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Introduction

If Ω ⊂ Cn is a domain and p > 0, let Ap(Ω) denote the Bergman space of holomorphic 
functions f on Ω such that

‖f‖pLp(Ω) =
∫
Ω

|f |p dV < ∞,

where dV denotes Lebesgue measure. Three basic questions about function theory on 
Ap(Ω) motivate our work:

(Q1) What is the dual space of Ap(Ω)?
(Q2) Can an element in Ap(Ω) be norm approximated by holomorphic functions with 

better global behavior?
(Q3) For g ∈ Lp(Ω), how does one construct G ∈ Ap(Ω) that is nearest to g?

The questions are stated broadly at this point; precise formulations accompany results 
in the sections below.

At first glance (Q1-3) appear independent – one objective of the paper is to show the 
questions are highly interconnected. On planar domains some connections were shown 
in [20] and [13]. Our paper grew from the observation that irregularity of the Bergman 
projection described in [17] has surprising consequences concerning (Q1-3). In particular: 
there are bounded pseudoconvex domains D ⊂ C2 such that

(a) the dual space of Ap(D) cannot be identified, even quasi-isometrically, with Aq(D)
where 1

p + 1
q = 1,

(b) there are functions in Ap(D), p < 2, that cannot be Lp-approximated by functions 
in A2(D), and

(c) the L2-nearest holomorphic function to a general g ∈ Lp(D) is not in Ap(D).

Note (a) says the expected Riesz duality pattern (Lp)′ ∼ Lq does not extend to Bergman 
spaces of general pseudoconvex domains in Cn. The fact that (Ap)′ � Aq also has a 
significant refinement: the identification fails for elementary coefficient functionals. The 
domains D above are Reinhardt and 0 /∈ D. If f(z) =

∑
α∈Z2 aαz

α belongs to Ap(D), 
it is not difficult to show the map f → aα belongs to Ap(D)′. The proof of (a) yields 
that some of these functionals are not represented as an L2 pairing with a holomorphic 
function.

The negative examples frame our positive answers to (Q1-3) and are demonstrated in 
Section 1. These results are called breakdowns of the function theory, to indicate a break 
with expectations coming from previously studied special cases. But since prior results 
on (Q1-3) for domains in Cn are sparse, the examples in Section 1 may represent typical 
phenomena.
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The initial goal of the paper is to show how Lp mapping properties of operators related 
to the Bergman projection, B = BΩ, give answers to (Q1-3). Let P : L2(Ω) −→ A2(Ω)
be a bounded operator given by an integral formula

P f(z) =
∫
Ω

P (z, w)f(w) dV (w). (0.1)

For p > 0 fixed, consider the conditions

(H1) ∃ C > 0 such that ‖P f‖p ≤ C‖f‖p ∀f ∈ Lp(Ω). (P is bounded on Lp)
(H2) Ph = h ∀h ∈ Ap(Ω). (P reproduces Ap)

Properties (H1-2) will also be invoked on the operators |P | and P † associated to P , 
defined in Section 2.1.1.

A general duality result involves these properties. For 1 < p < ∞, let q be the 
conjugate exponent of p. Define the conjugate-linear map Φp : Aq(Ω) → Ap(Ω)′ by the 
relation Φp(g)

(
f
)

=
∫
Ω fg dV .

Proposition 0.2. Let Ω ⊂ Cn be a bounded domain. Let 1 < p < ∞ be given and q be 
conjugate to p. Suppose there exists P of the form (0.1) such that (i) |P | satisfies (H1), 
(ii) P satisfies (H2), and (iii) Ran 

(
P †

)
⊂ O(Ω).

Then Φp : Aq(Ω) −→ Ap(Ω)′ is surjective.

A general approximation result also involves properties (H1-2).

Proposition 0.3. Let Ω ⊂ Cn be a domain. For a given 1 < p < 2, suppose there exists 
an operator P of the form (0.1) such that P satisfies (H1) and (H2).

Then every f ∈ Ap(Ω) can be approximated in the Lp norm by a sequence fn ∈ A2(Ω).

The prime example of an operator (0.1) is P = B. There is no a priori reason the 
Bergman projection should satisfy (H1) or (H2) unless p = 2, but there are many classes 
of domains where B is known to satisfy both properties for all exponents 1 < p < ∞ – 
see [37,31,36,32,34,33,35,25]. On many other classes of domains the answer is unknown. 
However B fails to satisfy property (H1) for all 1 < p < ∞ in general. This was recently 
established in [4,16,12,17] for some pseudoconvex domains in C2. It was observed earlier 
for classes of roughly bounded planar domains in [28] and noted for a non-pseudoconvex, 
but smoothly bounded, family of domains even earlier in [2]. It turns out that B also 
fails to satisfy property (H2) in general; see Example 1.4.

The second goal of the paper is to construct substitute operators relevant to (Q1-3) 
in cases where B does not satisfy (H1) or (H2). In general this goal is inaugural, but it 
is achieved for the generalized Hartogs triangles studied in [17]. The results in Section 4
yield the following
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Theorem 0.4. Let Hm/n, mn ∈ Q+, be given by (4.1). For each p ≥ 2, there is an operator 
P̃ of the form (0.1) such that (i) 

∣∣∣P̃ ∣∣∣ satisfies (H1), and (ii) P̃ satisfies (H2).

Moreover, P̃ g is the unique L2-nearest element in Ap(Hm/n) to g ∈ Lp(Hm/n).

The operators P̃ are called sub-Bergman projections: their kernels are given as sub-
series of the infinite sum (2.2) defining the Bergman kernel. This can be done abstractly 
(see Section 3), but the utility of sub-Bergman operators appears when their kernels can 
be estimated precisely enough to show they create Ap functions. In such cases, these 
projections are useful beyond the applications to (Q1-3) shown here.

We mention there is a very fertile area in one-dimensional Hardy space theory to which 
Theorem 0.4 relates, often labeled extremal dual problems. These problems deal with 
approximating non-holomorphic functions on the unit circle by holomorphic functions 
on the disc. There are numerous important results in this area – see [13], Ch. 8; [19], 
Ch. IV; [27], Ch. VII. These results can be compared/contrasted with the positive result 
of Proposition 4.46 and the breakdown in Example 1.8 below.

Our third main result concerns (Q2) and does not involve the hypotheses (H1-2). If R
is a bounded Reinhardt domain and f ∈ O(R), then f has a unique Laurent expansion 
f(z) =

∑
α∈Zn aαz

α converging uniformly on compact subsets of R. Note summation is 
indexed by Zn since 0 /∈ R is possible. Let SNf denote the square partial sum of this 
series; see Section 3.4. If f ∈ Ap(R), these rational functions converge in Lp:

Theorem 0.5. Let R be a bounded Reinhardt domain in Cn, 1 < p < ∞ and f ∈ Ap(R).
Then

‖SNf − f‖p → 0 as N → ∞.

This result is a several variables extension of a theorem due to Riesz on Hardy spaces 
of the unit disc; see pages 104–110 in [19] for a proof of Riesz’s theorem.

Results about (Q1-3) for 1 < p < ∞ on planar discs are known, which guided our 
investigation. If U is the unit disc in C and p = 2, all three questions have elementary 
answers. For (Q1), the dual space A2(U)′ is isometrically isomorphic to A2(U) itself, 
since A2(U) is a Hilbert space; this fact holds on a general Ω ⊂ Cn. For (Q2), if f(z) =∑∞

n=0 anz
n ∈ A2(U), then 

∥∥∥∑N
n=0 anz

n − f
∥∥∥
L2

−→ 0 as N → ∞ by a simple application 

of Parseval’s formula. For (Q3), G = BU (g) gives the L2-closest element in A2(U) to 
any g ∈ L2(U). Since B is L2 bounded on a general domain per definition, this fact also 
holds on a general Ω. For exponents p �= 2, still on the disc U , results also exist. The 
proofs of these results crucially use boundedness of the Bergman or Szegő projection on 
Lp(U). For (Q1), Ap(U)′ is quasi-isometrically isomorphic to Aq(U) where 1

p + 1
q = 1

and 1 < p < ∞; see [42,1]. Thus the dual spaces of Ap(U) mimic the pattern given by 
Riesz’s characterization of the duals of general Lp spaces, except for a quasi-isometric 
constant. The constant comes from the operator norm of B acting on Lp. There are 
also characterizations of A1(U)′ and A∞(U)′, see [14]. For (Q2), a dilation argument, 
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see e.g. [14] page 30, shows that polynomials are dense in Ap(U) for all 0 < p < ∞. For 
1 < p < ∞, this density is strengthened in [19,43]: if f(z) =

∑∞
n=0 anz

n ∈ Ap(U),

(∗)
∥∥∥∥∥

N∑
n=0

anz
n − f

∥∥∥∥∥
Lp

−→ 0, N → ∞.

While the form of (∗) is the same as when p = 2, its proof is not an elementary truncation 
argument. The proofs in [19,43] pass through the Hardy spaces Hp to get estimates in 
Ap and so use boundedness of the Szegő projection on Lp, 1 < p < ∞. We point out the 
Bergman and Szegő projections on U have the same range of Lp boundedness, but also 
note this is a special coincidence. Finally for (Q3), the fact that BU is bounded on Lp

for 1 < p < ∞ shows G = B(g) solves (Q3), if “nearest” is interpreted in the L2 sense. 
Generalizations of these results on U to simply connected domains Ω can be proved if 
the Riemann map from Ω to U is sufficiently well-behaved, though this seems not to 
appear in print. For planar domains other than U , the only significant result about (Q1) 
known to us is [20]: There are certain domains Ω such that Ap(Ω)′ is not isomorphic to 
Aq(Ω), if p lies outside an interval centered at 2.

In several variables, duality and approximation questions in the spirit of (Q1-2) seem 
not to have been considered when p �= 2. However significant results about duality in 
L2-Sobolev spaces W 2

s (Ω) have been obtained. Results of this type first occur in work 
on extension of biholomorphic mappings, [5,6]. These results were greatly developed and 
generalized in [8,7,10,40,26]. Around (Q2), prior results on approximation in O(Ω) have 
concentrated on uniform norm approximation or the Hilbert norms W 2

s (Ω). Uniform 
approximation theorems have been derived from integral formulas but require restrictive 
geometric assumptions on bΩ, see [21,23,30,18]. The W 2

s (Ω) results hold more generally. 
For instance, if Ω is a smoothly bounded pseudoconvex domain, [11] shows f ∈ O(Ω) can 
be approximated by functions in O(Ω) ∩W 2

s (Ω). In [3] an analogous result on C1 bounded 
Hartogs domains in C2 is proved. See also [41], Corollaries 5.2 and 5.4. Nevertheless, 
these results fail without boundary smoothness, see [3]. This fact partially motivates our 
insertion of Bergman norms in (Q2). Finally, previous work directed at (Q3) has focused 
on establishing boundedness of the Bergman projection itself on increasingly wider – but 
still smoothly bounded – classes of domains, as mentioned below Proposition 0.3 above. 
We are unaware of any prior work connected to (Q3) using operators other than the 
Bergman projection.

The results in the paper are arranged by decreasing generality of the underlying do-
main. In Section 2, Ω is a domain with no assumptions on its symmetry or boundary 
geometry. In some instances, Ω is assumed bounded. The arguments in this section 
are elementary, but the results apply widely and seem new. Propositions 0.2 and 0.3
are slightly extended and established as Theorems 2.15 and 2.18, respectively. In Sec-
tion 3, bounded Reinhardt domains R are considered. The Laurent series expansion of 
a holomorphic function on R provides concrete initial candidates for addressing (Q2) 
via truncation. Calculation of norms of coefficient functionals related to Lp-allowable 
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monomials (Proposition 3.5) and a principal value computation (Proposition 3.17) are 
the basic preliminary results. The main result is Theorem 3.11, a relabeling of Theo-
rem 0.5 above. Additionally, Proposition 0.2 is applied to give a detailed description 
about duality of Ap on Reinhardt domains in Proposition 3.27.

