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Abstract Regularity and irregularity of the Bergman projection on L p spaces is
established on a natural family of bounded, pseudoconvex domains. The family is
parameterized by a real variable γ . A surprising consequence of the analysis is that,
whenever γ is irrational, the Bergman projection is bounded only for p = 2.
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1 Introduction

For γ > 0, define the domain

Hγ :=
{
(z1, z2) ∈ C2 : |z1|γ < |z2| < 1

}
, (1.1)

and call Hγ the power-generalized Hartogs triangle of exponent γ . The domain H1
is the classical Hartogs triangle.
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The primary purpose of this paper is to show that the Bergman projection of Hγ ,
Bγ , is L p bounded for only a restricted range of p ∈ (1,∞). Our goal is to directly
relate the L p boundedness to the exponent γ and explain how this restricted range is
tied to the boundary singularity at (0, 0).

The results here extend [12], which dealt with the special case of γ ∈ Z+. For
general γ , the L p boundedness ofBγ turns out to be fundamentally different depending
on whether γ ∈ Q or not. The fact that this arithmetical property of γ effects mapping
properties of Bγ was surprising, and motivated the writing of this paper.

When γ ∈ Q, Bγ is L p bounded for a non-degenerate interval of p about 2:

Theorem 1.1 Let m, n ∈ Z+ with gcd(m, n) = 1. The Bergman projection Bm/n is a

bounded operator from L p(Hm/n) to Ap(Hm/n) if and only if p ∈
(

2m+2n
m+n+1 ,

2m+2n
m+n−1

)
.

However when γ /∈ Q, the L p mapping of Bγ completely degenerates:

Theorem 1.2 Let γ > 0 be irrational. The Bergman projection Bγ is a bounded
operator from L p(Hγ ) to Ap(Hγ ) if and only if p = 2.

A secondary purpose of this paper is to show the Bergman kernel ofHγ has zeroes
for all γ ≥ 2. This extends a theorem in [11] for the cases γ ∈ Z+, γ ≥ 2. It was also
shown in [11] that the Bergman kernel of H1/k , k ∈ Z+, does not have zeroes, i.e.,
H1/k is a Lu Qi-Keng domain in the terminology of [5]. Theorem 3.8 below reduces
the question of when the Bergman kernels associated to Hγ have zeroes to the case
where 1 < γ < 2; see Remark 3.9. But this last question remains unsolved.

The Bergman kernel of Hγ is computed in Sect. 3 by summing an orthonormal
basis for A2 (Hγ

)
. When γ = m

n ∈ Q+, the summation occurs by grouping together
monomials based on their exponent’s distance to a certain critical line in the lattice
Z2. The geometric representation of this we call the lattice point diagram of Hγ and
is described in Sect. 3. This leads to m sub-Bergman kernels

Bm/n(z, w) = K0(z, w) ⊕ K1(z, w) ⊕ · · · ⊕ Km−1(z, w), (1.2)

where Bm/n is the full Bergman kernel of Hγ , and to explicit formulas for each
subkernel K j . It follows from these formulas that Bm/n(z, w) is a rational function
of (z, w) ∈ Hγ × Hγ . It is intriguing that the denominators of the sub-Bergman
kernels K j are identical for 0 ≤ j ≤ m − 1. In any case, once the expressions for K j
are in hand, the L p boundedness range of their associated operators, K j , are proved
following the methods used in [12]. Theorem 1.1 follows by taking the smallest range
amongst all K j , 0 ≤ j ≤ m − 1.

The method used in [11] to compute Bk(z, w), k ∈ Z+, was different: there the
first author used Bell’s transformation formula for the Bergman kernel under proper
maps [4] and fairly elaborate algebraic manipulations to compute the Bergman kernel
ofHk . The difficulty in executing these algebraic arguments for γ /∈ Z+, the existence
of the kernel decomposition (1.2), and the general power of the lattice point diagram
recommended the method used in Sect. 3.

When γ /∈ Q, the Bergman kernel ofHγ is not a rational function, but we obtain an
explicit enough formula to do further analysis, in particular to determine the existence
of zeroes and to prove Theorem 1.2.
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2660 L. D. Edholm, J. D. McNeal

There are two additional points about methods that seem noteworthy. First,
some basic facts from number theory are used at multiple points in the arguments.
Congruence of integers and residue systems occur in the proof of Theorem 3.4, Propo-
sitions 4.6, and 5.6, while Dirichlet’s theorem on rational approximation of γ /∈ Q
is used in Sect. 6. Although these facts are elementary, they also seem intrinsically
connected our results. For example, the fact that Dirichlet’s theorem gives a quadratic
estimate (in the denominator) between γ /∈ Q and m

n is crucial for our proof of Theo-
rem 1.2 in Sect. 6. Second, care is taken in Sect. 4.1 to identify the size estimates of a
general kernel onHm/n needed to conclude L p boundedness of its operator. The expo-
nent A in that subsection is the essential parameter. Other natural kernels on Hm/n ,
e.g., the Szegö kernel as well as non-holomorphic kernels, can thus be analyzed via
Sect. 4.1.

There are antecedents to Theorem 1.1, besides [12]. Note that the domains Hγ are
pseudoconvex, but the boundary ofHγ , bHγ , is not smooth. The serious singularity is
at (0, 0), near which bHγ is not the graph of a continuous function; points of the form(
eia, eib

)
, a, b ∈ R are also non-smooth, but of a milder, polydisk-like type. Lanzani

and Stein [17] studied different classes of domains " ⊂ C, classified by severity
of non-smoothness of the boundaries. Limited L p boundedness of B", analogous to
Theorem 1.1, is shown for certain classes. Krantz and Peloso [16] showed that the
Bergman projection on non-smooth versions of the worm domain has limited L p

boundedness. In [7], Chakrabarti and Zeytuncu proved the result corresponding to
Theorem 1.1 for H1, with a different proof than in [12]. In [8], Chen considers a
different generalization of the Hartogs triangle than our Hγ and establishes limited
L p boundedness in that situation. Perhaps the most significant overlap with our work
is [25] and [26]. Zeytuncu constructs particular non-smooth Hartogs domains, some
exhibiting the limited range of L p boundedness of the type in Theorem 1.1 and others
with the degeneracy of Theorem 1.2. However the differences between our results and
[25,26] are also significant. Zeytuncu’s degenerate L p boundedness stems from his
domains having exponential cusps at their boundary: see [26, Theorem 1.2], for the
essential, weighted one-variable result (which is lifted toC2 in the usual way to give an
unweighted result). Our domains Hγ , on the other hand, have only a polynomial-like
singularity at (0, 0). And the degenerate L p boundedness in Theorem 1.2 comes from
the fact that γ is not rational, rather than exponential vanishing at the boundary. A
result that encompasses both our Theorem 1.2 and Zeytuncu’s in [26, Theorem 1.2] is
lacking, but would be very interesting.

