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THE BERGMAN PROJECTION ON FAT HARTOGS

TRIANGLES: Lp BOUNDEDNESS

L. D. EDHOLM AND J. D. MCNEAL

(Communicated by Franc Forstneric)

Abstract. A class of pseudoconvex domains in Cn generalizing the Hartogs

triangle is considered. The Lp boundedness of the Bergman projection associ-
ated to these domains is established, for a restricted range of p depending on
the “fatness” of domains. This range of p is shown to be sharp.

1. Introduction

For k ∈ Z+, define the domain Ωk ⊂ C2 by

(1.1) Ωk := {(z1, z2) ∈ C
2 : |z1|k < |z2| < 1},

and call Ωk the fat Hartogs triangle of exponent k. When k = 1, (1.1) is the classical
Hartogs triangle, a well-known example of a pseudoconvex domain with non-trivial
Nebenhülle. As k → ∞, Ωk becomes “fatter”, filling out the product domain D×D∗

in the limit, where D = {z : |z| < 1} is the unit disc and D∗ = {z : 0 < |z| < 1} the
punctured unit disc in C.

The purpose of this paper is to establish how the Bergman projection acts on
the Lebesgue spaces Lp (Ωk). If Ap (Ωk) ⊂ Lp (Ωk) denotes the closed subspace of
holomorphic functions, let Bk : L2(Ωk) → A2(Ωk) denote the Bergman projection
(orthogonal projection) associated to Ωk. Our main result is:

Theorem 1.2. The Bergman projection Bk is a bounded operator from Lp(Ωk) to
Ap(Ωk) if and only if p ∈ ( 2k+2

k+2 ,
2k+2

k ).

The most notable aspect of our result comes by comparison with the known
behavior of the Bergman projection associated to smoothly bounded, pseudoconvex
domains. There is no general result for all such domains, but Lp mapping properties
of the Bergman projection have been determined for large classes of domains, a
subset of the family of finite type domains defined in [4]. See [17], [13], [15], [16],
[9] for the principal results. In all these cases, the Bergman projection is bounded
on Lp for all 1 < p < ∞. In two more recent works, [6] and [12], the Bergman
projection is also shown to be bounded for the full range 1 < p < ∞ on some
domains with less smooth boundary, but only for strongly pseudoconvex domains
in this class. Our domains Ωk are bounded and pseudoconvex. But in contrast
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to the situations above, the boundary of Ωk, bΩk, has a serious singularity at the
origin. Indeed, bΩk cannot be represented as the graph of a continuous function
in a neighborhood of (0, 0). This boundary singularity causes the limited range of
Lp boundedness in Theorem 1.2, though our present understanding of this matter
is only phenomenological. Determining how the type of boundary singularity of a
domain limits Lp mapping behavior of its Bergman projection remains an intriguing
open problem, and is highly connected to many other questions in complex analysis.
We do point out that our result shows a somewhat surprising degeneracy of an
analytic property relative to limits of domains. Namely, note that the range of
Lp boundedness for Bk in Theorem 1.2 shrinks to 2 as k → ∞, even though the
domains Ωk tend set-theoretically to the domain D×D∗, whose Bergman projection
is Lp bounded for all 1 < p < ∞.

Several interesting, recent papers overlap with our work. Zeytuncu, [19], con-
structed bounded domains in C

n whose Bergman projection is only bounded on Lp

for a restricted range of p, namely a Hölder symmetric interval of values centered
at 2. He also constructed domains whose Bergman projection is only bounded on
Lp for p = 2. In [1], Chakrabarti and Zeytuncu consider the classical Hartogs
triangle, Ω1 above, and prove Lp boundedness for the Bergman projection corre-
sponding to Theorem 1.2 for the case k = 1. They also observed a new phenomena
on B1 related to its weighted Lp mapping behavior. In [2], Chen generalizes the
Hartogs triangle differently than (1.1), essentially considering domains of the form
{(z1, z2) ∈ Ω× C : |φ (z1)| < |z2| < 1} for φ : Ω → D a biholomorphic map onto
D ⊂ C. He then obtains Lp boundedness of the Bergman projection for the same
restricted range of p as [1] shows for the Hartogs triangle. Earlier examples of re-
stricted Lp mapping behavior of the Bergman projection on specific domains were
given by Lanzani and Stein, [11], and Krantz and Peloso, [10].

