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Introduction

If Q C C™ is a domain and p > 0, let AP(Q2) denote the Bergman space of holomorphic
functions f on €2 such that

191y = [ 1PV < oc,
Q

where dV denotes Lebesgue measure. Three basic questions about function theory on
AP()) motivate our work:

(Q1) What is the dual space of AP(£2)?

(Q2) Can an element in AP(2) be norm approximated by holomorphic functions with
better global behavior?

(Q3) For g € LP(Q), how does one construct G € AP(2) that is nearest to g?

The questions are stated broadly at this point; precise formulations accompany results
in the sections below.

At first glance (Q1-3) appear independent — one objective of the paper is to show the
questions are highly interconnected. On planar domains some connections were shown
in [20] and [13]. Our paper grew from the observation that irregularity of the Bergman
projection described in [17] has surprising consequences concerning (Q1-3). In particular:
there are bounded pseudoconvex domains D C C? such that

(a) the dual space of AP(D) cannot be identified, even quasi-isometrically, with A%(D)
where % + % =1,

(b) there are functions in AP(D), p < 2, that cannot be LP-approximated by functions
in A%(D), and

(c) the L?-nearest holomorphic function to a general g € LP(D) is not in AP(D).

Note (a) says the expected Riesz duality pattern (LP)" ~ L9 does not extend to Bergman
spaces of general pseudoconvex domains in C". The fact that (AP) ~ A? also has a
significant refinement: the identification fails for elementary coefficient functionals. The
domains D above are Reinhardt and 0 ¢ D. If f(z) = > ;2 aa2® belongs to AP(D),
it is not difficult to show the map f — a, belongs to AP(D)’. The proof of (a) yields
that some of these functionals are not represented as an L? pairing with a holomorphic
function.

The negative examples frame our positive answers to (Q1-3) and are demonstrated in
Section 1. These results are called breakdowns of the function theory, to indicate a break
with expectations coming from previously studied special cases. But since prior results
on (Q1-3) for domains in C™ are sparse, the examples in Section 1 may represent typical
phenomena.
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The initial goal of the paper is to show how LP mapping properties of operators related
to the Bergman projection, B = Bgq, give answers to (Q1-3). Let P : L?(Q) — A%(Q)
be a bounded operator given by an integral formula

Pf(2) :/P(z,w)f(w) dV (w). (0.1)

Q

For p > 0 fixed, consider the conditions

(H1) 3C > 0 such that [|[Pf|, < C[|fll, Vf € LP(Q). (P is bounded on LF)
(H2) Ph=h Vh e AP(Q). (P reproduces AP)

Properties (H1-2) will also be invoked on the operators |P| and P associated to P,
defined in Section 2.1.1.

A general duality result involves these properties. For 1 < p < oo, let ¢ be the
conjugate exponent of p. Define the conjugate-linear map @, : A9(Q2) — AP(Q)" by the
relation ®,,(g)(f) = [, fgdV.

Proposition 0.2. Let Q C C™ be a bounded domain. Let 1 < p < oo be given and q be
conjugate to p. Suppose there exists P of the form (0.1) such that (i) |P| satisfies (H1),
(ii) P satisfies (H2), and (iii) Ran (PT> C O(Q).

Then @, : A1(QY) — AP(Q)’ is surjective.

A general approximation result also involves properties (H1-2).

Proposition 0.3. Let Q C C" be a domain. For a given 1 < p < 2, suppose there exists
an operator P of the form (0.1) such that P satisfies (H1) and (H2).
Then every f € AP(Q) can be approxvimated in the LP norm by a sequence f, € A?(£2).

The prime example of an operator (0.1) is P = B. There is no a priori reason the
Bergman projection should satisfy (H1) or (H2) unless p = 2, but there are many classes
of domains where B is known to satisfy both properties for all exponents 1 < p < oo —
see [37,31,36,32,34,33,35,25]. On many other classes of domains the answer is unknown.
However B fails to satisfy property (H1) for all 1 < p < co in general. This was recently
established in [4,16,12,17] for some pseudoconvex domains in C2. It was observed earlier
for classes of roughly bounded planar domains in [28] and noted for a non-pseudoconvex,
but smoothly bounded, family of domains even earlier in [2]. It turns out that B also
fails to satisfy property (H2) in general; see Example 1.4.

The second goal of the paper is to construct substitute operators relevant to (Q1-3)
in cases where B does not satisfy (H1) or (H2). In general this goal is inaugural, but it
is achieved for the generalized Hartogs triangles studied in [17]. The results in Section 4
yield the following
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Theorem 0.4. Let H,, /,, 7 € Q™, be given by (4.1). For each p > 2, there is an operator
P of the form (0.1) such that (i) ‘13’ satisfies (H1), and (i) P satisfies (H2).
Moreover, 139 is the unique L?-nearest element in Ap(Hm/n) to g€ Lp(Hm/n).

The operators P are called sub-Bergman projections: their kernels are given as sub-
series of the infinite sum (2.2) defining the Bergman kernel. This can be done abstractly
(see Section 3), but the utility of sub-Bergman operators appears when their kernels can
be estimated precisely enough to show they create AP functions. In such cases, these
projections are useful beyond the applications to (Q1-3) shown here.

We mention there is a very fertile area in one-dimensional Hardy space theory to which
Theorem 0.4 relates, often labeled extremal dual problems. These problems deal with
approximating non-holomorphic functions on the unit circle by holomorphic functions
on the disc. There are numerous important results in this area — see [13], Ch. 8; [19],
Ch. IV; [27], Ch. VII. These results can be compared/contrasted with the positive result
of Proposition 4.46 and the breakdown in Example 1.8 below.

Our third main result concerns (Q2) and does not involve the hypotheses (H1-2). If R
is a bounded Reinhardt domain and f € O(R), then f has a unique Laurent expansion
f(2) = pezn @az® converging uniformly on compact subsets of R. Note summation is
indexed by Z™ since 0 ¢ R is possible. Let Sy f denote the square partial sum of this
series; see Section 3.4. If f € AP(R), these rational functions converge in LP:

Theorem 0.5. Let R be a bounded Reinhardt domain in C", 1 <p < oo and f € AP(R).
Then

ISnf—fll,—0 as N — oo.

This result is a several variables extension of a theorem due to Riesz on Hardy spaces
of the unit disc; see pages 104-110 in [19] for a proof of Riesz’s theorem.

Results about (Q1-3) for 1 < p < co on planar discs are known, which guided our
investigation. If U is the unit disc in C and p = 2, all three questions have elementary
answers. For (Q1), the dual space A%(U)’ is isometrically isomorphic to A%(U) itself,
since A2(U) is a Hilbert space; this fact holds on a general Q C C". For (Q2), if f(z) =
Yoo ganz™ € A%(U), then HZZLO anz" — me — 0 as N — oo by a simple application
of Parseval’s formula. For (Q3), G = By(g) gives the L?-closest element in A%(U) to
any g € L?>(U). Since B is L? bounded on a general domain per definition, this fact also
holds on a general Q). For exponents p # 2, still on the disc U, results also exist. The
proofs of these results crucially use boundedness of the Bergman or Szegd projection on
LP(U). For (Q1), AP(U)’ is quasi-isometrically isomorphic to A?(U) where % + % =1
and 1 < p < oo; see [42,1]. Thus the dual spaces of AP(U) mimic the pattern given by
Riesz’s characterization of the duals of general LP spaces, except for a quasi-isometric
constant. The constant comes from the operator norm of B acting on LP. There are
also characterizations of AY(U)" and A (U)’, see [14]. For (Q2), a dilation argument,
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see e.g. [14] page 30, shows that polynomials are dense in AP(U) for all 0 < p < oo. For
1 < p < oo, this density is strengthened in [19,43]: if f(z) = D77 jan2" € AP(U),

(%)

— 0, N — oo.

N
> anz" = f
n=0

Lr

While the form of (x) is the same as when p = 2, its proof is not an elementary truncation
argument. The proofs in [19,43] pass through the Hardy spaces HP to get estimates in
AP and so use boundedness of the Szegd projection on LP, 1 < p < oo. We point out the
Bergman and Szegé projections on U have the same range of LP boundedness, but also
note this is a special coincidence. Finally for (Q3), the fact that By is bounded on LP
for 1 < p < oo shows G = B(g) solves (Q3), if “nearest” is interpreted in the L? sense.
Generalizations of these results on U to simply connected domains 2 can be proved if
the Riemann map from 2 to U is sufficiently well-behaved, though this seems not to
appear in print. For planar domains other than U, the only significant result about (Q1)
known to us is [20]: There are certain domains € such that AP(Q)’ is not isomorphic to
A1(Q), if p lies outside an interval centered at 2.

In several variables, duality and approximation questions in the spirit of (Q1-2) seem
not to have been considered when p # 2. However significant results about duality in
L2-Sobolev spaces W2(£2) have been obtained. Results of this type first occur in work
on extension of biholomorphic mappings, [5,6]. These results were greatly developed and
generalized in [8,7,10,40,26]. Around (Q2), prior results on approximation in O(£2) have
concentrated on uniform norm approximation or the Hilbert norms W2(€2). Uniform
approximation theorems have been derived from integral formulas but require restrictive
geometric assumptions on bS2, see [21,23,30,18]. The W2(Q) results hold more generally.
For instance, if 2 is a smoothly bounded pseudoconvex domain, [11] shows f € O(f2) can
be approximated by functions in O(Q)NW2(€2). In [3] an analogous result on C! bounded
Hartogs domains in C? is proved. See also [41], Corollaries 5.2 and 5.4. Nevertheless,
these results fail without boundary smoothness, see [3]. This fact partially motivates our
insertion of Bergman norms in (Q2). Finally, previous work directed at (Q3) has focused
on establishing boundedness of the Bergman projection itself on increasingly wider — but
still smoothly bounded — classes of domains, as mentioned below Proposition 0.3 above.
We are unaware of any prior work connected to (Q3) using operators other than the
Bergman projection.

