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Formal power series
A formal power series in the variables x = (x1, . . . , xm) is an
expression of the form

A(x) =
∑
α∈Nm

Aαxα, Aα ∈ C.

• A(x) is just a notation - not a number for x ∈ Cm!
• Exception: A(0) = A0 ∈ C
• Space of formal power series in x : CJxK

• Product: AB(x) = A(x)B(x) =
∑

γ∈Nm

(∑
α+β=γ AαBβ

)
xγ

• CJxK is a local algebra over C with maximal ideal
m̂ = {A ∈ CJxK : A(0) = 0}.



Convergence
A formal power series A(x) is convergent if there exists an
x0 ∈ Cm, x0 6= 0 such that the series A(x0) of complex numbers
converges.
• Convergence is absolut and uniform on (small) polydiscs
• Equivalent: ∃C,R > 0 : |Aα| ≤ CR|α|

• Space of convergent power series: C{x}
• C{x} is a (local) subalgebra of CJxK
• Closed under taking partial derivatives, composition, etc.



Mapping problems for analytic objects
For a family of analytic objects F and a family of analytic maps
H the question whether for F1,F2 ∈ F there exists H ∈ H with
H(F1) = F2 translates into a formal problem when considered
as an equation between formal power series.
If one is able to solve this formal problem with a formal map Ĥ
the question is whether such a solution is really a solution, i.e.
whether Ĥ is (or can be chosen to be) convergent.

Example
For A ∈ CJxKm with |A′(0)| 6= 0, does there exist an inverse map
A−1?
Yes: Simple linear algebra on the formal level/estimates to get
convergence.
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whether Ĥ is (or can be chosen to be) convergent.

Example
For A ∈ CJxKm with |A′(0)| 6= 0, does there exist an inverse map
A−1?
Yes: Simple linear algebra on the formal level/estimates to get
convergence.



A well-known example: Normal forms
for differential equations

The Poincarè-Dulac theorem

One can bring the ordinary differential equation

ẋ = Mx + O(x2)

into the form
ẋ = Mx + resonant terms

via a formal map.
Convergence is guaranteed for linear parts M which belong to
the Poincaré domain, or more generally, the existence of a
convergent transformation into normal form can be guaranteed
for linear parts whose Eigenvalues satisfy a “small divisor”
condition.



Divergence at (irregular) singular points
If divergence becomes the rule

Consider e.g. the system Eγ for γ ∈ R:

t4
(

ẋ1(t)
ẋ2(t)

)
=

((
0 0
0 2i

)
+

(
0 1
0 0

)
t +

(
0 0
γ −1

)
t3
)(

x1(t)
x2(t)

)
.

All the systems Eγ are formally equivalent to (their normal form)
E0.
But they cannot be analytically equivalent: One can show e.g.
that Eγ , γ 6= 0 possesses no analytic solutions–but E0 does:

x1(t) = 1, x2(t) = 0.



Powerful tools
The Artin approximation and Gabrielov theorems

Theorem (Artin’s approximation theorem)
Let A(x , y) ∈ C{x , y}k , and ŷ(x) ∈ mCJxKn be a formal power
series map satisfying A(x , ŷ(x)) = 0. Then for any ` ∈ N there
exists y(x) ∈ C{x}n with y(x)− ŷ(x) ∈ m̂`CJxKn and
A(x , y(x)) = 0.

Theorem (Gabrielov’s theorem)
Let H(x) ∈ C{x}k be of generic full rank. If A(w) ∈ CJwK
satisfies A(H(x)) ∈ C{x}, then A(w) ∈ C{w}.
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General goal
Provide convergence for solutions of PDEs, in particular, for
solutions to the tangential Cauchy-Riemann equations.
We are going to need to introduce a number of notions making
important ODE concepts such as orbits and characteristics
accessible to algebraic methods like Artin and Gabrielov.



Our setting
Real (analytic) submanifolds of complex spaces

M ⊂ Rk is a real submanifold if it can locally be defined by
systems of nonsingular equations:

∀p ∈ M ∃U(p), ∃% = (%1, . . . , %d ) : U(p)→ Rd :

M ∩ U(p) = {% = 0}, d%1 ∧ · · · ∧ d%d 6= 0 on U(p).

M is a real-analytic submanifold if % can be chosen to be a
convergent power series.
d is the real codimension of M. Only consider d = 1 in this talk.

