
hence h=0=f. O

Suppose now that S is the M-admissible strongly C-convex boundary of an unbounded
domain 2. As before, equip S with the measure |vys|. Define Lg, g, etc. as above, and
suppose that the following hold:

(5.8a) [|g:|lL2(s) is a locally bounded function of z € , hence Lg maps L*(S) — O(Q);

(5.8b) Taking boundary values, we obtain a projection operator Ls: L*(S) — L*(S).
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If we then define the Hardy space H?(S) C L?(S) to be the range of this operator
we find that Theorem 5.6 and the preceding discussion carries over immediately. When
S = S, compare (5.8a) with Corollary A.22.

5.2. Factorization of Lg
Restrict focus now to Sg with the measure o = dx; A dy; A dxo, though we often omit

o below. Recall that Sg is Mz-admissible and observe that o = m2|vyy,|. From Section 3.4
we have the Paley-Wiener-type result that

H2(Sp) := F, ' F,H (H?(Sp))

is the set of square-integrable functions h(&,,&s,t) = ¢(&, E)Mog, . (1). Recalling that
mo e, ¢, (t) vanishes for £ > 0,

o0 0 oo
o = [ [ [ 16 om0 deas, e,
oo 0
_ V2 — ,
B 1+5// V=& - o &)IP ds d; < oo (5.9)

Recalling the general formula f(¢) = f(—f) and noting that mi ¢, ¢, (£) = mig, ¢, (t)
we similarly find that the spaces from Section 5.1 correspond to

L2(Sp) = L*(R?), (5.10a)

ker Ly = {0 € PRY): [ (6, & timig . ()t =0 ae. (6.6) € B
R
(5.10b)

(ker LB)J‘ (S ) (5.10¢)

1

w
{ 57"53 my fr7§ £T7§é)| dfé dgr < OO}

8\8

v [
gl

W(Sﬁ) { (frags)ml —fm—ﬁa / ! |<P fr,§5)|2d§5 dé, < OO} (5 IOd)
0

V&

w

Similarly, the operators correspond to
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Ly=.u (5.11a)

Ry=Py:tpry —Lénks “2) / O(Er, Eayu)mae, . (u) du (5.11b)
Hmlvg'mgs(.)HLQ(R) 2

Q, =M 5.11c

Qs e (5.11c)

respectively. The following diagram keeps track of these spaces and operators.

L2(5)) =
L
P;=R; ’
FsFr
W(Ss) H?(Ss) e
Qs

It is easy to use these formulas to provide a separate verification of the assertions of
Theorem 5.6 adapted to Sg. In fact, even more is true in this special case.

Theorem 5.12. The operator /1 — 32 Qz: W(Sz) — H?(Sp) is an isometry.

This follows immediately from equation (3.52).
6. Dual Hardy spaces

Theorem 6.1. If S C C? is an M-admissible compact strongly C-convex hypersurface
bounding a domain €, then the map wy = (w1 nm,wa,n) is a diffeomorphism from S
onto a compact strongly C -convex hypersurface Squa bounding a domain Qgua C C2.

Note that Sqya and Qqguar depend on M. Whatever the choice of M, the C'R functions
on a relatively open subset of Syua pull back with respect to wps to functions on a
relatively open subset of S that are dual-C'R as defined in 4.44.

Proof. This is proved in Proposition 2.5.12 of [1]. O

Remark 6.2. It is also true that Squa is M7 -admissible and that the map wy;r for Squal
is the inverse of the map wys for S (see Section 6 in [4]). O

6.1. Pullback operators and function spaces

Continuing with the assumptions of Theorem 6.1, a function on a relatively open
subset of Squa will be CR if and only if its pullback via wj; is CR with respect to
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the projective dual C'R-structure described in Section 4.3. The pullback HZ (S) :=
why (H?(Squal)) is the projective dual Hardy space for 8. The functions in Hj ,(S) are
L? boundary values of holomorphic functions on Qgyal.