For many classes of pseudoconvex domains with smooth boundary, it is known that
the Bergman projection maps L p boundedly for all p ∈ (1,∞), see [18–23] and their
references for the principal results. But recently, restricted L p boundedness similar to
Theorem 1.1 has also been shown on smoothly bounded worm domains, [3]. Versions
of these domains were originally defined in [10]. We also mention an earlier result
of Barrett, [2], of a smoothly bounded non-pseudoconvex domain whose Bergman
projection has a restricted range of L p boundedness.
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2 Notation

If" ⊂ Cn is a domain, letO(") denote the holomorphic functions on". The standard
L2 inner product is denoted

⟨ f, g⟩ =
∫

"
f · ḡ dV, (2.1)

where dV denotes Lebesgue measure on Cn . For p > 0,

L p(") =
{

f :
(∫

"
| f |p dV

) 1
p

:= ∥ f ∥p < ∞
}

denotes the usual Lebesgue space of p-th power integrable functions. When p = 2 we
drop the subscript on the norm, i.e., ∥ f ∥2 = ⟨ f, f ⟩. The Bergman spaces are denoted
Ap(") = O(") ∩ L p(").

The Bergman projection B" : L2(") −→ A2(") is the orthogonal projection
operator. It is elementary that this operator is self-adjoint with respect to the inner
product (2.1). The Bergman kernel, denoted B"(z, w), satisfies

B" f (z) =
∫

"
B"(z, w) f (w) dV (w), f ∈ L2(").

Given an orthonormal Hilbert space basis {φα}α∈A for A2("), the Bergman kernel is
given by the following formula:

B"(z, w) =
∑

α∈A
φα(z)φα(w). (2.2)

Recall that " ⊂ Cn is a Reinhardt domain if for every z = (z1, z2, . . . , zn) ∈ ",
it also holds that (eiθ1 z1, eiθ2 z2, . . . , eiθn zn) ∈ ", where θ1, θ2, . . . , θn are arbitrary
real numbers. See [15] for a detailed treatment of analysis on these domains. Given a
Reinhardt domain ", define the Reinhardt shadow of " to be the set

ω := {(r1, r2, . . . , rn) ∈ Rn : r j ≥ 0, (r1, r2, . . . , rn) ∈ "}.

The power-generalized Hartogs triangles (1.1) are clearly Reinhardt domains. For
these domains, Bγ and Bγ (z, w) will denote BHγ and BHγ (z, w), respectively. As
usual, the operator Bγ is extended to supersets of L2 (Hγ

)
by setting

Bγ f (z) =
∫

Hγ

Bγ (z, w) f (w) dV (w),

whenever the integral is defined. We still refer to Bγ as the Bergman projection, even
when acting on L p (Hγ

)
for p ∈ (1, 2).
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2662 L. D. Edholm, J. D. McNeal

Two pieces of notational shorthand will also be used. If D and E are functions
depending on several variables, D ! E will signify that there exists a constant K > 0,
independent of relevant variables, such that D ≤ K · E . The independence of which
variables will be specified (or clear) in context. Also, D ≈ E stands for D ! E ! D.
If x ∈ R, ⌊x⌋ will denote the greatest integer ≤ x .

3 Decomposing the Bergman Space

3.1 Allowable Indices

Let γ be any positive real number. Since Hγ is Reinhardt, every f ∈ O
(
Hγ

)
has a

unique Laurent expansion

f (z) =
∑

α∈A
aαzα,

where A is the set of multi-indices {α = (α1,α2) ∈ Z2 : α1 ≥ 0}. Since z2 ̸= 0 on
Hγ , α2 is allowed to be any negative integer. Imposing square integrability, however,
restricts the range of α2 allowed in the sum.

Definition 3.1 Say a multi-index α is γ -allowable if the monomial zα ∈ A2(Hγ ). Let
A2

γ denote the set of γ -allowable multi-indices.

It follows that
{
zα : α ∈ A2

γ

}
is an orthogonal basis for A2(Hγ ).We nowdetermine

the set A2
γ , and calculate the norms of these monomials.

Lemma 3.2 For any γ ∈ R+,

(i) A2
γ = {(α1,α2) : α1 ≥ 0, α1 + γ (α2 + 1) > −1} .

(ii) For α ∈ A2
γ ,

c2γ ,α :=
∥∥zα

∥∥2 = γπ2

(α1 + 1)2 + γ (α1 + 1)(α2 + 1)
. (3.1)

Proof Let Hγ be the Reinhardt shadow of Hγ . Using polar coordinates,

∫

Hγ

|zα11 zα22 |2 dV = 4π2
∫

Hγ

r2α1+1
1 r2α2+1

2 dr

= 4π2
∫ 1

0

∫ r
1
γ
2

0
r2α1+1
1 r2α2+1

2 dr1 dr2

= 2π2

α1 + 1

∫ 1

0
r

1
γ (2α1+2)+2α2+1
2 dr2. (3.2)
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This integral converges if and only if 1
γ (2α1 + 2)+ 2α2 + 1 > −1. Notice that

1
γ
(2α1 + 2)+ 2α2 + 1 > −1 ⇔ α1 + γ (α2 + 1) > −1,

so (i) holds.
Furthermore, when the integral (3.2) converges, it equals

π2

α1 + 1
· 1

1
γ (α1 + 1)+ (α2 + 1)

= γπ2

(α1 + 1)2 + γ (α1 + 1)(α2 + 1)
.

Thus, (3.1) holds. ⊓4

A similar result holds for Ap
γ , the multi-indices α such that zα ∈ Ap

(
Hγ

)
. The

direct analog of (3.2) shows that (α1,α2) ∈ Ap
γ if and only if α1 ≥ 0 and

1
γ
(pα1 + 2)+ pα2 + 1 > −1

⇔ α2 > − 1
γ

α1 − 2
p

− 2
γ · p . (3.3)

Remark 3.3 In [28, Lemma 5], Zwonek has characterized the monomials in A2(R)
for more general Reinhardt domains R than our domains Hγ . The characterization
involves cone considerations in the logarithmic image of R. A similar characterization
of the indicesAp(R) is given in [29]. It is easily checked that condition (3.3) coincides
with Zwonek’s for the domains Hγ .

When γ = m
n ∈ Q+, the strict inequality defining (α1,α2) ∈ A2

γ can be re-
expressed as a non-strict inequality:

A2
m/n =

{
(α1,α2) : α1 ≥ 0, α1 +

m
n
(α2 + 1) > −1

}

= {(α1,α2) : α1 ≥ 0, nα1 + mα2 ≥ −m − n + 1} . (3.4)

The simple step of passing to this closed condition on α2 is crucial for our subsequent
work in the rational case. Notice this step is not possible if γ /∈ Q+.

It is convenient to interpret the multi-indices inA2
m/n geometrically, as an explicitly

closed subset of the lattice Z2 using the second representation in (3.4). Thus, zα ∈
A2(Hm/n) if and only if α1 ≥ 0, and α = (α1,α2) ∈ Z2 lies on or above the line

α2 = − n
m

α1 +
1 − n − m

m
. (3.5)

Call this subset of Z2 the lattice point diagram associated to A2
m/n . Monomials cor-

responding to the fourth quadrant of the lattice point diagram, i.e., those lattice points
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2664 L. D. Edholm, J. D. McNeal

where α2 < 0, play an essential role in the analysis to follow. The boundary lines
described by (3.5), corresponding to γ = 1, 2, 3, are illustrated below.