Ideals and germs of real-analytic submanifolds
Instead of considering a germ (M,p), we can consider its ideal:
IM = {f ∈ C{x − p} : f |M = 0}.



Complexification
Consider Z ∈ CN = R2N , set x = Re Z , and y = Im Z .
The rings CJx , yK and CJZ , Z̄ K are isomorphic, via the expected
map Z = x + iy , Z̄ = x − iy .
Real power series (such as defining equations of real-analytic
submanifolds) in RJx , yK get mapped to fixed points of the
involution ι : CJZ , Z̄ K→ CJZ , Z̄ K,

ι(%(Z , Z̄ )) = %̄(Z̄ ,Z ) =
∑
α,β

%̄α,βZ̄αZβ.

Complexification: Associate to a function of the real variables
x , y the function of the complex variables Z , Z̄ , and consider
Z̄ = ζ as an independent variable.

Basic fact

Ã(x , y) = 0⇔ A(Z , ζ) = Ã
(

Z + ζ

2
,
Z − ζ

2i

)
= 0.



Complexification II
The complexification of a real-analytic submanifold M of CN is
the complex submanifoldM of C2N associated to the
complexification of the ideal IM .
More concrete: If M ⊂ CN

Z , Z = x + iy is a germ of a
real-analytic hypersurface through 0, defined by
%(x + iy , x − iy) = 0, thenM⊂ C2N

Z ,ζ , is the complex-analytic
hypersurface defined by %(Z , ζ) = 0.
The complexification comes with 2 natural projection operators
πS, πE : M→ CN :

πS(Z , ζ) = Z , πE (Z , ζ) = ζ.

With ι : C2N → C2N , ι(Z , ζ) = (ζ̄, Z̄ ): ι(M) ⊂M;

πS ◦ ι = πE .



Cauchy-Riemann manifolds
We say that M ⊂ CN is Cauchy-Riemann (CR) if the maximal
complex subspaces of the tangent spaces of M,

T c
p M = TpM ∩ iTpM,

form a subbundle T cM of the tangent bundle of M, i.e. if
dim T c

p M is independent of p.
The structure bundle of the CR manifold M is the unique
subbundle V ⊂ CTM which satisfies T cM = ReV. In
coordinates, we have V = CTM ∩ T (0,1)CN . Sections of V are
called CR vector fields, sections of V̄ are called anti-CR vector
fields.



An example
...what else than the ball?

Im w = |z|2; w − w̄ = 2i(z1z̄1 + · · ·+ znz̄n)

V = span
{

L̄j =
∂

∂z̄j
− 2izj

∂

∂w̄
: j = 1, . . . ,n

}

T cM = span
{

Xj =
∂

∂xj
− 2yj

∂

∂s
− 2xj

∂

∂t
,

Yj =
∂

∂yj
+ 2xj

∂

∂s
− 2yj

∂

∂t
: j = 1, . . . ,n

}
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Coordinates
...sometimes it’s good to be normal

The coordinates

w = w̄ + 2i(z1z̄1 + · · ·+ znz̄n) = Q(z, z̄, w̄)

for the ball above have the property

Q(z,0, w̄) = Q(0, z̄, w̄) = 0.

Such coordinates are said to be normal.
A defining equation for the complexificationM can be written
(using ζ = (χ, τ))

w = Q(z, ζ) = Q(z, χ, τ).

or equivalently
τ = Q̄(χ, z,w)



Complexifications of CR manifolds
Nonintegrable distributions vs. double foliations

Recall: πS, πE : M→ CN . For p ∈ CN , define

S(1,0)
p = π−1

E ({p}) = {(Z ,p) ∈ C2N : (Z ,p) ∈M}

S(0,1)
p = π−1

S ({p}) = {(p, ζ) ∈ C2N : (p, ζ) ∈M}.

These form a double foliation ofM by complex submanifolds,
conjugated by the involution ι:

ι(S(1,0)
p ) = S(0,1)

p̄

The Segre varieties come up naturally as follows:

Sp̄ = πS(S(1,0)
p ) = πS ◦ π−1

E ({p}).



Segre varieties again...
...this time in coordinates

If w = Q(z, χ, τ) is definingM, then

S(1,0)
(χ,τ) = {(z,Q(z, χ, τ), χ, τ)}

S(0,1)
(z,w) = {(z,w , χ, Q̄(χ, z,w))}.