Remark 6.3. It should be emphasized that while the norms of functions in H3 ,(S)
depend on our choice of matrix M, the functions themselves are independent of this
choice. ¢

The operator Lg, , pulls back to an operator L&' : L2(S) — L?(S) satisfying
Ll o pdual — pdva
and
H3,(S) = ker (LE™ — T) = LE™ (L*(S)) -

Proposition 6.4. For f,g € L*(S) we have

[ @styvmg= [ fous (£89)
S

S

Proof. This is Theorem 25 in [4]. O

Proposition 6.5. The space W (S) defined by equation (5.1) satisfies W(S) = H3 ,/(S).

Proof. We start by noting that

fE€kerLs & /(Lgf)yMg =0 for all g € L*(S)
S

& /f VM (LdS”alg) =0 for all g € L*(S) [by Proposition 6.4]
S

& fr(var) L Hgy (S)

& [ Lr(va)Hg,o (S)-

Thus (ker Ls)™ = 7(var) HZ,(S).
Multiplying both sides by 7(vas) we have W(S) = H3,,,(S), as required. O

Combining this with Lemma 5.3 we find that span{g.: z € Q} is dense in H3 (S).
Dualizing, we find it also true that the space span {h,: w € Qqual} is dense in H?(S),
where

ho(€) = @ar (1, C2), (w1, wa)) -2,
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The diagram below depicts the operators Ps, Rs, Qg introduced in Section 5.1, when
the Leray transform is decomposed into factors. We now see that this factorization passes
through the conjugate dual Hardy space.

12(8)
Ps RS LS
er L) oy ) ) g )

6.2. The dual hypersurface of Sg

Turning attention now to the Sg, the assumptions of Theorem 6.1 do not apply but
we have from (4.20) and (4.21) that

wary: (€,6) = (G486, 20@+50) + &) = (G + 5, G — 166 +i6G7)

with inverse

— Pws n 24wy (wy — ﬂwﬁ) .

(wlva)’_)( 1_52 , W2 1_52

This leads to

S5, dual := {(wl,wg) € C?: —(1—-pHIm(ws) = |w1|2 — ﬂRe(w%)} )

Note that Sg qual is linearly equivalent to Sg via the map (w1, wsz) — (\/%, —w2>.
The space H3,,(Ss) and operator ijg‘;a' are induced from H?(Sgqual) and Ls, ,, as

above. The proof of Proposition 6.5 carries over to show that we still have W (Sg) =
duaI(Sﬂ)
We previously discussed the inverse Fourier transforms of both this space and the orig-
inal H%(Sp) in Section 5.2. For reference, we include them below. Recall that mo ¢, ¢, ()
and mq ¢, ¢, (t) are defined in (3.43) and (3.44).

0
H2(Sﬂ> = (frvgs mo 5,7& / / V gs |90 frags |2d§sd§r <00 o, (66)

%

H2(S3) = d ol €)mi e, c.(t / / L o6 &) deude, < 00 b (6.7)
—oo 0
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—

Note that the space H?(Sg) and the conjugate dual space H3 , (Sg) coincide when
B8 =0.

Appendix A. L2-norms of the kernel function

Like the Cauchy transform in one complex variable, the Leray transform on a bounded
C-convex hypersurface S constructs holomorphic functions on the C-convex domain it
bounds. But dealing with unbounded hypersurfaces requires more delicacy. This ap-
pendix shows that Lg constructs holomorphic functions on {23 from boundary functions
in L2 (S 8,0 ) .

A.1. Automorphisms of Q3

Partition 23 as an infinite union of translates of Sg. For all € > 0, define the hyper-
surface

S5 = {(21,22) : (21,22 —i€) € Sp},
and note that if 2 € S&, then Im(22) = |21|*> + B Re(2}) + €. It is clear that S = Sp and
Qg = Ueso Sﬂe. The maps ¢(., ) defined by equation (3.21) extend to automorphisms of
Qg. In fact, they preserve each shell:
Proposition A.1. The affine map
G(e,s) (21, 22) = (21 + ¢, 22 + 2i(C+ Be)z1 + i(|c\2 + BRe(c2)) +3) (A.2)

is an automorphism of each 85 for all choices of c € C and s € R.