α1

α2 γ = 1 γ = 2 γ = 3

(0,0)

The lattice point diagram indicates a useful way to decompose A2(Hm/n). When
γ = m

n , gcd(m, n) = 1, split the Bergman space into m orthogonal subspaces

A2(Hm/n) = S0 ⊕ S1 ⊕ · · · ⊕ Sm−1, (3.6)

where S j is the subspace spanned by monomials of the form zα , where α1 ≡ j
mod m. Let

G j =
{
α = (α1,α2) ∈ A2

m/n : α1 ≡ j (mod m)
}
. (3.7)

That the decomposition (3.6) is orthogonal follows from the fact thatHm/n is Reinhardt
and G j ∩ Gk = ∅ if j ̸= k. Each S j is a closed subspace of A2(Hm/n), thus a Hilbert
space. Therefore the orthogonal projection, L2(Hm/n) −→ S j , is well defined and
represented by integration against a kernel, K j . It follows that

Bm/n(z, w) = K0(z, w) ⊕ K1(z, w) ⊕ · · · ⊕ Km−1(z, w). (3.8)

Call each K j a sub-Bergman kernel. In the next subsection, we shall focus on the
subspacesS j and explicitly compute each K j in closed form. For any rational exponent
γ , (3.8) then implies an explicit expression for Bγ (z, w).

For irrational γ , the absence of a finite decomposition like (3.8) is the reason the
methods in this paper do not imply an explicit closed form expression for the Bergman
kernel ofHγ . After L p mapping properties of the operators associated to the subkernels
K j are proved, it will also be clear that the lack of (3.8) is the cause of the difference
between Theorems 1.1 and 1.2.

3.2 Computing the Sub-Bergman Kernels

Let γ = m
n ∈ Q+, gcd(m, n) = 1. For each j = 0, . . . ,m − 1, let K j be the sub-

Bergman kernel of Bm/n given by (3.8) and S j the subspace in (3.6). By definition,
{zαc−1

γ ,α : α ∈ G j } is an orthonormal basis for S j , where G j is given by (3.7) and
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cγ ,α by (3.1). It follows that K j can be written as the following sum, which converges
normally on Hm/n × Hm/n :

K j (z, w) =
∑

α∈G j

zαw̄α

c2m/n,α
. (3.9)

We now compute this sum in closed form:

Theorem 3.4 Let m, n ∈ Z+ be relatively prime. The sub-Bergman kernel K j of the
domain Hm/n is given by

K j (z, w) = n
mπ2 · f j (s, t)g j (t)s j tn−1−E j

(1 − t)2(tn − sm)2
, (3.10)

where s = z1w̄1, t = z2w̄2, E j =
⌊
( j+1)n−1

m

⌋
, and f j and g j are the polynomials

f j (s, t) = ( j + 1)tn + (m − j − 1)sm, (3.11)

g j (t) =
(
j + 1 − m

n
E j

)
+
(m
n

+ m
n
E j − j − 1

)
t. (3.12)

Proof First we find K j (z, z), then use polarization to move off the diagonal. Working
on the diagonal bypasses the ambiguity of raising a complex number to a fractional
exponent. Therefore, until the last two lines of the proof, let s = |z1|2, t = |z2|2. Also
fix t1/m to be the positive real root.

Starting from (3.9) and using (3.1) and (3.5),

K j (z, z) =
∑

α∈G j

sα1 tα2

c2m/n,α

= n
mπ2

∑

α1∈R j

∑ [
(α1 + 1)2 + m

n
(α1 + 1)(α2 + 1)

]
sα1 tα2 , (3.13)

where R j := {α1 ≥ 0 : α1 = j mod m} and the inner sum is taken over integers
α2 with α2 ≥ − nα1

m + 1−n−m
m . We want to compute the smallest such integer, called

ℓ( j). Notice that

−nα1

m
+ 1 − n − m

m
= −1 − n(α1 − j)

m
− ( j + 1)n − 1

m
,

and since α1 ≡ j mod m, it follows that

ℓ( j) = −1 − n(α1 − j)
m

− E j . (3.14)
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Therefore,

(2.13) = n
mπ2

∑

α1∈R j

∞∑

α2=ℓ( j)

[
(α1 + 1)2 + m

n
(α1 + 1)(α2 + 1)

]
sα1 tα2

= n
mπ2

∑

α1∈R j

∞∑

α2=ℓ( j)

(α1 + 1)2sα1 tα2

+ 1
π2

∑

α1∈R j

∞∑

α2=ℓ( j)

(α1 + 1)(α2 + 1)sα1 tα2

:= n
mπ2 I ( j)+

1
π2 J ( j).

It remains to compute the sums I ( j) and J ( j). Let u := st−n/m , and note that both
0 < |t | < 1 and |u| < 1. Summation of I ( j) is straightforward:

I ( j) =
∑

α1∈R j

(α1 + 1)2sα1

∞∑

α2=ℓ( j)

tα2 = 1
1 − t

∑

α1∈R j

(α1 + 1)2sα1 tℓ( j)

= tn j/m−1−E j

1 − t
·
∑

α1∈R j

(α1 + 1)2uα1

= tn j/m−1−E j

1 − t
· d
du

(
u
d
du

(
u j+1

1 − um

))
.

(3.15)

Summation of J ( j) is slightly more involved. First, split the sum into two pieces:

J ( j) =
∑

α1∈R j

(α1 + 1)sα1

∞∑

α2=ℓ( j)

(α2 + 1)tα2

=
∑

α1∈R j

(α1 + 1)sα1

[
tℓ( j)+1

(1 − t)2
+ (ℓ( j)+ 1)tℓ( j)

1 − t

]

= t
(1 − t)2

∑

α1∈R j

(α1 + 1)sα1 tℓ( j) + 1
1 − t

∑

α1∈R j

(α1 + 1)(ℓ( j)+ 1)sα1 tℓ( j)

:= J1( j)+ J2( j).
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For the first piece, it follows

J1( j) =
tn j/m−E j

(1 − t)2
∑

α1∈R j

(α1 + 1)uα1

= tn j/m−E j

(1 − t)2
· d
du

(
u j+1

1 − um

)
. (3.16)

For the second piece,

J2( j) =
tn j/m−1−E j

1 − t

∑

α1∈R j

(α1 + 1) (ℓ( j)+ 1) uα1

= tn j/m−1−E j

1 − t

⎡

⎣
(
nj
m

− E j

) ∑

α1∈R j

(α1 + 1)uα1 − n
m

∑

α1∈R j

(α1 + 1)α1uα1

⎤

⎦

= tn j/m−1−E j

1 − t

[(
nj
m

− E j

)
· d
du

(
u j+1

1 − um

)
− n

m
· u d2

du2

(
u j+1

1 − um

)]
.

(3.17)

Using Leibniz’s rule, (3.15) and (3.17) can be combined more simply as

I ( j)+ m
n
J2( j) =

tn j/m−1−E j

1 − t

(
j + 1 − m

n
E j

)
· d
du

(
u j+1

1 − um

)
.

