Laplacians for the holomorphic tangent bundles with g-nature metrics on complex Finsler manifolds
- Author(s)
- Hongjun Li, Chunhui Qiu, Weixia Zhu
- Abstract
Let M be a strongly pseudoconvex compact complex Finsler manifold. We first introduce a class of g-nature metric G(a,b) for the slit holomorphic tangent bundle (M) over tilde = (TM)-M-1,0\{0} on M. Then, we define the complex horizontal Laplacian square(h), and complex vertical Laplacian square(v) and obtain a precise relationship among square(h), square(v) and the Hodge-Laplace operator square on ((M) over tilde, G(a,b)). As an application, we discuss the holomorphic Killing vector fields associated to G(a,b).
- Organisation(s)
- External organisation(s)
- Xiamen University
- Journal
- International Journal of Mathematics
- Volume
- 28
- No. of pages
- 19
- ISSN
- 0129-167X
- DOI
- https://doi.org/10.1142/S0129167X17400110
- Publication date
- 08-2017
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 101009 Geometry
- Keywords
- ASJC Scopus subject areas
- Mathematics(all)
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/laplacians-for-the-holomorphic-tangent-bundles-with-gnature-metrics-on-complex-finsler-manifolds(f229a2c6-982b-48e1-ba33-e4a75b92b60a).html