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Abstract Regularity and irregularity of the Bergman projection on L? spaces is
established on a natural family of bounded, pseudoconvex domains. The family is
parameterized by a real variable y. A surprising consequence of the analysis is that,
whenever y is irrational, the Bergman projection is bounded only for p = 2.
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1 Introduction

For y > 0, define the domain
H, = {2 eC:lal <2l <1}, (1.1)

and call H,, the power-generalized Hartogs triangle of exponent y. The domain H;
is the classical Hartogs triangle.
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The primary purpose of this paper is to show that the Bergman projection of I,
B, , is L? bounded for only a restricted range of p € (1, 00). Our goal is to directly
relate the L” boundedness to the exponent y and explain how this restricted range is
tied to the boundary singularity at (0, 0).

The results here extend [12], which dealt with the special case of y € Z*. For
general y, the L? boundedness of B, turns out to be fundamentally different depending
on whether y € Q or not. The fact that this arithmetical property of y effects mapping
properties of B,, was surprising, and motivated the writing of this paper.

When y € Q, B, is L? bounded for a non-degenerate interval of p about 2:

Theorem 1.1 Let m,n € ZT with gcd(m, n) = 1. The Bergman projection Bynisa

bounded operator from L? (Blya) 10 AP (Byyya) if and only if p € (2524, 220).

However when y ¢ Q, the L” mapping of B, completely degenerates:

Theorem 1.2 Let y > 0 be irrational. The Bergman projection B, is a bounded
operator from LP (H,) to AP (H,) if and only if p = 2.

A secondary purpose of this paper is to show the Bergman kernel of H,, has zeroes
forall y > 2. This extends a theorem in [11] for the cases y € ZT, y > 2.1t was also
shown in [11] that the Bergman kernel of H /¢, k € 77T, does not have zeroes, i.c.,
Hy/x is a Lu Qi-Keng domain in the terminology of [5]. Theorem 3.8 below reduces
the question of when the Bergman kernels associated to IH,, have zeroes to the case
where 1 < y < 2; see Remark 3.9. But this last question remains unsolved.

The Bergman kernel of H, is computed in Sect. 3 by summing an orthonormal
basis for A2 (Hy). When y = % € Q™, the summation occurs by grouping together
monomials based on their exponent’s distance to a certain critical line in the lattice
7?. The geometric representation of this we call the lattice point diagram of H, and
is described in Sect. 3. This leads to m sub-Bergman kernels

Binn(z, w) = Ko(z, w) ® K1(z, w) & --- & Kj—1(2, w), (1.2)

where B/, is the full Bergman kernel of I, and to explicit formulas for each
subkernel K ;. It follows from these formulas that B,,/,(z, w) is a rational function
of (z,w) € H, x H,. It is intriguing that the denominators of the sub-Bergman
kernels K; are identical for 0 < j < m — 1. In any case, once the expressions for K ;
are in hand, the L? boundedness range of their associated operators, X ;, are proved
following the methods used in [12]. Theorem 1.1 follows by taking the smallest range
amongstall C;,0 < j <m — 1.

The method used in [11] to compute By (z, w), k € ZT, was different: there the
first author used Bell’s transformation formula for the Bergman kernel under proper
maps [4] and fairly elaborate algebraic manipulations to compute the Bergman kernel
of H. The difficulty in executing these algebraic arguments for y ¢ Z7, the existence
of the kernel decomposition (1.2), and the general power of the lattice point diagram
recommended the method used in Sect. 3.

When y ¢ Q, the Bergman kernel of H,, is not a rational function, but we obtain an
explicit enough formula to do further analysis, in particular to determine the existence
of zeroes and to prove Theorem 1.2.
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2660 L. D. Edholm, J. D. McNeal

There are two additional points about methods that seem noteworthy. First,
some basic facts from number theory are used at multiple points in the arguments.
Congruence of integers and residue systems occur in the proof of Theorem 3.4, Propo-
sitions 4.6, and 5.6, while Dirichlet’s theorem on rational approximation of y ¢ Q
is used in Sect. 6. Although these facts are elementary, they also seem intrinsically
connected our results. For example, the fact that Dirichlet’s theorem gives a quadratic
estimate (in the denominator) between y ¢ Q and ** is crucial for our proof of Theo-
rem 1.2 in Sect. 6. Second, care is taken in Sect. 4.1 to identify the size estimates of a
general kernel on I, /,, needed to conclude L? boundedness of its operator. The expo-
nent A in that subsection is the essential parameter. Other natural kernels on H,;,/,,
e.g., the Szego kernel as well as non-holomorphic kernels, can thus be analyzed via
Sect. 4.1.

There are antecedents to Theorem 1.1, besides [12]. Note that the domains H, are
pseudoconvex, but the boundary of H,,, bH,, is not smooth. The serious singularity is
at (0, 0), near which bH,, is not the graph of a continuous function; points of the form
(¢“, €®) , a, b € R are also non-smooth, but of a milder, polydisk-like type. Lanzani
and Stein [17] studied different classes of domains 2 C C, classified by severity
of non-smoothness of the boundaries. Limited L” boundedness of Bg, analogous to
Theorem 1.1, is shown for certain classes. Krantz and Peloso [16] showed that the
Bergman projection on non-smooth versions of the worm domain has limited L?
boundedness. In [7], Chakrabarti and Zeytuncu proved the result corresponding to
Theorem 1.1 for H, with a different proof than in [12]. In [8], Chen considers a
different generalization of the Hartogs triangle than our H, and establishes limited
L? boundedness in that situation. Perhaps the most significant overlap with our work
is [25] and [26]. Zeytuncu constructs particular non-smooth Hartogs domains, some
exhibiting the limited range of L?” boundedness of the type in Theorem 1.1 and others
with the degeneracy of Theorem 1.2. However the differences between our results and
[25,26] are also significant. Zeytuncu’s degenerate L” boundedness stems from his
domains having exponential cusps at their boundary: see [26, Theorem 1.2], for the
essential, weighted one-variable result (which is lifted to C? in the usual way to give an
unweighted result). Our domains H,,, on the other hand, have only a polynomial-like
singularity at (0, 0). And the degenerate L? boundedness in Theorem 1.2 comes from
the fact that y is not rational, rather than exponential vanishing at the boundary. A
result that encompasses both our Theorem 1.2 and Zeytuncu’s in [26, Theorem 1.2] is
lacking, but would be very interesting.

