Projections onto Lp-Bergman spaces of Reinhardt domains.
- Author(s)
- Luke David Edholm, Debraj Chakrabarti
- Abstract
For 1<p<∞, we emulate the Bergman projection on Reinhardt domains by using a Banach-space basis of L
p-Bergman space. The construction gives an integral kernel generalizing the (L
2) Bergman kernel. The operator defined by the kernel is shown to be an absolutely bounded projection on the L
p-Bergman space on a class of domains where the L
p-boundedness of the Bergman projection fails for certain p≠2. As an application, we identify the duals of these L
p-Bergman spaces with weighted Bergman spaces.
- Organisation(s)
- Department of Mathematics
- External organisation(s)
- Central Michigan University
- Journal
- Advances in Mathematics
- Volume
- 451
- No. of pages
- 46
- ISSN
- 0001-8708
- DOI
- https://doi.org/10.1016/j.aim.2024.109790
- Publication date
- 08-2024
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 101002 Analysis
- Keywords
- ASJC Scopus subject areas
- General Mathematics
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/026ce3aa-73a0-4d8a-a1c6-b931ae352b2a