The situation considered in this paper differs from that in [1] and [2] in one
important respect: the domains Ωk are not biholomorphic to D × D∗ if k > 1.
Indeed, the first author shows in [5] that the Bergman kernel associated to Ωk has
zeroes if k > 1, while the Bergman kernel of D × D∗ is known to be zero-free.
Thus, to prove Theorem 1.2 we must directly address the Bergman projection on
Ωk, rather than transfer to D ×D∗ as done in [1] and [2].

There is a general, though technical, point in our proofs below that seems worth
noting. Once the crucial estimate on the Bergman kernel of Ωk, (2.2), is in hand,
we focus on suitably decomposing Ωk in order to get the desired integral estimates.
This basic method is derived from [15], and is used particularly in Lemma 3.2
and Lemma 3.4. The method displays the interplay between the singularity of the
Bergman kernel and the shape of Ωk most clearly, thus showing how to generalize
the mapping result to other kernels or to the Bergman kernel on domains other
than Ωk. For an example of the former, see Corollary 3.5. The semi-classical proofs
of the Lp boundedness of BΩ – for Ω the disc in C, the ball in Cn, or the polydisc in
C

n, see [18], [8], [2] – are based on power series computations and the asymptotics
of the Gamma or Beta functions, which are less amenable for generalization to
domains without circular symmetry.
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2. Preliminaries

If Ω ⊂ Cn is a domain, let O(Ω) denote the holomorphic functions on Ω. The
standard L2 inner product will be denoted

(2.1) 〈f, g〉 =
∫
Ω

f · ḡ dV

where dV denotes Lebesgue measure on Cn. L2(Ω) denotes the measurable func-
tions f such that 〈f, f〉 = ‖f‖2 < ∞ and A2(Ω) = O(Ω) ∩ L2(Ω).

The Bergman projection associated to Ω will be written BΩ, or B if Ω is clear,
and is the orthogonal projection operator B : L2(Ω) −→ A2(Ω). It is elementary
that B is self-adjoint with respect to the inner product (2.1). The Schwarz kernel
of BΩ is the Bergman kernel, denoted BΩ(z, w), which satisfies

BΩf(z) =

∫
Ω

BΩ(z, w)f(w) dV (w), f ∈ L2(Ω).

For p > 0, denote

Lp(Ω) =

{
f :

(∫
Ω

|f |p dV
) 1

p

:= ‖f‖p < ∞
}

and let Ap(Ω) = O(Ω) ∩ Lp(Ω).
Finally, we use the following notation to simplify writing various inequalities.

If A and B are functions depending on several variables, write A � B to signify
that there exists a constant K > 0, independent of relevant variables, such that
A ≤ K · B. The independence of which variables will be clear in context. Also
write A ≈ B to mean that A � B � A.

2.1. The Bergman kernel on fat Hartogs triangles. The Bergman kernel for
the fat Hartogs triangle of exponent k ∈ Z+ is explicitly computed in [5], and its
formula underlies the work done in this paper. Let Bk denote the Bergman kernel
on Ωk, and for simplicity write s := z1w̄1, t := z2w̄2. Then

Bk(z, w) =
pk(s)t

2 + qk(s)t+ skpk(s)

kπ2(1− t)2(t− sk)2
,

where pk and qk are polynomials given by

pk(s) =

k−1∑
n=1

n(k − n)sn−1, qk(s) =

k∑
n=1

(n2 + (k − n)2sk)sn−1.