Proof. Choose any z € S§. Then Im(z2) = |21]* + S Re(27) 4 e. Writing the components
of ¢(c,s)(21, 22) as (¢1, P2), we see

01]* = 21> + [c|* + 2Re(z1¢),  BRe(41) = fRe(27) + 26 Re(z1¢) + BRe(c?),
and
Im(¢o) = Im(22) + BRe(2?) + € + 2Re(21¢) + 26 Re(z1¢) + |¢|? + BRe(c?).
This means (.. (21, 22) = (¢1,¢2) € S5. D

Corollary A.3. Fix z € Sﬁf. There is a unique Q(c(z), s(z)) which sends z = (21, 22) +
(0,7€).
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Proof. It can be verified that the choice of
c(z) = —z1, 5(z) = — Re(zp) — 28Im(z7) (A.4)
sends z — (0,4€). Uniqueness follows from the form of (A.2). O

It was mentioned in Remark 3.25 that the maps ¢, ) preserve both volume and the
boundary measure o = dx1 Ady; Adxs. The Leray kernel Zs is defined in equation (2.8)
as an (n,n — 1)-form, but when & = Sg we may think of as Z3(z,¢) = £3(2,{)o(¢),
where {3 is a function (i.e. a (0,0)-form) times the measure o. This coefficient function
satisfies the following invariance property:

Theorem A.5. Let {g denote the coefficient function of £ written with respect to the
measure o. Fiz a point z € Qg, choose the unique € such that z € SBE, and let ¢* =
B(e(2),s(z)) denote the map in Corollary A.3 sending z — (0,i€). Then

3(07(2), 9"(C)) = €(2,C)- (A.6)

Proof. Following the parametrization of Sg with the automorphisms ¢, ) in Section 3.3,
write the points z € Sﬁe, (€8s as

z=(r.+ite, s; =201+ B)rote +i [+ B)r2 + (1= B)t2 +¢]),
¢ = (r¢+ite, se —2(1+ B)rete +i [(1+ B)rd + (1= B)tE]) .

Starting from the definition of Lgf(z) in equation (3.30), we first note that

dCa NdCy NdCy = 2idse Adre Adte
= 2i0(().

Repeating the steps from (3.32) through (3.36) — with the only difference arising from
the fact that now z € S5 — we find that Lgf(2) = fSB f($)s(z,¢)o (), where

(3(2.0) = 72 (14 B) . = 1) + (L= B)(t —1)* + ) (A7)
+ i(2(7"z —re)(ts +te + B(ts —te)) — (52 — sc))} _2.

Written with respect to this parametrization, the subscripts of the map ¢* =
P(e(2),s(2)) defined in (A.4) take the form

c(z) = —r, —it,, s(z) = —s, +2(1 — B)ryt,. (A.8)

By construction, ¢*(z) = (0, i€). This is equivalent to saying ¢* maps
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T, — 0, t,— 0, s, — 0. (A.9)

Calculating ¢*(¢) is more involved, but starting from (A.2) and (A.8) it is seen that

9" (¢) = ((7’4 —r) Filte —t2), s¢ = 82+ 2(r2 —r¢) (1= Btz + (1 + B)c)
+i((A+ B =) + (1= Bt~ 1)?)).
This is equivalent to saying that ¢* maps
Te T — T2, te >t —ty, Se > S¢— Sy + 4t (r, —re). (A.10)

Substituting (A.9) and (A.10) into (A.7) shows

(56" (2).6%(C)) = 72 [((L 4 B)(r — 7o)+ (1= B)(0 — 10)? + )
+ (28 = D)z = o)t = te) + ¢ — sz + 4t = 7)) | -
=72 (14 A)(r- = 7% + (1= B)(t: — 1) +¢)
Fi(2rs 1)t b+ Bl — 1) — (52— )] -
This last line equals ¢3(z,¢). O
Theorem A.5 shows that for fixed € > 0, the L?(Sg, o) norm of /(z, -) remains constant
as z varies in §§. Indeed, the map ¢* = @(.(2),s(z)) maps the point z to (0, i€). Because

the maps ¢(. ) — and their inverses, which have the same form — preserve the measure

g,

1600 = [ 1tste" 2.6 (0
Ss Ss

=/wamm¢oﬁdo. (A11)