The results in the paper are arranged by decreasing generality of the underlying do-
main. In Section 2,  is a domain with no assumptions on its symmetry or boundary
geometry. In some instances, ) is assumed bounded. The arguments in this section
are elementary, but the results apply widely and seem new. Propositions 0.2 and 0.3
are slightly extended and established as Theorems 2.15 and 2.18, respectively. In Sec-
tion 3, bounded Reinhardt domains R are considered. The Laurent series expansion of
a holomorphic function on R provides concrete initial candidates for addressing (Q2)
via truncation. Calculation of norms of coefficient functionals related to LP-allowable
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monomials (Proposition 3.5) and a principal value computation (Proposition 3.17) are
the basic preliminary results. The main result is Theorem 3.11, a relabeling of Theo-
rem 0.5 above. Additionally, Proposition 0.2 is applied to give a detailed description
about duality of AP on Reinhardt domains in Proposition 3.27.

In Section 4, (Q1-3) are considered on the generalized Hartogs triangles studied in
[15-17]. The extra symmetries of this family of Reinhardt domains allow precise descrip-
tions of LP allowable monomials, orthogonality relations, and integrability generally. The
main results are Theorem 4.3 and Proposition 4.38, which construct sub-Bergman pro-
jections that are LP bounded on ranges where B is not. These results imply Theorem 0.4.
Precise versions of the earlier duality and approximation results are obtained in Propo-
sition 4.40 and Propositions 4.43, 4.44. Proposition 4.46 solves a minimization problem
that answers a version of (Q3).

1. Breakdown on the Hartogs triangle

The breakdowns of function theory can be seen on the Hartogs triangle using results
established later in the paper and in [17]. The needed results are referenced below, using
notation collected in Section 2.1.

The Hartogs triangle is

H:= {(z1,22) € C*: || < |za| < 1}. (L.1)

In [17] and (4.1) below, H is denoted H; to indicate membership in a family of domains,
but that is not needed here. Abbreviate the Bergman projection By by B for the rest
of this section.

Since H is Reinhardt, every f € O (H) has a unique Laurent expansion, written f(z) =
> anz® using standard multi-index notation. Since z3 # 0 on H but there are points in
H where z; = 0, the summation is taken over the set {a = (a1, 2) € Z% : a1 > 0}. If
f € AP(H), results in Section 3 show the Laurent expansion of f need only be summed
over the smaller set of LP-allowable multi-indices, see (3.4). Denote this set of indices
S(H, LP) — caveat: this set was denoted A} in [17]. Corollary 3.8 implies

fz)= > anz® if f € AP(H). (1.2)

a€S(H,LP)
A special case of [17, Theorem 1.1 and Remark 4.9] is

Theorem 1.3. The absolute value of the Bergman projection |B| on H is bounded from
LP (H) to AP (H) if and only if p € (3,4).

Cf. also [12,16].
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1.1. Fuilure of representation

The dual space AP(H)’ is not isomorphic to A?(H) for p € (%,2) and ¢ conjugate
to p. This is illustrated with the pair p = % and g = %; the argument works with minor
changes for any p € (%, 2).

Before defining a functional on A%/3(H), a computation is useful:

Example 1.4. The holomorphic function h(z, zp) = 2y 2(= 2025 %) satisfies

(i) h € A%/3 (H) and h ¢ A%(H).
(ii) Bh is well-defined and Bh = 0.

Proof. Inequality (3.3) in [17] or Lemma 4.4 below shows that (0, —2) € S (H, L>/3) and
(0,-2)¢ S (H, LQ). Thus (i) holds.

Since 5 € (3,4), Theorem 1.3 says |B]| is bounded on L°/3(H). Tt follows from Propo-
sition 3.17 that Bh is well-defined and Bh=0. O

A non-representable functional is now given using the coefficients in (1.2).

Example 1.5. The coefficient functional
a(07,2) . A5/3(H) — (C

assigning to f € A%3(H) the coefficient of z; % in its Laurent expansion is bounded on
A>/3(H). However, there does not exist ¢ € A%/ ?(H) such that

a(0,—2) (f) = <f7 ¢>H~

Proof. Uniqueness of the Laurent expansion shows the functional a(g, _2) is well-defined.
Boundedness of a(y,_z) follows from Proposition 3.5.

To prove non-representability, let h(z) = 2,2 € O(H) as above. Example 1.4 says
h € A%/3 (H) but h ¢ A% (H). Since (0,—2) ¢ S (H, L?), Corollary 4.14 shows that for

all g € A%(H)

(h;g)y = 0. (1.6)

The fact that a(,_z) cannot be represented by (-, ¢)y for some ¢ € A%/2(H) is now
straightforward. Suppose such a representation held. Note a(g,—2)(h) = 1 by definition.
Since A%/2(H) C A2?(H), (1.6) implies (h,¢)y; = 0 for all ¢ € A%?(H), a contradic-
tion. 0O
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1.2. Failure of approzimation on AP

There are functions f € A5/3(H) for which no sequence of functions f, € A%(H)
converges to f in the L53 norm. As in the previous subsection, minor changes in the
argument give an analogous result for any p € (%, 2).

Proposition 1.7. A%(H) is not dense in A%/3(H).

Proof. Let a(g,_g) € A>/3(H)’ and h € A%/ (H)\ A% (H) be as in the previous section. By
Corollary 3.8, since (0,—2) ¢ S (H, LQ), a(o,—2) vanishes on the linear subspace A%(Q)
of A%/3 (H). If A% (H) were dense in A%/3 (H), continuity would imply agp,—2) = 0 on
A®/3 (H). However, a(g, o) (h) = 1, which contradicts this vanishing. 0O

In fact a stronger statement is true: there are functions in A%/3(H) that cannot be
approximated uniformly on compact subsets of H by functions in A?(H). To see this,
suppose that {f,} is a sequence in A%(H) such that f, — h uniformly on compact
subsets of H. Recall the Cauchy representation of a coefficient of a Laurent series:

_ 1 f(Q) d¢dée
a(o,—2)(f) = (2mi)? CQTQ : ZE’
T

where T is a torus contained in H, for example {(z1,22) : |z1] = 1,|22| = 3} C H.
Since f, — h uniformly on T" as n — oo, it follows that a( —2)(fn) = 1 = a,—2)(h) as
n — oo. This is a contradiction, since Corollary 3.8 a(,—2)(fn) = 0 for each n.

1.8. Failure of approximation on LP

For p > 4, there are explicit functions g € LP(H) such that Bg ¢ AP(H). Note that
LP(H) C L?(H) for this range of p, so By is well-defined. As ¢ — Bg associates the
L2-nearest holomorphic function to a general g, this is a different failure of approximation
than in the previous section.

Since Theorem 1.3 says there does not exist C such that ||Bf||, < C||f], for all f €
LP, the uniform boundedness principle implies the existence of such g. But the explicit
form of such “extremal functions” (though non-unique) is useful for other purposes. The
proofs in [17,16] actually show

Example 1.8. On H, let ¢(z1, 22) = Z2. Then Bt ¢ LP(H) for any p > 4.
Proof. The proof of Proposition 5.1 in [17] shows that By = Cz; ', for a constant

C # 0. An elementary computation in polar coordinates (see Lemma 4.4 below) shows
that ;' ¢ LP(H) if p>4. O
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Since ¢ € L*°(H), thus in LP(H) for all p > 0, Example 1.8 demonstrates the break-
down mentioned above. In [12], the range of B acting on LP(H) for any p > 4 is identified
as a weighted Bergman space.

2. General domains
2.1. Notation

Recurring notation and terminology is collected for easy reference.
If Q C C*, O(R) denotes the set of holomorphic functions on Q. The ordinary L?
inner product is written (f, g),, = fQ f+-gdV where dV is Lebesgue measure. For p > 0,

let || fll, = (fQ |f|P dV)% denote the usual p-th power integral; when p > 1 this defines
a norm. LP () is the class of f with || f]|, < oo and powers p, ¢ satisfying % + % =1 are
said to be conjugate. The Bergman spaces are AP(2) = O (Q) N LP ().

The Bergman projection and kernel are denoted

Bof(z) = / Bo(z,w)f(w)dV(w), [ e L*9). (2.1)

Q

If ambiguity is unlikely, Bg, is shortened to B. When the integral in (2.1) converges, it
is taken as the definition of Bf, even if f ¢ L?(Q). If {¢a }aca is an orthonormal basis
for A%2(Q), the Bergman kernel is

Ba(z,w) = Y ¢a(2)a(w). (2.2)

acA

A domain R C C" is called Reinhardt if (z1, ... 2,) € R implies (eielzl7 ..., e zn) €
R for all (61,...,0,) € R™. If X is a normed linear space, X’ will denote its dual space,
the set of bounded linear maps X — C. For A € X', the standard norm ||A||x =
sup (/)] + [ fllx = 1} is used.

Some notational shorthand is used in Section 4. If D and E are functions depending
on several parameters, D < E means there exists a constant K > 0, independent of
specified (or clear) parameters, such that D < K- E. Finally, if € R, the floor function
|z] denotes the greatest integer < x.

2.1.1. Two auziliary operators

Two operators related to P : L?(Q) — A%(2) given by (0.1) occur in hypotheses of
results below. The operator |P| is defined

[Pl f(2) = / |P(z,w)|f(w) dV (w) (2:3)
Q



D. Chakrabarti et al. / Advances in Mathematics 341 (2019) 616-656 625

where | P(z, w)| denotes absolute value. The triangle inequality shows that if | P| satisfies
(H1), then P does as well. The converse does not necessarily hold. The operator P is
defined

Pl f(w) = /P(z, w) f(z)dV(2). (2.4)

Q

Note (Pf,g) = <f, PJrg> holds when Fubini’s theorem can be applied, so P is the
formal adjoint of P.