Since Ωk is a bounded domain where |s|k < |t| < 1, it follows that Bk satisfies the
crucial estimate

(2.2) |Bk(z, w)| � |t|
|1− t|2|t− sk|2 .

2.2. Boundedness and dual spaces. The fact that the Bergman projection is
self-adjoint, together with Hölder’s inequality, shows that the range of p for which
B is Lp bounded is symmetric about L2:

Lemma 2.3. Let Ω be a bounded domain and let p > 1. If B maps Lp(Ω) to Ap(Ω)
boundedly, then it also maps Lq(Ω) to Aq(Ω) boundedly, where 1

p + 1
q = 1.
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Proof. This follows from a standard duality argument. Let f ∈ Lq(Ω). Then

‖Bf‖q = sup
‖g‖p=1

|〈Bf, g〉| = sup
‖g‖p=1

|〈f,Bg〉|

≤ sup
‖g‖p=1

(‖f‖q‖Bg‖p) � ‖f‖q.

�

2.3. A version of Schur’s lemma. The term on the right-hand side of the esti-
mate (2.2) is not integrable on Ωk, which prevents the classical Young’s test for Lp

boundedness to be used in our case. See, e.g., [7] Theorem 0.10 for Young’s test and
[3] for some generalizations of it. However, the bounding term just barely fails to
be integrable; a computation shows that its L1 norm (in w) is essentially bounded
by − log δ(z) near 0, where δ(z) is the distance of z to bΩk. In this situation, a
substitute for Young’s test, due to Schur, can be used to give Lp boundedness. See,
e.g., [15]. We shall need a modification of Schur’s lemma, which relates the range
of exponents ε of the auxiliary function and the mapping classes Lp.

Lemma 2.4 (Schur’s lemma). Let Ω ⊂ Cn be a domain, K be an a.e. positive,
measurable function on Ω×Ω, and K be the integral operator with kernel K. Suppose
there exists a positive auxiliary function h on Ω, and numbers 0 < a < b such that
for all ε ∈ [a, b), the following estimates hold:

K(h−ε)(z) :=

∫
Ω

K(z, w)h(w)−ε dV (w) � h(z)−ε,

K(h−ε)(w) :=

∫
Ω

K(z, w)h(z)−ε dV (z) � h(w)−ε.

Then K is a bounded operator on Lp(Ω), for all p ∈ (a+b
b , a+b

a ).

Proof. Let p and q be finite conjugate exponents, and temporarily say that q ≤ 2 ≤
p. Let g ∈ Lp(Ω), and s ∈ [a, b) be a yet to be specified number. Then Hölder’s
inequality gives

|K(g)(z)|p ≤
( ∫

Ω

K(z, w)|g(w)|ph(w)sp/q dV (w)

)( ∫
Ω

K(z, w)h(w)−s dV (w)

)p/q

�
( ∫

Ω

K(z, w)|g(w)|ph(w)sp/q dV (w)

)
h(z)−sp/q.

Now integrate in the z variable to find∫
Ω

|K(g)(z)|p dV (z) �
∫
Ω

∫
Ω

K(z, w)|g(w)|ph(w)sp/qh(z)−sp/q dV (w) dV (z)

=

∫
Ω

( ∫
Ω

K(z, w)h(z)−sp/q dV (z)

)
h(w)sp/q|g(w)|p dV (w)

�
∫
Ω

|g(w)|p dV (w),

where the last line is guaranteed to hold if and only if we can choose s ∈ [a, b) so
that sp

q ∈ [a, b) as well. This is equivalent to saying ap
q = a(p−1) < b, i.e. p < a+b

a .

Now let g ∈ Lq(Ω) and repeat the estimations above with p and q switched. This
time, we are able to conclude that ‖K(g)‖q � ‖g‖q, provided that we can choose
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s ∈ [a, b) so that sq
p ∈ [a, b) as well. This is only possible if bq

p = b(q − 1) > a, i.e.

q > a+b
b . We finish by removing the restriction that p ≥ 2. �

Remark 2.5. In practice, the auxiliary function h(w) will vanish on the set where
the kernel K(z, w) is singular (or large, as a function of z). Thus the product
K(z, w)h(w)−ε is more singular than K(z, w), but its L1 norm in w is now algebraic
rather than logarithmic in δ(z). See Remark 3.3.