In Section 4, (Q1-3) are considered on the generalized Hartogs triangles studied in 
[15–17]. The extra symmetries of this family of Reinhardt domains allow precise descrip-
tions of Lp allowable monomials, orthogonality relations, and integrability generally. The 
main results are Theorem 4.3 and Proposition 4.38, which construct sub-Bergman pro-
jections that are Lp bounded on ranges where B is not. These results imply Theorem 0.4. 
Precise versions of the earlier duality and approximation results are obtained in Propo-
sition 4.40 and Propositions 4.43, 4.44. Proposition 4.46 solves a minimization problem 
that answers a version of (Q3).

1. Breakdown on the Hartogs triangle

The breakdowns of function theory can be seen on the Hartogs triangle using results 
established later in the paper and in [17]. The needed results are referenced below, using 
notation collected in Section 2.1.

The Hartogs triangle is

H :=
{
(z1, z2) ∈ C2 : |z1| < |z2| < 1

}
. (1.1)

In [17] and (4.1) below, H is denoted H1 to indicate membership in a family of domains, 
but that is not needed here. Abbreviate the Bergman projection BH by B for the rest 
of this section.

Since H is Reinhardt, every f ∈ O (H) has a unique Laurent expansion, written f(z) =∑
aαz

α using standard multi-index notation. Since z2 �= 0 on H but there are points in 
H where z1 = 0, the summation is taken over the set {α = (α1, α2) ∈ Z2 : α1 ≥ 0}. If 
f ∈ Ap(H), results in Section 3 show the Laurent expansion of f need only be summed 
over the smaller set of Lp-allowable multi-indices, see (3.4). Denote this set of indices 
S(H, Lp) – caveat: this set was denoted Ap

1 in [17]. Corollary 3.8 implies

f(z) =
∑

α∈S(H,Lp)

aαz
α if f ∈ Ap(H). (1.2)

A special case of [17, Theorem 1.1 and Remark 4.9] is

Theorem 1.3. The absolute value of the Bergman projection |B| on H is bounded from 
Lp (H) to Ap (H) if and only if p ∈

( 4
3 , 4

)
.

Cf. also [12,16].
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1.1. Failure of representation

The dual space Ap(H)′ is not isomorphic to Aq(H) for p ∈
( 4

3 , 2
)

and q conjugate 
to p. This is illustrated with the pair p = 5

3 and q = 5
2 ; the argument works with minor 

changes for any p ∈
( 4

3 , 2
)
.

Before defining a functional on A5/3(H), a computation is useful:

Example 1.4. The holomorphic function h(z1, z2) = z−2
2 (= z0

1z
−2
2 ) satisfies

(i) h ∈ A5/3 (H) and h /∈ A2(H).
(ii) Bh is well-defined and Bh ≡ 0.

Proof. Inequality (3.3) in [17] or Lemma 4.4 below shows that (0, −2) ∈ S
(
H, L5/3) and 

(0, −2) /∈ S
(
H, L2). Thus (i) holds.

Since 5
3 ∈

( 4
3 , 4

)
, Theorem 1.3 says |B| is bounded on L5/3(H). It follows from Propo-

sition 3.17 that Bh is well-defined and Bh ≡ 0. �
A non-representable functional is now given using the coefficients in (1.2).

Example 1.5. The coefficient functional

a(0,−2) : A5/3(H) → C

assigning to f ∈ A5/3(H) the coefficient of z−2
2 in its Laurent expansion is bounded on 

A5/3(H). However, there does not exist φ ∈ A5/2(H) such that

a(0,−2)(f) = 〈f, φ〉H.

Proof. Uniqueness of the Laurent expansion shows the functional a(0,−2) is well-defined. 
Boundedness of a(0,−2) follows from Proposition 3.5.

To prove non-representability, let h(z) = z−2
2 ∈ O(H) as above. Example 1.4 says 

h ∈ A5/3 (H) but h /∈ A2 (H). Since (0, −2) /∈ S
(
H, L2), Corollary 4.14 shows that for 

all g ∈ A2(H)

〈h, g〉
H

= 0. (1.6)

The fact that a(0,−2) cannot be represented by 〈·, φ〉
H

for some φ ∈ A5/2(H) is now 
straightforward. Suppose such a representation held. Note a(0,−2)(h) = 1 by definition. 
Since A5/2(H) ⊂ A2(H), (1.6) implies 〈h, φ〉

H
= 0 for all φ ∈ A5/2(H), a contradic-

tion. �
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1.2. Failure of approximation on Ap

There are functions f ∈ A5/3(H) for which no sequence of functions fn ∈ A2(H)
converges to f in the L5/3 norm. As in the previous subsection, minor changes in the 
argument give an analogous result for any p ∈

( 4
3 , 2

)
.

Proposition 1.7. A2(H) is not dense in A5/3(H).

Proof. Let a(0,−2) ∈ A5/3(H)′ and h ∈ A5/3 (H)\A2 (H) be as in the previous section. By 
Corollary 3.8, since (0, −2) /∈ S

(
H, L2), a(0,−2) vanishes on the linear subspace A2(Ω)

of A5/3 (H). If A2 (H) were dense in A5/3 (H), continuity would imply a(0,−2) ≡ 0 on 
A5/3 (H). However, a(0,−2) (h) = 1, which contradicts this vanishing. �

In fact a stronger statement is true: there are functions in A5/3(H) that cannot be 
approximated uniformly on compact subsets of H by functions in A2(H). To see this, 
suppose that {fn} is a sequence in A2(H) such that fn → h uniformly on compact 
subsets of H. Recall the Cauchy representation of a coefficient of a Laurent series:

a(0,−2)(f) = 1
(2πi)2

∫
T

f(ζ)
ζ−2
2

· dζ1
ζ1

dζ2
ζ2

,

where T is a torus contained in H, for example {(z1, z2) : |z1| = 1
4 , |z2| = 1

2} ⊂ H. 
Since fn → h uniformly on T as n → ∞, it follows that a(0,−2)(fn) → 1 = a(0,−2)(h) as 
n → ∞. This is a contradiction, since Corollary 3.8 a(0,−2)(fn) = 0 for each n.

1.3. Failure of approximation on Lp

For p ≥ 4, there are explicit functions g ∈ Lp(H) such that Bg /∈ Ap(H). Note that 
Lp(H) ⊂ L2(H) for this range of p, so Bg is well-defined. As g −→ Bg associates the 
L2-nearest holomorphic function to a general g, this is a different failure of approximation 
than in the previous section.

Since Theorem 1.3 says there does not exist C such that ‖Bf‖p ≤ C‖f‖p for all f ∈
Lp, the uniform boundedness principle implies the existence of such g. But the explicit 
form of such “extremal functions” (though non-unique) is useful for other purposes. The 
proofs in [17,16] actually show

Example 1.8. On H, let ψ(z1, z2) = z̄2. Then Bψ /∈ Lp(H) for any p ≥ 4.

Proof. The proof of Proposition 5.1 in [17] shows that Bψ = Cz−1
2 , for a constant 

C �= 0. An elementary computation in polar coordinates (see Lemma 4.4 below) shows 
that z−1

2 /∈ Lp(H) if p ≥ 4. �
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Since ψ ∈ L∞(H), thus in Lp(H) for all p > 0, Example 1.8 demonstrates the break-
down mentioned above. In [12], the range of B acting on Lp(H) for any p > 4 is identified 
as a weighted Bergman space.

2. General domains

2.1. Notation

Recurring notation and terminology is collected for easy reference.
If Ω ⊂ Cn, O (Ω) denotes the set of holomorphic functions on Ω. The ordinary L2

inner product is written 〈f, g〉Ω =
∫
Ω f · ḡ dV where dV is Lebesgue measure. For p > 0, 

let ‖f‖p =
(∫

Ω |f |p dV
) 1

p denote the usual p-th power integral; when p ≥ 1 this defines 
a norm. Lp (Ω) is the class of f with ‖f‖p < ∞ and powers p, q satisfying 1

p + 1
q = 1 are 

said to be conjugate. The Bergman spaces are Ap(Ω) = O (Ω) ∩ Lp (Ω).
The Bergman projection and kernel are denoted

BΩf(z) =
∫
Ω

BΩ(z, w)f(w) dV (w), f ∈ L2(Ω). (2.1)

If ambiguity is unlikely, BΩ is shortened to B. When the integral in (2.1) converges, it 
is taken as the definition of Bf , even if f /∈ L2(Ω). If {φα}α∈A is an orthonormal basis 
for A2(Ω), the Bergman kernel is

BΩ(z, w) =
∑
α∈A

φα(z)φα(w). (2.2)

A domain R ⊂ Cn is called Reinhardt if (z1, . . . zn) ∈ R implies 
(
eiθ1z1, . . . , e

iθnzn
)
∈

R for all (θ1, . . . , θn) ∈ Rn. If X is a normed linear space, X ′ will denote its dual space, 
the set of bounded linear maps X → C. For λ ∈ X ′, the standard norm ‖λ‖X′ =
sup {|λ(f)| : ‖f‖X = 1} is used.

Some notational shorthand is used in Section 4. If D and E are functions depending 
on several parameters, D � E means there exists a constant K > 0, independent of 
specified (or clear) parameters, such that D ≤ K ·E. Finally, if x ∈ R, the floor function 
�x� denotes the greatest integer ≤ x.

2.1.1. Two auxiliary operators
Two operators related to P : L2(Ω) −→ A2(Ω) given by (0.1) occur in hypotheses of 

results below. The operator |P | is defined

|P | f(z) =
∫

|P (z, w)|f(w) dV (w) (2.3)

Ω
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where |P (z, w)| denotes absolute value. The triangle inequality shows that if |P | satisfies 
(H1), then P does as well. The converse does not necessarily hold. The operator P † is 
defined

P †f(w) =
∫
Ω

P (z, w)f(z) dV (z). (2.4)

Note 〈P f, g〉 =
〈
f,P †g

〉
holds when Fubini’s theorem can be applied, so P † is the 

formal adjoint of P .

2.2. Extending the Bergman projection

If Ω ⊂ Cn is bounded, Lt(Ω) ⊂ Ls(Ω) for any 1 ≤ s < t. Thus for p ≥ 2, f ∈
Lp(Ω) implies that Bf ∈ A2(Ω) and is given by the integral (2.1). To restate a point in 
Section 2.1, 

∫
Ω B(z, w)f(w)dV (w) is taken as the definition of Bf , whenever the integral 

converges. For p < 2 and f ∈ Lp(Ω), this integral does not necessarily converge. Even 
when it converges, directly determining the size of the integral is difficult – it is therefore 
desirable to evaluate Bf as a limit.

2.2.1. Boundedness of the kernel
Various hypotheses on Ω guarantee convergence of (2.1) for f ∈ Lp(Ω), p < 2. For 

example, let U ⊂ C be the unit disc and fix z ∈ U . Then for f ∈ L1 (U),

∣∣∣∣∣∣
∫
U

BU (z, w) f(w) dV (w)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1π
∫
U

1
(1 − zw̄)2 f(w) dV (w)

∣∣∣∣∣∣ ≤ Cz

∫
U

|f(w)| dV (w) < ∞.