2.2. Fxtending the Bergman projection

If Q@ c C" is bounded, L}(2) C L*() for any 1 < s < t. Thus for p > 2, f €
LP(Q) implies that Bf € A?(Q2) and is given by the integral (2.1). To restate a point in
Section 2.1, [, B(z,w)f(w)dV (w) is taken as the definition of B f, whenever the integral
converges. For p < 2 and f € LP(Q), this integral does not necessarily converge. Even
when it converges, directly determining the size of the integral is difficult — it is therefore
desirable to evaluate Bf as a limit.

2.2.1. Boundedness of the kernel
Various hypotheses on 0 guarantee convergence of (2.1) for f € LP(Q), p < 2. For
example, let U C C be the unit disc and fix z € U. Then for f € L* (U),

[ otz s aviw) = |~ [ G fwavi)| < €. [ 17w aviw) <.
U U

2w)>?
U

Here C, = sup,,¢p |Bu(z, w)| < oo, since z € U is fixed. This argument works on a C'*
smoothly bounded strongly pseudoconvex domain [24] or more generally on a smoothly
bounded pseudoconvex domain of finite type [9].

But the argument fails for the domains H, defined by (4.1). Consider Hj, for k € Z*
to illustrate. Let B(z,w) = B, (21, 22, w1, wz) denote the Bergman kernel. Theorem 1.2
of [15] says

Pr(2z101) - [(227112)2 + (211171)10} + 22W3 - qx (21101)
B(z,w) = , (2.5)

(1 — 22@2)2(2’2&)2 — z’fﬁ)’f)Q

for explicit polynomials pg(s), gk (s) of the complex variable s. Two crucial facts are that

pr(0) = 0 and ¢;(0) # 0. Let 2 = (z1,22) € Hy be a fixed point (note z; # 0) and
ws = (0,0), § > 0, be a point in Hy on the 2o axis. Then (2.5) implies B (z, ws) = %.

Letting 6 — 0 shows B(z,-) ¢ L™ (Hy).
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Other arguments are required to show B is defined on LP for p < 2 on domains like
H,, /- In [17], estimates on | By, (2, w)| and a variant of Schur’s test show |B] is defined
(and bounded) on LP(H,,,,) for an interval of p < 2; see Theorem 4.2 below.

2.2.2. Limits of exhaustions
If |B] is bounded on LP(Q), the integral (2.1) is finite. Computing B f can be done
as a principal value, a consequence of the following fact:

Proposition 2.6. Let Q be a domain in C™. Suppose P is an operator of the form (0.1)
such that |P| is bounded on LP(Q) for a given 1 < p < oo. Fort € (0,1), let Q, C Q
such that if t < t', then Qup C Q, and U Q= Q.

te(0,1)
Then if f € LP(Q), for almost every z € §)

Pf(z) = }/E}I(l) P(z,w)f(w)dV (w). (2.7)
Q¢

Proof. Let f € LP(Q). The hypothesis on |P| says

p

J3|[ Pl b ave <cls,

Q

In particular, for a.e. z € Q, the quantity {-} above is < co. Thus |P(z,-)||f(:)| € L' (Q)
for a.e. z € Q.

Let x; be the indicator function of ;. Note |x;(w)P(z,w)||f(w)| < |P(z,w)||f(w)]
for any 2 € Q. Fix 2z such that |P(z,-)||f(-)| € L'(Q). The dominated convergence
theorem implies

lim <P(z7')7.f>gt = lim <Xt 'P(Za )af_>Q = <%E%Xt ' P(Z7)7f> = Pf(z),

t—0 t—0 Q

as claimed. O
2.3. Consequences of (H1)

Two functional analysis results are derived from assumptions about L? boundedness
of the Bergman projection. Conditions (H1) and (H2), defined below (0.1), enter the
hypotheses and conclusions respectively.

2.8.1. (H2) and density

Lemma 2.8. Let 2 be a domain in C". Assume B is bounded on LP() for a given
1<p<oo.
The following statements are equivalent:
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(i) A2(Q) N AP(Q) is dense in AP(L).
(i) Bh=h Yhe AP(Q).

Proof. Assume (i). Then for each h € AP((Q), there is a sequence {h, } C A%(Q) N AP(Q)
such that h, — h in AP(Q). Since B is assumed continuous on LP((2), Bh, — Bh.
However Bh, = h,, since h,, € A?(Q). Thus, Bh = h.

Assume (ii). Let h € AP(Q). Since L*(Q) N LP(Q) is dense in LP(£2), there exist
gy € L*(2) N LP(Q) such that g, — h in LP. Set h, = Bg,. Then h, € A%(Q) N AP(Q)
and

h, — Bh,
since B is L? bounded. As Bh = h by assumption, (i) holds. O

As mentioned in the Introduction, if Q@ C C" is a smoothly bounded and pseudoconvex,
O()NC> (Q) is dense in AP(Q) for all p € (1,00), cf. [11]. Thus (i) holds in this case.
Note this density fails in Proposition 1.7. Note also that if p > 2 and Q is any bounded
domain, conditions (i) and (ii) are both trivially satisfied.

2.3.2. Generalized self-adjointness

The Bergman projection B is self-adjoint on A%(Q): (Bf,g) = (f, Bg) if f,g € L*(Q).
This does not automatically imply that (Bf,g) = (f, Bg) if f € LP(2), g € L1(Q) for
general conjugate exponents p and gq.

However this relation holds when |B| satisfies (H1), a consequence of the following
general result.

Proposition 2.9. Let Q C C™ be a domain. Assume there exists an operator P of form
(0.1) and that |P| is bounded on LP(Q2) for a given 1 < p < co. Let g be conjugate to p.
Then

(i) ‘PT‘ is bounded on L%(2).
(i) (Pf.g)=(f,Plg) V¥ feLr(Q),geLuQ).

Proof. Let f € LP(§2),g € L9(2). Tonelli’s theorem implies

(PI1£19h = [ [ 1PGw) oG )] avw)dv ) = (If1. [P g])

Q

Holder’s inequality and boundedness of |P| on L? yield

(11,

P lgl) = (PI1f1, 19D < C £l Il
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Taking the supremum over || f||, = 1 shows H‘PT’gH < Cllgllq as claimed.
a

Fubini’s theorem now applies to give (ii):

(Pf,q) / flw / P(z,w)g(z)dV(z) | dV(w)

:/f /Pzw 2)dV(z) dV(w)=<f,PTg>. O
Q
Remark 2.10. The Bergman kernel is conjugate symmetric, B(z,w) = B(w, z). Thus if
|B| is L? bounded, (ii) says (Bf,g) = (f, Bg) for f € LP(), g € LI(Q).
2.4. Representing AP(Q)) by A1(Q)

The sought for representation is through L? pairing. For 1 < p < oo define the
conjugate-linear map

= /fgdv, ge Al fe AP (2.11)

Hoélder’s inequality implies ®, maps A9(€2) continuously into AP(Q2)".
The goal is to understand when ®,, is surjective. The preliminary results hold generally.

2.4.1. General behavior

Proposition 2.12. Let QO C C” be a bounded domain and 1 < p < co.

(i) If p <2, then ®, is injective.
(ii) If p > 2, then ®, has dense image in AP(Q)’.

Proof. Let g be the conjugate exponent to p.

For part (i), suppose that g € ker ®,; note in particular that g € A7(Q). Since p < 2,
it follows that p < 2 < ¢, which implies A7(Q) C AP(2). Therefore g € AP(Q2) and ®,(g)
can act on g:

0 =®,(9)(9) = 9l 720 -

Thus g = 0.
Consider part (ii). Since p > 2, necessarily ¢ < 2. By part (i), the map ®, : A?(Q) —
A(€2)" is injective. Define the transpose @ : (A9(2)")" — AP(Q)’ of &,

(M) = Mef), A e (A%Q)), feA(Q).
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Since ®, is injective, the transposed map ®; has dense image; see [29].
L1(Q) is reflexive; since A7(Q) C L1(Q) is closed, A9(Q) is also reflexive. Thus the
evaluation map ¢ : A9(Q) — (A2(R?)’)" defined

e(9)(9) = d(9), ¢ € A1Q),ge A(Q),

is an isometric isomorphism. Let C : AP(Q2)" — AP(Q)’ be the conjugation map defined

(C o A)(g) = A(g); C is an antilinear isometric isomorphism of AP(Q)" with itself. To
complete the proof of part (ii) it suffices to show

®,=Co CI); oeg, (2.13)

since € and C are isometric isomorphisms and @; has dense image.
For f € AP(Q)), g € A4(2), unraveling yields

(Co®; 0e)(9)(f) = Py(e(9))(f) = e(9)(®aS) = () (9)
_ /gfdv _ /fgdv = ®,(9)(f),
Q

Q

which establishes (2.13). O

Proposition 2.12 shows ®,, is generally almost surjective. To show it is actually sur-
jective would require establishing closed range. This is equivalent to an estimate of the
form

||(I>p9||Ap(Q), 2 dist(g, ker @),

for all g € A9(Q2), where ker ®,, denotes the null space of ®,,.
The proof of Proposition 2.12 yields the following. Representation (2.13) is used for
the second statement.

Corollary 2.14. Let Q2 C C™ be a bounded domain. Suppose the map ®, : A1(Q) — AP(Q)’
is surjective for a given 1 < p < co. Let q be conjugate to p.
Then there is a natural identification

Furthermore, the map
D, AP(Q) — A1(Q)

is injective and has closed range.
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2.4.2. Surjectivity of ®,
Surjectivity of ®, follows from existence of an operator satisfying (H1) and (H2) whose
formal adjoint maps into O(92).