For many classes of pseudoconvex domains with smooth boundary, it is known that
the Bergman projection maps L? boundedly for all p € (1, 0o), see [18-23] and their
references for the principal results. But recently, restricted L? boundedness similar to
Theorem 1.1 has also been shown on smoothly bounded worm domains, [3]. Versions
of these domains were originally defined in [10]. We also mention an earlier result
of Barrett, [2], of a smoothly bounded non-pseudoconvex domain whose Bergman
projection has a restricted range of L” boundedness.
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2 Notation

If @ C C"is adomain, let O(£2) denote the holomorphic functions on €2. The standard
L? inner product is denoted

(f. ) =/Qf~gdv, @1

where dV denotes Lebesgue measure on C". For p > 0,

LP(Q)=:fi (/ Ifl”dV)p: ||f||p<00}
Q

denotes the usual Lebesgue space of p-th power integrable functions. When p = 2 we
drop the subscript on the norm, i.e., || f 12 = (f, f). The Bergman spaces are denoted
AP (Q2) = O(2) N LP ().

The Bergman projection Bg : L?(Q) —> A%(R) is the orthogonal projection
operator. It is elementary that this operator is self-adjoint with respect to the inner
product (2.1). The Bergman kernel, denoted Bq(z, w), satisfies

Bo f(z) Z/QBQ(L w)fw)dV(w), feL*Q).

Given an orthonormal Hilbert space basis {¢g}qc 4 for A%(R2), the Bergman kernel is
given by the following formula:

Bo(z.w) = Y ¢u(2)a(w). 22)
ac A
Recall that Q C (C” is a Reinhardt QOmain if for every z = (z1,22,...,2n) € €,
it also holds that (¢!?1z;, /%25, ..., e!%z,) € Q, where 01, 65, ..., 0, are arbitrary

real numbers. See [15] for a detailed treatment of analysis on these domains. Given a
Reinhardt domain €2, define the Reinhardt shadow of €2 to be the set

w:=A{(r1,r,....,r) €R" 1r; >0,(r1,r2,...,1,) € Q.

The power-generalized Hartogs triangles (1.1) are clearly Reinhardt domains. For
these domains, B, and B, (z, w) will denote BHy and B, (z, w), respectively. As
usual, the operator B, is extended to supersets of L? (Hy) by setting

B, f(2) = / By (z, w) f(w) dV (w),
14
whenever the integral is defined. We still refer to B, as the Bergman projection, even

when acting on L? (Hy) for p € (1, 2).
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2662 L. D. Edholm, J. D. McNeal

Two pieces of notational shorthand will also be used. If D and E are functions
depending on several variables, D < E will signify that there exists a constant K > 0,
independent of relevant variables, such that D < K - E. The independence of which
variables will be specified (or clear) in context. Also, D &~ E stands for D < E < D.
If x € R, |x] will denote the greatest integer < x.

3 Decomposing the Bergman Space

3.1 Allowable Indices

Let y be any positive real number. Since H,, is Reinhardt, every f € O (Hy) has a
unique Laurent expansion

[ =) as",

aeA

where A is the set of multi-indices {o = (r1, a2) € Z? : a1 > 0}. Since zo # 0 on
H, , a2 is allowed to be any negative integer. Imposing square integrability, however,
restricts the range of o, allowed in the sum.

Definition 3.1 Say a multi-index « is y -allowable if the monomial z% € Az(Hy). Let
AJ% denote the set of y-allowable multi-indices.

It follows that {z“ T € A?, } is an orthogonal basis for A2 (H,, ). We now determine

the set A)z,, and calculate the norms of these monomials.

Lemma 3.2 Forany y € RY,

(i) A2 ={(a1, @) 101 >0, a1 +y(az+1) > —1}.
(i) Fora € A2,

2
=1 = T G
(@1 + D2 +y(+ D+ 1)’
Proof Let H, be the Reinhardt shadow of H, . Using polar coordinates,
/ |Z?lzg2| dv =4n2/ r]2a1+lr22a2+1 dr
Y HV
= A / / 20[1+] 2a2+1 dr dl"2
1 1
- (2o +2)+200+1

= / P T . (3.2)
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This integral converges if and only if %(20{1 +2) +2ar + 1 > —1. Notice that

1
;(2a1+2)+2a2+1 >—-1 & ar+ylm+1)>-—1,

so (i) holds.
Furthermore, when the integral (3.2) converges, it equals

w2 1 ym?

(n+1'%mr+n+an+1)_&n+1ﬂ+ywl+DWz+D'

Thus, (3.1) holds. m]

A similar result holds for A}, the multi-indices « such that z* € A” (H, ). The
direct analog of (3.2) shows that (a1, ) € Af,’ if and only if o > 0 and

1
;(pa1+2)+paz+1 > —1

1 2 2
& > ——ap— = — (3.3)
% p vep

Remark 3.3 In [28, Lemma 5], Zwonek has characterized the monomials in AZ(R)
for more general Reinhardt domains R than our domains H,. The characterization
involves cone considerations in the logarithmic image of R. A similar characterization
of the indices A (R) is given in [29]. It is easily checked that condition (3.3) coincides
with Zwonek’s for the domains H,, .