3. Lp
mapping properties

3.1. Non-Lp boundedness.

Theorem 3.1. Let p ≥ 1 be any number outside of the interval ( 2k+2
k+2 ,

2k+2
k ). Then

the Bergman projection Bk is not a bounded operator on Lp(Ωk).

Proof. In [5] it is shown that the set of monomials of the form zα for the multi-
indices α ∈ Ak = {(α1, α2) : α1 ≥ 0, α1 + k(α2 + 1) > −1} form an orthogonal
basis for A2(Ωk). Therefore, we can write the Bergman kernel as

Bk(z, w) =
∑
α∈Ak

zαw̄α

c2k,α
,

where ck,α is a normalizing constant. Now set f(z) := z̄2; this is a bounded function
on Ωk, so f ∈ Lp(Ωk) for all p ≥ 1. It follows that

Bk(f)(z) =

∫
Ωk

Bk(z, w)f(w) dV (w) =

∫
Ωk

∑
α∈Ak

zαw̄α

c2k,α
· f(w) dV (w)

=
∑
α∈Ak

zα

c2k,α

∫
Ωk

w̄α1
1 w̄α2+1

2 dV (w)

=
∑
α∈Ak

zα

c2k,α

∫
Ωk

rα1
1 e−iθ1α1rα2+1

2 e−iθ2(α2+1)r1r2 dr dθ

=
∑
α∈Ak

zα

c2k,α

(∫ 2π

0

e−iθ1α1 dθ1

) (∫ 2π

0

e−iθ2(α2+1) dθ2

)

·
(∫

ωk

rα1+1
1 rα2+2

2 dr

)

=
C

z2
,

where ωk = {(r1, r2) ∈ R2 : r1 ≥ 0, rk1 < r2 < 1}. Here C is a constant, and we
used the fact that θ integrals vanish unless α1 = 0, α2 = −1. Thus,

‖Bk(f)‖pp ≈
∫
Ωk

1

|z2|p
=

∫
Ωk

1

rp2
r1r2 dr = 4π2

∫
ωk

r1r
1−p
2 dr

= 4π2

∫ 1

0

r1−p
2

∫ r
1/k
2

0

r1 dr1 dr2

= 2π2

∫ 1

0

r
1−p+ 2

k
2 dr2.
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This integral diverges when p ≥ 2k+2
k , so Bk(f) /∈ Lp(Ωk) for this range of

p. Lemma 2.3 says that Bk also fails to be a bounded operator on Lp(Ωk) when
p ∈ (1, 2k+2

k+2 ]. �

3.2. An estimate related to BD. As a prelude for constructing the auxiliary
function needed in Schur’s lemma, we first establish an integral estimate on the
Bergman kernel of the unit disc in C, BD(z, w). Note the piece of the integrand
below (1 − |w|2) corresponding to the defining function for D. The factor |w|−β

in the integrand is needed because of a Jacobian factor in the proof of Lemma 3.4
below.

Lemma 3.2. For z ∈ D, the unit disk in C, let ε ∈ (0, 1) and β ∈ [0, 2). Then

Iε,β(z) :=
∫
D

(1− |w|2)−ε

|1− zw̄|2 |w|−β dV (w) � (1− |z|2)−ε.

Proof. This result has been re-discovered many times; see for instance [18], [20],
[2], with a proof based on power series. We give a different proof here.

First consider the case when |z| ≤ 1
2 . Then |1− zw̄| ≥ 1− |zw̄| ≥ 1

2 , and so

Iε,β(z) ≤ 4

∫
D

(1− |w|2)−ε|w|−β dV (w)

= 4π

∫ 1

0

(1− u)−εu−β/2 du < ∞.