Here Cz = supw∈U |BU (z, w)| < ∞, since z ∈ U is fixed. This argument works on a C∞

smoothly bounded strongly pseudoconvex domain [24] or more generally on a smoothly 
bounded pseudoconvex domain of finite type [9].

But the argument fails for the domains Hγ defined by (4.1). Consider Hk for k ∈ Z+

to illustrate. Let B(z, w) = BHk
(z1, z2, w1, w2) denote the Bergman kernel. Theorem 1.2 

of [15] says

B(z, w) =
pk(z1w̄1) ·

[
(z2w̄2)2 + (z1w̄1)k

]
+ z2w̄2 · qk (z1w̄1)

(1 − z2w̄2)2(z2w̄2 − zk1 w̄
k
1 )2

, (2.5)

for explicit polynomials pk(s), qk(s) of the complex variable s. Two crucial facts are that 
pk(0) = 0 and qk(0) �= 0. Let z = (z1, z2) ∈ Hk be a fixed point (note z2 �= 0) and 
wδ = (0, δ), δ > 0, be a point in Hk on the z2 axis. Then (2.5) implies B (z, wδ) ≈ 1

δ . 
Letting δ → 0 shows B(z, ·) /∈ L∞(Hk).
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Other arguments are required to show B is defined on Lp for p < 2 on domains like 
Hm/n. In [17], estimates on 

∣∣Bm/n(z, w)
∣∣ and a variant of Schur’s test show |B| is defined 

(and bounded) on Lp(Hm/n) for an interval of p < 2; see Theorem 4.2 below.

2.2.2. Limits of exhaustions
If |B| is bounded on Lp(Ω), the integral (2.1) is finite. Computing Bf can be done 

as a principal value, a consequence of the following fact:

Proposition 2.6. Let Ω be a domain in Cn. Suppose P is an operator of the form (0.1)
such that |P | is bounded on Lp(Ω) for a given 1 < p < ∞. For t ∈ (0, 1), let Ωt ⊂ Ω
such that if t < t′, then Ωt′ ⊂ Ωt, and 

⋃
t∈(0,1)

Ωt = Ω.

Then if f ∈ Lp (Ω), for almost every z ∈ Ω

P f(z) = lim
t→0

∫
Ωt

P (z, w)f(w) dV (w). (2.7)

Proof. Let f ∈ Lp(Ω). The hypothesis on |P | says

∫
Ω

⎧⎨⎩
∣∣∣∣∣∣
∫
Ω

|P (z, w)| |f(w)| dV (w)

∣∣∣∣∣∣
p⎫⎬⎭ dV (z) ≤ C‖f‖pp.

In particular, for a.e. z ∈ Ω, the quantity {·} above is < ∞. Thus |P (z, ·)| |f(·)| ∈ L1(Ω)
for a.e. z ∈ Ω.

Let χt be the indicator function of Ωt. Note |χt(w)P (z, w)| |f(w)| ≤ |P (z, w)| |f(w)|
for any z ∈ Ω. Fix z such that |P (z, ·)| |f(·)| ∈ L1(Ω). The dominated convergence 
theorem implies

lim
t→0

〈
P (z, ·), f̄

〉
Ωt

= lim
t→0

〈
χt · P (z, ·), f̄

〉
Ω =

〈
lim
t→0

χt · P (z, ·), f̄
〉

Ω
= P f(z),

as claimed. �
2.3. Consequences of (H1)

Two functional analysis results are derived from assumptions about Lp boundedness 
of the Bergman projection. Conditions (H1) and (H2), defined below (0.1), enter the 
hypotheses and conclusions respectively.

2.3.1. (H2) and density

Lemma 2.8. Let Ω be a domain in Cn. Assume B is bounded on Lp(Ω) for a given 
1 < p < ∞.

The following statements are equivalent:
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(i) A2(Ω) ∩Ap(Ω) is dense in Ap(Ω).
(ii) Bh = h ∀h ∈ Ap(Ω).

Proof. Assume (i). Then for each h ∈ Ap(Ω), there is a sequence {hν} ⊂ A2(Ω) ∩Ap(Ω)
such that hν → h in Ap(Ω). Since B is assumed continuous on Lp(Ω), Bhν → Bh. 
However Bhν = hν , since hν ∈ A2(Ω). Thus, Bh = h.

Assume (ii). Let h ∈ Ap(Ω). Since L2(Ω) ∩ Lp(Ω) is dense in Lp(Ω), there exist 
gν ∈ L2(Ω) ∩ Lp(Ω) such that gν → h in Lp. Set hν = Bgν . Then hν ∈ A2(Ω) ∩ Ap(Ω)
and

hν → Bh,

since B is Lp bounded. As Bh = h by assumption, (i) holds. �
As mentioned in the Introduction, if Ω ⊂ Cn is a smoothly bounded and pseudoconvex, 

O(Ω) ∩C∞ (
Ω
)

is dense in Ap(Ω) for all p ∈ (1, ∞), cf. [11]. Thus (i) holds in this case. 
Note this density fails in Proposition 1.7. Note also that if p ≥ 2 and Ω is any bounded
domain, conditions (i) and (ii) are both trivially satisfied.

2.3.2. Generalized self-adjointness
The Bergman projection B is self-adjoint on A2(Ω): 〈Bf, g〉 = 〈f,Bg〉 if f, g ∈ L2(Ω). 

This does not automatically imply that 〈Bf, g〉 = 〈f,Bg〉 if f ∈ Lp(Ω), g ∈ Lq(Ω) for 
general conjugate exponents p and q.

However this relation holds when |B| satisfies (H1), a consequence of the following 
general result.

Proposition 2.9. Let Ω ⊂ Cn be a domain. Assume there exists an operator P of form 
(0.1) and that |P | is bounded on Lp(Ω) for a given 1 < p < ∞. Let q be conjugate to p.

Then

(i)
∣∣∣P †

∣∣∣ is bounded on Lq(Ω).

(ii) 〈P f, g〉 =
〈
f,P †g

〉
∀ f ∈ Lp(Ω), g ∈ Lq(Ω).

Proof. Let f ∈ Lp(Ω), g ∈ Lq(Ω). Tonelli’s theorem implies

〈|P | |f |, |g|〉 =
∫
Ω

∫
Ω

|P (z, w)| |g(z)| |f(w)| dV (w) dV (z) =
〈
|f |,

∣∣∣P †
∣∣∣ |g|〉 .

Hölder’s inequality and boundedness of |P | on Lp yield〈
|f |,

∣∣∣P †
∣∣∣ |g|〉 = 〈|P | |f |, |g|〉 ≤ C ‖f‖p ‖g‖q
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Taking the supremum over ‖f‖p = 1 shows 
∥∥∥∣∣∣P †

∣∣∣ g∥∥∥
q
≤ C‖g‖q as claimed.

Fubini’s theorem now applies to give (ii):

〈P f, g〉 =
∫
Ω

f(w)

⎛⎝∫
Ω

P (z, w)g(z) dV (z)

⎞⎠ dV (w)

=
∫
Ω

f(w)

⎛⎝∫
Ω

P (z, w)g(z) dV (z)

⎞⎠ dV (w) =
〈
f,P †g

〉
. �

Remark 2.10. The Bergman kernel is conjugate symmetric, B(z, w) = B(w, z). Thus if 
|B| is Lp bounded, (ii) says 〈Bf, g〉 = 〈f,Bg〉 for f ∈ Lp(Ω), g ∈ Lq(Ω).

2.4. Representing Ap(Ω)′ by Aq(Ω)

The sought for representation is through L2 pairing. For 1 < p < ∞ define the 
conjugate-linear map

Φp(g)
(
f
)

=
∫
Ω

fg dV, g ∈ Aq, f ∈ Ap. (2.11)

Hölder’s inequality implies Φp maps Aq(Ω) continuously into Ap(Ω)′.
The goal is to understand when Φp is surjective. The preliminary results hold generally.

2.4.1. General behavior

Proposition 2.12. Let Ω ⊂ Cn be a bounded domain and 1 < p < ∞.

(i) If p ≤ 2, then Φp is injective.
(ii) If p ≥ 2, then Φp has dense image in Ap(Ω)′.

Proof. Let q be the conjugate exponent to p.
For part (i), suppose that g ∈ ker Φp; note in particular that g ∈ Aq(Ω). Since p ≤ 2, 

it follows that p ≤ 2 ≤ q, which implies Aq(Ω) ⊂ Ap(Ω). Therefore g ∈ Ap(Ω) and Φp(g)
can act on g:

0 = Φp(g)
(
g
)

= ‖g‖2
L2(Ω) .

Thus g = 0.
Consider part (ii). Since p ≥ 2, necessarily q ≤ 2. By part (i), the map Φq : Ap(Ω) →

Aq(Ω)′ is injective. Define the transpose Φ′
q : (Aq(Ω)′)′ → Ap(Ω)′ of Φq

Φ′
q(λ)(f) = λ(Φqf), λ ∈ (Aq(Ω)′)′, f ∈ Ap(Ω).
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Since Φq is injective, the transposed map Φ′
q has dense image; see [29].

Lq(Ω) is reflexive; since Aq(Ω) ⊂ Lq(Ω) is closed, Aq(Ω) is also reflexive. Thus the 
evaluation map ε : Aq(Ω) → (Aq(Ω)′)′ defined

ε(g)
(
φ
)

= φ(g), φ ∈ Aq(Ω)′, g ∈ Aq(Ω),

is an isometric isomorphism. Let C : Ap(Ω)′ → Ap(Ω)′ be the conjugation map defined 
(C ◦ λ)(g) = λ(g); C is an antilinear isometric isomorphism of Ap(Ω)′ with itself. To 
complete the proof of part (ii) it suffices to show

Φp = C ◦ Φ′
q ◦ ε, (2.13)

since ε and C are isometric isomorphisms and Φ′
q has dense image.

For f ∈ Ap(Ω), g ∈ Aq(Ω), unraveling yields

(C ◦ Φ′
q ◦ ε)(g)

(
f
)

= Φ′
q(ε(g))

(
f
)

= ε(g)
(
Φqf

)
= (Φqf)

(
g
)

=
∫
Ω

gfdV =
∫
Ω

fgdV = Φp(g)
(
f
)
,

which establishes (2.13). �
Proposition 2.12 shows Φp is generally almost surjective. To show it is actually sur-

jective would require establishing closed range. This is equivalent to an estimate of the 
form

‖Φpg‖Ap(Ω)′ � dist(g, ker Φp),

for all g ∈ Aq(Ω), where ker Φp denotes the null space of Φp.
The proof of Proposition 2.12 yields the following. Representation (2.13) is used for 

the second statement.

Corollary 2.14. Let Ω ⊂ Cn be a bounded domain. Suppose the map Φp : Aq(Ω) → Ap(Ω)′
is surjective for a given 1 < p < ∞. Let q be conjugate to p.

Then there is a natural identification

Ap(Ω)′ ∼= Aq(Ω)
ker Φp

.

Furthermore, the map

Φq : Ap(Ω) → Aq(Ω)′

is injective and has closed range.
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2.4.2. Surjectivity of Φp

Surjectivity of Φp follows from existence of an operator satisfying (H1) and (H2) whose 
formal adjoint maps into O(Ω).

Theorem 2.15. Let Ω ⊂ Cn be a bounded domain. Let 1 < p < ∞ be given and q be the 
conjugate exponent of p.

Suppose there exists P of the form (0.1) and G ⊆ Ap(Ω) such that

(i) |P | is bounded on Lp(Ω),
(ii) PF = F ∀F ∈ G,
(iii) Ran 

(
P †

)
⊂ Aq(Ω).

Then Φp : Aq(Ω) −→ G′ is surjective.