When y = % € QF, the strict inequality defining (1, a2) € A)Z/ can be re-
expressed as a non-strict inequality:

2 m
An = {(041,062) ta1 >0, o + ;(Olz-i- 1) > —1]
={(x1,p) :¢1 =0, nay +may > —m —n+1}. 3.4
The simple step of passing to this closed condition on & is crucial for our subsequent

work in the rational case. Notice this step is not possible if y ¢ Q.
It is convenient to interpret the multi-indices in Afn /n geometrically, as an explicitly

closed subset of the lattice Z? using the second representation in (3.4). Thus, z% €
A2(Hm/n) ifandonly if ¢y > 0, and o = (1, p) € Z2 lies on or above the line

n l—n—m
w=—"ay 4 —1 " (3.5)
m m

Call this subset of Z? the lattice point diagram associated to .Ai ,»- Monomials cor-
responding to the fourth quadrant of the lattice point diagram, i.e., those lattice points
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2664 L. D. Edholm, J. D. McNeal

where ap < 0, play an essential role in the analysis to follow. The boundary lines
described by (3.5), corresponding to y = 1, 2, 3, are illustrated below.

aq

(0,0)

Q3

The lattice point diagram indicates a useful way to decompose AZ(H, /n)- When

y = %, gcd(m, n) = 1, split the Bergman space into m orthogonal subspaces

A2(Hpyn) =So ®S1 ® - ® St (3.6)

where S; is the subspace spanned by monomials of the form z*, where oy = j
mod m. Let

gjz{a:(al,az)efl,zn/n:alzj (mod m)}. 3.7

That the decomposition (3.6) is orthogonal follows from the fact that H,, /,, is Reinhardt
and G; NGy = @ if j # k. Bach S; is a closed subspace of Az(Hm/n), thus a Hilbert
space. Therefore the orthogonal projection, L?(H,, /n) —> S, is well defined and
represented by integration against a kernel, K ;. It follows that

Bpn(z, w) = Ko(z, w) @ K1(z, w) @ - - © Kpp—1(z, w). (3-8)

Call each K; a sub-Bergman kernel. In the next subsection, we shall focus on the
subspaces S; and explicitly compute each K ; in closed form. For any rational exponent
v, (3.8) then implies an explicit expression for By, (z, w).

For irrational y, the absence of a finite decomposition like (3.8) is the reason the
methods in this paper do not imply an explicit closed form expression for the Bergman
kernel of H, . After L” mapping properties of the operators associated to the subkernels
K ; are proved, it will also be clear that the lack of (3.8) is the cause of the difference
between Theorems 1.1 and 1.2.

3.2 Computing the Sub-Bergman Kernels

Lety = % € Q*, gcd(m,n) = 1. Foreach j = 0,...,m — 1, let K ; be the sub-
Bergman kernel of B/, given by (3.8) and S; the subspace in (3.6). By definition,

{z"‘c;’}x : o € G;} is an orthonormal basis for §;, where G; is given by (3.7) and
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¢y« by (3.1). It follows that K ; can be written as the following sum, which converges
normally on Hy, 7, X Hip

KiGw =Y -2 (3.9)

aeg; cm/n,oz
We now compute this sum in closed form:

Theorem 3.4 Let m,n € Z" be relatively prime. The sub-Bergman kernel K ; of the
domain H,y,,, is given by

no fi(s,g)sit"17E;s
mir? (1 =1)2(@n —sm)2

Kj(z,w) = (3.10)

where s = zjwi,t = W2, Ej = LWJ, and f; and g; are the polynomials

Fi(s.0) = G+ D"+ (m — j — Ds™, G.11)
g'(¢)=('+1—ﬂE<>+(T+ﬂE-—'—l)t (3.12)
/ J n 7 PR ’ '

Proof First we find K (z, z), then use polarization to move off the diagonal. Working
on the diagonal bypasses the ambiguity of raising a complex number to a fractional
exponent. Therefore, until the last two lines of the proof, lets = |z 112, 1 = |z2|?. Also
fix £1/™ to be the positive real root.

Starting from (3.9) and using (3.1) and (3.5),

s91*2
Kiz=7) =

C
aeg; m/n,a

n m
=2 % [(al 12+ TR 1)] s (3.13)
Ol]ERj
where R := {a1 > 0 : oy = j mod m} and the inner sum is taken over integers

ap with ap > —"r;lﬂ + HT*’" We want to compute the smallest such integer, called
£(j). Notice that

noy l—n—m_ ! nlr—j) (G+bhHn—-1

m m m m

’

and since ¢; = j mod m, it follows that

Cn—j)
m

;) =—1 E;. (3.14)
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Therefore,

(2.13) =

||
~

Z I:(Oll + 1)2 —(al + D (o + 1):| o102
)

(o] + 1)2s°"t°‘2

Mg &Mg

=R
=R

i)
1
+= (o1 + D) (e + 1511
j 2=¢t(j)
n . |
=——I1()+=J0)
mm b4

It remains to compute the sums 7 (j) and J(j). Let u := st~"/™ and note that both
0 < |#| < 1 and |u| < 1. Summation of I () is straightforward

()= Y (a+17%0 Y

0[1€Rj

=1 Z (a1 4 1)2s%1£40)
ar=L(j) aleR-
tn]/m 1-E;

C Y (e + DA

O(]ER
tnj/m—l—Ej

d d ultl
a(m(l_um))-
(3.15)
Summation of J(j) is slightly more involved. First, split the sum into two pieces

JGy= Y (@ +Ds* > (aa+ D™
(Y]ERJ'

ar=L(j)

T (e + s [ G+

(€(j) + Ditd)
a—n2 "
O([ER'

1—1¢

T t)2

1

> @+ 1)s“1z"(f)+ﬁ D (e + DEG) + st
aleR alé'Rj

= J1(j) + 120)).
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For the first piece, it follows

tn]/m E;
I = =Y (o + Du
aleR
tnj/m—E/ d uj+1 6
=— — . 3.1
(1—-1)2 du(l—um> (3.16)