Theorem 2.15. Let 2 C C" be a bounded domain. Let 1 < p < oo be given and q be the
conjugate exponent of p.
Suppose there exists P of the form (0.1) and G C AP(Q) such that

(i) |P| is bounded on LP(S2),
(i) PF=F VYFeg,
(ii) Ran (PT) C AI(Q).

Then ®, : A1(Q) — G’ is surjective.

Remark 2.16. (a) The case G = AP(Q) is included in Theorem 2.15.
(b) If P = Bg, hypothesis (iii) is a consequence of (i) by Proposition 2.9.

Proof. Let A € G'. We want to find a h € A(Q), such that A = ®,(h). Extend A by the
Hahn—Banach theorem to a functional on LP(), still denoted A, with the same norm.
Then there is a g € LY(Q), with [|gll 4 = [[All(zey, such that A(f) = [, fgdV = (f,g)
for all f € LP(Q).

Let h = P'g; by (iii) h € A9(Q). Then for F € G

@, (1) (F) = (F,h) = (F, P'g) = (PF,g) = (F,g) = A(F).
The third equality follows from Proposition 2.9, the fourth follows from (ii). O
An elementary necessary condition for surjectivity of ®, is worth recording.

Proposition 2.17. Let Q C C™ be a bounded domain. Suppose that for somep, 1 < p < 2,
A%(Q) N AP(Q) is not dense in AP(Q). Then ®, is not surjective.

Proof. Since ) is bounded, A%(Q2) C AP(Q). The hypothesis thus says that A%(Q) is not
dense in AP(Q)). By the Hahn—Banach theorem, there exists a non-trivial ¢ € AP(Q)’
which vanishes on A2%(Q). Let ¢ be the conjugate exponent of p. Suppose there were a
non-trivial function g € A%(Q) such that ¢ (h) = [, hgdV Vh € AP(Q). Since ¢ > 2,
g € A%(Q) and 1 acts on g. But then 0 = ¢(g) = [, [g|* dV, contradicting the fact g is
not identically zero. O

2.5. Approximation on AP(Q)

Functions in AP(Q), 1 < p < 2, can be approximated by functions in A%(Q) if (H1)
and (H2) hold. The next result should be compared with Proposition 1.7.



D. Chakrabarti et al. / Advances in Mathematics 341 (2019) 616-656 631

Theorem 2.18. Let  C C™ be a domain. For a given 1 < p < 2, suppose there exists an
operator P of the form (0.1) and G C AP(Q) such that

(i) P is bounded on LP(2).
(i) Ph=h Yheg.

Then every f € G can be approzimated in the LP norm by a sequence f, € A%(Q).

Proof. Since f € G C LP(12), there exists a sequence ¢, € C2°(Q) such that [|¢, — fI|, —
0 as n — oco. Letting f,, := Pd¢,, hypotheses (i) and (ii) give

1 = fll, = [1P(dn = O, S llén = fI,, -
Since P : L2(Q2) — A2(92), the claimed result holds. O
Remark 2.19. © is not assumed to be bounded in Theorem 2.18.
3. Reinhardt domains

Throughout the section, let R C C" be a bounded Reinhardt domain. The monograph
[22] contains extensive information about this class of domains.

3.1. Integration on Reinhardt domains
Denote by |R| the subset of (RT U {0})" defined

IRl ={(z1],---»|2nl) : 2=(21,...,2n) € R},

and call this set the Reinhardt shadow of R.

For r € |R| and f a continuous function on R, let f. be the function on the
unit torus T" = {|z;| = 1, forj = 1,...,n} C C" defined f, (e%,... e") =
f (Tleml, . ,rnew"). Abbreviate this relation by

fr(e®) = f (rleiel, e ,rnew”) ,

using vector notation on r and . Fubini’s theorem implies

112y = / A T (3.1)
IR

a form of polar coordinate integration on R.
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3.2. Holomorphic monomials

For a multi-index o € Z", let e,, denote the monomial function of exponent a: e,(z) =

2% =27 28, 2 € CMUIf f € O(R), then f has a unique Laurent series expansion

f=Y aalflea (3.2)

aEZm

converging uniformly on compact subsets of R. The map
as : O(R) —C (3.3)

will be called the a-th coefficient functional. The uniqueness of the Laurent expansion
shows the map a,, is well-defined. Cauchy’s formula shows a,, is continuous in the natural
Fréchet topology of O(Q).

3.8. The coefficient functionals

In this section, expansion (3.2) of an f € AP(R) is shown to consist only of monomials
in AP(R). For 1 < p < oo, define the set S(R, LP) of LP-allowable multi-indices for R
by

S(R,LP) :={a €Z": e, € AP(R)}. (3.4)

These were defined in [17]. See [44,45] connecting such sets to measurements on log |R|.
Since R is bounded, for p; < po it holds that S (R, LP?) C S (R, LP*).

Proposition 3.5. For each « € S (R, LP) and 1 < p < oo, the coefficient functional
aq : AP(R) = C

. _ 1

is bounded. Moreover ||aq || 4»(g) = Tealirin,”

Proof. Let T = {|z;| =r; :j =1,...,n} C R be a torus. For f € AP(R), Cauchy’s
formula implies

= 1 f(C) . & % — 1 . i 0y ,—i{x,0)
=Gy ) @G T By / SR,

where df = df1dfs .. .d#, is the volume element of the unit torus. Holder’s inequality
implies

11 (2m) "
G 1o el Lo ery 1Ll Loy = 1fell Lo cry - (3.6)

r)nDé

laa ()] <
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When p = oo, interpret (27) 7 as 1.
For 1 < p < o0, it follows from (3.6) that

laa (A" - @m)"(r*)? < 1 fell Lo -

So if a € S(R, LP),

0al I lealf gy = aal - 20)" [ G20 .o

IR
< [ 15ty = 1y (3.7)
IR
00 s : : | — 1]l oo Il
If a € §(R,L>), the trivial estimate |aa(f)| < inf,¢jo 2= = 55 T Teall

holds. This estimate and (3.7) imply that for all 1 < p < oo,

1
laallar(ry < 77—
AR leall pogry

. lleall.p R 1
Since aqn(eq) =1 = 2R in fact ||a = —1
a( a) HeaHLp(R)’ H aHAP(R)/ ”ea”Lp(R)

Proposition 3.5 implies the Laurent expansions of functions in AP only have monomials
that belong to LP:

Corollary 3.8. Let R be a bounded Reinhardt domain and 1 < p < oco. Let f € AP(R),
with Laurent expansion given by (3.2).
Then if a ¢ S (R, LP), ao(f) =0. Thus

f)= Y aa(flealz).

a€S(R,LP)

Proof. Assume that a,(f) # 0. Choose a decreasing family of relatively compact Rein-
hardt domains R. C R such that R — R as € N\, 0. It follows from Proposition 3.5
that

|aa(f)|p ”ea”ZI)m(R < Hf”Lp(R

As € = 0, the right hand side tends to [|f|[;,) < oo, but the left hand side tends to
00, since [[€q|lzs(g.) = 00. This contradiction proves the result. O

Remark 3.9. Take n = 1, let U* = {0 < |z| < 1} be the punctured disc, and p = oo.
Clearly S (U*, L*°) = N. Corollary 3.8 thus says every f € A% (U*) is of the form f(z) =
>0 o anz™, and consequently f extends holomorphically to the unit disc. This recaptures
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Riemann’s removable singularity theorem. A similar argument holds on A?(U*) for any
p =2

3.4. Norm convergence of Laurent series

If R is a bounded Reinhardt domain, f € AP(R) and p € [1, o], Corollary 3.8 says

@)= Y aalf)eal), (3.10)

a€S(R,LP)

with uniform convergence on compact subsets of R. The goal of this section is to show
the series also converges in the AP norm if p € (1, 00).
Since the index set of the series is a subset of an n-dimensional lattice, a choice of trun-

cation is required. If o = (a1, ..., ) € Z™ is a multi-index, let |a| = max{|a;|,j =
1,...,n}. For a formal series g(z) = Y cyn ba€a(2) and a positive integer NV, let
Sng = Z bo€a-
la| <N

Call this the “square partial sum” of the series defining g.
For p = 2, the square partial sums of (3.10) converge in A?(R) for elementary reasons.
Orthogonality of {e,} of R gives

2
) jaa ()]
Iswf=Jle=" > S
|aloo >N all2

a€S(R,L?)

This tends to 0 as N — oo if f € A%(R). Thus {e,} for a € S (R, L?) is an orthogonal
basis for the Hilbert space A%(R).
An analogous result holds for p # 2:

Theorem 3.11. Let R be a bounded Reinhardt domain in C", 1 < p < 0o and f € AP(R).
Then

|Svf—fll,—0 as N — oo.
The proof of Theorem 3.11 is broken into parts.

3.4.1. Reduction and estimate
The following fact reduces matters to an estimate plus a simpler density result.

Lemma 3.12. Let Ty, k = 1,2,..., be a sequence of bounded linear operators from a
Banach space X to a Banach space Y. Suppose that there is a dense subset D of X,
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so that for each x € D, Trx — 0 in the norm of Y as k — co. Then the following are
equivalent

(1) limg—oo | Tiz|| = 0 for each x € X.
(2) there is a C > 0 such that for each k, we have ||Tk||,, < C.

Proof. This is a slight generalization of [43, Proposition 1]. Assume (1). Then (2) holds
by the uniform boundedness principle.