Remark 2.16. (a) The case G = Ap(Ω) is included in Theorem 2.15.
(b) If P = BΩ, hypothesis (iii) is a consequence of (i) by Proposition 2.9.

Proof. Let λ ∈ G′. We want to find a h ∈ Aq(Ω), such that λ = Φp(h). Extend λ by the 
Hahn–Banach theorem to a functional on Lp(Ω), still denoted λ, with the same norm. 
Then there is a g ∈ Lq(Ω), with ‖g‖Lq = ‖λ‖(Lp)′ , such that λ(f) =

∫
Ω fg dV = 〈f, g〉

for all f ∈ Lp(Ω).
Let h = P †g; by (iii) h ∈ Aq(Ω). Then for F ∈ G

Φp(h)
(
F
)

= 〈F, h〉 =
〈
F,P †g

〉
= 〈PF, g〉 = 〈F, g〉 = λ(F ).

The third equality follows from Proposition 2.9, the fourth follows from (ii). �
An elementary necessary condition for surjectivity of Φp is worth recording.

Proposition 2.17. Let Ω ⊂ Cn be a bounded domain. Suppose that for some p, 1 < p < 2, 
A2(Ω) ∩Ap(Ω) is not dense in Ap(Ω). Then Φp is not surjective.

Proof. Since Ω is bounded, A2(Ω) ⊂ Ap(Ω). The hypothesis thus says that A2(Ω) is not 
dense in Ap(Ω). By the Hahn–Banach theorem, there exists a non-trivial ψ ∈ Ap(Ω)′
which vanishes on A2(Ω). Let q be the conjugate exponent of p. Suppose there were a 
non-trivial function g ∈ Aq(Ω) such that ψ(h) =

∫
Ω hḡ dV ∀h ∈ Ap(Ω). Since q > 2, 

g ∈ A2(Ω) and ψ acts on g. But then 0 = ψ(g) =
∫
Ω |g|2 dV , contradicting the fact g is 

not identically zero. �
2.5. Approximation on Ap(Ω)

Functions in Ap(Ω), 1 < p < 2, can be approximated by functions in A2(Ω) if (H1) 
and (H2) hold. The next result should be compared with Proposition 1.7.
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Theorem 2.18. Let Ω ⊂ Cn be a domain. For a given 1 < p < 2, suppose there exists an 
operator P of the form (0.1) and G ⊆ Ap(Ω) such that

(i) P is bounded on Lp(Ω).
(ii) Ph = h ∀h ∈ G.

Then every f ∈ G can be approximated in the Lp norm by a sequence fn ∈ A2(Ω).

Proof. Since f ∈ G ⊂ Lp(Ω), there exists a sequence φn ∈ C∞
c (Ω) such that ‖φn − f‖p →

0 as n → ∞. Letting fn := Pφn, hypotheses (i) and (ii) give

‖fn − f‖p = ‖P (φn − f)‖p � ‖φn − f‖p .

Since P : L2(Ω) −→ A2(Ω), the claimed result holds. �
Remark 2.19. Ω is not assumed to be bounded in Theorem 2.18.

3. Reinhardt domains

Throughout the section, let R ⊂ Cn be a bounded Reinhardt domain. The monograph 
[22] contains extensive information about this class of domains.

3.1. Integration on Reinhardt domains

Denote by |R| the subset of (R+ ∪ {0})n defined

|R| = {(|z1| , . . . , |zn|) : z = (z1, . . . , zn) ∈ R} ,

and call this set the Reinhardt shadow of R.
For r ∈ |R| and f a continuous function on R, let fr be the function on the 

unit torus Tn = {|zj | = 1, for j = 1, . . . , n} ⊂ Cn defined fr
(
eiθ1 , . . . , eiθn

)
=

f
(
r1e

iθ1 , . . . , rne
iθn

)
. Abbreviate this relation by

fr(eiθ) = f
(
r1e

iθ1 , . . . , rne
iθn

)
,

using vector notation on r and θ. Fubini’s theorem implies

‖f‖pLp(R) =
∫
|R|

‖fr‖pLp(Tn) r1r2 . . . rndr, (3.1)

a form of polar coordinate integration on R.
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3.2. Holomorphic monomials

For a multi-index α ∈ Zn, let eα denote the monomial function of exponent α: eα(z) =
zα = zα1

1 · · · zαn
n , z ∈ Cn. If f ∈ O(R), then f has a unique Laurent series expansion

f =
∑
α∈Zn

aα(f)eα (3.2)

converging uniformly on compact subsets of R. The map

aα : O(R) → C (3.3)

will be called the α-th coefficient functional. The uniqueness of the Laurent expansion 
shows the map aα is well-defined. Cauchy’s formula shows aα is continuous in the natural 
Fréchet topology of O(Ω).

3.3. The coefficient functionals

In this section, expansion (3.2) of an f ∈ Ap(R) is shown to consist only of monomials 
in Ap(R). For 1 ≤ p ≤ ∞, define the set S(R, Lp) of Lp-allowable multi-indices for R
by

S(R, Lp) := {α ∈ Zn : eα ∈ Ap(R)}. (3.4)

These were defined in [17]. See [44,45] connecting such sets to measurements on log |R|. 
Since R is bounded, for p1 < p2 it holds that S (R, Lp2) ⊂ S (R, Lp1).

Proposition 3.5. For each α ∈ S (R, Lp) and 1 ≤ p ≤ ∞, the coefficient functional

aα : Ap(R) → C

is bounded. Moreover ‖aα‖Ap(R)′ = 1
‖eα‖Lp(R)

.

Proof. Let T = {|zj | = rj : j = 1, . . . , n} ⊂ R be a torus. For f ∈ Ap(R), Cauchy’s 
formula implies

aα(f) = 1
(2πi)n

∫
T

f(ζ)
ζα

· dζ1
ζ1

. . .
dζn
ζn

= 1
(2π)n · 1

rα

∫
T

fr(eiθ)e−i〈α,θ〉dθ,

where dθ = dθ1dθ2 . . . dθn is the volume element of the unit torus. Hölder’s inequality 
implies

|aα(f)| ≤ 1
(2π)n · 1

rα
‖fr‖Lp(T) ‖1‖Lq(T) = (2π)−

n
p

rα
‖fr‖Lp(T) . (3.6)
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When p = ∞, interpret (2π)−
n
p as 1.

For 1 ≤ p < ∞, it follows from (3.6) that

|aα(f)|p · (2π)n(rα)p ≤ ‖fr‖pLp(T) .

So if α ∈ S(R, Lp),

|aα(f)|p · ‖eα‖pLp(R) = |aα(f)|p · (2π)n
∫
|R|

(rα)pr1 . . . rndr

≤
∫
|R|

‖fr‖pLp(T) r1 . . . rndr = ‖f‖pLp(R) . (3.7)

If α ∈ S (R, L∞), the trivial estimate |aα(f)| ≤ infr∈|Ω|
‖f‖∞
rα = ‖f‖∞

supz∈Ω |zα| = ‖f‖∞
‖eα‖∞

holds. This estimate and (3.7) imply that for all 1 ≤ p ≤ ∞,

‖aα‖Ap(R)′ ≤
1

‖eα‖Lp(R)
.

Since aα(eα) = 1 = ‖eα‖Lp(R)
‖eα‖Lp(R)

, in fact ‖aα‖Ap(R)′ = 1
‖eα‖Lp(R)

. �
Proposition 3.5 implies the Laurent expansions of functions in Ap only have monomials 

that belong to Lp:

Corollary 3.8. Let R be a bounded Reinhardt domain and 1 ≤ p ≤ ∞. Let f ∈ Ap(R), 
with Laurent expansion given by (3.2).

Then if α /∈ S (R, Lp), aα(f) = 0. Thus

f(z) =
∑

α∈S(R,Lp)

aα(f)eα(z).

Proof. Assume that aα(f) �= 0. Choose a decreasing family of relatively compact Rein-
hardt domains Rε ⊂ R such that Rε → R as ε ↘ 0. It follows from Proposition 3.5
that

|aα(f)|p ‖eα‖pLp(Rε) ≤ ‖f‖pLp(Rε) .

As ε → 0, the right hand side tends to ‖f‖Lp(R) < ∞, but the left hand side tends to 
∞, since ‖eα‖Lp(Rε) → ∞. This contradiction proves the result. �
Remark 3.9. Take n = 1, let U∗ = {0 < |z| < 1} be the punctured disc, and p = ∞. 
Clearly S (U∗, L∞) = N. Corollary 3.8 thus says every f ∈ A∞ (U∗) is of the form f(z) =∑∞

n=0 anz
n, and consequently f extends holomorphically to the unit disc. This recaptures 
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Riemann’s removable singularity theorem. A similar argument holds on Ap(U∗) for any 
p ≥ 2.

3.4. Norm convergence of Laurent series

If R is a bounded Reinhardt domain, f ∈ Ap(R) and p ∈ [1, ∞], Corollary 3.8 says

f(z) =
∑

α∈S(R,Lp)

aα(f)eα(z), (3.10)

with uniform convergence on compact subsets of R. The goal of this section is to show 
the series also converges in the Ap norm if p ∈ (1, ∞).

Since the index set of the series is a subset of an n-dimensional lattice, a choice of trun-
cation is required. If α = (α1, . . . , αn) ∈ Zn is a multi-index, let |α|∞ = max{|αj | , j =
1, . . . , n}. For a formal series g(z) =

∑
α∈Zn bαeα(z) and a positive integer N , let

SNg =
∑

|α|∞≤N

bαeα.

Call this the “square partial sum” of the series defining g.
For p = 2, the square partial sums of (3.10) converge in A2(R) for elementary reasons. 

Orthogonality of {eα} of R gives

‖SNf − f‖2
2 =

∑
|α|∞>N

α∈S(R,L2)

|aα(f)|2

‖eα‖2
2

.

This tends to 0 as N → ∞ if f ∈ A2(R). Thus {eα} for α ∈ S
(
R, L2) is an orthogonal 

basis for the Hilbert space A2(R).
An analogous result holds for p �= 2:

Theorem 3.11. Let R be a bounded Reinhardt domain in Cn, 1 < p < ∞ and f ∈ Ap(R).
Then

‖SNf − f‖p → 0 as N → ∞.

The proof of Theorem 3.11 is broken into parts.

3.4.1. Reduction and estimate
The following fact reduces matters to an estimate plus a simpler density result.

Lemma 3.12. Let Tk, k = 1, 2, . . . , be a sequence of bounded linear operators from a 
Banach space X to a Banach space Y . Suppose that there is a dense subset D of X, 
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so that for each x ∈ D, Tkx → 0 in the norm of Y as k → ∞. Then the following are 
equivalent

(1) limk→∞ ‖Tkx‖ = 0 for each x ∈ X.
(2) there is a C > 0 such that for each k, we have ‖Tk‖op ≤ C.

Proof. This is a slight generalization of [43, Proposition 1]. Assume (1). Then (2) holds 
by the uniform boundedness principle.

Assume (2). Fix x ∈ X and ε > 0. Since D is dense in X, there exists p ∈ D such 
that ‖x− p‖X < ε

2C . Therefore

‖Tkx‖Y ≤ ‖Tkx− Tkp‖Y + ‖Tkp‖Y <
ε

2 + ‖Tkp‖Y .

Choosing k so large that ‖Tkp‖Y < ε
2 yields (1). �

The estimate for Theorem 3.11 is

Lemma 3.13. Let R be a bounded Reinhardt domain. For each 1 < p < ∞, there exists a 
constant Cp such that

‖SNf‖p ≤ Cp‖f‖p for all N ∈ Z+, f ∈ Ap(R).