For the second piece,

tnj/mflej
()= ——— D @+ DG +Hu
(1|€Rj
tnj/m—l—Ej
= <——E ) > e+ Hu™ —% > (e + Dagu®
OZIER C(]ER]'
tnj/mflej n] d uj+1 n d2 uj+l
=—||——E; ) — ——u—\|\— ).
1—1t m du \1 —u™ m  du? \1—um
(3.17)
Using Leibniz’s rule, (3.15) and (3.17) can be combined more simply as
m nj/m—1-E; | d [/ wt!
1)+ =) = ——— (i +1-E;)- :
(J)+n 20) 1—1¢ + du (1—14’”)
Combining this with (3.16), we now have
Kj@ D) = —— [16) + = () + =0 ()]
mi n n
n tnj/mflej d ujJrl
=—Fs-g;t) —/——— — , 3.18
w2 8 T @ (l—u’”> (3.18)
where g;(1) :=j+1-2E; + (2 +2E; — j — Dt.
Finally,
n tnj/m—l—Ej uj "
218) = — - g;(0) - . (j+1 —j—1
@18 = 8O T T (J+140m—j—Du")
n sit—1-E;j 2n 4 D™
n gign—1-E;
= CFi(s,Dgi () - , 3.19
m]‘[2 f] (S )gl( ) (1 _ t)z(l‘" _ sm)Z ( )

where fj(s,t) := (j + Dt" + (m — j — 1)s™. This establishes the desired formula
for K (z, 2).
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Polarization now gives the formula for K (z, w), substituting s = zjw; and ¢t =
Zpwy into equation (3.19). See [9, Sect. 1.1.5] for an explanation of polarization in
this context. |

The decomposition (3.8) now yields

Corollary 3.5 Letm,n € Z" be relatively prime. The Bergman kernel of H,, /, is the
explicit rational function

m—1
Bun(z,w) =Y Kj(z, w),
j=0

where each K j(z, w) is calculated in Theorem 3.4.

3.3 The Lu Qi-Keng Problem

In general, the Lu Qi-Keng problem is to determine which domains € C C”" have
vanishing Bergman kernel. See [6] for background and more information. In [11], the
problem is solved for the domains Hy and H /¢, k € VAR

Theorem 3.6 Let k € Z*. The Bergman kernel Bijk(z, w) #0V(z, w) € Hyj x
Hy /.

Theorem 3.7 Letk > 2 be a positive integer. The Bergman kernel By (z, w) has zeroes
inside Hj, x Hy.

Using the explicit form of the orthonormal basis on A? (HV), Theorem 3.7 can be
extended to non-integer exponents

Theorem 3.8 Let y > 2. The Bergman kernel B, (z, w) has zeroes inside H,, x IH,.

Proof First let y = % > 2 be rational, gcd(m, n) = 1. Write, as before, s = zjw;
and t = zpw7.
For j =1,...,m — 1, the positive exponent of s in (3.10) shows that

K;((0, z2), (0, wa)) = 0.

Thus, all but the sub-Bergman kernel K in the decomposition (3.8) vanish identically
on the variety {s = 0}. For this sub-Bergman kernel,

no 1+ (2 -1
K 09 ) 01 = : 2
0((0, z2), (0, w2)) T
The numerator obviously vanishes when t = — (7 — 1)~ It is easily checked that

—-1,2 —-1/2
(ZO» w()) = <<07i (ﬂ - 1) ) s <0’ —i (ﬂ - 1) >> € Hm/n X Hm/na
n n
and that B,/ (ZO, wo) = 0, so this case is complete.
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Now let y > 2 be irrational. AZ(HV) does not admit the finite decomposition (3.8);
however, a similar simplification to that used above occurs when By, (z, w) is restricted
to the variety {s = 0}. Starting with

1
By(ew) =~ 3 Lo+ 17y + D+ D5,

2
ac A

it follows that

1 = 1 =
By (0.22), (0. w2) = —— PN e D DR R

ay=—1 ary=—1
1 1+ —Dr
Coyn? (1 —1)?

Recalling that y > 2, it is checked as before that
(2% w) = (0.1 = D72) (0. =iy = D712) ) € Hy x H,.

Since By, (z°, w®) = 0 by inspection, this case is complete as well.

The case y = 2 is covered by Theorem 3.7. However the point obtained above
for y > 2 does not work for B;, since ((O, ity — 1)_1/2), O, —i(y — 1)_1/2))
lies on the boundary of H, x H, when y = 2. But it is easy to check that

B, ((\%, @), (\_/—%, @)) = 0 and this point lies inside Hy x Hy. O

Remark 3.9 In order to answer the Lu Qi-Keng question for all H,,, y > 0, we use the
fact that a vanishing Bergman kernel is a biholomorphic invariant. The map W (z) =
(z122, z2) is abiholomorphism of H,, onto H,, /,, 1) withinverse ¥ (z1, z2) = (%, 22).
Applying W recursively yields the following chain of equivalent domains:

W W voow v
Hy = Hy/1+y) = Hy/a429) = - = Hyja4ny) = -+

A similar chain of domains appeared in [11, Sects. 3.2 and 4.1]. Theorem 3.8
now implies the Bergman kernel of H, has zeroes for y € [%, Hu [%, %) U..-uU

[2k2ﬁ’ %) U---, k € Z*. The right end points appearing in this union are all sharp,
since Theorem 3.6 says the Bergman kernel is non-vanishing for y = %, keZr.