Assume (2). Fix x € X and € > 0. Since D is dense in X, there exists p € D such
that ||z — pllx < 5&. Therefore

€
I Tzlly < I Tea = Taplly + [ Taplly < 5 + 1 Tkplly -
Choosing k so large that ||Txp|ly < § yields (1). O
The estimate for Theorem 3.11 is

Lemma 3.13. Let R be a bounded Reinhardt domain. For each 1 < p < oo, there exists a
constant Cp, such that

ISnfll, < Collfll, for all N € ZF, f € AP(R).

Proof. Denote the unit torus by T" = {z € C":|z;| =1, forj=1,...,n}. If g is a
function on T", let o ¢ denote the square partial sum of its Fourier series,

ong= Y g’

[V <N

A theorem of Riesz, see e.g. [39, Chapter VII], says for each 1 < p < oo, there is a
constant C, such that [[ong|, < Cyllg]l, independently of N.
It follows from (3.1) that

15117 = [ o felncenyrava... o
IR

<Cy [ Ul ony 12 radr =Gy 11
[R|

3.4.2. Series expansion of functionals
The dense set D needed in Lemma 3.12 is found by duality. Given a functional A €
AP(R)', consider the finite sum

SyA= " Aea)aa, (3.14)

lo| o <N
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where a,, are the coefficient functionals in Proposition 3.5.
Proposition 3.15. For each A € AP(R),
[SNA = All(apy: = 0 as N — oo. (3.16)

Proof. For f € AP(R)

SN = D Mea)aa(H) =M D aalflea | = A(Snf)

lofoo <N la (o <N

It follows from Lemma 3.13

ISNAA = [ASN I < CllAary 1 1lp-

Thus [|Sy|l,, < C where S} is viewed as an operator on the Banach space AP(R)".
Claim: The span of {a, : « € S(R, LP)} is dense in AP(R)'.

To prove the claim, let p € (AP(R)’) be an element of the double dual of AP(R)
such that u(f) = 0 for each f in the span of {a, : @ € S (R, L?)}. By the Hahn Banach
theorem, it suffices to show that ;=0 on AP(R)’.

Since AP(R) is closed in LP(R), AP(R) is reflexive. Therefore there exists a g € AP(R)
such that p(f) = f(g) for all f € AP(R)’. Taking f = a,, it follows that as(g) = 0, i.e.
the a-th coefficient of the Laurent expansion of the holomorphic function g vanishes for
each a. This implies g = 0, which shows pu = 0 and establishes the claim.

To complete the proof, in Lemma 3.12 let X =Y = AP(R)’, Tn = S\ —id and D be
the linear span of {a, : « € S (R, LP)}. Note that for each element A € D, there is an
N such that T,\ = 0 for v > N. The hypotheses of Lemma 3.12 are thus satisfied; the
lemma implies (3.16). O

3.4.8. Proof of Theorem 3.11

In Lemma 3.12, take X =Y = AP(R), and Ty = Sy —id. For each Laurent polynomial
p, note that Typ = 0 for large enough N. The result will follow from Lemma 3.12 provided
it is shown that D =: {Laurent polynomials € AP(R)} is a dense subspace of AP(R).

By Corollary 3.8, D is the linear span of {e, : @« € S (R, LP)}. To show this last set
is dense, suppose A € AP(R)’ satisfies A(eq) = 0 for all a € S (R, LP). Definition (3.14)
shows S\yA = 0 for each N. However Proposition 3.15 implies A = lim Sj\yA = 0. Thus,
the Hahn—-Banach theorem implies span {e, : o € S (R, LP)} is dense in AP(R). O

3.5. Computing the projection term-by-term

If O C C™ is a bounded domain and p > 2, Bh = h for all h € AP(Q) since AP(Q) C
A2(Q). For 1 < p < 2, this generally fails, even if B is LP bounded.
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However on a bounded Reinhardt domain, if |B| satisfies (H1) and h is in the form
(3.10), Bh can be computed merely by discarding monomials.

Proposition 3.17. Let R be a bounded Reinhardt domain. For given 1 < p < 2, suppose
|B| is bounded on LP(R).

(i) Ify € S(R,LP)\ S (R,L?), then e, € ker B.
(ii) If f € AP(R) has expansion (3.10), then

Bf = Z aa(f)eq.

a€S(R,L?)
The square partial sums of the series in (ii) converge in LP(R).

Proof. To see (i), choose a decreasing family {R; : 0 < t < 1} of relatively compact
Reinhardt subdomains of R whose union is R. Then e., € L?(R;). For each 8 € S(R, L?),
orthogonality implies (e, es)r, = 0 since v ¢ S(R, L?).

Let B(z,w) denote the Bergman kernel of R. Since B(z,w) = } 5 5% 12 %,
it follows that ’
/B(z,w)e,y(w)dV(w) =0.
Re
Proposition 2.6 thus yields
Be. = 0. (3.18)

To see (ii), let f € AP(R). From Theorem 3.11, f = lim Sy f with convergence in
LP(R). Since B is continuous on LP(R),

Bf = lim B(Sxf)= lim B| Y aa(f)ea| = lim > aa(f)Blea),
lal SN la| o <N

all limits taken in LP. (3.18) then yields (ii). O

Remark 3.19. Proposition 3.17 does not assert that Bf € A%(R) for general f € AP(R)
when 1 < p < 2. Note that when 1 <p < 2

Z apeq € AP(R) Z Aot € A%(R),

a€S(R,LP) a€S(R,L2)

though each of the monomials in the right sum is in A%(R).
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3.6. Sub-Bergman projections
Throughout the section, assume p > 2. If Q C C” is a bounded domain, let
G2,p(Q) = mAQ (Q)AP(Q) (320)

G?P(Q) C L%(Q) is a closed subspace. The LP sub-Bergman projection is defined as the
orthogonal projection

B, L2(Q) — G2P(Q).

The representing kernel

is the LP sub-Bergman kernel. Subscripti are dropped when the domain is unambiguous.
Since AP(Q) C G*P(Q), it follows that BPf = f Vf € AP(Q).
On a Reinhardt domain, the sub-Bergman projection assumes a concrete form.

Proposition 3.21. Let R be a bounded Reinhardt domain in C™ and p > 2. Then

(i) G**(R) = Spam 42(g) {€a : @ € S (R, LP)}.
(ll) Bp(z, ’u}) = ZQES(R,LP) ea(2)ea(w) .

lleall?
Proof. This follows from Corollary 3.8 and Theorem 3.11. Since two norms are involved,
details are given for clarity. Note that Span,g)(#) C Spanyz(g)(F) for any F C
A2(R), since p > 2 and R is bounded. Let g € G*P(R) and € > 0. Definition 3.20 says
there exists g’ € AP(R) such that ||g — ¢’||> < e. Corollary 3.8 and Theorem 3.11 imply
there exist g" € Span 4»(g) {€a 1 @ € S (R, LP)} such that ||g' — ¢"[l2 < Cllg' — ¢" ||, <,
C depending on the diameter of R. Thus (i) holds.
For (ii), since BP orthogonally projects onto G*P(R), it follows that for f € AP(R)

= % (frea) (3.22)

2 Yo
a€eS(Q,LP) ”6‘1”2

The series converges in A%(R). The kernel representation (ii) now follows as in ordinary
Bergman theory. O

Let g be conjugate to p; note ¢ < 2. Subspaces of AP(R) and A(R) enter the next
result, and also appear in the description of dual spaces in the next section. Generalizing
(3.20), define the subspace of AP(R)
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G?P(R) :=Span 4a(g) {€a : @ € S (R, LP)}. (3.23)

Extending Proposition 3.17 (i), define the subspace of A%(R)
NTP(R) :=span gq(g) {€a : @ € S (R, L)\ S (R, LF)}. (3.24)

B” is not necessarily bounded on LP(R). When ’E;’ is LP bounded, the following

holds

Proposition 3.25. Let R /b\e/ a bounded Reinhardt domain in C™. Let p > 2 and q be
conjugate to p. Suppose ‘B”‘ is bounded on LP(R).
Then

(i) B’ isa projection from LP(R) onto AP(R).
— —~
(ii) Let B? be the formal adjoint defined by (2.4). Then B? is bounded on L1(R). For
fe LU (R),

B - 3 {frea) (3.26)

2 «
a€S(R,LP) ||ea||2

The square partial sums of the series converge in AY(R).
~ i ~t ~
(iii) Consider B?  restricted to AY(R). Then ker B = N%P(R), ran B? = G?P(R),
=1
and BY h = h Vh € G*?(R).

Proof. The proof of (i) follows directly from the definition of E?Q and the fact that the
intersection G2P(Q2) N LP(Q) = AP(Q).

The first statement in (ii) follows from Proposition 2.9 (i). Representation (3.26)
follows from Proposition 3.21 (ii). Convergence of the series in A4(R) follows from The-
orem 3.11. i

For (iii), let « € S (R, L9) \ S (R, LP). Then (3.26) shows B” (e,) = 0. On the other
hand, if f € A9(R)\ N%P(R), the Laurent series expansion of f must contain a nonzero
coefficient of a monomial eg with 5 € S (R, L?). Formula (3.26) shows §7)T(f) # 0. Thus

~ 1 —t
ker B? = N%P(R). Additionally, (3.26) shows that the range of B? is the closure of
the linear span of the family {e, : S (R, LP)}, i.e. the subspace G*P(R). The fact that

T
BP? restricts to the identity on G?P(R) follows from (3.26) as well. O
3.7. Representation of AP(R)

Proposition 3.27. Let R be a bounded Reinhardt domain in C". Let p > 2 and q be
conjugate to p. Suppose ‘Bp‘ is bounded on LP(R).
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(i) The map ®,: AY(R) — AP(R)’ is surjective and ker @, = N9P(R).
(ii) There is an explicit linear homeomorphism of Banach spaces

AP(R) = GYP(R). (3.28)
(iii) There is a topological direct sum representation

AI(R) = ®y(AP(R)) ® SPAgu(ry {0a : @ € S (R, LI\ S (R, IP)}.  (3.29)

Proof. Let P = E\é’; for notational economy.