And so
Sp = {(z,Q(z, p̄)) : z ∈ Cn}.



Complexifications of CR manifolds
Integral manifolds!

The complexifications of (real-analytic) sections of V (resp. V̄)
give rise to holomorphic vector fields on onM by replacing the
differentiation in the barred variable by differentiation in its
associated independent complex variable.

L̄ =
∑

j

aj(Z , Z̄ )
∂

∂Z̄j
 L̄ =

∑
j

aj(Z , ζ)
∂

∂ζj
.

If we consider V and V̄ are considered as bundles onM in this
way, they are integrable, with integral manifolds

S(1,0)
p , and S(0,1)

p , respectively.



Orbits
Minimality

For each p ∈ M, we can consider the (local) orbit OP of p,
which is the set of points which can be joined with p by a
(small) polygonal path which is tangent to T cM.
We say that M is minimal if the local orbit of p contains a
neighbourhood of p in M.

Example

Im w = |z|2 : minimal

M : Im w = (Re w)|z|2 . . .T c
(z,0) = {w = 0} ⇒ nonminimal.



Type
We say that M is of finite type at p if the sections of T cM (or
equivalently, of V and V̄) satisfy the Hörmander condition at p:
that is, if the Lie algebra generated by the CR vector fields and
the anti-CR vector fields consists locally at p of all complexified
tangent vector fields.
If M is of finite type at p, the local orbit of p contains an open
subset of M; hence M is minimal at p.

Example

Im w = e
− 1
|z|2

is minimal but not of finite type at 0.



Type, minimality, and all that
The Baouendi-Ebenfelt-Rothschild criterion

For real analytic manifolds M, the converse is also true:

minimal⇒ finite type.

Actually, one can say much more, as in this case we have the
double foliation and the Segre varieties at our disposal.
Define the Segre sets

S1
p = Sp, Sj

p =
⋃

q∈Sj−1
p

Sq.

The Segre sets come with useful parametrizations, the Segre
maps.



Segre maps
Parametrizing Segre sets

S1
p = {(z,Q(z, p̄)) : z ∈ Cn}

S2
p =

⋃
q∈S1

p

Sq

=
⋃
χ∈Cn

S(χ,Q̄(χ,p))

= {(z,Q(z, χ, Q̄(χ,p)) (z, χ) ∈ C2n.}

S2j
p = {(z,Q(z, χ1,Q̄(χ1, z1,Q(. . . , Q̄(χj ,p) . . . ))))

: (z, χ1, . . . , χj) ∈ C2j}
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Segre maps II
Parametrizing parts of the complexification

One can introduce the Segre maps (associated to a point p)
inductively as follows:

v1(t1) = (t1,Q(t1, p̄))

v j+1(t1, . . . , t j+1) = (t j+1,Q(t j+1, v̄ j(t1, . . . , t j))).

With this notation we have

(v j+1(t1, . . . , t j+1)), v̄ j(t1, . . . , t j)) ∈M.

The image of the “unrestricted” Segre maps (v j , v̄ j−1, . . . , )
(where p is allowed to vary freely) is the j-th iterated
complexificationM(j).
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The theorem

Theorem (Baouendi-Ebenfelt-Rothschild)
Assume that M is a (generic) real-analytic CR manifold through
p. Then the following are equivalent:

1 M is of finite type at p
2 There exists an integer j, j ≤ d + 1, such that Sj

p contains
an open set in CN

3 There exists an integer j, j ≤ d + 1, such that v j is
generically of full rank

4 There exists an integer `, ` ≤ 2(d + 1), such that S`
p

contains an open neighbourhood of p in CN

5 There exists an integer `, j ≤ 2(d + 1), and for every
neigbhourhood U of the origin in C2d+1 a point t0 ∈ C2d+1

such that v `(t0) = p and v ` is of full rank at t0.
6 M is minimal at p



Characteristics
Many notions of nondegeneracy

The characteristic bundle of M is T 0M = (T cM)⊥.
It consists of all characteristic forms θ. Considered as forms on
CTM, characteristic forms are real forms which annihilate both
CR and anti-CR vector fields.
The holomorphic cotangent bundle is T ′M = V⊥.
Nondegeneracy measures how far from “integrable” the
characteristic bundle is, i.e. the failure of a kind of Frobenius
condition (always with the understanding that we need to be
adapted to the complex coefficients of our PDE and the
complex nature of its solutions!).
There are therefore necessarily many notions of
nondegeneracy, according to the point at which this condition
fails.