The remaining open case is for y € (1,2)U (%, %) U-.-uU (%, ﬁ) U.--,keZt.
By considering the same chain of biholomorphisms above, it is sufficient to investigate
the question for y € (1,2).
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2670 L. D. Edholm, J. D. McNeal

4 The Rational Case: L? Boundedness
4.1 Type-A Operators on Hy, /5

Our proof of L? boundedness of B/, does not use holomorphicity of the Bergman
kernel. It only involves size estimates of By, /,(z, w) so it also applies to a general
class of operators whose kernels satisfy these estimates. It turns out that the exponent,
A, of the (polarized) euclidean distance from z € M, to the origin in these estimates
determines the range of p for L? boundedness. This motivates the definition below.

If @ C C" is a domain and K is an a.e. positive, measurable function on  x €,
let /C denote the integral operator with kernel K :

lC(f)(z)=/QK(z, w) f(w) dV (w). 4.1

Definition 4.1 For A € R, call K an operator of type-A on H,, ,, if its kernel satisfies

|zowo |4

|K (z1, 22, w1, w2)| S 4.2)

- - —m2’
11— zow|? |2hwhy — 2w

for a constant independent of (z, w) € H,;,/,, X Hyy ).
The basic L? mapping result is the following:

Proposition 4.2 If K is an operator of type-A on Hy, sy, then K : LP (Hm /,,) —
L? (Hm /n) boundedly if

2n +2m 2n +2m

<p<—- “4.3)
Am +2n +2m — 2nm 2nm — Am

whenever both denominators in (4.3) are positive and Am + 2n + 2m — 2nm >
2nm — Am.

Remark 4.3 (i) While seemingly complicated at first glance, the bounding terms on
p in (4.3) express the natural interplay between the exponent A and the kind of
singularity bH,;,/, has at (0, 0).

(i) The exponents A obtained for the sub-Bergman kernels will automatically satisfy
the positivity conditions mentioned after (4.3).

(iii) If A — 2n, the bounding terms in (4.3) tend to 1 and oo, respectively. Thus, an
operator of type-2n on H,, is L? bounded for all 1 < p < oo. This holds for
anym € Z7.

(iv) The bounding terms in (4.3) are conjugate Holder exponents. If, in (4.2), |z2w2 |4
is replaced by |z2||wz|¢ for ¢ # d, this Holder symmetry will be broken but a
result similar to Proposition 4.2 can be obtained.

Some preliminary results are needed before proving Proposition 4.2.
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4.1.1 An Estimate on Bp

Proving Proposition 4.2 requires analyzing integrals over the domain H,,/,. Since
Hn/ is rotationally symmetric, a one-dimensional estimate on the Bergman kernel on
the unit disk in C can be used to effectively estimate these two-dimensional integrals.
The essential estimate below (without |w|™# in the integrand) has been re-
discovered many times, see for instance [8,13,24,27]. The proofs in these sources
use well-known, but non-trivial, asymptotic results to derive the estimate. A more
elementary proof is presented here; this proof simplifies one given in [12].

Proposition 4.4 Let D C C be the unit disk, € € (0, 1) and B € (—00, 2).
Then for z € D,

(1—|w*)~

T wPdviw) S A - 27

Tep(2) =

with constant independent of z.

Proof Since |[w|™# < 1if B € (—o0, 0), this range of B reduces to establishing the
estimate for 8§ = 0. From now on, 8 € [0, 2).
Consider first an arbitrary |z] < % Then |1 — zw| > 1 — |zw]| > 1 so

T 5() < 4/ (1 — )< wl~* dV (w)
D

1
=4n/ A—uw)uP?du < .
0

Since this bound is independent of z, the desired estimate holds.
Next consider |z| > % Setc = ﬁ and split the integral:

1 —|w|?)—¢ 1—lwl?)~¢
Ie,,s(z)=/ %mrﬂdewf L=l 1= av )
lw|<c |1 - Zwl lw|>c |1 - Zw'
=1L+ D.

For I, |l — zw| > 1 — |zi| > . Hence
I 54/ 1= wP)wPdvw) < 4/ 1= wP) " lw P dv(w) < co.
[lw|<c D

Thus I satisfies the required estimate.
It remains to show that I, does too. Since % < |z| < 1, obviously % <c¢ < 1and

consequently % < |w| < 1 throughout I5. For 8 € [0, 2), it follows that 1 < |w|_/3 <
4. Thus
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(1 —|w*~¢
L <4 ——————dV(w).
lw|>c |1 - Zw|

Now

— 2\—€ 1 2
/ % dV(w) = / r(l—r?~¢ |:/ a9 ]dr.
lw|>c |1 - Zw| c 0

1 —2r|z|cosO + rZ|z|?
“4.4)

Evaluation of the integral in brackets may be done by residue calculus. Let a
14+ r2|z|2, b=2rlz|,w = ¢! and T denote the unit circle.

/271 de _fZJT de
o 1=2r|zlcos® +r2|z|2  Jo a—bcosh

_ 1/ wdw
i Jra-bw+w1)2

_ 2/ dw
T i Jrbw? —2aw+b’

The polynomial in the denominator has two roots, only one of which is contained
in the unit circle. Indeed, a > b and

a— a2 — b?
b

b
a+m

< 1.

Denote this root by ¢. Using the residue theorem and L’Hospital’s rule,

2 dw . 1
- ———=—d4rlim(Ww-¢) —5———
i Jrbw?2—2a+b I bw? —2aw +b
. 2
bt —a
2 2

a2—p2  (1=r2z?)

Therefore, returning to (4.4),

1
L < / r(l — rz)_e(l - rlzl)_1 dr.
C

A trivial over-estimate of I now yields the desired estimate:

|z] 1
125/ r(1—r2)—6<1—r|z|>—1dr+/ r(1 =) = rlz) "V dr
0 |zl
= Ji + ).
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Since 0 < r < |z, it follows that

lz] 1 rl-lel?
J1 < f r(l—rlz) ¢ 1dr = —— u " ldu
0 lzI Ji

SA-P
The fact that » < 1 implies
Jh<—lz)! /]l rl=r)~ dr S (A —1z2) 71 = 27
z
S A=)
Together, these estimates show I < (1 — |z|?)~¢, which completes the proof. O
4.1.2 An Extension of Schur’s Lemma

The sub-Bergman kernels K ; are not uniformly in L (Hm /n), 1.€., there is no constant
independent of z such that

/ |Kj(z, w)| dV(w) < C.
m/n

See (4.9) below. This prevents a direct application of Holder’s inequality from implying
L? boundedness of ;.