To see (i), check the hypotheses of Theorem 2.15. Hypothesis (i) of Theorem 2.15
is satisfied by assumption. Hypothesis (ii) of the same theorem holds since AP(€)) C
G2P(€2). Proposition 2.9 implies P is L? bounded; since the representing kernel of P
is holomorphic in the free variable, hypothesis (iii) is satisfied. Theorem 2.15 thus says
®,, is surjective. To determine ker ®,,, direct computation gives

@A%x%>:/émzaﬂ:wa@%ﬁ,
R

where d,, s is the Kronecker symbol. Thus N9?(R) C ker ®,. If f € AY(R)\ N?P(R),
there exists B € S(R,LP) such that in expansion (3.10) ag # 0. Then ®,(f)(eg) =
ag ||65H; # 0, showing ker &, = N9P(R).

For (ii), first note the direct sum representation

AYR) = N9P(R) & GIP(R). (3.30)

NTP(R)NG?P(R) = {0} holds since the sets are spanned by independent sets of mono-
mials. If f € A9(R), write

f=(r=pPly)+Plr.

Proposition 3.25 (iii) implies ker P = N%?(R) and ran PT = G%?(R). Therefore (3.30)
holds. By (i), ®, : AY(R) — AP(R)’ is surjective and ker &, = N%P(R). Thus (3.30) and
Corollary 2.14 give

A1(R) _ AYR)

AP(R) =
®) ker®, N%P(R)

12

- G(R),

as claimed.
For (iii), let N%P(R)° be the annihilator of N9P(R):

NOP(R)° = {A € AYR) : \(f) =0 Vfe NTP(R)}.
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The decomposition (3.30) implies a natural isomorphism N??(R)° = G?P(R). Proposi-
tion 3.15 implies that N9P(R)° can be identified with A € A9(R)’ of the form

A= Z Calo

a€S(R,LP)

for complex c,, the square partial sums of the series converging in A?(R)’. Thus
N®P(R)° = 8pan gq(g) {aa : @ € S (R, LP)}. The same analysis shows

GTP(R)° = 8pan ga(r) {00 : @ € S (R, L)\ S (R, LF)}.
(3.30) yields a direct sum decomposition of the dual spaces
AYR) = NTP(R)° @ GTP(R)°.

The final step is to show the identity ®,(AP(R)) = N?P(R)°. However if a € S (R, L?),
direct computation yields

1
g = — *
leallz

CHEONE

which implies the identity, and therefore (3.29). O
3.8. Holomorphic Sobolev spaces

For a multi-index 8 € N”, let 9° denote the partial differential operator 0° =
9181 /27" . 928 on C". Note that 9%e, = C(a, ) - €q_g, where

0 if there is a j such that 8; > a; >0
H?Zl Hfigl(aj —{), otherwise.

The empty product, in the case 8; = 0, is defined to be 1. Let 1 < p < oo and k € N.
Consider the holomorphic Sobolev spaces defined

AP(Q)={feO(Q): 0°f € AP(Q) for each B € N", with |8 < k}.

Note that Af(Q) = AP(Q).
If R C C™ is Reinhardt, let S (R, A}) denote the set of & € Z™ such that e, € AY(R).
The following generalization of Corollary 3.8 holds.

Proposition 3.31. Let R be a bounded Reinhardt domain, 1 < p < oo, and k € N. Let
€ AL(R), with Laurent expansion given by (3.2).
Then if « ¢ S (R, A}), aa(f) =0.
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Proof. The case k = 0 is Corollary 3.8. For k > 1, let f € AY(R), and o ¢ S (R, A}).
Thus there is a 3 € N, such that |3| < k, and 0%e, ¢ AP(R). Since 0°e,, = C(a, B)eq—g,
this implies two facts: (i) C(a, 8) # 0 and (ii) eq—p ¢ AP(Q).

As f € AY(Q), necessarily 9° f € AP(2). Corollary 3.8 and fact (ii) imply a third fact:
(iii) aa—p (87 f) = 0. Differentiating the Laurent expansion (3.2) gives

f=>" ay(f)0%, = a,(f)C(y.B)es—s.

YEZ™ YEZ™

Comparing coefficients yields a_s(0°f) = C(a, B) - an(f). This implies an(f) = 0, by
facts (i) and (ili). O

Corollary 3.32. Let R be a Reinhardt domain in C™ and R be the smallest complete
Reinhardt domain containing R. Suppose that for some 1 < p < o0,

ﬁ S (R, AP) = N".

k=0
Then every f € C®°(R) N O(R) extends holomorphically to R.

Proof. Since f € A}(R) for each k, Proposition 3.31 says the Laurent series of f contains
no monomials with negative exponents. The Laurent series thus reduces to a Taylor series.
The series necessarily converges in some neighborhood of zero and defines an analytic
continuation of f to R. O

Example 3.33. Consider the Hartogs triangle H. It is a classical fact that any function
holomorphic in a neighborhood of H extends holomorphically to the bidisc. However a
stronger result is true: any f € C°°(H) N O(H) extends to a holomorphic function on the
bidisc.

To see this, write

ay o 21 o a4
eq(z) = 271252 = | — zgt T2
2
and recall that |z1| < |z2| if (21, z2) € H. It follows that
S (M, AF) = {(aq,0) : 1 >0, a3 + 2 > 0}. (3.34)

On the other hand, since 8¢, = C(a, B)ea_p, Peq € AP (H) if a; > 1 and a1 +ag >
(1 + Ba2. Therefore,

SMH, AX) ={(a1,a2) : a1 > 0,2 > 0 U {(a1,00) :y >k, a1 +az > k}.  (3.35)
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The situation is illustrated below, in the fourth quadrant of the lattice point diagram
of H. The lattice points & = (a1, a2) on and above the line indexed by A° correspond to
monomials e, (2) = 2* with a € S (H, Ag°). Differentiation with respect to z; (resp. 22)
is denoted by 9; (resp. d2), and is represented (up to a constant multiple) by a shift left
(resp. a shift down).

(070) (170) g
(Oa _1)
Ay
Az
A ™ AT
e %} Y

Each e, with « in the fourth quadrant, is a finite number of derivatives away from
becoming an unbounded function on H. This implies

o0

(S (H, A7) = {(a1,02) : a1 > 0,02 > 0}
k=0

Corollary 3.32 thus gives the claimed result.

Remark 3.36. This property of the Hartogs triangle was first proved in Section 5 of [3§],
by a different argument.

4. Generalized Hartogs triangles
Following [17], for 4 > 0 define the domains
H, == {(21,22) € C*: [z1]" < |22| < 1}; (4.1)
call H, the power-generalized Hartogs triangle of exponent ~. The main result in [17] is

that the Bergman projection By, = B, is “defective” as an LP operator and, moreover,
whether v € Q or not determines the extent of its deficiency. The precise result is

Theorem 4.2 ([17]). Let H., be given by (4.1).

(i) Lety=", where m,n € Z* with gcd(m,n) = 1.
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Then B., : L? (H,) — AP (H,) boundedly if and only if p € (iﬁti% 3171227”1)
(ii) Let  be irrational.

Then B, : L? (H.,) — AP (H,,) boundedly if and only if p = 2.

Focus on H,,/,, ™ € Q, and integrability exponents p > 2. The proof of (i) in
Theorem 4.2 actually shows more: the Bergman projection on H,, /,, fails to generate A?
functions from LP data for certain p. To apply Theorems 2.15 and 2.18, operators are
needed that create AP functions for p outside the range in Theorem 4.2 (i).

The sub-Bergman projections defined in Section 3.6 are such operators. Verification
of this is done over several sections, leading to

Theorem 4.3. Let H,, /,,, where m,n € Z* with ged(m,n) = 1, be given by (4.1).
For each p > 2, the sub-Bergman projection BP : LP (Hm/n) — AP (Hm/n) satisfies

(i) ’ﬁj is bounded on LP(H,, )
(ii) B’h=h VYh e AP(H,,/y,).

Theorem 4.3 contains Theorem 0.4 from the Introduction and is proved in Section 4.3.
If ¢ is conjugate to p, ’ﬁ" also maps L9(H,,,,) into A?(H,,,,,) boundedly, but the map
is no longer surjective, see Remark 4.39. An explicit description of the set of LP-allowable
multi-indices plays a crucial role in the proof of Theorem 4.3.

4.1. Integrability and orthogonality
4.1.1. Holomorphic monomials in LP (Hm/n)
Let H,,/,, m,n € Z* with ged(m,n) = 1, be a fixed power-generalized Hartogs

triangle throughout the section. The following calculation was sketched in [17].

Lemma 4.4. Let p € [1,00). The set of LP-allowable multi-indices is

S (Hyy n, LP) = {a = (a1, a2) 1 a1 >0, na; +mag > {—%(m—i—n) + lJ } . (4.5)

For a € S(H,, /n, LP),

dm?

P
€ p =
leally, (Hon /) n(pay + 2)2 + m(pay + 2)(pas + 2)

(4.6)

Proof. Note there are points in H,,,,, where z; = 0, which forces a; > 0. Computing in
polar coordinates
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n/m
1/

1 2
/ |2 P dV:47r2/r§a2+1 / Pt dr dry
Hy/m 0 0
) 1
4m pas+14+1 (pay+2)
= Ty drs.
pay + 2
0

This integral converges if and only if the exponent pas + 1 4 > (pa; +2) > —1. From
here, (4.6) easily follows. To see (4.5), notice that since aq, e, m,n € Z,

2
pa2+2+%(pa1+2)>0 <= nag + mag > {I—)(ern)JrlJ. o (4.7)

=

Examine the sets S (H,,,, L?) as functions of p € [1,00). The floor function in (4.5)
shows that

S (H/n, LP) = S (Hyy, p, LPE€)

if € > 0 is small, unless —%(m +n) + 1 € Z. The lattice points in S (Hm/n,LP) are
therefore stable except for certain exceptional p. Call these exceptional values thresholds.
Note that S (Hy,/n, L) C S (Hpyp, L) if s < t, 50 S (Hyp/p, LP) jumps to a smaller set
of lattice points as p increases past a threshold value.