Finite nondegeneracy
The Lie derivative of a holomorphic form ω with respect to a CR
vector field L̄, defined by

(LL̄ω)(K ) = dθ(L̄,K ) = L̄ω(K )− Kω(L̄)− ω([L̄,K ])

is again a holomorphic form.
One can therefore consider the ascending chain of spaces of
forms

E0 = Γ(M,T 0M), Ej+1 = Ej + {LL̄ω : ω ∈ Ej , L̄ ∈ Γ(M,V)}

We say that M is finitely (k -)nondegenerate at p if

Ek (p) = T ′pM, Ek−1(p) 6= T ′pM.



Levi-nondegeneracy
or 1-nondegeneracy

A particular case of finite nondegeneracy occurs when already
E1(p) = T ′pM. In that case, for a choice of basis of CR vector
fields L̄1, . . . , L̄n, the forms

θ, θ([L̄1, ·]), . . . , θ([L̄n, ·])

span T ′pM. By dimensional reasons, this means that
θ([L̄1, ·]), . . . , θ([L̄n, ·]) are linearly independent at p.
Equivalently, the Hermitian form, called the Levi form,

Lp : V2
p → C, Lp(Lp,Kp) = iθ([L, K̄ ])(p)

is nondegenerate as a hermitian form. This is the classical
definition of Levi-nondegeneracy.



Nondegeneracy in the complexification
Yet another important map

In the real-analytic setting, nondegeneracy is measured in
terms of properties of the map

π : M3 (Z , ζ) 7→ (Sζ̄ ,Z )

or its variants
π(k) : M3 (Z , ζ) 7→ jkZ Sζ̄

Theorem
The following are equivalent:

1 M is finitely at most k-nondegenerate at p;
2 π(k)|S(0,1)

p
is immersive at (p, p̄).

Example
M is Levi nondegenerate⇔ p 7→ T c

p M ∈ PCN is immersive.
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Holomorphic nondegeneracy
The global obstruction to being nondegenerate

Definition
We say that M is holomorphically degenerate if there exists a
holomorphic vector field X tangent to M.

Example
Im w = |z1z2|2 is holomorphically degenerate.
Generically (at nonsingular points of X ) the orbits of X foliate M
and give rise to holomorphic coordinates in which M is of the
form M = M̂ × C.

Theorem
The following are equivalent:

1 M is generically finitely nondegenerate
2 There exists k such that π(k) is generically of full rank on
M.
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D’Angelo finite type
...varieties

Our nondegeneracy conditions involve the location of
“characteristics” with respect to the orbits of the CR equations.
One particular way to guarantee nondegeneracy is to
completely forbid any characteristics. The notion is important,
also for smooth CR manifolds.

Definition (D’Angelo finite type)
We say that M is of D’Angelo finite type at p ∈ M if the only
complex variety X through p sitting completely in M is X = {p}.
D’Angelo finite type implies a notion slightly stronger than
holomorphic nondegeneracy, essential finiteness.

Definition (Essential Finiteness)
M is essentially finite if π(k) is a finite map for k large enough.



Nondegeneracy and the Segre family
CR manifolds vs. ODEs

A sufficiently nondegenerate CR manifold gives rise to a “Segre
family”

{Sp : p ∈ CN}

which actually consists of the integral manifolds of a certain
ODE.

Example (The Levi nondegenerate case)

Sp = {w = Q(z, p̄)}

Consider w(z) = Q(z, p̄); then w ′(z) = Qz(z, p̄). Note

(Q(z, p̄),Qz(z, p̄)) ∼ j1(z,Q(z,p̄))Sp.

Eliminate p̄ to obtain a second order ODE.



Segre families in the nonminimal case
Divergence lurks

If M is nonminimal but still nondegenerate enough, Kossovskiy
and Shafikov showed that the Segre family can be realized as
the integral manifolds of a singular second order ODE.
Both in the minimal and in the nonminimal sufficiently
nondegenerate case, (analytic/formal) equivalences of the CR
manifolds correspond to (analytic/formal) equivalences of the
ODEs describing the Segre family.
The details of passing from the ODE side to the CR manifold
side are rather intricate; Kossovskiy (and coauthors) provide a
sort of “dictionary” and example cases in the form of sphere
blowups.
One therefore expects that at least in the nonminimal case,
problems will occur–and they do!