A variant of Schur’s lemma, proved in [12], will instead be used to prove L”
boundedness. The difference between this result and Schur’s classical lemma (see, e.g.,
[21]) is the explicit relationship between the range of exponents of the test function &
and the range of p for which L” boundedness can be concluded.

Lemma 4.5 (Version of Schur’s Lemma [12]) Let @ C C", K and K associated
via (4.1). Suppose there exists a positive auxiliary function h on Q, and numbers
0 < a < b such that for all € € [a, b), the following estimates hold:

(1) Kh™)(z) S h(z)~¢ and
(i) Kh=)w) S h(w)~¢,

with constants independent of 7, w € Q.
Then K is a bounded operator on LP(R2), forall p € (#, %).

As with other versions of Schur’s lemma, the inherent advantage of Lemma 4.5 is
the latitude of choosing the auxiliary function 4.

4.1.3 The Auxiliary Function; Proof of Proposition 4.2

On the power-generalized Hartogs triangle H,;,/,, define

h@ = (2 = 21 P") (1 = 122, *5)

This function (essentially) measures the distance of z € Hi;,/, to bHy .
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Proof of Proposition 4.2 Let KC be an operator of type-A on H,,/,; assume

Am +2n +2m — 2nm,2nm — Am > 0 and Am + 2n + 2m — 2nm > 2nm — Am.
Let € > 0 be momentarily unrestricted; restrictions on € will emerge shortly. From

4.2)

- A 2n 2m\ "€ 2\ €
W w — |w 1 —|w
IC(h_e)(z)S/ lz2wa|* (Jwal _ 2| ;l_n) 77(1—m|2 21%) 4V (w)
Hn/n [T — zown| |Zzw2 — 2wy |
_/ 22wl (1 = Jwa )~
* 11— zowy|?
(lwa " — Jwy ™)~
x e dV (wy) | dV (w)). (4.6)
wo lmwy =z wy|

Here D* = {wy : 0 < |wy| < 1} and the region W = {wy : |{wi| < |w2|"/™}, where
w» is considered fixed. Denote the integral in brackets by /. Then

. i
! 1 / ) ‘ wi' 2 ‘1 !
22|21 |wy |21 t20e [y, wh Wy

Make the substitution u = Z)Tl" This transformation sends W to m copies of D, the

-2
dV(wl).

unit disk in the u-plane. Proposition 4.4 yields

2n/m—2n—2ne 2\—€
lwa| (1 —|ul®) 2/m—2
1= - Jul av (u)
2 D |1 — Z] ZZ u’
- |w2|2n/m—2n—2ne Zrln 2\ ~¢
|z2]?" z
|w2|2n/m72n72ne ) o\ €
= — lz2l™ = lza ™) .
|Z2|2" 2ne

Returning to (4.6), we have

_ - A L
() @ S 12222 (jo = ) | el V(o)
p+ |1 —zown|

where f = A+2n/m —2n —2ne. This will be favorably estimated by Proposition 4.4
if B > —2. That s, if

1 2n
6<—|:A+——2n~|—21|, “@.7
2n m
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then

—€
K (h—e) (Z) 5 |ZZ|A+2”€_2” <|ZZ|21’L _ |Z1|2m) (1 _ |12|2)—6
— |Z2|A+2ne—2n . h(Z)_é.

In order for the first factor in this expression to be bounded, the exponent must be
non-negative, i.e.,

A
e>1——. 4.8)
2n

Thus,ifa =1 — % and b = % [A+ %n—" — 2n + 2], the above shows that
K(h) () Sh)™¢  Veela,b).

Lemma4.5, and elementary algebra on the endpoints a, b, then show that /C is bounded
on L7 for the range of p stated in Proposition 4.2. O

4.2 Mapping Properties of Sub-Bergman Projections

From the polynomial expressions (3.11), (3.12), and the fact that |s|" < |#]" < 1
when (z, w) € Hyyp X Hyy/p, the estimates

IfiGs, 0l S kel 1gjOI S 1,

are valid, for constants independent of (z, w) € H,/, x Hy/,. Consequently, the
sub-Bergman kernel K; satisfies the estimate

|t|2n7]7Ej+%

Kz, w)| S | (4.9)

1 — t|2|t" _ sm|2'

From this, L? boundedness of each sub-Bergman projection ; : L2(H,, m) = Sj
follows:

2m+-2n 2m+2n
m—mE;+2n+jn’> m+mkE;j—nj

Proposition 4.6 Forall p € (
on LP (H,y /).

), Kj is a bounded operator

Proof This comes immediately from Proposition 4.2 by taking A = 2n—1—E; + %
O

The range of L” boundedness for the full Bergman projection is obtained by taking
the “worst” range associated to the sub-Bergman projections given by Proposition 4.6.
To see this explicitly, recall that E; = L%J , SO

n(j+1)—1

i+ 1) —1
n(j+1) —1<Ej<—t——~ — Vje{0,....m—1).
m

m
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As m and n are relatively prime, elementary number theory, [14, Theorem 57, page
51], gives a unique x € {0, ..., m — 1} such that

nx=1 (mod m).
Note that x # 0 or m — 1. Setting jo = x — 1, it follows that

n(jo+1)—1
Bp="0T 2 (4.10)

and forall j # join{0,...,m — 1},

p, MUt
m

Thus mE j, —njo = n — 1 and Proposition 4.6 says that K j, is bounded on L” (Hm/,,)

for p € (%, 3%13"1). It also says that the sub-Bergman projections K, j # jo,

are L? bounded for a larger Holder symmetric interval about 2. Therefore, from (3.8)

we obtain

Corollary 4.7 The Bergman projection By, is a bounded operator on LP (H,,,,) for

2m+2n 2m+2n
allp € <m+n+l ’ m+n—l)'

The observations on £ and E j;, and (4.9), also yield the following estimate on the
full Bergman kernel

|f|2n_l+%

[B/n(z, w)| S 4.11)

[T —t2|em —sm )2

Remark 4.8 Inthe next section, the range of L” boundedness in Corollary 4.7 is shown
to be sharp. This implies estimate (4.11) is optimal.