Since this integral is bounded by a constant independent of z, the desired estimate
holds.

Now let |z| > 1
2 , and for the rest of this proof let c := 1

2|z| . Now split up the

integral into two pieces, called I1 and I2:

Iε,β(z) =
∫
|w|≤c

(1− |w|2)−ε

|1− zw̄|2 |w|−β dV (w) +

∫
|w|>c

(1− |w|2)−ε

|1− zw̄|2 |w|−β dV (w)

:= I1 + I2.

For I1, notice that |1− zw̄| ≥ 1− |zw̄| ≥ 1
2 , and thus

I1 ≤ 4

∫
|w|≤c

(1− |w|2)−ε|w|−β dV (w) < 4

∫
D

(1− |w|2)−ε|w|−β dV (w) < ∞,

and so I1 satisfies the required estimate.
It remains to be seen that I2 does too. Since 1

2 < |z| < 1, it must be that
1
2 < c < 1, and consequently, 1

2 < |w| < 1 throughout all of I2. So for β ∈ [0, 2),

we have that 1 ≤ |w|−β < 4. This lets us make the estimate

I2 ≤ 4

∫
|w|>c

(1− |w|2)−ε

|1− zw̄|2 dV (w).

Now,∫
|w|>c

(1− |w|2)−ε

|1− zw̄|2 dV (w) =

∫ 1

c

r(1− r2)−ε

[ ∫ 2π

0

dθ

1− 2r|z| cos θ + r2|z|2

]
dr

= 2

∫ 1

c

r(1− r2)−ε

[ ∫ π

0

dθ

1− 2r|z| cos θ + r2|z|2

]
dr.
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Now, estimate the integral in brackets by using the fact that sinφ ≥ 2φ
π for φ ∈

[0, π2 ], along with the half-angle formula:∫ π

0

dθ

1− 2r|z| cos θ + r2|z|2 <

∫ π

0

dθ

(1− r|z|)2 + 2θ2

π2

= (1− r|z|)−2

∫ π

0

dθ

1 + 2
π2

(
θ

1−r|z|
)2

< (1− r|z|)−1

∫ ∞

0

du

1 + 2
π2 u2

� (1− r|z|)−1.

Therefore, we have that

I2 �
∫ 1

c

r(1− r2)−ε(1− r|z|)−1 dr.

For reasons that will soon be apparent, we want to have |z| in the bounds of our
integral. Unfortunately, |z| and c = 1

2|z| aren’t comparable quantities. So we make

one more trivial over-estimate on I2 and split this into two pieces, called J1 and J2:

I2 �
∫ |z|

0

r(1− r2)−ε(1− r|z|)−1 dr +

∫ 1

|z|
r(1− r2)−ε(1− r|z|)−1 dr

:= J1 + J2.

Now for J1, since 0 ≤ r ≤ |z|, we can say that

J1 <

∫ |z|

0

r(1− r|z|)−ε−1 dr = − 1

|z|

∫ 1−|z|2

1

u−ε−1 du

� (1− |z|2)−ε.

Finally, for J2, since we know that r ≤ 1,

J2 < (1− |z|)−1

∫ 1

|z|
r(1− r2)−ε dr � (1− |z|)−1(1− |z|2)1−ε

� (1− |z|2)−ε.

This means that I2 � (1− |z|2)−ε. Therefore, Iε,β(z) satisfies the desired estimate
for all z ∈ D. �

Remark 3.3. Now that we’ve done an explicit computation, we can illuminate Re-
mark 2.5. Let δ(z) = δD(z) denote the distance of z to bD, and |BD| be the integral
operator with kernel |BD| ≈ |1− zw̄|−2. With a slight modification to the proof of
Lemma 3.2, we see that for z sufficiently close to bD,

(i) |BD| [1] (z) � − log δ(z) and
(ii) |BD| [δ−ε] (z) � δ−ε(z).