Combining this with (3.16), we now have

K j (z, z) =
n

mπ2

[
I ( j)+ m

n
J2( j)+

m
n
J1( j)

]

= n
mπ2 · g j (t) ·

tn j/m−1−E j

(1 − t)2
· d
du

(
u j+1

1 − um

)
, (3.18)

where g j (t) := j + 1 − m
n E j + (mn + m

n E j − j − 1)t .
Finally,

(2.18) = n
mπ2 · g j (t) ·

tn j/m−1−E j

(1 − t)2
· u j

(1 − um)2
·
(
j + 1+ (m − j − 1)um

)

= n
mπ2 · g j (t) ·

s j t−1−E j

(1 − t)2
· t2n

(tn − sm)2
·
(
j + 1+ (m − j − 1)um

)

= n
mπ2 · f j (s, t)g j (t) ·

s j tn−1−E j

(1 − t)2(tn − sm)2
, (3.19)

where f j (s, t) := ( j + 1)tn + (m − j − 1)sm . This establishes the desired formula
for K j (z, z).
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Polarization now gives the formula for K j (z, w), substituting s = z1w̄1 and t =
z2w̄2 into equation (3.19). See [9, Sect. 1.1.5] for an explanation of polarization in
this context. ⊓4

The decomposition (3.8) now yields

Corollary 3.5 Let m, n ∈ Z+ be relatively prime. The Bergman kernel ofHm/n is the
explicit rational function

Bm/n(z, w) =
m−1∑

j=0

K j (z, w),

where each K j (z, w) is calculated in Theorem 3.4.

3.3 The Lu Qi-Keng Problem

In general, the Lu Qi-Keng problem is to determine which domains " ⊂ Cn have
vanishing Bergman kernel. See [6] for background and more information. In [11], the
problem is solved for the domains Hk and H1/k , k ∈ Z+:

Theorem 3.6 Let k ∈ Z+. The Bergman kernel B1/k(z, w) ̸= 0 ∀(z, w) ∈ H1/k ×
H1/k .

Theorem 3.7 Let k ≥ 2 be a positive integer. The Bergman kernel Bk(z, w) has zeroes
inside Hk × Hk .

Using the explicit form of the orthonormal basis on A2 (Hγ

)
, Theorem 3.7 can be

extended to non-integer exponents

Theorem 3.8 Let γ ≥ 2. The Bergman kernel Bγ (z, w) has zeroes inside Hγ × Hγ .

Proof First let γ = m
n > 2 be rational, gcd(m, n) = 1. Write, as before, s = z1w̄1

and t = z2w̄2.
For j = 1, . . . ,m − 1, the positive exponent of s in (3.10) shows that

K j ((0, z2), (0, w2)) = 0.

Thus, all but the sub-Bergman kernel K0 in the decomposition (3.8) vanish identically
on the variety {s = 0}. For this sub-Bergman kernel,

K0((0, z2), (0, w2)) =
n

mπ2 · 1+
(m
n − 1

)
t

t (1 − t)2
.

The numerator obviously vanishes when t = −(mn − 1)−1. It is easily checked that

(z0, w0) =
((

0, i
(m
n

− 1
)−1/2

)
,

(
0,−i

(m
n

− 1
)−1/2

))
∈ Hm/n × Hm/n,

and that Bm/n(z0, w0) = 0, so this case is complete.

123



Bergman Subspaces and Subkernels 2669

Now let γ > 2 be irrational. A2(Hγ ) does not admit the finite decomposition (3.8);
however, a similar simplification to that used above occurs when Bγ (z, w) is restricted
to the variety {s = 0}. Starting with

Bγ (z, w) = 1
γπ2

∑

α∈A2
γ

[(α1 + 1)2 + γ (α1 + 1)(α2 + 1)]sα1 tα2 ,

it follows that

Bγ ((0, z2), (0, w2)) =
1

γπ2

∞∑

α2=−1

tα2 + 1
π2

∞∑

α2=−1

(α2 + 1)tα2

= 1
γπ2 · 1+ (γ − 1)t

t (1 − t)2
.

Recalling that γ > 2, it is checked as before that

(
z0, w0

)
=
((

0, i(γ − 1)−1/2
)
,
(
0,−i(γ − 1)−1/2

))
∈ Hγ × Hγ .

Since Bγ

(
z0, w0) = 0 by inspection, this case is complete as well.

The case γ = 2 is covered by Theorem 3.7. However the point obtained above
for γ > 2 does not work for B2, since

(
(0, i(γ − 1)−1/2), (0,−i(γ − 1)−1/2)

)

lies on the boundary of Hγ × Hγ when γ = 2. But it is easy to check that

B2

(
( i√

2
,

√
7+i
4 ), ( −i√

2
,

√
7−i
4 )

)
= 0 and this point lies inside H2 × H2. ⊓4

Remark 3.9 In order to answer the Lu Qi-Keng question for allHγ , γ > 0, we use the
fact that a vanishing Bergman kernel is a biholomorphic invariant. The map )(z) =
(z1z2, z2) is a biholomorphismofHγ ontoHγ /(γ+1)with inverseψ(z1, z2) = ( z1z2 , z2).
Applying ) recursively yields the following chain of equivalent domains:

) ) ) ) )

Hγ " Hγ /(1+γ ) " Hγ /(1+2γ ) " · · · " Hγ /(1+kγ ) " · · ·
ψ ψ ψ ψ ψ

A similar chain of domains appeared in [11, Sects. 3.2 and 4.1]. Theorem 3.8
now implies the Bergman kernel of Hγ has zeroes for γ ∈ [ 23 , 1) ∪ [ 25 , 1

2 ) ∪ · · · ∪
[ 2
2k+1 ,

1
k ) ∪ · · · , k ∈ Z+. The right end points appearing in this union are all sharp,

since Theorem 3.6 says the Bergman kernel is non-vanishing for γ = 1
k , k ∈ Z+.

The remaining open case is for γ ∈ (1, 2)∪ ( 12 ,
2
3 )∪ · · ·∪ ( 1k ,

2
2k−1 )∪ · · · , k ∈ Z+.

By considering the same chain of biholomorphisms above, it is sufficient to investigate
the question for γ ∈ (1, 2).
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4 The Rational Case: L p Boundedness

4.1 Type-A Operators on Hm/n

Our proof of L p boundedness of Bm/n does not use holomorphicity of the Bergman
kernel. It only involves size estimates of Bm/n(z, w) so it also applies to a general
class of operators whose kernels satisfy these estimates. It turns out that the exponent,
A, of the (polarized) euclidean distance from z ∈ Hm/n to the origin in these estimates
determines the range of p for L p boundedness. This motivates the definition below.

If " ⊂ Cn is a domain and K is an a.e. positive, measurable function on " × ",
let K denote the integral operator with kernel K :

K( f )(z) =
∫

"
K (z, w) f (w) dV (w). (4.1)

Definition 4.1 For A ∈ R+, callK an operator of type-A onHm/n if its kernel satisfies

|K (z1, z2, w1, w2)| ! |z2w̄2|A

|1 − z2w̄2|2
∣∣zn2w̄

n
2 − zm1 w̄

m
1

∣∣2
, (4.2)

for a constant independent of (z, w) ∈ Hm/n × Hm/n .