Sg

Remark A.12. It can be shown that o is a constant multiple of Fefferman hypersurface
measure (see [3,4,14,16]) on Sg. Theorem A.5 can be deduced from the general transfor-
mation law given in [8] applying to £s written with respect to Fefferman measure. ¢

Remark A.13. For o > 0, consider the non-isotropic dilation map

0a(21,22) = (\/azl,azg) ) (A.14)
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It can be checked that these maps are automorphisms of both Sz and {23. More generally,
dq is a bijection from S5 — S5°. These maps no longer preserve volume or the surface
measure o, but the transformation law in [8] still applies to action of d4. ¢

A.2. Each f € L*(Ss,0) generates a holomorphic function Lgf on Qg

Building on the identity (A.11), we state the following proposition.
Proposition A.15. The integral
[ 1eat0.i61.0F 0(0) = —
i€) o
4 al Ar2e2/1— 32 JV1-p52
8

The proof of Proposition A.15 is split into the following two computational lemmas.

Lemma A.16. For each € > 0,
/\65 ((0,i€), O (¢ /|£/3 ((0,4), O o(¢).
Sp
Proof. From (A.7), £3((0,ic), () may be written by setting r, = ¢, = s, = 0.

[ 160,061,000 = =

dSq A dT< A dt<
(1 + ﬁ)?‘g + (1 - B)t% +e+1i (SC - 2(]. - ﬂ)?"gtg)

‘ 4

Sp
_ 1 dSC N dTC N dtc
e (T+B)rg+ (1=t +1+i(sc —2(1 - ﬂ)rgtg)r
(A.17)
1
= [ 100,01 0(0). @ (A.18)
Sp

Remark A.19. The change of variable (r¢,s¢,t¢c) — (Vere, ese, ete) used in (A.17) is
the non-isotropic dilation . in (A.14). It is also possible to use the transformation law
alluded to in Remark A.13 to immediately deduce Lemma A.16.

Lemma A.20. The integral

) Of o0 - — L
S/ 1500, 0F 010 = s
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Proof. Setting a(r¢,t¢) = (14 B)rZ + (1 — B)t7 + 1, equation (A.18) shows that

/Ifﬁ ((0,2), O o(¢) = / /(a(fcat<)2+(5<—2(1—5)7"&02)72018( dr¢ A di¢

8[3
= /I(T(, te)dre Adte. (A.21)
R2
A computation shows that for each r¢,t; € R, the quantity in brackets

™

2(1+ B2+ (1 -z +1)"

I(r¢,te) =

Making the change of variable (r¢,t¢) — (ﬁ, %), we see that

dT‘C A\ dt(: 2

zm/ GEEERNNVE

(A.21) =

Dividing by 7* gives the result. O

Corollary A.22. The function Qg — R given by z — f85 [0s(2,C) 20 () is uniformly
bounded on compact subsets of (13.

Proof. Every compact subset of {23 is contained in a union of shells Ues.¢, S5 with €9 > 0.
The desired conclusion then follows from (A.11) and Proposition A.15. O

We are ready to prove the main result of Appendix A. This will verify item (a) from
the list in Section 2.2.

Theorem A.23. Lsf € O(Qp) for each f € L?(Sg,0).

Proof. It will suffice to prove that Lgf is holomorphic on U for each relatively compact
ball U C Qg.

In the special case of compactly-supported f this follows from a standard differentiate-
the-integral argument.

To handle general f we pick a sequence of compactly supported f; € L?(Sg,0) with
f; — f in L2. Then with the use of Corollary A.22 we find that Lgf; — Lgf uniformly
on U and thus that Lgf is indeed holomorphic on U. O
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