Remark 4.9 We emphasize that the L? boundedness results in this section do not
require cancelation properties of the kernels involved. Thus Proposition 4.6 and Corol-
lary 4.7 also apply to the operators associated to |K;(z, w)| and |Bm /n(2, w)|. It is
interesting that, in all known cases where one implication can be proved, it holds that
Bg, is bounded on L7 (€2) if and only if |Bg| is also bounded on L” (€2). See [1,18,21]
for further information. This equivalence is of course false for more general operators,
e.g., the Szego projection or Cauchy-Leray integral.

5 The Rational Case: L? Non-Boundedness
As in [12], we shall show that B/, fails to be L?” bounded (for the range of p

indicated in Theorem 1.1) by exhibiting a single function f € L (Hm /,,) such that
Bm/nf ¢ L (Hm/n)
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The initial step is based on orthogonality and does not require y to be rational.
Namely, the rotational symmetry of H, implies that B, acts in a simple fashion on
certain monomials in z; and Z:

Proposition 5.1 If both (81, B2) and (B1, —B2) belong to .A)z,, then there exists a
constant C such that

B, (zf' 22’32) =c 5P

Proof Let f(z) =z zfz, A= A)%, H = H,,, and H be the Reinhardt shadow of H,
for short. A straightforward computation yields

B, (@ = [ Z
— Z / Bi -0‘1 gZ'f'ﬂZ dV(U))

acA ot

Z Z_/ ar+pi+l o) (Br—ar) az+/52+1 e~ i02(B2t+@) 4, qp
e

Z Z_( i91(ﬂ10!1)d91)
O(

acA

< 7192(ﬂ2+a2) d@z) (/ rflx1+/51+lr;tz+ﬂ2+1 dr>
H

ZCZ/?] 22 /3 5

where C is a constant. O
When y € Q%, a similar result on the subspaces S; holds, by the same proof:

Proposition 5.2 If both (B1, f2) and (B, —PB2) belong to G; for some j €
{0,1,...,m — 1}, then there exists a constant C such that

cz” 1=
Kz(zflzfz)::() L2 l;ﬁj’

—B2

foralll € {0,1,...,m —1}.
Let m,n € Z* be relatively prime. Multi-indices (a1, o) lying on the boundary
line (3.5) of the lattice point diagram of I, ., i.e., those indices satisfying ap =

—rap — 1+ lm;” are “just barely” in Ai/n. The case 7 = % is illustrated below:
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aq

(0.0)

a2

There are three pieces of useful information that may be extracted from this lattice
point diagram. First, consider the vertical line ¢y = M, M € Z+ and the lattice
point on it that is closest to the boundary line ap = — o) — 1 + =2 (e, the points
circled in the picture above). The a» coordinate of this point was also defined in (3.14).
The monomial corresponding to this point, (M, £(M)), has the smallest range of L”
integrability, p > 2, among all the monomials corresponding to lattice points on
=M, a > —2o— 1+ 1;1—" Second, this range of L” integrability is the same
for all vertical lines oc; = M + km, for k € Z™. Finally, the closer the circled lattice
point is to the boundary line, the smaller the range p > 2 for which z* € L? (Hm /n).
When it actually lies on the boundary line, the monomial z% corresponding to this
lattice point has the smallest range of L? integrability for all o € A,zn /n

The following results detail these observations:

Proposition 5.3 Let (M, £(M)) € A%,  where £(M) is described above or, equiva-
lently, defined by (3.14). Let p > 2.

0D € L7 (Biyp). then Y 252 € L7 (B for all s = €M)

m/n’

Proof Obvious, since |12 | ’ ‘it )‘ < z2|2 7t M) apd |zp|®2—tM) ¢ [ (]Hlm/n). O
Proposition 5.4 If N = M (mod m) and z}!z, Y e Lp (Hinyn), then z{vzg(N) €
L (Elyp/n)-
Furthermore,
Jot ], = [

Proof By (3.3), the hypothesis implies

2 2n
L(M) > ——M -
p mp
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If N = M +km, for k € Z™, the lattice point diagram shows that £(N) = £(M) — kn.
Thus

n 2 2n
kn +4(N)=¢M) > ——M — — — —
m p mp

n 2 2n

=——(N —km)— — — —.

m p mp

This implies that (N, £(N)) satisfies (3.3), so z{vzg(m eL? (Hm/,,).
The equality of the L? norms follows by computing both expressions in polar

coordinates. O
Proposition 5.5 Foreach j € {0, 1, ..., m—1}, the sub-Bergman projection K ; does
not map L* M/, to LP (Hy ) for any p > mfg—gjsz

Proof Fix j,and take 81 = j -+ km for some k € Z* U {0}. Let 8> = £(81), and note
that (3.14) says that

,32=—1—I’lk—Ej < 0.

Thus, (B1, B2), (B1, —B2) € Gj.Let f(2) = z}'2,P; clearly f € L (Hl/n). Propo-

sition 5.2 says that K f = Cz’fl 252.