The basic L p mapping result is the following:

Proposition 4.2 If K is an operator of type-A on Hm/n, then K : L p (Hm/n
)

−→
L p (Hm/n

)
boundedly if

2n + 2m
Am + 2n + 2m − 2nm

< p <
2n + 2m

2nm − Am
, (4.3)

whenever both denominators in (4.3) are positive and Am + 2n + 2m − 2nm >

2nm − Am.

Remark 4.3 (i) While seemingly complicated at first glance, the bounding terms on
p in (4.3) express the natural interplay between the exponent A and the kind of
singularity bHm/n has at (0, 0).

(ii) The exponents A obtained for the sub-Bergman kernelswill automatically satisfy
the positivity conditions mentioned after (4.3).

(iii) If A → 2n, the bounding terms in (4.3) tend to 1 and ∞, respectively. Thus, an
operator of type-2n on Hm/n is L p bounded for all 1 < p < ∞. This holds for
any m ∈ Z+.

(iv) The bounding terms in (4.3) are conjugate Hölder exponents. If, in (4.2), |z2w̄2|A
is replaced by |z2|c|w2|d for c ̸= d, this Hölder symmetry will be broken but a
result similar to Proposition 4.2 can be obtained.

Some preliminary results are needed before proving Proposition 4.2.
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4.1.1 An Estimate on BD

Proving Proposition 4.2 requires analyzing integrals over the domain Hm/n . Since
Hm/n is rotationally symmetric, a one-dimensional estimate on the Bergman kernel on
the unit disk in C can be used to effectively estimate these two-dimensional integrals.

The essential estimate below (without |w|−β in the integrand) has been re-
discovered many times, see for instance [8,13,24,27]. The proofs in these sources
use well-known, but non-trivial, asymptotic results to derive the estimate. A more
elementary proof is presented here; this proof simplifies one given in [12].

Proposition 4.4 Let D ⊂ C be the unit disk, ϵ ∈ (0, 1) and β ∈ (−∞, 2).
Then for z ∈ D,

Iϵ,β(z) :=
∫

D

(1 − |w|2)−ϵ

|1 − zw̄|2 |w|−β dV (w) ! (1 − |z|2)−ϵ,

with constant independent of z.

Proof Since |w|−β ≤ 1 if β ∈ (−∞, 0), this range of β reduces to establishing the
estimate for β = 0. From now on, β ∈ [0, 2).

Consider first an arbitrary |z| ≤ 1
2 . Then |1 − zw̄| ≥ 1 − |zw̄| ≥ 1

2 , so

Iϵ,β(z) ≤ 4
∫

D
(1 − |w|2)−ϵ |w|−β dV (w)

= 4π
∫ 1

0
(1 − u)−ϵu−β/2 du < ∞.

Since this bound is independent of z, the desired estimate holds.
Next consider |z| > 1

2 . Set c = 1
2|z| and split the integral:

Iϵ,β(z) =
∫

|w|≤c

(1 − |w|2)−ϵ

|1 − zw̄|2 |w|−β dV (w)+
∫

|w|>c

(1 − |w|2)−ϵ

|1 − zw̄|2 |w|−β dV (w)

:= I1 + I2.

For I1, |1 − zw̄| ≥ 1 − |zw̄| ≥ 1
2 . Hence

I1 ≤ 4
∫

|w|≤c
(1 − |w|2)−ϵ |w|−β dV (w) < 4

∫

D
(1 − |w|2)−ϵ |w|−β dV (w) < ∞.

Thus I1 satisfies the required estimate.
It remains to show that I2 does too. Since 1

2 < |z| < 1, obviously 1
2 < c < 1 and

consequently 1
2 < |w| < 1 throughout I2. For β ∈ [0, 2), it follows that 1 ≤ |w|−β <

4. Thus
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I2 ≤ 4
∫

|w|>c

(1 − |w|2)−ϵ

|1 − zw̄|2 dV (w).

Now

∫

|w|>c

(1 − |w|2)−ϵ

|1 − zw̄|2 dV (w) =
∫ 1

c
r(1 − r2)−ϵ

[∫ 2π

0

dθ

1 − 2r |z| cos θ + r2|z|2
]
dr.

(4.4)

Evaluation of the integral in brackets may be done by residue calculus. Let a =
1+ r2|z|2, b = 2r |z|, w = eiθ , and - denote the unit circle.

∫ 2π

0

dθ
1 − 2r |z| cos θ + r2|z|2 =

∫ 2π

0

dθ
a − b cos θ

= 1
i

∫

-

w−1dw
a − b(w + w−1)/2

= −2
i

∫

-

dw
bw2 − 2aw + b

.

The polynomial in the denominator has two roots, only one of which is contained
in the unit circle. Indeed, a > b and

∣∣∣∣∣
a −

√
a2 − b2

b

∣∣∣∣∣ =
∣∣∣∣

b

a +
√
a2 − b2

∣∣∣∣ < 1.

Denote this root by ζ . Using the residue theorem and L’Hospital’s rule,

−2
i

∫

-

dw
bw2 − 2a + b

= −4π lim
w→ζ

(w − ζ ) · 1
bw2 − 2aw + b

= − 2π
bζ − a

= 2π√
a2 − b2

= 2π
(1 − r2|z|2) .

Therefore, returning to (4.4),

I2 !
∫ 1

c
r(1 − r2)−ϵ(1 − r |z|)−1 dr.

A trivial over-estimate of I2 now yields the desired estimate:

I2 !
∫ |z|

0
r(1 − r2)−ϵ(1 − r |z|)−1 dr +

∫ 1

|z|
r(1 − r2)−ϵ(1 − r |z|)−1 dr

:= J1 + J2.
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Since 0 ≤ r ≤ |z|, it follows that

J1 <
∫ |z|

0
r(1 − r |z|)−ϵ−1 dr = − 1

|z|

∫ 1−|z|2

1
u−ϵ−1 du

! (1 − |z|2)−ϵ .

The fact that r ≤ 1 implies

J2 < (1 − |z|)−1
∫ 1

|z|
r(1 − r2)−ϵ dr ! (1 − |z|)−1(1 − |z|2)1−ϵ

! (1 − |z|2)−ϵ .

Together, these estimates show I2 ! (1 − |z|2)−ϵ , which completes the proof. ⊓4

4.1.2 An Extension of Schur’s Lemma

The sub-Bergman kernels K j are not uniformly in L1 (Hm/n
)
, i.e., there is no constant

independent of z such that
∫

Hm/n

∣∣K j (z, w)
∣∣ dV (w) ≤ C.

See (4.9) below.This prevents a direct application ofHölder’s inequality from implying
L p boundedness of K j .

A variant of Schur’s lemma, proved in [12], will instead be used to prove L p

boundedness. The difference between this result and Schur’s classical lemma (see, e.g.,
[21]) is the explicit relationship between the range of exponents of the test function h
and the range of p for which L p boundedness can be concluded.