Proof. Denote the unit torus by Tn = {z ∈ Cn : |zj | = 1, for j = 1, . . . , n}. If g is a 
function on Tn, let σNg denote the square partial sum of its Fourier series,

σNg =
∑

|ν|∞≤N

ĝ(ν)eiν·θ.

A theorem of Riesz, see e.g. [39, Chapter VII], says for each 1 < p < ∞, there is a 
constant Cp such that ‖σNg‖p ≤ Cp‖g‖p independently of N .

It follows from (3.1) that

‖SNf‖pp =
∫
|R|

‖σNfr‖pLp(Tn) r1r2 . . . rndr

≤ Cp

∫
|R|

‖fr‖pLp(Tn) r1r2 . . . rndr = Cp ‖f‖pp . �

3.4.2. Series expansion of functionals
The dense set D needed in Lemma 3.12 is found by duality. Given a functional λ ∈

Ap(R)′, consider the finite sum

S′
Nλ =

∑
λ(eα)aα, (3.14)
|α|∞≤N
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where aα are the coefficient functionals in Proposition 3.5.

Proposition 3.15. For each λ ∈ Ap(R)′,

‖S′
Nλ− λ‖(Ap)′ → 0 as N → ∞. (3.16)

Proof. For f ∈ Ap(R)

S′
Nλ(f) =

∑
|α|∞≤N

λ(eα)aα(f) = λ

⎛⎝ ∑
|α|∞≤N

aα(f)eα

⎞⎠ = λ(SNf)

It follows from Lemma 3.13

|S′
Nλ(f)| = |λ(SNf)| ≤ C‖λ‖(Ap)′ ‖f‖p.

Thus ‖S′
N‖op ≤ C where S′

N is viewed as an operator on the Banach space Ap(R)′.

Claim: The span of {aα : α ∈ S (R, Lp)} is dense in Ap(R)′.

To prove the claim, let μ ∈ (Ap(R)′)′ be an element of the double dual of Ap(R)
such that μ(f) = 0 for each f in the span of {aα : α ∈ S (R, Lp)}. By the Hahn Banach 
theorem, it suffices to show that μ = 0 on Ap(R)′.

Since Ap(R) is closed in Lp(R), Ap(R) is reflexive. Therefore there exists a g ∈ Ap(R)
such that μ(f) = f(g) for all f ∈ Ap(R)′. Taking f = aα, it follows that aα(g) = 0, i.e. 
the α-th coefficient of the Laurent expansion of the holomorphic function g vanishes for 
each α. This implies g = 0, which shows μ = 0 and establishes the claim.

To complete the proof, in Lemma 3.12 let X = Y = Ap(R)′, TN = S′
N − id and D be 

the linear span of {aα : α ∈ S (R, Lp)}. Note that for each element λ ∈ D, there is an 
N such that Tνλ = 0 for ν ≥ N . The hypotheses of Lemma 3.12 are thus satisfied; the 
lemma implies (3.16). �
3.4.3. Proof of Theorem 3.11

In Lemma 3.12, take X = Y = Ap(R), and TN = SN−id. For each Laurent polynomial 
p, note that TNp = 0 for large enough N . The result will follow from Lemma 3.12 provided 
it is shown that D =: {Laurent polynomials ∈ Ap(R)} is a dense subspace of Ap(R).

By Corollary 3.8, D is the linear span of {eα : α ∈ S (R, Lp)}. To show this last set 
is dense, suppose λ ∈ Ap(R)′ satisfies λ(eα) = 0 for all α ∈ S (R, Lp). Definition (3.14)
shows S′

Nλ = 0 for each N . However Proposition 3.15 implies λ = limS′
Nλ = 0. Thus, 

the Hahn–Banach theorem implies span {eα : α ∈ S (R, Lp)} is dense in Ap(R). �
3.5. Computing the projection term-by-term

If Ω ⊂ Cn is a bounded domain and p ≥ 2, Bh = h for all h ∈ Ap(Ω) since Ap(Ω) ⊂
A2(Ω). For 1 < p < 2, this generally fails, even if B is Lp bounded.
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However on a bounded Reinhardt domain, if |B| satisfies (H1) and h is in the form 
(3.10), Bh can be computed merely by discarding monomials.

Proposition 3.17. Let R be a bounded Reinhardt domain. For given 1 < p < 2, suppose 
|B| is bounded on Lp(R).

(i) If γ ∈ S (R, Lp) \ S
(
R, L2), then eγ ∈ kerB.

(ii) If f ∈ Ap(R) has expansion (3.10), then

Bf =
∑

α∈S(R,L2)

aα(f)eα.

The square partial sums of the series in (ii) converge in Lp(R).

Proof. To see (i), choose a decreasing family {Rt : 0 < t < 1} of relatively compact 
Reinhardt subdomains of R whose union is R. Then eγ ∈ L2(Rt). For each β ∈ S(R, L2), 
orthogonality implies 〈eγ , eβ〉Rt

= 0 since γ /∈ S(R, L2).
Let B(z, w) denote the Bergman kernel of R. Since B(z, w) =

∑
β∈S(R,L2)

eβ(z)eβ(w)
‖eβ‖2

2
, 

it follows that ∫
Rt

B(z, w)eγ(w)dV (w) = 0.

Proposition 2.6 thus yields

Beγ = 0. (3.18)

To see (ii), let f ∈ Ap(R). From Theorem 3.11, f = limSNf with convergence in 
Lp(R). Since B is continuous on Lp(R),

Bf = lim
N→∞

B(SNf) = lim
N→∞

B

⎛⎝ ∑
|α|∞≤N

aα(f)eα

⎞⎠ = lim
N→∞

∑
|α|∞≤N

aα(f)B(eα),

all limits taken in Lp. (3.18) then yields (ii). �
Remark 3.19. Proposition 3.17 does not assert that Bf ∈ A2(R) for general f ∈ Ap(R)
when 1 < p < 2. Note that when 1 < p < 2∑

α∈S(R,Lp)

aαeα ∈ Ap(R) �
∑

α∈S(R,L2)

aαeα ∈ A2(R),

though each of the monomials in the right sum is in A2(R).
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3.6. Sub-Bergman projections

Throughout the section, assume p ≥ 2. If Ω ⊂ Cn is a bounded domain, let

G2,p(Ω) := spanA2(Ω)A
p(Ω). (3.20)

G2,p(Ω) ⊂ L2(Ω) is a closed subspace. The Lp sub-Bergman projection is defined as the 
orthogonal projection

B̃p
Ω : L2(Ω) → G2,p(Ω).

The representing kernel

B̃p
Ωf =

∫
Ω

B̃p
Ω(z, w)f(w)dV (w)

is the Lp sub-Bergman kernel. Subscripts are dropped when the domain is unambiguous. 
Since Ap(Ω) ⊂ G2,p(Ω), it follows that B̃pf = f ∀f ∈ Ap(Ω).

On a Reinhardt domain, the sub-Bergman projection assumes a concrete form.

Proposition 3.21. Let R be a bounded Reinhardt domain in Cn and p ≥ 2. Then

(i) G2,p(R) = spanA2(R) {eα : α ∈ S (R, Lp)}.
(ii) B̃p(z, w) =

∑
α∈S(R,Lp)

eα(z)eα(w)
‖eα‖2

2
.

Proof. This follows from Corollary 3.8 and Theorem 3.11. Since two norms are involved, 
details are given for clarity. Note that spanAp(R)(F ) ⊂ spanA2(R)(F ) for any F ⊂
A2(R), since p ≥ 2 and R is bounded. Let g ∈ G2,p(R) and ε > 0. Definition 3.20 says 
there exists g′ ∈ Ap(R) such that ‖g − g′‖2 < ε. Corollary 3.8 and Theorem 3.11 imply 
there exist g′′ ∈ spanAp(R) {eα : α ∈ S (R, Lp)} such that ‖g′ − g′′‖2 ≤ C‖g′ − g′′‖p < ε, 
C depending on the diameter of R. Thus (i) holds.

For (ii), since B̃p orthogonally projects onto G2,p(R), it follows that for f ∈ Ap(R)

B̃pf =
∑

α∈S(Ω,Lp)

〈f, eα〉
‖eα‖2

2
eα. (3.22)

The series converges in A2(R). The kernel representation (ii) now follows as in ordinary 
Bergman theory. �

Let q be conjugate to p; note q ≤ 2. Subspaces of Ap(R) and Aq(R) enter the next 
result, and also appear in the description of dual spaces in the next section. Generalizing 
(3.20), define the subspace of Ap(R)
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Gq,p(R) := spanAq(R) {eα : α ∈ S (R, Lp)} . (3.23)

Extending Proposition 3.17 (i), define the subspace of Aq(R)

Nq,p(R) := spanAq(R) {eα : α ∈ S (R, Lq) \ S (R, Lp)} . (3.24)

B̃p is not necessarily bounded on Lp(R). When 
∣∣∣B̃p

∣∣∣ is Lp bounded, the following 
holds

Proposition 3.25. Let R be a bounded Reinhardt domain in Cn. Let p ≥ 2 and q be 
conjugate to p. Suppose 

∣∣∣B̃p
∣∣∣ is bounded on Lp(R).

Then

(i) B̃p is a projection from Lp(R) onto Ap(R).
(ii) Let B̃p

†
be the formal adjoint defined by (2.4). Then B̃p

†
is bounded on Lq(R). For 

f ∈ Lq(R),

B̃p
†
f =

∑
α∈S(R,Lp)

〈f, eα〉
‖eα‖2

2
eα. (3.26)

The square partial sums of the series converge in Aq(R).
(iii) Consider B̃p

†
restricted to Aq(R). Then ker B̃p

†
= Nq,p(R), ran B̃p

†
= Gq,p(R), 

and B̃p
†
h = h ∀h ∈ Gq,p(R).

Proof. The proof of (i) follows directly from the definition of B̃p
R and the fact that the 

intersection G2,p(Ω) ∩ Lp(Ω) = Ap(Ω).
The first statement in (ii) follows from Proposition 2.9 (i). Representation (3.26)

follows from Proposition 3.21 (ii). Convergence of the series in Aq(R) follows from The-
orem 3.11.

For (iii), let α ∈ S (R, Lq) \ S (R, Lp). Then (3.26) shows B̃p
†
(eα) = 0. On the other 

hand, if f ∈ Aq(R) \Nq,p(R), the Laurent series expansion of f must contain a nonzero 

coefficient of a monomial eβ with β ∈ S (R, Lp). Formula (3.26) shows B̃p
†
(f) �= 0. Thus 

ker B̃p
†

= Nq,p(R). Additionally, (3.26) shows that the range of B̃p
†

is the closure of 
the linear span of the family {eα : S (R, Lp)}, i.e. the subspace Gq,p(R). The fact that 
B̃p

†
restricts to the identity on Gq,p(R) follows from (3.26) as well. �

3.7. Representation of Ap(R)′

Proposition 3.27. Let R be a bounded Reinhardt domain in Cn. Let p ≥ 2 and q be 
conjugate to p. Suppose 

∣∣∣B̃p
∣∣∣ is bounded on Lp(R).
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(i) The map Φp : Aq(R) → Ap(R)′ is surjective and kerΦp = Nq,p(R).
(ii) There is an explicit linear homeomorphism of Banach spaces

Ap(R)′ ∼= Gq,p(R). (3.28)

(iii) There is a topological direct sum representation

Aq(R)′ = Φq(Ap(R)) ⊕ spanAq(R)′ {aα : α ∈ S (R, Lq) \ S (R, Lp)} . (3.29)

Proof. Let P = B̃p
R for notational economy.