The next result makes this stabilization precise and shows there are only a finite
number of thresholds for a given H,,, /,.

Proposition 4.8. There are exactly 2m + 2n thresholds associated to H,,,,. They occur
when p, = 22827 for k € {1 —2m — 2n,2 —2m — 2n,...,—1,0}.
Consider the corresponding partition of [1,00)

0
2m + 2n
[1,00) = U [Phs Prt1) Pk =73 (4.9)
k=1-2m—2n
Then for any p € [pr, Pr+1),
S (Hpn, LP) = {(a1,02) : a1 > 0, nay +mag >k} =S (Hypn, LP*),  (4.10)

and
S (Hm/n,L"o) ={(aq,a2): a1 >0, nay+mas>0}=38 (Hm/n,L2m+2”) , (4.11)

Remark 4.12. (4.11) says every e, € A?mT2n (Hm/n) is necessarily bounded. This gen-
eralizes statement (3.34) on Hj.
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Proof. Define ¢,, ,(p) := —%(m +n)+1, p € [1,00). The function £, ,(p) is increasing
and takes values in the interval [1 — 2m — 2n,1). Note £, ,(p) = k € Z if and only if
p= 2m+2n

-k -

Rewrite the partition in (4.9):

2m + 2n 2m + 2n
[1700):U|: 1_ & 5 iy >::UJI€;
k k

where the union is taken over k € {1—2m—2n,2—2m—2n,...,—1,0}. Suppose p,p’ € J;
for some Jj,. Then

2 2 2 2
ke (— m+n),——(m-+n +1} N <— m+n),——(m-+n +1] ,
p( ) p( ) p,( ) p,( )
which in turn implies |4, n(p)] =k = [, (p")], and shows (4.10) holds.

To see (4.11), let o = (a1, a2) € S (Hypypm, L*™+2"). Equation (4.5) says that g >0
and noy +maz > 0. Since |21|™ < |z|" < 1if 2 € H,, /p,, it follows that

ay
‘Z2|na1+ma2

at

n
Z2

|20 292" = <1,

which says a € § (Hm/n, L‘X’). O

4.1.2. An example; pairing monomials
Consider the domain Hs. Proposition 4.8 says there are 6 thresholds associated to Hs:

(070) (130) 9él
(0,-1) ° °

Qo LS ™L[3 ™12 ™[ »[6=L>

The lines come from (4.10). The lattice points on the first five lines represent
LP-integrable monomials for all p up to but not including the p value of the next line,
while the lattice points on and above the p = 6 line correspond to bounded monomials
on HQ.
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Choose g € S (Hg, L%) and 6 € S (Hg, L2) with 8 # . The first observation is that
the L? pairing

<6,5‘7 €6>H2 (4.13)

is defined. Note that % and 2 are not conjugate. If § also belonged to & (Hz, LQ), Holder’s
inequality would imply (4.13) is finite. Thus assume £ lies on the line L3 in the diagram.
Proposition 4.8 says ez € L'(Hs) for all ¢ < 2 and that es € L%(Hy) for all s < 3.
There are infinitely many pairs of conjugate exponents in these two intervals, so once
again Holder’s inequality shows (4.13) is defined. The second observation is that (4.13)
equals 0. This follows since 8 # ¢ and the monomials {e,} are orthogonal on Hj.

The same conclusion holds for any multi-indices 5 # ¢ chosen with 5 € S(Hs, Lg) (re-
spectively 8 € S(Ha, L)) and § € S(Ha, L?) (respectively § € S(Hz, L°)). The following
corollary of Proposition 4.8 gives the general version:

Corollary 4.14. Let v = 7, k € {1 —2m — 2n,2 — 2m — 2n,...,—1,0}, and define
jk):=1—k—2m —2n. Set
_2m+2n _ _2m+2n _ 2m+2n
Pe="% > PWTT 0 T 2matontk

Then for any choice of multi-indices f € S(H.,, L?*) and 6 € S(H,, LPi®) with 3 # ¢,
the inner product

<6f5,€5>H’y =0.

Remark 4.15. Corollary 4.14 is nontrivial only because py and pj() are not conjugate;

indeed, pik + p»ik) > 1. No analogue of Corollary 4.14 exists for H,, v ¢ Q.

4.2. Constructing AP functions

Construction of the sub-Bergman kernels and projection operators is based on the
decomposition of monomials in Proposition 4.8.

4.2.1. Type-A operators on H,,

A lemma from [17] is recalled that relates estimates on a class of kernels defined on
M,y /n X H,y, /0, to mapping properties of the associated integral operators. If Q2 C C" is
a domain and K is an a.e. positive, measurable function on €2 x 2, let K denote the
integral operator associated to K:

Kf(z) :/K(z,w)f(w) dV(w).
Q
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Definition 4.16. For A € R*, call K an operator of type-A on H,, ,, if its kernel satisfies

A

Z9W2
K(Zl,ZQ,U)l,U)Q)S — 2‘ an m.—m
11— z92|” |25 wy — 21" wY

27
for a constant independent of (z,w) € Hiy,/p X Hip, /7,
The basic LP mapping result is

Proposition 4.17 ([17]). If K is an operator of type-A on H,,y,, then K : LP (H,, /) —
Lr (Hm/n) boundedly if

2n +2m < 2n + 2m (418)
Am + 2n + 2m — 2nm P onm = Am’ '
whenever
n2-mt)—-1<A<2n. (4.19)

Remark 4.20. The range of LP boundedness as A tends to the upper and lower bounds
in (4.19) is significant. As A — 2n, the interval in (4.18) increases to (1,00); thus an
operator of type-2n on H,,,, is L? bounded for all 1 < p < co. In the other direction,
note the left endpoint n(2 —m~')—1 > 0 for all choices of m,n € Z*. As A decreases to
this endpoint, the interval in (4.18) collapses towards the point {2}. However an operator
of type n(2 —m™1') — 1 is not necessarily bounded on any L space, including L>.

4.2.2. Splitting monomials by integrability class
Abbreviate the LP-allowable multi-indices given by Proposition 4.8:

S(Hyp/m, LP*) = {(o1, 2) 1 a1 > 0, naj +mag > k} := Sy,

where py = 22422 and k € {1 — 2m — 2n,2 — 2m — 2n,...,—1,0}.
The L? sub-Bergman kernels for p > 2 are defined

Br(zw) =Y % P € [Pk, Prt1)- (4.21)
a€Sy, all2

The stabilization in Proposition 4.8 accounts for the identical definition of §7(2, w) for
all p € [pr, pr+1). Note that only Sy for k € [1 —m — n,0] occurs in any of the kernels
(4.21), since p > 2. Proposition 4.8 also says Sy = S (Hm/n,Lzm"'z”) =8 (Hm/n,Loo).
Consequently, denote the sum

3 Caldlealw) _ B, w) (4.22)

2
€S, ”eaHQ
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and call BE(Z,M) the L>° sub-Bergman kernel on H,,/,. The sum defining B\O/O(z?w)
consists only of L°° monomials.
As an aid to calculating the sums (4.21) and (4.22), define

s ={a:a; >0, nay + mas =k}, (4.23)

and consider the functions
b (zw) = Y %%2(“)) (4.24)
aEsy ||ea ||2

Orthogonality of {e,} yields the decomposition

i bPi(z,w) + B=(z,w) = BP*(z,w) (4.25)
j=k

for negative integers k > 1 —m — n.

4.2.3. Analyzing the sub-Bergman kernels
The first step is to obtain an upper bound on bP* connected to Definition 4.16.

Proposition 4.26. The following estimate holds for all z,w € H,,

— 2n+ £
7% (2, w)| < 2@ (4.27)
T |wy — Aot
Recall k <0 in (4.27), ke {l1—-m—-n,2—m—mn,...,—1}.

Proof. Since ged(m,n) = 1, there is a unique pair (81, 82) with 0 < f; < m — 1 and
nf1 + mpPs = k. Notice that the subsequent lattice points on this line are of the form
(81 + jm, B2 — jn). Equation (4.6) says for all « € S (Hm/n, Lz),

mm?

a1+ 1)(nay + mag +m+mn)’

leall; = ( (4.28)

In what follows, let s := z1wq and ¢ := zows. Definition (4.24) and (4.28) imply

A" ) .
bPx (Z,’w) = mrnTh —;Z;_ Z (ﬁl + jm + ]_) ghitimyBz2—in
=0

_m+n+k k/moo . Br4jm (p—n/m\B1+im
= e ! ;)(51+Jm+1)81 (t )™

=t Zo(ﬁl+ym+1)ul J (4.29)
iz
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where u := st~™/™. Writing this series in closed form yields

mAntk pjms B+l +(m—fF—Du™

4.29) =

(4:29) mm? (1 —um)?
- m+n+k .Sﬁltﬂ2 ) (ﬂ1+l)t2n+(m_51_1)smtn
- mm2 (tn _ Sm)2 '

Noting that |s|™ < [¢|™, the bound (4.27) follows. O

Let bP* be the integral operator

b (f)(2) = / b7 (2, 0) f(w) dV (1) (4.30)

Hpn/n

The operator b”* is orthogonal projection from L*(H,,,,) — Span . {eq : a € s }. Note
each si is a set of points in the lattice point diagram lying on a single line.