CR maps and formal maps
Solutions vs. formal solutions

Given CR submanifolds M ⊂ CN and M ′ ⊂ CN′ , a map
H : M → M ′ is said to be CR if dH : V → V ′.
Smooth CR maps between real-analytic submanifolds give rise
to formal power series maps: If p ∈ M, then

TpH(Z ) =
∑
α∈NN

1
α!

∂|α|H(p)

∂Zα
(Z − p)α ∈ CJZ − pKN′

satisfies

%′
(

TpH(Z ),TpH(Z )
)

= A(Z , Z̄ )%(Z , Z̄ )

for some formal power series A.



What to expect...
when expecting divergence

Example (The simplest example: R ⊂ C)
Formal power series maps taking R into itself:

H(w) =
∑
j≥1

Hjw j : (R,0)→ (R,0)⇔ Hj ∈ R ∀j

⇔ H(w) ∈ (w)RJwK

Example (The second simplest example: Γ ⊂ C)
If Γ is a real-analytic arc, p ∈ Γ, then there exists a
biholomorphism φ : (Γ,p)→ (R,0):

H : (Γ,p)→ (Γ,p)⇔ ϕ ◦ H ◦ ϕ−1 ∈ (w)RJwK
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How degeneracy leads to divergence

Positive orbit codimension
If M = R× M̂, no matter what M̂ is, there exist divergent maps
H : M → M.
More generally:

M = {(t , z) ∈ R× Cn : z ∈ Mt}

possesses divergent self-maps.

Holomorphic degeneracy
X tangent to M...

Hϕ(Z ) = eϕ(Z )X Z : M → M, ϕ ∈ CJZ K

is a divergent self-map for divergent ϕ. (more details in lecture
2)
Surprisingly there are sufficient conditions-lecture 2.



CR-equivalences
Different notions of equivalence

Formal Equivalence

(M,0) ∼f (M ′,0)⇔∃H ∈ mCJZ KN , |H ′(0)| 6= 0,
H : (M,0)→ (M ′,0)

Biholomorphic Equivalence

(M,0) ∼ω (M ′,0)⇔∃H ∈ mC{Z}N , |H ′(0)| 6= 0,
H : (M,0)→ (M ′,0)

CR Equivalence

(M,0) ∼CR (M ′,0)⇔ ∃H ∈ C∞CR((M,0), (M ′,0)), |H ′(0)| 6= 0



Relationships
Obvious and not so obvious

∼CR

∼ω ∼f

1 Biholomorphic⇒ CR⇒ formal: obvious
2 formal / bih. No reason that a given formal automorphism

between minimal hypersurfaces converges–tomorrow.
3 Divergent automorphisms can be approximated by

convergent ones in the minimal setting
(Baouendi-Mir-Rothschild)

4 In the nonminimal setting, there exist formally but not
biholomorphically equivalent hypersurfaces.
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Relationships
Obvious and not so obvious

∼ω ∼f

minimal

\
nonminimal

1 Biholomorphic⇒ CR⇒ formal: obvious
2 formal / bih. No reason that a given formal automorphism

between minimal hypersurfaces converges–tomorrow.
3 Divergent automorphisms can be approximated by

convergent ones in the minimal setting
(Baouendi-Mir-Rothschild)

4 In the nonminimal setting, there exist formally but not
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Complete minimal picture

In the minimal setting, the three notions are all equivalent:

∼ω⇔∼CR⇔∼f .

This does not mean that necessarily any given formal
equivalence converges, nor that every CR diffeomorphism is
real-analytic.
There are theorems guaranteeing convergence of formal
equivalences (tomorrow).
There are also theorems guaranteeing analyticity of CR
diffeomorphisms (Baouendi-Jacobowitz-Treves).



Complete nonminimal picture
Only under nondegeneracy assumptions

Since the notions are not all equivalent in the nonminimal
setting by the Kossovskiy-Shafikov result. So what about the
other notions?

∼CR

∼ω ∼f

\

1 There exist CR equivalent hypersurfaces which are not
biholomorphically equivalent : Kossovskiy-L.

2 formal⇒ CR : Kossovskiy-L.-Stolovitch
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