To see (i), check the hypotheses of Theorem 2.15. Hypothesis (i) of Theorem 2.15
is satisfied by assumption. Hypothesis (ii) of the same theorem holds since Ap(Ω) ⊂
G2,p(Ω). Proposition 2.9 implies P † is Lq bounded; since the representing kernel of P †

is holomorphic in the free variable, hypothesis (iii) is satisfied. Theorem 2.15 thus says 
Φp is surjective. To determine ker Φp, direct computation gives

Φp(eα)(eβ) =
∫
R

eβeαdV = ‖eα‖2
2 δα,β ,

where δα,β is the Kronecker symbol. Thus Nq,p(R) ⊂ ker Φp. If f ∈ Aq(R) \ Nq,p(R), 
there exists β ∈ S (R, Lp) such that in expansion (3.10) aβ �= 0. Then Φp(f)(eβ) =
aβ ‖eβ‖2

2 �= 0, showing kerΦp = Nq,p(R).
For (ii), first note the direct sum representation

Aq(R) = Nq,p(R) ⊕Gq,p(R). (3.30)

Nq,p(R) ∩Gq,p(R) = {0} holds since the sets are spanned by independent sets of mono-
mials. If f ∈ Aq(R), write

f =
(
f − P †f

)
+ P †f.

Proposition 3.25 (iii) implies kerP † = Nq,p(R) and ran P † = Gq,p(R). Therefore (3.30)
holds. By (i), Φp : Aq(R) → Ap(R)′ is surjective and kerΦp = Nq,p(R). Thus (3.30) and 
Corollary 2.14 give

Ap(R)′ ∼= Aq(R)
ker Φp

= Aq(R)
Nq,p(R) = Gq,p(R),

as claimed.
For (iii), let Nq,p(R)◦ be the annihilator of Nq,p(R):

Nq,p(R)◦ = {λ ∈ Aq(R)′ : λ(f) = 0 ∀f ∈ Nq,p(R)} .
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The decomposition (3.30) implies a natural isomorphism Nq,p(R)◦ = Gq,p(R). Proposi-
tion 3.15 implies that Nq,p(R)◦ can be identified with λ ∈ Aq(R)′ of the form

λ =
∑

α∈S(R,Lp)

cαaα

for complex cα, the square partial sums of the series converging in Aq(R)′. Thus 
Nq,p(R)◦ = spanAq(R)′ {aα : α ∈ S (R, Lp)}. The same analysis shows

Gq,p(R)◦ = spanAq(R)′ {aα : α ∈ S (R, Lq) \ S (R, Lp)} .

(3.30) yields a direct sum decomposition of the dual spaces

Aq(R)′ = Nq,p(R)◦ ⊕Gq,p(R)◦.

The final step is to show the identity Φq(Ap(R)) = Nq,p(R)◦. However if α ∈ S (R, Lp), 
direct computation yields

aα = 1
‖eα‖2

2
· Φq(eα),

which implies the identity, and therefore (3.29). �
3.8. Holomorphic Sobolev spaces

For a multi-index β ∈ Nn, let ∂β denote the partial differential operator ∂β =
∂|β|/∂zβ1

1 . . . ∂zβn
n on Cn. Note that ∂βeα = C(α, β) · eα−β , where

C(α, β) =
{

0 if there is a j such that βj > αj ≥ 0∏n
j=1

∏βj−1
	=0 (αj − �), otherwise.

The empty product, in the case βj = 0, is defined to be 1. Let 1 ≤ p ≤ ∞ and k ∈ N. 
Consider the holomorphic Sobolev spaces defined

Ap
k(Ω) =

{
f ∈ O(Ω) : ∂βf ∈ Ap(Ω) for each β ∈ Nn, with |β| ≤ k

}
.

Note that Ap
0(Ω) = Ap(Ω).

If R ⊂ Cn is Reinhardt, let S (R, Ap
k) denote the set of α ∈ Zn such that eα ∈ Ap

k(R). 
The following generalization of Corollary 3.8 holds.

Proposition 3.31. Let R be a bounded Reinhardt domain, 1 ≤ p ≤ ∞, and k ∈ N. Let 
f ∈ Ap

k(R), with Laurent expansion given by (3.2).
Then if α /∈ S (R, Ap

k), aα(f) = 0.
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Proof. The case k = 0 is Corollary 3.8. For k ≥ 1, let f ∈ Ap
k(R), and α /∈ S (R, Ap

k). 
Thus there is a β ∈ Nn, such that |β| ≤ k, and ∂βeα /∈ Ap(R). Since ∂βeα = C(α, β)eα−β , 
this implies two facts: (i) C(α, β) �= 0 and (ii) eα−β /∈ Ap(Ω).

As f ∈ Ap
k(Ω), necessarily ∂βf ∈ Ap(Ω). Corollary 3.8 and fact (ii) imply a third fact: 

(iii) aα−β

(
∂βf

)
= 0. Differentiating the Laurent expansion (3.2) gives

∂βf =
∑
γ∈Zn

aγ(f)∂βeγ =
∑
γ∈Zn

aγ(f)C(γ, β)eγ−β .

Comparing coefficients yields aα−β(∂βf) = C(α, β) · aα(f). This implies aα(f) = 0, by 
facts (i) and (iii). �
Corollary 3.32. Let R be a Reinhardt domain in Cn and R̃ be the smallest complete 
Reinhardt domain containing R. Suppose that for some 1 ≤ p ≤ ∞,

∞⋂
k=0

S (R, Ap
k) = Nn.

Then every f ∈ C∞(R) ∩ O(R) extends holomorphically to R̃.

Proof. Since f ∈ Ap
k(R) for each k, Proposition 3.31 says the Laurent series of f contains 

no monomials with negative exponents. The Laurent series thus reduces to a Taylor series. 
The series necessarily converges in some neighborhood of zero and defines an analytic 
continuation of f to R̃. �
Example 3.33. Consider the Hartogs triangle H. It is a classical fact that any function 
holomorphic in a neighborhood of H extends holomorphically to the bidisc. However a 
stronger result is true: any f ∈ C∞(H) ∩O(H) extends to a holomorphic function on the 
bidisc.

To see this, write

eα(z) = zα1
1 zα2

2 =
(
z1

z2

)α1

zα1+α2
2 ,

and recall that |z1| < |z2| if (z1, z2) ∈ H. It follows that

S (H, A∞
0 ) = {(α1, α2) : α1 ≥ 0, α1 + α2 ≥ 0} . (3.34)

On the other hand, since ∂βeα = C(α, β)eα−β , ∂βeα ∈ A∞
0 (H) if α1 ≥ β1 and α1 +α2 ≥

β1 + β2. Therefore,

S(H, A∞
k ) = {(α1, α2) : α1 ≥ 0, α2 ≥ 0} ∪ {(α1, α2) : α1 ≥ k, α1 + α2 ≥ k}. (3.35)
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The situation is illustrated below, in the fourth quadrant of the lattice point diagram 
of H. The lattice points α = (α1, α2) on and above the line indexed by A∞

k correspond to 
monomials eα(z) = zα with α ∈ S (H, A∞

k ). Differentiation with respect to z1 (resp. z2) 
is denoted by ∂1 (resp. ∂2), and is represented (up to a constant multiple) by a shift left 
(resp. a shift down).

α1

α2

A∞
0 A∞

1 A∞
2

A∞
3

A∞
4

∂1

∂2

(0, 0) (1, 0)

(0,−1)

Each eα, with α in the fourth quadrant, is a finite number of derivatives away from 
becoming an unbounded function on H. This implies

∞⋂
k=0

S (H, A∞
k ) = {(α1, α2) : α1 ≥ 0, α2 ≥ 0}.

Corollary 3.32 thus gives the claimed result.

Remark 3.36. This property of the Hartogs triangle was first proved in Section 5 of [38], 
by a different argument.

4. Generalized Hartogs triangles

Following [17], for γ > 0 define the domains

Hγ :=
{
(z1, z2) ∈ C2 : |z1|γ < |z2| < 1

}
; (4.1)

call Hγ the power-generalized Hartogs triangle of exponent γ. The main result in [17] is 
that the Bergman projection BHγ

= Bγ is “defective” as an Lp operator and, moreover, 
whether γ ∈ Q or not determines the extent of its deficiency. The precise result is

Theorem 4.2 ([17]). Let Hγ be given by (4.1).

(i) Let γ = m , where m, n ∈ Z+ with gcd(m, n) = 1.
n
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Then Bγ : Lp (Hγ) → Ap (Hγ) boundedly if and only if p ∈
(

2m+2n
m+n+1 ,

2m+2n
m+n−1

)
.

(ii) Let γ be irrational.
Then Bγ : Lp (Hγ) → Ap (Hγ) boundedly if and only if p = 2.

Focus on Hm/n, m
n ∈ Q, and integrability exponents p ≥ 2. The proof of (i) in 

Theorem 4.2 actually shows more: the Bergman projection on Hm/n fails to generate Ap

functions from Lp data for certain p. To apply Theorems 2.15 and 2.18, operators are 
needed that create Ap functions for p outside the range in Theorem 4.2 (i).

The sub-Bergman projections defined in Section 3.6 are such operators. Verification 
of this is done over several sections, leading to

Theorem 4.3. Let Hm/n, where m, n ∈ Z+ with gcd(m, n) = 1, be given by (4.1).
For each p ≥ 2, the sub-Bergman projection B̃p : Lp

(
Hm/n

)
→ Ap

(
Hm/n

)
satisfies

(i)
∣∣∣B̃p

∣∣∣ is bounded on Lp(Hm/n)

(ii) B̃ph = h ∀h ∈ Ap(Hm/n).

Theorem 4.3 contains Theorem 0.4 from the Introduction and is proved in Section 4.3. 
If q is conjugate to p, 

∣∣∣B̃p
∣∣∣ also maps Lq(Hm/n) into Aq(Hm/n) boundedly, but the map 

is no longer surjective, see Remark 4.39. An explicit description of the set of Lp-allowable 
multi-indices plays a crucial role in the proof of Theorem 4.3.

4.1. Integrability and orthogonality

4.1.1. Holomorphic monomials in Lp
(
Hm/n

)
Let Hm/n, m, n ∈ Z+ with gcd(m, n) = 1, be a fixed power-generalized Hartogs 

triangle throughout the section. The following calculation was sketched in [17].

Lemma 4.4. Let p ∈ [1, ∞). The set of Lp-allowable multi-indices is

S
(
Hm/n, L

p
)

=
{
α = (α1, α2) : α1 ≥ 0, nα1 + mα2 ≥

⌊
−2
p
(m + n) + 1

⌋}
. (4.5)

For α ∈ S(Hm/n, Lp),

‖eα‖pLp(Hm/n) = 4mπ2

n(pα1 + 2)2 + m(pα1 + 2)(pα2 + 2) (4.6)

Proof. Note there are points in Hm/n where z1 = 0, which forces α1 ≥ 0. Computing in 
polar coordinates



D. Chakrabarti et al. / Advances in Mathematics 341 (2019) 616–656 645
∫
Hm/n

|zα|p dV = 4π2
1∫

0

rpα2+1
2

r
n/m
2∫
0

rpα1+1
1 dr1dr2

= 4π2

pα1 + 2

1∫
0

r
pα2+1+ n

m (pα1+2)
2 dr2.