Corollary 4.31. Let p, = % for each integer 1 —m—n < k < —1 and qx be conjugate
to pi. The projection bP* is an operator of type-A for A = 2n + % Thus, bP* is
LP-bounded for

< 2n+2m  2n+2m
p

- : 4.32
2n+2m+k’ y ) (Qk+1,Pr+1) (4.32)

Proof. Set A =2n + % in Proposition 4.17. O

The second step is to show the kernel Bg(z,w) satisfies bounds related to Defini-
tion 4.16 and is more involved.

Proposition 4.33. The L sub-Bergman kernel on H,, ,, satisfies

|Z2w2|2n

(BNoo(z,w)) < (4.34)

11— 2ows® |2pwy — 2wy *

Proof. Recall the description of S(H,,/,,L>) given by (4.11) and let » € {0,1,...,
m — 1}. Since ged(m,n) = 1, there is a unique (a,a2) with both na; + mas = r
and 0 < ag < m — 1. Set this @; = o(r). The function o is a permutation of the set
{0,1,...,m — 1} with ¢(0) = 0.

Each o € S(H,, /p, L) = {(a1,@2) : a1 > 0, nay +map > 0} can uniquely described
by a line of the form na; +may = k and an oy value. Again letting » € {0,1,...,m—1},
parametrize k and a1 by
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nay + mas = md + 1, d=0,1,...
=mj+ o(r), ji=0,1,...

For ease of notation set s = zywy,t = zow9. From equations (4.21) and (4.28),

— 1
B>*(z,w) = — Z (a1 + 1)(nay + mag + m + n)s*?
OLGS(Hm/n,LOC)

JR .
-— Z Z mj 4 o(r) + 1) (md + r +m 4 n)smITo ) dtm—ni= 5o ()
T
=0 d,j=0
1 m—1 . o0 ) o0
=— > uwtw (Z(mj +o(r) + 1)umJ> (Z(md +r4+m+ n)td>
mre 20 =0 d=0
m—1
= LS w0tk L, (4.35)
r=0

where we have introduced the new variable u = st~"/™. Note both |t| < 1 and |u| < 1
on H,, /,. For fixed r, estimate the sums I,.(u) and J.(t) given in (4.35):

|1 (u) Z(m] + Du™ + U(T)ZU' ~ L= umf? |tn — sm|2” (4.36)
j=0 7=0
and
o0 o0 1
= 1)t? o S — 4.
t)| md;)(d—l- )t —I-(r—l-n)zz:t SATEE (4.37)

Note both bounds hold for all » € {0,1,...,m — 1}. Combining (4.36) and (4.37) with
(4.35) gives the result. O

4.8. Proof of Theorem 4.5

For p € [2,00), the L? sub-Bergman projection is

B f(» / Br(z,w) f(w) dV (w),

Hpn

with kernel given by (4.21). Notice the identical kernels in definition (4.21) imply B’ =

B” for all p,p’ € [p, prr1). Similarly, B™ denotes the L® sub-Bergman projection on
H,y, /r, the operator whose kernel is defined by (4.22).
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22 for k€ {1—-m—n,2—m—n,...,—1}, and let q;

denote the conjugate exponent of p. Interpret p1 = 0o and g1 = 1.
Let p € [pg, pr+1)- The following hold:

Proposition 4.38. Let pr, =

(i) ’va‘ is LP" bounded for all p' € (Quy1, Prs1)-

(ii) ‘Eo/o‘ is a bounded operator on LP for allp € (1,00).

Proof. Estimate (4.34) shows that ‘BXO‘ is a type-A operator with A = 2n. Proposi-
tion 4.17 then implies (ii). For 1 —m —n < k < —1, apply the triangle inequality to
equation (4.25) together with estimate (4.27) to see that ‘EE‘
A =2n+ £ Proposition 4.17 then implies (i). O

is a type-A operator with

To complete the proof of Theorem 4.3, recall that B? is defined as the orthogonal
projection from Lz(Hm/n) onto GQ’p(Hm/n), the target space given by equation (3.20).
Since AP(H,, /) C GQ’p(Hm/”), reproduction property (ii) of Theorem 2.15 holds. O

Remark 4.39. Again let p > 2 with p € [pr, pr+1). I p’ € (qr+1,Pr+1), then its conjugate
q" € (qr+1,pr+1)- Proposition 4.38 shows ‘Bp‘ is both LP and LY bounded. In particular,
B
On the other hand, reproduction of the space A7 fails for all ¢’ < 2. Indeed, a slight
modification of the proof of Proposition 3.17 shows: if f € AT (H,,/n), then

is bounded on LI(H,, ), where g is conjugate to p.

B'(f)z)= Y aalfeal2).

a€S My, /n,LP)

Lemma 4.4 implies S(H.,, /y,, L) is a strict superset of S(H,y, /, L*) which in turn con-
tains S(H,, /p,, LP). Thus non-trivial elements in A9 are mapped to 0. Ramifications of
this are seen in the next subsection.

4.4. Duality, approzimation and minimization

The sub-Bergman projections give precise answers to versions of (Q1-3) on the do-
mains H,, /;,.

4.4.1. Duality
The dual space of AP (Hm /n) for all 1 < p < oo can be concretely described. The
representation is particularly cogent when p > 2.
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Proposition 4.40. Let p > 2 with conjugate q. The dual space AP (Hm/n)l can be identified
with a proper subset of A4(H,, ). Namely,

AP(Hypyn) 24 f €A Hypm) i f= > aalflea - (4.41)

QES(Hm/n,Lp)

Additionally,

Aq(Hm/n)/ = Ap(Hm/n) D spanAq(Hm/n), {aa €S (Hm/", Lq) \S (Hm/na Lp)} .
(4.42)

Proof. Since ‘gp ‘ is bounded on LP, Proposition 3.27 applies. Equation (4.41) follows
from part (ii) of Proposition 3.27, noting the right hand side of (4.41) is G%P(H,, ;).
Equation (4.42) follows from part (iii) of the same proposition. O

This result should be compared with the breakdown shown in Section 1.1.

4.4.2. Approzimation of AP functions

The form of (Q2) addressed is the following: given p € (1,00) and r > p, when
can f € AP (Hm /n) be approximated by A" (Hm /n) functions in the LP norm? As in
Proposition 4.40, the answer is most appealing when p > 2.

Proposition 4.43. Let p > 2 be given and r > p. Then f € AP(H,,,,) can be approzimated
by A" (Hm/n) functions in the LP norm if and only if B f = f.

Proof. Suppose f € AP (Hm/n) and ﬁf = f. Proceed as in the proof of Propo-
sition 2.18. Since f € LP (Hm/n), there is a sequence ¢, € CX (Hm/n) satisfying
[¢n — fll, = 0 as n — oc. Set f, := IAS’/T(;Sn. Note f, € A" (H,,/,) by Proposition 4.38.
Moreover

= £l = | B @0 = D) S l16n =11,

so f is approximable as claimed.

For the converse, suppose f € AP(H,,,,) and grf # f. By Proposition 3.25, there
exists eg € S (Hm/n, Lp) \S (Hm/n, LT) such that ag(f) # 0, with ag(f) associated to
£ via (3.10).

Suppose there were a sequence g, € A"(H,,/,) such that g, — f in AP (Hm/n). Note
that ag(g,) = 0 for all n. Thus ag(gn — f) = —ag(f) # 0 Vn. But Proposition 3.5 implies
that ag is continuous on AP(H,,/,). Thus
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|a6(9n—f)|5||9n—f||Ap—>0 as n — 0o,
a contradiction. O

For 1 < p < 2, the results are more complicated. In the first place, the sub-Bergman
projections B" are only defined if r > 2; consequently no approximation theorem for the
range 1 < p < r < 2 follows from results in this paper. Additionally, the approximation
result that does follow — for the range 1 < p < 2 < r — requires consideration of the
partition (4.9) in Proposition 4.8.

Proposition 4.44. Let 1 < p < 2 and p' be conjugate to p. In the partition (4.9), choose
k so that p’ < ppyq = 22420,
Fizr € [pr,prt1). Then f € AP(H,,/,) can be approvimated by A" (Hm/n) functions

in the LP norm if and only if B" f = f.

Proof. Since p’ < pgy1, simple algebra shows that ¢x41 < p, where gj4+1 is the conjugate
exponent to pi1. Since p € (qk+1,Pr+1), Theorem 4.38 implies B" is bounded on LP.
The rest of the proof is the same as for Proposition 4.43. O

4.4.3. L%-nearest approrimant in AP
Question (Q3) can be cast as a broad minimization problem. Suppose |||y is an
auxiliary norm on the space LP(Q2),  C C™ fixed.

Problem: Given g € LP(Q), find G € AP(Q) so
lg = Glix < llg = hllx (4.45)

for all h € AP(Q).
For general |||y, techniques needed for this problem mostly await development. But

when X = L?(Q) the sub-Bergman operators give results. Recall that for p > 2, B? is
the orthogonal projection from L? onto G%P, the latter space given in Proposition 3.21.
If Q is bounded, the diagram

Q) — L3(Q)

I LB

AP(Q) < G2P(Q)

summarizes relations between the function spaces, with < denoting injection. Consider
“closest” to mean closest measured by the L? norm in the following. If g € L?(Q), the
unique closest element in G*P() is B? g. However when Q = H,, ,,, Theorem 4.3 says
that BP restricts to a bounded operator on LP(H,,/,). It follows that B g is also the
closest element in AP(Q)) to g. Thus,



D. Chakrabarti et al. / Advances in Mathematics 341 (2019) 616-656 655

Proposition 4.46. Let p > 2 and g € LP(H,,/,,). The function ﬁ’g satisfies

ls— B9

|, <lg=hl
for all h € AP(H,, /), with equality if and only if h = E;’g.
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