Lemma 4.5 (Version of Schur’s Lemma [12]) Let " ⊂ Cn, K and K associated
via (4.1). Suppose there exists a positive auxiliary function h on ", and numbers
0 < a < b such that for all ϵ ∈ [a, b), the following estimates hold:

(i) K(h−ϵ)(z) ! h(z)−ϵ and
(ii) K(h−ϵ)(w) ! h(w)−ϵ,

with constants independent of z, w ∈ ".
Then K is a bounded operator on L p("), for all p ∈ ( a+b

b , a+b
a ).

As with other versions of Schur’s lemma, the inherent advantage of Lemma 4.5 is
the latitude of choosing the auxiliary function h.

4.1.3 The Auxiliary Function; Proof of Proposition 4.2

On the power-generalized Hartogs triangle Hm/n , define

h(z) =
(
|z2|2n − |z1|2m

)
(1 − |z2|2). (4.5)

This function (essentially) measures the distance of z ∈ Hm/n to bHm/n .
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Proof of Proposition 4.2 Let K be an operator of type-A on Hm/n ; assume
Am + 2n + 2m − 2nm, 2nm − Am > 0 and Am + 2n + 2m − 2nm > 2nm − Am.

Let ϵ > 0 be momentarily unrestricted; restrictions on ϵ will emerge shortly. From
(4.2)

K
(
h−ϵ

)
(z) !

∫

Hm/n

|z2w̄2|A
(
|w2|2n − |w1|2m

)−ϵ (1 − |w2|2
)−ϵ

|1 − z2w̄2|2|zn2w̄n
2 − zm1 w̄

m
1 |2

dV (w)

=
∫

D∗

|z2w̄2|A
(
1 − |w2|2

)−ϵ

|1 − z2w̄2|2

×
[∫

W

(
|w2|2n − |w1|2m

)−ϵ

|zn2w̄n
2 − zm1 w̄

m
1 |2

dV (w1)

]

dV (w2). (4.6)

Here D∗ = {w2 : 0 < |w2| < 1} and the region W = {w1 : |w1| < |w2|n/m}, where
w2 is considered fixed. Denote the integral in brackets by I . Then

I = 1
|z2|2n|w2|2n+2nϵ

∫

W

(

1 −
∣∣∣∣
wm
1

wn
2

∣∣∣∣
2
)−ϵ ∣∣∣∣1 − zm1 w̄

m
1

zn2w̄
n
2

∣∣∣∣
−2

dV (w1).

Make the substitution u = wm
1

wn
2
. This transformation sends W to m copies of D, the

unit disk in the u-plane. Proposition 4.4 yields

I = |w2|2n/m−2n−2nϵ

m|z2|2n
∫

D

(1 − |u|2)−ϵ

∣∣1 − zm1 z
−n
2 ū

∣∣2
· |u|2/m−2 dV (u)

! |w2|2n/m−2n−2nϵ

|z2|2n

(

1 −
∣∣∣∣
zm1
zn2

∣∣∣∣
2
)−ϵ

= |w2|2n/m−2n−2nϵ

|z2|2n−2nϵ

(
|z2|2n − |z1|2m

)−ϵ
.

Returning to (4.6), we have

K
(
h−ϵ

)
(z) ! |z2|A+2nϵ−2n

(
|z2|2n − |z1|2m

)−ϵ
∫

D∗

(1 − |w2|2)−ϵ

|1 − z2w̄2|2
|w2|β dV (w2),

where β = A+2n/m−2n−2nϵ. This will be favorably estimated by Proposition 4.4
if β > −2. That is, if

ϵ <
1
2n

[
A + 2n

m
− 2n + 2

]
, (4.7)

123



Bergman Subspaces and Subkernels 2675

then

K
(
h−ϵ

)
(z) ! |z2|A+2nϵ−2n

(
|z2|2n − |z1|2m

)−ϵ
(1 − |z2|2)−ϵ

= |z2|A+2nϵ−2n · h(z)−ϵ .

In order for the first factor in this expression to be bounded, the exponent must be
non-negative, i.e.,

ϵ ≥ 1 − A
2n

. (4.8)

Thus, if a = 1 − A
2n and b = 1

2n

[
A + 2n

m − 2n + 2
]
, the above shows that

K
(
h−ϵ

)
(z) ! h(z)−ϵ ∀ϵ ∈ [a, b).

Lemma 4.5, and elementary algebra on the endpoints a, b, then show thatK is bounded
on L p for the range of p stated in Proposition 4.2. ⊓4

4.2 Mapping Properties of Sub-Bergman Projections

From the polynomial expressions (3.11), (3.12), and the fact that |s|m < |t |n < 1
when (z, w) ∈ Hm/n × Hm/n , the estimates

| f j (s, t)| ! |t |n, |g j (t)| ! 1,

are valid, for constants independent of (z, w) ∈ Hm/n × Hm/n . Consequently, the
sub-Bergman kernel K j satisfies the estimate

∣∣K j (z, w)
∣∣ ! |t |2n−1−E j+ nj

m

|1 − t |2|tn − sm |2 . (4.9)

From this, L p boundedness of each sub-Bergman projection K j : L2(Hm/n) → S j
follows:

Proposition 4.6 For all p ∈ ( 2m+2n
m−mE j+2n+ jn ,

2m+2n
m+mE j−nj ), K j is a bounded operator

on L p(Hm/n).

Proof This comes immediately from Proposition 4.2 by taking A = 2n−1−E j + nj
m .
⊓4

The range of L p boundedness for the full Bergman projection is obtained by taking
the “worst” range associated to the sub-Bergman projections given by Proposition 4.6.
To see this explicitly, recall that E j =

⌊
( j+1)n−1

m

⌋
, so

n( j + 1) − 1
m

− 1 < E j ≤ n( j + 1) − 1
m

∀ j ∈ {0, . . . ,m − 1}.
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As m and n are relatively prime, elementary number theory, [14, Theorem 57, page
51], gives a unique x ∈ {0, . . . ,m − 1} such that

n x ≡ 1 (mod m).

Note that x ̸= 0 or m − 1. Setting j0 = x − 1, it follows that

E j0 =
n( j0 + 1) − 1

m
, (4.10)

and for all j ̸= j0 in {0, . . . ,m − 1},

E j <
n( j + 1) − 1

m
.

ThusmE j0 −nj0 = n−1 and Proposition 4.6 says thatK j0 is bounded on L p
(
Hm/n

)

for p ∈ ( 2m+2n
m+n+1 ,

2m+2n
m+n−1 ). It also says that the sub-Bergman projections K j , j ̸= j0,

are L p bounded for a larger Hölder symmetric interval about 2. Therefore, from (3.8)
we obtain

Corollary 4.7 The Bergman projectionBm/n is a bounded operator on L p(Hm/n) for

all p ∈
(

2m+2n
m+n+1 ,

2m+2n
m+n−1

)
.

The observations on E j and E j0 , and (4.9), also yield the following estimate on the
full Bergman kernel

|Bm/n(z, w)| ! |t |2n−1+ 1−n
m

|1 − t |2|tn − sm |2 . (4.11)

Remark 4.8 In the next section, the range of L p boundedness inCorollary 4.7 is shown
to be sharp. This implies estimate (4.11) is optimal.