This integral converges if and only if the exponent pα2 + 1 + n
m (pα1 + 2) > −1. From 

here, (4.6) easily follows. To see (4.5), notice that since α1, α2, m, n ∈ Z,

pα2 + 2 + n

m
(pα1 + 2) > 0 ⇐⇒ nα1 + mα2 ≥

⌊
−2
p
(m + n) + 1

⌋
. � (4.7)

Examine the sets S
(
Hm/n, L

p
)

as functions of p ∈ [1, ∞). The floor function in (4.5)
shows that

S
(
Hm/n, L

p
)

= S
(
Hm/n, L

p±ε
)

if ε > 0 is small, unless − 2
p (m + n) + 1 ∈ Z. The lattice points in S

(
Hm/n, L

p
)

are 
therefore stable except for certain exceptional p. Call these exceptional values thresholds. 
Note that S

(
Hm/n, L

t
)
⊂ S

(
Hm/n, L

s
)

if s < t, so S
(
Hm/n, L

p
)

jumps to a smaller set 
of lattice points as p increases past a threshold value.

The next result makes this stabilization precise and shows there are only a finite 
number of thresholds for a given Hm/n.

Proposition 4.8. There are exactly 2m + 2n thresholds associated to Hm/n. They occur 
when pk = 2m+2n

1−k for k ∈ {1 − 2m − 2n, 2 − 2m − 2n, . . . , −1, 0}.
Consider the corresponding partition of [1, ∞)

[1,∞) =
0⋃

k=1−2m−2n

[ pk, pk+1) , pk = 2m + 2n
1 − k

. (4.9)

Then for any p ∈ [ pk, pk+1),

S
(
Hm/n, L

p
)

= {(α1, α2) : α1 ≥ 0, nα1 + mα2 ≥ k} = S
(
Hm/n, L

pk
)
, (4.10)

and

S
(
Hm/n, L

∞)
= {(α1, α2) : α1 ≥ 0, nα1 + mα2 ≥ 0} = S

(
Hm/n, L

2m+2n) , (4.11)

Remark 4.12. (4.11) says every eα ∈ A2m+2n (Hm/n

)
is necessarily bounded. This gen-

eralizes statement (3.34) on H1.
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Proof. Define �m,n(p) := − 2
p (m + n) + 1, p ∈ [1, ∞). The function �m,n(p) is increasing 

and takes values in the interval [1 − 2m − 2n, 1). Note �m,n(p) = k ∈ Z if and only if 
p = 2m+2n

1−k .
Rewrite the partition in (4.9):

[1,∞) =
⋃
k

[
2m + 2n

1 − k
,
2m + 2n

−k

)
:=

⋃
k

Jk,

where the union is taken over k ∈ {1 −2m −2n, 2 −2m −2n, . . . , −1, 0}. Suppose p, p′ ∈ Jk
for some Jk. Then

k ∈
(
−2
p
(m + n),−2

p
(m + n) + 1

]
∩
(
− 2
p′

(m + n),− 2
p′

(m + n) + 1
]
,

which in turn implies ��m,n(p)� = k = ��m,n(p′)�, and shows (4.10) holds.
To see (4.11), let α = (α1, α2) ∈ S

(
Hm/n, L

2m+2n). Equation (4.5) says that α1 ≥ 0
and nα1 + mα2 ≥ 0. Since |z1|m < |z2|n < 1 if z ∈ Hm/n, it follows that

|zα1
1 zα2

2 |m =
∣∣∣∣zm1zn2

∣∣∣∣α1

|z2|nα1+mα2 < 1,

which says α ∈ S
(
Hm/n, L

∞)
. �

4.1.2. An example; pairing monomials
Consider the domain H2. Proposition 4.8 says there are 6 thresholds associated to H2:

α1

α2 L6 = L∞L3L2L
3
2L

6
5L1

(0, 0) (1, 0)

(0,−1)

The lines come from (4.10). The lattice points on the first five lines represent 
Lp-integrable monomials for all p up to but not including the p value of the next line, 
while the lattice points on and above the p = 6 line correspond to bounded monomials 
on H2.
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Choose β ∈ S
(
H2, L

3
2

)
and δ ∈ S

(
H2, L

2) with β �= δ. The first observation is that 
the L2 pairing

〈eβ , eδ〉H2
(4.13)

is defined. Note that 32 and 2 are not conjugate. If β also belonged to S
(
H2, L

2), Hölder’s 
inequality would imply (4.13) is finite. Thus assume β lies on the line L

3
2 in the diagram. 

Proposition 4.8 says eβ ∈ Lt(H2) for all t < 2 and that eδ ∈ Ls(H2) for all s < 3. 
There are infinitely many pairs of conjugate exponents in these two intervals, so once 
again Hölder’s inequality shows (4.13) is defined. The second observation is that (4.13)
equals 0. This follows since β �= δ and the monomials {eα} are orthogonal on H2.

The same conclusion holds for any multi-indices β �= δ chosen with β ∈ S(H2, L
6
5 ) (re-

spectively β ∈ S(H2, L1)) and δ ∈ S(H2, L3) (respectively δ ∈ S(H2, L6)). The following 
corollary of Proposition 4.8 gives the general version:

Corollary 4.14. Let γ = m
n , k ∈ {1 − 2m − 2n, 2 − 2m − 2n, . . . , −1, 0}, and define 

j(k) := 1 − k − 2m − 2n. Set

pk = 2m + 2n
1 − k

, pj(k) = 2m + 2n
1 − j(k) = 2m + 2n

2m + 2n + k
.

Then for any choice of multi-indices β ∈ S(Hγ , L pk) and δ ∈ S(Hγ , L pj(k)) with β �= δ, 
the inner product

〈eβ , eδ〉Hγ
= 0.

Remark 4.15. Corollary 4.14 is nontrivial only because pk and pj(k) are not conjugate; 
indeed, 1

pk
+ 1

pj(k)
> 1. No analogue of Corollary 4.14 exists for Hγ , γ /∈ Q.

4.2. Constructing Ap functions

Construction of the sub-Bergman kernels and projection operators is based on the 
decomposition of monomials in Proposition 4.8.

4.2.1. Type-A operators on Hm/n

A lemma from [17] is recalled that relates estimates on a class of kernels defined on 
Hm/n × Hm/n to mapping properties of the associated integral operators. If Ω ⊂ Cn is 
a domain and K is an a.e. positive, measurable function on Ω × Ω, let K denote the 
integral operator associated to K:

Kf(z) =
∫
Ω

K(z, w)f(w) dV (w).
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Definition 4.16. For A ∈ R+, call K an operator of type-A on Hm/n if its kernel satisfies

K (z1, z2, w1, w2) � |z2w2|A

|1 − z2w̄2|2 |zn2 w̄n
2 − zm1 w̄m

1 |2
,

for a constant independent of (z, w) ∈ Hm/n ×Hm/n.

The basic Lp mapping result is

Proposition 4.17 ([17]). If K is an operator of type-A on Hm/n, then K : Lp
(
Hm/n

)
−→

Lp
(
Hm/n

)
boundedly if

2n + 2m
Am + 2n + 2m− 2nm < p <

2n + 2m
2nm−Am

, (4.18)

whenever

n(2 −m−1) − 1 < A < 2n. (4.19)

Remark 4.20. The range of Lp boundedness as A tends to the upper and lower bounds 
in (4.19) is significant. As A → 2n, the interval in (4.18) increases to (1, ∞); thus an 
operator of type-2n on Hm/n is Lp bounded for all 1 < p < ∞. In the other direction, 
note the left endpoint n(2 −m−1) −1 ≥ 0 for all choices of m, n ∈ Z+. As A decreases to 
this endpoint, the interval in (4.18) collapses towards the point {2}. However an operator 
of type n(2 −m−1) − 1 is not necessarily bounded on any Lp space, including L2.

4.2.2. Splitting monomials by integrability class
Abbreviate the Lp-allowable multi-indices given by Proposition 4.8:

S(Hm/n, L
pk) = {(α1, α2) : α1 ≥ 0, nα1 + mα2 ≥ k} := Sk,

where pk = 2m+2n
1−k and k ∈ {1 − 2m − 2n, 2 − 2m − 2n, . . . , −1, 0}.

The Lp sub-Bergman kernels for p ≥ 2 are defined

B̃p(z, w) :=
∑
α∈Sk

eα(z)eα(w)
‖eα‖2

2
, p ∈ [ pk, pk+1). (4.21)

The stabilization in Proposition 4.8 accounts for the identical definition of B̃p(z, w) for 
all p ∈ [ pk, pk+1). Note that only Sk for k ∈ [1 −m − n, 0] occurs in any of the kernels 
(4.21), since p ≥ 2. Proposition 4.8 also says S0 = S

(
Hm/n, L

2m+2n) = S
(
Hm/n, L

∞)
. 

Consequently, denote the sum

∑
α∈S0

eα(z)eα(w)
‖eα‖2

2
:= B̃∞(z, w) (4.22)
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and call B̃∞(z, w) the L∞ sub-Bergman kernel on Hm/n. The sum defining B̃∞(z, w)
consists only of L∞ monomials.

As an aid to calculating the sums (4.21) and (4.22), define

sk = {α : α1 ≥ 0, nα1 + mα2 = k} , (4.23)

and consider the functions

b pk(z, w) =
∑
α∈sk

eα(z)eα(w)
‖eα‖2

2
. (4.24)

Orthogonality of {eα} yields the decomposition

−1∑
j=k

b pj (z, w) + B̃∞(z, w) = B̃pk(z, w) (4.25)

for negative integers k ≥ 1 −m − n.

4.2.3. Analyzing the sub-Bergman kernels
The first step is to obtain an upper bound on b pk connected to Definition 4.16.

Proposition 4.26. The following estimate holds for all z, w ∈ Hm/n

|b pk(z, w)| � |z2w̄2|2n+ k
m

|zn2 w̄n
2 − zm1 w̄m

1 |2 . (4.27)

Recall k < 0 in (4.27), k ∈ {1 −m − n, 2 −m − n, . . . , −1}.

Proof. Since gcd(m, n) = 1, there is a unique pair (β1, β2) with 0 ≤ β1 ≤ m − 1 and 
nβ1 + mβ2 = k. Notice that the subsequent lattice points on this line are of the form 
(β1 + jm, β2 − jn). Equation (4.6) says for all α ∈ S

(
Hm/n, L

2),
‖eα‖2

2 = mπ2

(α1 + 1)(nα1 + mα2 + m + n) . (4.28)

In what follows, let s := z1w̄1 and t := z2w̄2. Definition (4.24) and (4.28) imply

b pk(z, w) = m + n + k

mπ2

∞∑
j=0

(β1 + jm + 1) sβ1+jmtβ2−jn

= m + n + k

mπ2 · tk/m
∞∑
j=0

(β1 + jm + 1) sβ1+jm(t−n/m)β1+jm

= m + n + k

mπ2 · tk/m
∞∑
j=0

(β1 + jm + 1)uβ1+jm (4.29)
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where u := st−n/m. Writing this series in closed form yields

(4.29) = m + n + k

mπ2 · tk/muβ1 · (β1 + 1) + (m− β1 − 1)um

(1 − um)2

= m + n + k

mπ2 · sβ1tβ2 · (β1 + 1)t2n + (m− β1 − 1)smtn

(tn − sm)2 .

Noting that |s|m < |t|n, the bound (4.27) follows. �
Let b pk be the integral operator

b pk(f)(z) :=
∫

Hm/n

b pk(z, w)f(w) dV (w) (4.30)

The operator b pk is orthogonal projection from L2(Hm/n) → spanL2 {eα : α ∈ sk}. Note 
each sk is a set of points in the lattice point diagram lying on a single line.

Corollary 4.31. Let pk = 2m+2n
1−k for each integer 1 −m −n ≤ k ≤ −1 and qk be conjugate 

to pk. The projection b pk is an operator of type-A for A = 2n + k
m . Thus, b pk is 

Lp-bounded for

p ∈
(

2n + 2m
2n + 2m + k

,
2n + 2m

−k

)
= (qk+1, pk+1). (4.32)

Proof. Set A = 2n + k
m in Proposition 4.17. �

The second step is to show the kernel B̃∞(z, w) satisfies bounds related to Defini-
tion 4.16 and is more involved.