Further, the inclusion of an integrable singular function with singularity away from
bD doesn’t change these asymptotic estimates:

(iii) |BD|
[

1
|w|β

]
(z) � − log δ(z), β ∈ [0, 2), and

(iv) |BD|
[
δ(w)−ε

|w|β

]
(z) � δ−ε(z), β ∈ [0, 2).
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These inequalities hold in much greater generality, i.e., for many Ω ⊂ Cn and BΩ

besides Ω = D.

3.3. The auxiliary function for Schur’s lemma. An auxiliary function adapted
to the domain Ωk for which we can apply Schur’s lemma is now constructed. The
function h in the following lemma essentially measures the distance of z ∈ Ωk to
the boundary.

Lemma 3.4. Let k ∈ Z
+, h(z) := (|z2|2 − |z1|2k)(1 − |z2|2), and Bk(z, w) denote

the Bergman kernel of Ωk. Then for all ε ∈
[
1
2 ,

k+2
2k

)
and any z ∈ Ωk, we have that

|Bk|(h−ε)(z) :=

∫
Ωk

|Bk(z, w)|h−ε(w) dV (w) � h−ε(z).

Proof. From estimate (2.2), we see that

|Bk|(h−ε)(z) �
∫
Ωk

|z2w̄2|(|w2|2 − |w1|2k)−ε(1− |w2|2)−ε

|1− z2w̄2|2|z2w̄2 − zk1 w̄
k
1 |2

dV (w)

=

∫
D∗

|z2w̄2|(1− |w2|2)−ε

|1− z2w̄2|2

[ ∫
W

(|w2|2 − |w1|2k)−ε

|z2w̄2 − zk1 w̄
k
1 |2

dV (w1)

]
dV (w2),

where the outside integral is the over region D∗ := {w2 : 0 < |w2| < 1} and the
integral in brackets is over the region W := {w1 : |w1| < |w2|1/k}, where w2 is
considered to be fixed. Denote the integral in brackets by A and focus on this:

A =
1

|z2|2|w2|2+2ε

∫
W

(
1−

∣∣∣∣wk
1

w2

∣∣∣∣
2)−ε∣∣∣∣1− zk1 w̄

k
1

z2w̄2

∣∣∣∣
−2

dV (w1).

Make the substitution u =
wk

1

w2
. This transformation sends W to k copies of D,

the unit disc in the u-plane. Lemma 3.2 now yields

A =
|w2|2/k−2−2ε

k|z2|2
∫
D

(1− |u|2)−ε

|1− zk1z
−1
2 ū|2

· |u|2/k−2 dV (u)

� |w2|2/k−2−2ε

|z2|2

(
1−

∣∣∣∣zk1z2
∣∣∣∣
2)−ε

=
|w2|2/k−2−2ε

|z2|2−2ε
(|z2|2 − |z1|2k)−ε.

This means that

|Bk|(h−ε)(z) � |z2|2ε−1(|z2|2 − |z1|2k)−ε

∫
D∗

(1− |w2|2)−ε

|1− z2w̄2|2
|w2|2/k−1−2ε dV (w2)

� |z2|2ε−1(|z2|2 − |z1|2k)−ε(1− |z2|2)−ε,

where the last line holds if and only if the conditions on Lemma 3.2 hold. This
happens when 2

k − 1− 2ε > −2, i.e. k+2
2k > ε. Finally,

|Bk|(h−ε)(z) � |z2|2ε−1(|z2|2 − |z1|2k)−ε(1− |z2|2)−ε ≤ h(z)−ε

for all z ∈ Ωk whenever ε ≥ 1
2 . This completes the proof. �

Licensed to Univ of Michigan. Prepared on Fri Jun 29 11:16:35 EDT 2018 for download from IP 98.209.116.74/141.211.4.224.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Lp BERGMAN 2193

3.4. Proof of Theorem 1.2. With the tools above in hand, the proof of our main
result is easy to conclude:

Proof. Combining Lemma 3.4 and Schur’s lemma (Lemma 2.4) yields that the
operator |Bk| is bounded from Lp(Ωk) to Lp(Ωk) for p ∈ ( 2k+2

k+2 ,
2k+2

k ). A fortiori,

Bk is bounded from Lp(Ωk) to Ap(Ωk) for p in the same range. Notice that because
of the conjugate symmetry of Bk(z, w), it is sufficient to establish just one of the
estimates to apply Lemma 2.4.