Computing in polar coordinates

/ ‘zl zzﬁz dV(z)=47T2/ r{?ﬂwlré:ﬂzﬂ dv(2)
H

n/m

.
1 1
m/ ;ﬁ+ / rfﬁH_ drydr
0 0

1 npp 2n
pBa+1+ +3
~ / ry "o drg.
0

This integral diverges when

n 2n
P Y 5.1)
m m

Substituting 1 = j + km and B, = —1 — nk — Ej, (5.1) becomes
—-p (m +mE; — nj) < —2n —2m. 5.2)

However, since E; = L%J,

i+ 1) —1
m+mEj—nj>m+m{u—l}—nj

m
=n—-1>0,
so (5.2) is equivalent to p > mfg—;;zﬁnj which completes the proof. O
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Proposition 5.6 For p > 22424 B, , fails to map L™ (Hy/n) to LP (Hy ).

Proof Since gcd(m,n) = 1, the equation nx = 1 (mod m) has a unique solution
x € {0, ...m — 1}. By the same modular arithmetic that led to (4.10), there exists a
unique multi-index (jo, £(jo)) satisfying

0<jo<m-—-1

. 1—n
£(jo) = ——Jo -1+ (5.3)
i.e., the lattice point (jo, £(jo)) lies on the boundary line determining Am / .+ Propo-
@(jo)

sition 5.5 says that Xj, does not map the bounded function g(z) = z
LP (M, ),) for p > 3”"”” On the other hand, Proposition 5.2 says that IC (g) = O
for all j # jo. Thus, (3.8) gives the claimed result. O

To obtain L? non-boundedness for p < 2, recall an elementary consequence of the
self-adjointness of the Bergman projection (in the ordinary L? inner product):

Lemma 5.7 Let Q2 be a domain and let p > 1. If Bmaps L? (2) to AP (2) boundedly,
then it also maps L1 (Q2) to A1(R2) boundedly, where % + é =L

Proof Let f € L1(K2). Then

IBfll; = sup [(Bf.g)l= sup [(f.Bg)

lgllp=1 lllp=1
< sup (IfllqIBglp) < 11 fllg-
lgllp=1

Proposition 5.6 and Lemma 5.7 give the other half of Theorem 1.1:

2m+2n  2m+2n

Corollary 5.8 By, is nota bounded operatoron L¥ (H,,,,,) for p ¢ (m_~_n_~_1 )

6 The Irrational Case: Degenerate L? Mapping

The plausibility of Theorem 1.2 is suggested by Theorem 1.1. If y ¢ Q, we may
approximate y by rationals - with m +n tending to infinity (keeping ged(m, n) = 1).
Theorem 1.1 shows both that the interval of L” boundedness of B,,/, depends on
m + n and that this interval shrinks to the point 2 as m +n — oo.

To actually prove Theorem 1.2, a more quantified version of this argument is nec-
essary. For this, we use a classical theorem of Dirichlet on diophantine approximation.
This result is proved, for instance, in [14] as Theorem 187 on page 158.

Proposition 6.1 (Dirichlet) If y is irrational, there exists a sequence of rational

numbers { 0 } Wlth LA RN y, such that
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Proof of Theorem 1.2 Fix p > 2. We will exhibitan f € L°(H,, ) such thatB,, (f) ¢
LP(H,).

Let { ] be a sequence of rational numbers given by Proposition 6.1. Temporarily

fix the 1ndex Jj. From (5.3), there exists a unique 8 = (B1, B2) € Am,-/nj with 0 <
B1 < mj — 1 and such that '

1-— nj,31 — }’lj - m.,-
m;

B =

e 7. 6.1)

Assume for the moment that this multi-index 8 € A%,. We will shortly show this is
always the case.

Let f(2) := le/z ;as Bo < 0, f] € L*°(H, ). Since we are assuming 8 € A2,
Proposition 5.1 implies B, (f})(z) ~ zl z22 It follows that

1 1
1B, (v, ~ [ 1005710V =ax? [ et
Y

y
1y

1 T
T 1
m/ r§2p+ / rf1p+ drydrp
0 0

U papr14+£242
~ ry drs.
0

This diverges if the exponent is < —1. Substituting the expression for 8, in (6.1) and
rearranging terms, this happens exactly when

(17 (2 1)) 22 2 o
m] mj Y Y

Consider the left hand side of (6.2). Since 0 < 1 <m; — 1,

by Proposition 6.1. Thus

nj—l nj 1 nj—l
1+ +h|——=))=pr(l+ - B
m;j m;j 4 m;j

However since p > 2, we can always choose j large enough so that

nj—2 2
pl1+ >24 —.
mj Y
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Thus, (6.2) is satisfied for such j, which shows B, (f;) ¢ L?(H,,).

We now show that the unique multi-index 8 = (81, B2) € Afni /n; with 0 < g1 <
mj — 1 and B, given by (6.1) is necessarily in A)z,. We will leave off the subscript j
in what follows.

Again, the rational approximation |2 1

1 . .
. 7‘ < - is essential. If %' > y, then

A2(Hyp/m) C A%(H,) so automatically B € A]z/. Suppose instead that 2 < y.
Lemma 3.2 implies that 8 € A)% if and only if B; > 0 and the lattice point cor-
responding to B lies strictly above the line

But since 2 € Q, a multi-index 8 € A2, if and only if both 8; > 0 and the lattice

m/n
point corresponding to 8 lies on or above the line

1—
h(Br) = ——f1 + — — 1.
m
Now for0 < 81 <m — 1,
1 n 1
h(B)—gB)=——B1+1 (———)
m m oy
1 (n 1)
>——m|———
m m oy
>0

From this it follows that 8 = (81, B2) € .AJ2,.

Since p > 2 was arbitrary, the above shows that B,, is not L? bounded for any
p > 2. Lemma 5.7 now shows B, is not L” bounded for any 1 < p < 2, which
completes the proof. O
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