Proposition 4.33. The L∞ sub-Bergman kernel on Hm/n satisfies

∣∣∣B̃∞(z, w)
∣∣∣ � |z2w̄2|2n

|1 − z2w̄2|2 |zn2 w̄n
2 − zm1 w̄m

1 |2
. (4.34)

Proof. Recall the description of S(Hm/n, L∞) given by (4.11) and let r ∈ {0, 1, . . . ,
m − 1}. Since gcd(m, n) = 1, there is a unique (α1, α2) with both nα1 + mα2 = r

and 0 ≤ α1 ≤ m − 1. Set this α1 = σ(r). The function σ is a permutation of the set 
{0, 1, . . . , m − 1} with σ(0) = 0.

Each α ∈ S(Hm/n, L∞) = {(α1, α2) : α1 ≥ 0, nα1 +mα2 ≥ 0} can uniquely described 
by a line of the form nα1 +mα2 = k and an α1 value. Again letting r ∈ {0, 1, . . . , m −1}, 
parametrize k and α1 by
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nα1 + mα2 = md + r, d = 0, 1, . . .

α1 = mj + σ(r), j = 0, 1, . . .

For ease of notation set s = z1w̄1, t = z2w̄2. From equations (4.21) and (4.28),

B̃∞(z, w) = 1
mπ2

∑
α∈S(Hm/n,L∞)

(α1 + 1)(nα1 + mα2 + m + n)sα1tα2

= 1
mπ2

m−1∑
r=0

∞∑
d,j=0

(mj + σ(r) + 1)(md + r + m + n)smj+σ(r)td+
r
m−nj− n

mσ(r)

= 1
mπ2

m−1∑
r=0

uσ(r)t
r
m

( ∞∑
j=0

(mj + σ(r) + 1)umj

)( ∞∑
d=0

(md + r + m + n)td
)

:= 1
mπ2

m−1∑
r=0

uσ(r)t
r
m Ir(u)Jr(t), (4.35)

where we have introduced the new variable u = st−n/m. Note both |t| < 1 and |u| < 1
on Hm/n. For fixed r, estimate the sums Ir(u) and Jr(t) given in (4.35):

|Ir(u)| =

∣∣∣∣∣∣
∞∑
j=0

(mj + 1)umj + σ(r)
∞∑
j=0

umj

∣∣∣∣∣∣ � 1
|1 − um|2 = |t|2n

|tn − sm|2 , (4.36)

and

|Jr(t)| =

∣∣∣∣∣m
∞∑
d=0

(d + 1)td + (r + n)
∞∑
d=0

td

∣∣∣∣∣ � 1
|1 − t|2 . (4.37)

Note both bounds hold for all r ∈ {0, 1, . . . , m − 1}. Combining (4.36) and (4.37) with 
(4.35) gives the result. �
4.3. Proof of Theorem 4.3

For p ∈ [2, ∞), the L p sub-Bergman projection is

B̃pf(z) :=
∫

Hm/n

B̃p(z, w)f(w) dV (w),

with kernel given by (4.21). Notice the identical kernels in definition (4.21) imply B̃p =
B̃p′ for all p, p′ ∈ [pk, pk+1). Similarly, B̃∞ denotes the L∞ sub-Bergman projection on 
Hm/n, the operator whose kernel is defined by (4.22).
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Proposition 4.38. Let pk = 2m+2n
1−k , for k ∈ {1 −m − n, 2 −m − n, . . . , −1}, and let qk

denote the conjugate exponent of pk. Interpret p1 = ∞ and q1 = 1.
Let p ∈ [pk, pk+1). The following hold:

(i)
∣∣∣B̃p

∣∣∣ is Lp′ bounded for all p′ ∈ (qk+1, pk+1).

(ii)
∣∣∣B̃∞

∣∣∣ is a bounded operator on Lp for all p ∈ (1, ∞).

Proof. Estimate (4.34) shows that 
∣∣∣B̃∞

∣∣∣ is a type-A operator with A = 2n. Proposi-
tion 4.17 then implies (ii). For 1 − m − n ≤ k ≤ −1, apply the triangle inequality to 

equation (4.25) together with estimate (4.27) to see that 
∣∣∣B̃pk

∣∣∣ is a type-A operator with 

A = 2n + k
m . Proposition 4.17 then implies (i). �

To complete the proof of Theorem 4.3, recall that B̃p is defined as the orthogonal 
projection from L2(Hm/n) onto G2,p(Hm/n), the target space given by equation (3.20). 
Since Ap(Hm/n) ⊂ G2,p(Hm/n), reproduction property (ii) of Theorem 2.15 holds. �
Remark 4.39. Again let p ≥ 2 with p ∈ [pk, pk+1). If p′ ∈ (qk+1, pk+1), then its conjugate 

q′ ∈ (qk+1, pk+1). Proposition 4.38 shows 
∣∣∣B̃p

∣∣∣ is both Lp′ and Lq′ bounded. In particular, ∣∣∣B̃p
∣∣∣ is bounded on Lq(Hm/n), where q is conjugate to p.

On the other hand, reproduction of the space Aq′ fails for all q′ < 2. Indeed, a slight 
modification of the proof of Proposition 3.17 shows: if f ∈ Aq′(Hm/n), then

B̃p(f)(z) =
∑

α∈S(Hm/n,Lp)

aα(f)eα(z).

Lemma 4.4 implies S(Hm/n, Lq′) is a strict superset of S(Hm/n, L2) which in turn con-
tains S(Hm/n, Lp). Thus non-trivial elements in Aq′ are mapped to 0. Ramifications of 
this are seen in the next subsection.

4.4. Duality, approximation and minimization

The sub-Bergman projections give precise answers to versions of (Q1-3) on the do-
mains Hm/n.

4.4.1. Duality
The dual space of Ap

(
Hm/n

)
for all 1 < p < ∞ can be concretely described. The 

representation is particularly cogent when p > 2.
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Proposition 4.40. Let p > 2 with conjugate q. The dual space Ap
(
Hm/n

)′ can be identified 
with a proper subset of Aq(Hm/n). Namely,

Ap(Hm/n)′ ∼=

⎧⎨⎩f ∈ Aq(Hm/n) : f =
∑

α∈S
(
Hm/n,Lp

) aα(f)eα

⎫⎬⎭ . (4.41)

Additionally,

Aq(Hm/n)′ ∼= Ap(Hm/n) ⊕ spanAq(Hm/n)′
{
aα : α ∈ S

(
Hm/n, L

q
)
\S

(
Hm/n, L

p
)}

.

(4.42)

Proof. Since 
∣∣∣B̃p

∣∣∣ is bounded on Lp, Proposition 3.27 applies. Equation (4.41) follows 
from part (ii) of Proposition 3.27, noting the right hand side of (4.41) is Gq,p(Hm/n). 
Equation (4.42) follows from part (iii) of the same proposition. �

This result should be compared with the breakdown shown in Section 1.1.

4.4.2. Approximation of Ap functions
The form of (Q2) addressed is the following: given p ∈ (1, ∞) and r > p, when 

can f ∈ Ap
(
Hm/n

)
be approximated by Ar

(
Hm/n

)
functions in the Lp norm? As in 

Proposition 4.40, the answer is most appealing when p > 2.

Proposition 4.43. Let p ≥ 2 be given and r > p. Then f ∈ Ap(Hm/n) can be approximated 

by Ar
(
Hm/n

)
functions in the Lp norm if and only if B̃rf = f .

Proof. Suppose f ∈ Ap
(
Hm/n

)
and B̃rf = f . Proceed as in the proof of Propo-

sition 2.18. Since f ∈ Lp
(
Hm/n

)
, there is a sequence φn ∈ C∞

c

(
Hm/n

)
satisfying 

‖φn − f‖p → 0 as n → ∞. Set fn := B̃rφn. Note fn ∈ Ar
(
Hm/n

)
by Proposition 4.38. 

Moreover

‖fn − f‖p =
∥∥∥B̃r(φn − f)

∥∥∥
p

� ‖φn − f‖p ,

so f is approximable as claimed.
For the converse, suppose f ∈ Ap(Hm/n) and B̃rf �= f . By Proposition 3.25, there 

exists eβ ∈ S
(
Hm/n, L

p
)
\ S

(
Hm/n, L

r
)

such that aβ(f) �= 0, with aβ(f) associated to 
f via (3.10).

Suppose there were a sequence gn ∈ Ar(Hm/n) such that gn → f in Ap
(
Hm/n

)
. Note 

that aβ(gn) = 0 for all n. Thus aβ(gn−f) = −aβ(f) �= 0 ∀n. But Proposition 3.5 implies 
that aβ is continuous on Ap(Hm/n). Thus
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|aβ (gn − f)| � ‖gn − f‖Ap → 0 as n → ∞,

a contradiction. �
For 1 < p < 2, the results are more complicated. In the first place, the sub-Bergman 

projections B̃r are only defined if r ≥ 2; consequently no approximation theorem for the 
range 1 < p < r < 2 follows from results in this paper. Additionally, the approximation 
result that does follow – for the range 1 < p < 2 ≤ r – requires consideration of the 
partition (4.9) in Proposition 4.8.

Proposition 4.44. Let 1 < p < 2 and p′ be conjugate to p. In the partition (4.9), choose 
k so that p′ < pk+1 = 2m+2n

−k .
Fix r ∈ [ pk, pk+1). Then f ∈ Ap(Hm/n) can be approximated by Ar

(
Hm/n

)
functions 

in the Lp norm if and only if B̃rf = f .

Proof. Since p′ < pk+1, simple algebra shows that qk+1 < p, where qk+1 is the conjugate 
exponent to pk+1. Since p ∈ (qk+1, pk+1), Theorem 4.38 implies B̃r is bounded on Lp.

The rest of the proof is the same as for Proposition 4.43. �
4.4.3. L2-nearest approximant in Ap

Question (Q3) can be cast as a broad minimization problem. Suppose ‖·‖X is an 
auxiliary norm on the space Lp(Ω), Ω ⊂ Cn fixed.

Problem: Given g ∈ Lp(Ω), find G ∈ Ap(Ω) so

‖g −G‖X ≤ ‖g − h‖X (4.45)

for all h ∈ Ap(Ω).
For general ‖·‖X , techniques needed for this problem mostly await development. But 

when X = L2(Ω) the sub-Bergman operators give results. Recall that for p ≥ 2, B̃p is 
the orthogonal projection from L2 onto G2,p, the latter space given in Proposition 3.21. 
If Ω is bounded, the diagram

Lp(Ω) ↪→ L2(Ω)⏐1?
⏐1B̃p

Ap(Ω) ↪→ G2,p(Ω)

summarizes relations between the function spaces, with ↪→ denoting injection. Consider 
“closest” to mean closest measured by the L2 norm in the following. If g ∈ L2(Ω), the 
unique closest element in G2,p(Ω) is B̃pg. However when Ω = Hm/n, Theorem 4.3 says 
that B̃p restricts to a bounded operator on Lp(Hm/n). It follows that B̃pg is also the 
closest element in Ap(Ω) to g. Thus,
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Proposition 4.46. Let p ≥ 2 and g ∈ Lp(Hm/n). The function B̃pg satisfies∥∥∥g − B̃pg
∥∥∥
L2

≤ ‖g − h‖L2

for all h ∈ Ap(Hm/n), with equality if and only if h = B̃pg.
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