On the other hand, Theorem 3.1 shows that p ∈ ( 2k+2
k+2 ,

2k+2
k ) are the only values

for which Bk is bounded on Lp(Ωk). This completes the proof. �

The exact same proof yields a more general version of half of Theorem 1.2:

Corollary 3.5. Let p ∈ ( 2k+2
k+2 , 2k+2

k ). Using the previous notation, if K(z, w) is
any kernel on Ωk satisfying

|K(z, w)| � |t|
|1− t|2|t− sk|2 ,

then the operator

Kf(z) :=

∫
Ωk

|K(z, w)| f(w) dV (w)

maps Lp (Ωk) to Lp (Ωk) boundedly.

3.5. Dual space of Ap. The Lp boundedness of B in Theorem 1.2 yields a simple
characterization of the dual space of Ap (Ωk), for p ∈ ( 2k+2

k+2 ,
2k+2

k ). Namely, the

graded Bergman spaces Ap (Ωk) are Hölder-dual, precisely like the ordinary Lp

spaces, for these p.
Let Ap(Ω)∗ denote the bounded linear functionals on Ap(Ω) and, for 
 ∈ Ap(Ω)∗,

let ‖
‖op = sup‖f‖p=1 |
(f)| denote the usual operator norm.

Theorem 3.6. If Ωk denotes the domain (1.1), then for p ∈ ( 2k+2
k+2 ,

2k+2
k ) it holds

that

Ap (Ωk)
∗ ∼= Aq (Ωk) , where

1

p
+

1

q
= 1.

Moreover, for each ψ ∈ Ap (Ωk)
∗
, there exists a unique hψ ∈ Aq (Ωk) such that

(3.7) ψ(f) = 〈f, hψ〉
with ‖ψ‖op ≈ ‖hψ‖q.

Proof. If h ∈ Aq (Ωk), Hölder’s inequality implies that the linear functional

f
�−→

∫
Ωk

f · h̄ dm

is bounded and ‖
‖op ≤ ‖h‖q.
Conversely, if ψ ∈ Ap (Ωk)

∗, the Hahn-Banach theorem extends ψ to a functional
Ψ ∈ Lp (Ωk)

∗
with ‖Ψ‖op = ‖ψ‖op. The Riesz representation theorem gives a

gψ ∈ Lq(Ωk) such that

Ψ(f) = 〈f, gψ〉 , f ∈ Lp(Ωk),

and ‖gψ‖q = ‖Ψ‖op.
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The idea of the proof is very simple. If gψ also belongs to L2(Ωk), set hψ = Bgψ.
Then for f ∈ Ap(Ωk) ∩ A2(Ωk), the self-adjointness of B gives

ψ(f) = Ψ(f) = 〈f, gψ〉
= 〈Bf, gψ〉
= 〈f,Bgψ〉 = 〈f, hψ〉 ,

thus hψ represents the functional ψ alá (3.7). The issue is that both Lp(Ωk), L
q(Ωk)

⊂ L2(Ωk) only when p = q = 2, so gψ and a general f ∈ Ap(Ωk) are not simultane-
ously in the domain of B.

However, a slight modification of this basic idea yields the result. Suppose first
that p ∈

[
2, 2k+2

k

)
and let f ∈ Ap (Ωk). Then f ∈ A2 (Ωk) since Ωk is bounded.