Remark 4.9 We emphasize that the L p boundedness results in this section do not
require cancelation properties of the kernels involved. Thus Proposition 4.6 and Corol-
lary 4.7 also apply to the operators associated to |K j (z, w)| and

∣∣Bm/n(z, w)
∣∣. It is

interesting that, in all known cases where one implication can be proved, it holds that
B" is bounded on L p(") if and only if |B"| is also bounded on L p("). See [1,18,21]
for further information. This equivalence is of course false for more general operators,
e.g., the Szegö projection or Cauchy–Leray integral.

5 The Rational Case: L p Non-Boundedness

As in [12], we shall show that Bm/n fails to be L p bounded (for the range of p
indicated in Theorem 1.1) by exhibiting a single function f ∈ L∞ (

Hm/n
)
such that

Bm/n f /∈ L p (Hm/n
)
.
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The initial step is based on orthogonality and does not require γ to be rational.
Namely, the rotational symmetry of Hγ implies that Bγ acts in a simple fashion on
certain monomials in z1 and z̄2:

Proposition 5.1 If both (β1,β2) and (β1,−β2) belong to A2
γ , then there exists a

constant C such that

Bγ

(
zβ11 z̄ β2

2

)
= C zβ11 z−β2

2 .

Proof Let f (z) = zβ11 z̄ β2
2 ,A = A2

γ ,H = Hγ , and H be the Reinhardt shadow ofHγ

for short. A straightforward computation yields

Bγ ( f )(z) =
∫

H

∑

α∈A

zαw̄α

c2α
f (w) dV (w)

=
∑

α∈A

zα

c2α

∫

H
w

β1
1 w̄

α1
1 w̄

α2+β2
2 dV (w)

=
∑

α∈A

zα

c2α

∫

H
rα1+β1+1
1 eiθ1(β1−α1)rα2+β2+1

2 e−iθ2(β2+α2) dr dθ

=
∑

α∈A

zα

c2α

(∫ 2π

0
eiθ1(β1−α1) dθ1

)

×
(∫ 2π

0
e−iθ2(β2+α2) dθ2

)(∫

H
rα1+β1+1
1 rα2+β2+1

2 dr
)

=Czβ11 z−β2
2 ,

where C is a constant. ⊓4

When γ ∈ Q+, a similar result on the subspaces S j holds, by the same proof:

Proposition 5.2 If both (β1,β2) and (β1,−β2) belong to G j for some j ∈
{0, 1, . . . ,m − 1}, then there exists a constant C such that

Kl

(
zβ11 z̄ β2

2

)
=
{
C zβ11 z−β2

2 , l = j
0, l ̸= j,

for all l ∈ {0, 1, . . . ,m − 1}.

Let m, n ∈ Z+ be relatively prime. Multi-indices (α1,α2) lying on the boundary
line (3.5) of the lattice point diagram of Hm/n , i.e., those indices satisfying α2 =
− n

mα1 − 1+ 1−n
m , are “just barely” in A2

m/n . The case
m
n = 3

2 is illustrated below:
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α1

α2

m
n = 3

2

(0,0)

There are three pieces of useful information that may be extracted from this lattice
point diagram. First, consider the vertical line α1 = M , M ∈ Z+, and the lattice
point on it that is closest to the boundary line α2 = − n

mα1 − 1+ 1−n
m (i.e., the points

circled in the picture above). The α2 coordinate of this point was also defined in (3.14).
The monomial corresponding to this point, (M, ℓ(M)), has the smallest range of L p

integrability, p > 2, among all the monomials corresponding to lattice points on
α2 = M , α2 ≥ − n

mα1 − 1+ 1−n
m . Second, this range of L p integrability is the same

for all vertical lines α1 = M + km, for k ∈ Z+. Finally, the closer the circled lattice
point is to the boundary line, the smaller the range p > 2 for which zα ∈ L p (Hm/n

)
.

When it actually lies on the boundary line, the monomial zα corresponding to this
lattice point has the smallest range of L p integrability for all α ∈ A2

m/n .
The following results detail these observations:

Proposition 5.3 Let (M, ℓ(M)) ∈ A2
m/n, where ℓ(M) is described above or, equiva-

lently, defined by (3.14). Let p > 2.
If zM1 zℓ(M)

2 ∈ L p (Hm/n
)
, then zM1 zα22 ∈ L p (Hm/n

)
for all α2 ≥ ℓ(M).

Proof Obvious, since
∣∣zα22

∣∣ =
∣∣∣zℓ(M)

2

∣∣∣ · |z2|α2−ℓ(M) and |z2|α2−ℓ(M) ∈ L∞ (
Hm/n

)
. ⊓4

Proposition 5.4 If N ≡ M (mod m) and zM1 zℓ(M)
2 ∈ L p (Hm/n

)
, then zN1 zℓ(N )

2 ∈
L p (Hm/n

)
.

Furthermore,

∥∥∥zN1 zℓ(N )
2

∥∥∥
p
=
∥∥∥zM1 zℓ(M)

2

∥∥∥
p
.

Proof By (3.3), the hypothesis implies

ℓ(M) > − n
m
M − 2

p
− 2n

mp
.
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If N = M+ km, for k ∈ Z+, the lattice point diagram shows that ℓ(N ) = ℓ(M)− kn.
Thus

kn + ℓ(N ) = ℓ(M) > − n
m
M − 2

p
− 2n

mp

= − n
m
(N − km) − 2

p
− 2n

mp
.

This implies that (N , ℓ(N )) satisfies (3.3), so zN1 zℓ(N )
2 ∈ L p (Hm/n

)
.

The equality of the L p norms follows by computing both expressions in polar
coordinates. ⊓4
Proposition 5.5 For each j ∈ {0, 1, . . . ,m−1}, the sub-Bergman projectionK j does
not map L∞(Hm/n) to L p(Hm/n) for any p ≥ 2m+2n

m+mE j−nj .

Proof Fix j , and take β1 = j + km for some k ∈ Z+ ∪ {0}. Let β2 = ℓ(β1), and note
that (3.14) says that

β2 = −1 − nk − E j < 0.

Thus, (β1,β2), (β1,−β2) ∈ G j . Let f (z) = zβ11 z̄−β2
2 ; clearly f ∈ L∞ (

Hm/n
)
. Propo-

sition 5.2 says that K j f = Czβ11 zβ22 .
Computing in polar coordinates

∫

H

∣∣∣zβ11 zβ22

∣∣∣
p
dV (z) = 4π2

∫

H
r pβ1+1
1 r pβ2+1

2 dV (z)

≈
∫ 1

0
r pβ2+1
2

∫ rn/m2

0
r pβ1+1
1 dr1 dr2

≈
∫ 1

0
r
pβ2+1+ npβ1

m + 2n
m

2 dr2.