As gψ ∈ Lq and q is in the allowable range, Theorem 1.2 says that hψ := Bgψ ∈
Aq (Ωk), and consequently the inner product (f, hψ) is well-defined. Since Bf = f ,
we have

ψ(f) =

∫
Ωk

f · gψ

=

∫
Ωk

(∫
Ωk

Bk(z, w)f(w) dV (w)

)
· gψ(z) dV (z).(3.8)

We now want to apply Fubini’s theorem to the last integral. This is justified since
Corollary 3.5 says the operator

gψ −→
∫
Ωk

|Bk(z, w)| |gψ(z)| dV (z)

maps Lq (Ωk) to Lq (Ωk) boundedly. It follows that

(3.8) =

∫
Ωk

f(w)

(∫
Ωk

Bk(z, w)gψ(z) dV (z)

)
dV (w)

=

∫
Ωk

f(w)hψ(w) dV (w) = 〈f, hψ〉

as desired.

If p ∈
(

2k+2
k+2 , 2

]
instead, run the argument above backwards, starting with

〈f, hψ〉 =
∫
Ωk

f(w)

∫
Ωk

Bk(w, z)gψ(z) dV (z) dV (w)

and see that (3.7) holds in this case too. �

4. Concluding remarks

1. Theorem 1.2 holds for k ∈ Z
+. If Ωr is the fat Hartogs triangle of exponent

r ∈ (1,∞), it is reasonable to expect a restricted range of p for which the Bergman
projection Br is a bounded operator on Lp(Ωr). In fact, Theorem 3.1 is still valid
for non-integer exponents, which rules out boundedness for any p /∈ ( 2r+2

r+2 ,
2r+2

r ).

It would be interesting to deduce an analog of estimate (2.2), which could help us
see which exponents work.

2. For Ωk, k ∈ Z+, the proof of Theorem 3.1 shows a single anti-holomorphic
monomial establishes the entire range of p for which the Bergman projection is
not a bounded operator. Thus the Lp behavior of Bk on the anti-holomorphic
subspace Ap(Ωk) ⊂ Lp(Ωk) determines the behavior of Bk on the full space. What
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conditions are needed on a domain Ω for this surprising observation to occur?
It’s worth mentioning that if Ω is a Reinhardt domain containing the origin, the
Bergman projection of a non-constant anti-holomorphic monomial yields 0.

3. Clearly the singularity of bΩk at 0 limits the Lp mapping behavior of its
Bergman projection, but the exact nature of this type of singularity is unexplored.
How does B change if we replace |z1|k in definition (1.1) with a more general
ψ (|z1|)? What happens on non-Reinhardt domains with this type of boundary
singularity? Can Ωk be used as a model domain for a class of invariantly defined
domains in C2 with singular boundary?

4. It would be interesting to investigate higher-dimensional domains with anal-
ogous boundary singularities. Chen, [2], introduces a class of domains in C

n which
generalize the classical Hartogs triangle. Domains of the form

{(z1, · · · , zn) : |z1|k1 < |z2|k2 < · · · < |zn−1|kn−1 < |zn| < 1}
generalize the Hartogs triangle differently than Chen does, and are the natural
extension of the fat Hartogs triangles to higher dimensions. These domains would
provide an intriguing class of examples from which the interplay between geometry
and function theory might be further understood.

5. We have not addressed endpoint results in this paper, but it is natural to ask:

where does Bk map L
2k+2
k+2 (Ωk) and L

2k+2
k (Ωk)? For both endpoints, it seems likely

that Bk maps Lr (Ωk) into weak Lr, analogous to the weak-type (1, 1) mapping
behavior ofBΩ known to hold on classes of (smoothly bounded) finite type domains;
see [14]. For the upper endpoint, it may be possible to say more. Recall that for
D, the unit disc in C, BD maps L∞(D) onto the holomorphic functions satisfying
supz∈D

(
1− |z|2

)
|f ′(z)| < ∞, the classical Bloch space. It would be interesting to

find a similar characterization of the range of Bk acting on L
2k+2

k (Ωk), though the
appropriate “Bloch-like condition” on Ωk is unclear at this point, partly because
bΩk is not smooth.
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