This integral diverges when

pβ2 + 1+ npβ1

m
+ 2n

m
≤ −1. (5.1)

Substituting β1 = j + km and β2 = −1 − nk − E j , (5.1) becomes

− p
(
m + mE j − nj

)
≤ −2n − 2m. (5.2)

However, since E j =
⌊
n( j+1)−1

n

⌋
,

m + mE j − nj > m + m
{
n( j + 1) − 1

m
− 1

}
− nj

= n − 1 ≥ 0,

so (5.2) is equivalent to p ≥ 2m+2n
m+mE j−nj , which completes the proof. ⊓4
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Proposition 5.6 For p ≥ 2m+2n
m+n−1 , Bm/n fails to map L∞(Hm/n) to L p(Hm/n).

Proof Since gcd(m, n) = 1, the equation nx ≡ 1 (mod m) has a unique solution
x ∈ {0, . . .m − 1}. By the same modular arithmetic that led to (4.10), there exists a
unique multi-index ( j0, ℓ( j0)) satisfying

0 ≤ j0 ≤ m − 1

ℓ( j0) = − n
m

j0 − 1+ 1 − n
m

, (5.3)

i.e., the lattice point ( j0, ℓ( j0)) lies on the boundary line determining A2
m/n . Propo-

sition 5.5 says that K j0 does not map the bounded function g(z) = z j01 z̄−ℓ( j0)
2 to

L p(Hm/n) for p ≥ 2m+2n
m+n−1 . On the other hand, Proposition 5.2 says that K j (g) = 0

for all j ̸= j0. Thus, (3.8) gives the claimed result. ⊓4
To obtain L p non-boundedness for p < 2, recall an elementary consequence of the

self-adjointness of the Bergman projection (in the ordinary L2 inner product):

Lemma 5.7 Let" be a domain and let p > 1. IfBmaps L p(") to Ap(") boundedly,
then it also maps Lq(") to Aq(") boundedly, where 1

p + 1
q = 1.

Proof Let f ∈ Lq("). Then

∥B f ∥q = sup
∥g∥p=1

|⟨B f, g⟩| = sup
∥g∥p=1

|⟨ f,Bg⟩|

≤ sup
∥g∥p=1

(
∥ f ∥q∥Bg∥p

)
! ∥ f ∥q .

⊓4
Proposition 5.6 and Lemma 5.7 give the other half of Theorem 1.1:

Corollary 5.8 Bm/n is not aboundedoperator on L p(Hm/n) for p /∈( 2m+2n
m+n+1 ,

2m+2n
m+n−1 ).

6 The Irrational Case: Degenerate L p Mapping

The plausibility of Theorem 1.2 is suggested by Theorem 1.1. If γ /∈ Q, we may
approximate γ by rationals m

n withm+n tending to infinity (keeping gcd(m, n) = 1).
Theorem 1.1 shows both that the interval of L p boundedness of Bm/n depends on
m + n and that this interval shrinks to the point 2 as m + n → ∞.

To actually prove Theorem 1.2, a more quantified version of this argument is nec-
essary. For this, we use a classical theorem of Dirichlet on diophantine approximation.
This result is proved, for instance, in [14] as Theorem 187 on page 158.

Proposition 6.1 (Dirichlet) If γ is irrational, there exists a sequence of rational

numbers
{
m j
n j

}
, with m j

n j
→ γ , such that

∣∣∣∣
n j

m j
− 1

γ

∣∣∣∣ <
1

m2
j

.
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Proof of Theorem 1.2 Fix p > 2. We will exhibit an f ∈ L∞(Hγ ) such that Bγ ( f ) /∈
L p(Hγ ).

Let
{
m j
n j

}
be a sequence of rational numbers given by Proposition 6.1. Temporarily

fix the index j . From (5.3), there exists a unique β = (β1,β2) ∈ A2
m j /n j

with 0 ≤
β1 ≤ m j − 1 and such that

β2 =
1 − n jβ1 − n j − m j

m j
∈ Z. (6.1)

Assume for the moment that this multi-index β ∈ A2
γ . We will shortly show this is

always the case.
Let f j (z) := zβ11 /z̄β22 ; as β2 < 0, f j ∈ L∞(Hγ ). Since we are assuming β ∈ A2

γ ,

Proposition 5.1 implies Bγ ( f j )(z) ≈ zβ11 zβ22 . It follows that

∥Bγ ( f j )∥p
L p(Hγ )

≈
∫

Hγ

|zβ1 p1 zβ2 p2 | dV (z) = 4π2
∫

Hγ

rβ1 p+1
1 rβ2 p+1

2 dr

≈
∫ 1

0
rβ2 p+1
2

∫ r1/γ2

0
rβ1 p+1
1 dr1 dr2

≈
∫ 1

0
r
β2 p+1+ β1 p

γ + 2
γ

2 dr2.

This diverges if the exponent is ≤ −1. Substituting the expression for β2 in (6.1) and
rearranging terms, this happens exactly when

p
(
1+ n j − 1

m j
+ β1

(
n j

m j
− 1

γ

))
≥ 2+ 2

γ
. (6.2)

Consider the left hand side of (6.2). Since 0 ≤ β1 ≤ m j − 1,

β1

∣∣∣∣
n j

m j
− 1

γ

∣∣∣∣ <
1
m j

,

by Proposition 6.1. Thus

p
(
1+ n j − 1

m j
+ β1

(
n j

m j
− 1

γ

))
≥ p

(
1+ n j − 1

m j
− β1

∣∣∣∣
n j

m j
− 1

γ

∣∣∣∣

)

> p
(
1+ n j − 2

m j

)
.

However since p > 2, we can always choose j large enough so that

p
(
1+ n j − 2

m j

)
> 2+ 2

γ
.

123



2682 L. D. Edholm, J. D. McNeal

Thus, (6.2) is satisfied for such j , which shows Bγ ( f j ) /∈ L p(Hγ ).
We now show that the unique multi-index β = (β1,β2) ∈ A2

m j /n j
with 0 ≤ β1 ≤

m j − 1 and β2 given by (6.1) is necessarily in A2
γ . We will leave off the subscript j

in what follows.
Again, the rational approximation

∣∣∣ nm − 1
γ

∣∣∣ < 1
m2 is essential. If m

n > γ , then

A2(Hm/n) ⊂ A2(Hγ ) so automatically β ∈ A2
γ . Suppose instead that m

n < γ .
Lemma 3.2 implies that β ∈ A2

γ if and only if β1 ≥ 0 and the lattice point cor-
responding to β lies strictly above the line

g(β1) := −β1

γ
− 1

γ
− 1.

But since m
n ∈ Q+, a multi-index β ∈ A2

m/n if and only if both β1 ≥ 0 and the lattice
point corresponding to β lies on or above the line

h(β1) := − n
m

β1 +
1 − n
m

− 1.

Now for 0 ≤ β1 ≤ m − 1,

h(β1) − g(β1) =
1
m

− (β1 + 1)
(
n
m

− 1
γ

)

≥ 1
m

− m
(
n
m

− 1
γ

)

> 0.

From this it follows that β = (β1,β2) ∈ A2
γ .

Since p > 2 was arbitrary, the above shows that Bγ is not L p bounded for any
p > 2. Lemma 5.7 now shows Bγ is not L p bounded for any 1 < p < 2, which
completes the proof. ⊓4
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