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ABSTRACT. It is shown that any formal holomorphic mapping sending a real-analytic generic subman-
ifold M ⊂CN of finite type into a real-analytic strongly pseudoconvex CR submanifold M ′ ⊂CN ′

is nec-
essarily convergent. As a consequence, we obtain a positive answer to the long-standing open question
of whether formal holomorphic maps sending real-analytic strongly pseudoconvex hypersurfaces into
each other are convergent.

1. INTRODUCTION

Some of the particular phenomena which occur in CR geometry are the rigidity and the strong
regularity properties of CR mappings between CR manifolds. While such properties have very much
been studied for automorphisms (see e.g. [BER99]), many interesting and delicate questions have
remained open over the last decades for arbitrary CR mappings between CR manifolds embedded in
complex spaces of different dimension. These questions have been at the center of recent interest in
the community as shown e.g. by the recent remarkable work on the smooth regularity of CR maps
by Berhanu-Xiao [BX15] (see also the papers [BH05, BEH11, HZ15, DLR15, M15] and the references
therein). In this paper, we tackle one such question regarding the convergence of formal holomorphic
transformations and prove what seems to be the first general convergence result for formal CR maps
in positive codimension.

Recall that, given real-analytic submanifolds M ⊂ CN and M ′ ⊂ CN ′
through points p and p ′, re-

spectively, a formal holomorphic transformation (or formal holomorphic map), H : (CN , p) → (CN ′
, p ′)

(i.e. an N ′-tuple of formal holomorphic power series at p satisfying H(p) = p ′) maps M into M ′ if for
any real-analytic function R vanishing on M ′ (near p ′), the formal series R ◦H vanishes on M ; in this
case, we write H(M) ⊂ M ′ or H : (M , p) → (M ′, p ′).

Early in the 70’s, in their study of the holomorphic equivalence problem for strongly pseudoconvex
real-analytic hypersurfaces in CN , N ≥ 2, Chern-Moser [CM74] established that any formal holomor-
phic invertible transformation between such hypersurfaces must necessarily converge, a conclusion
that strongly contrasts with the situation in the complex plane. Since then, there has been a great
deal of work in order to identify the optimal geometric conditions on any pair of CR submanifolds
M , M ′ ⊂CN ensuring that all their formal equivalences H : (M , p) → (M ′, p ′) necessarily converge. In
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2002, this convergence problem for formal equivalences has been solved in satisfying generality by
Baouendi, Rothschild and the second author [BMR02] (see also [BER00] for earlier related results).

On the other hand, the convergence problem for arbitrary formal transformations between real-
analytic CR submanifolds M and M ′ embedded in complex spaces of different dimension is much
less understood (see e.g. [MMZ03b, R03]). In fact, the following, natural, long-standing question,
originating essentially from the works of Huang [H94a, H94b] and Forstnerič [F89] and appearing ex-
plicitely e.g. in [R03], remained open until now: does Chern-Moser’s above mentioned convergence
result hold for formal transformations between arbitrary strongly pseudoconvex real-analytic hyper-
surfaces M ⊂CN and M ′ ⊂CN ′

? Our current paper gives a positive solution to that question by estab-
lishing the following more general result for CR manifolds of any codimension.

Theorem 1.1. Let M ⊂CN and M ′ ⊂CN ′
be real- analytic generic submanifolds, N , N ′ ≥ 2. Assume that

M is of finite type and that M ′ is strongly pseudoconvex. Then, for every (p, p ′) ∈ M ×M ′, any formal
holomorphic mapping H : (M , p) → (M ′, p ′) is convergent.

Recall here that M is said to be of finite type if the Lie algebra generated by its CR vector fields
and its conjugates span the full complexified tangent space at any point of M , and that M ′ is strongly
pseudoconvex if it is locally contained in a strongly pseudoconvex hypersurface (see [BER99, F91]).

As an immediate consequence of Theorem 1.1, we therefore obtain the above mentioned announced
result.

Corollary 1.2. Any formal holomorphic map sending a real-analytic strongly pseudoconvex hypersur-
face M ⊂CN into another such hypersurface M ′ ⊂CN ′

, N ′, N ≥ 2, is convergent.

Besides settling by the affirmative, a long standing open question, Theorem 1.1 appears to be the
first general convergence result for formal transformations between real-analytic CR submanifolds
in complex spaces of different dimension. Indeed, previous related results either hinged on rather
stringent conditions on the maps (see [L01]), or assumed some quite restrictive condition on the
“codimension” of the mappings (see [M02a]), or assumed the target manifold to be real-algebraic
instead of real-analytic as in [MMZ03a].

One of the main novelties in our proof of Theorem 1.1 consists of introducing, for any given formal
CR map H : M → M ′, the notion of “meromorphic infinitesimal deformations” of H . These formal
objects can be seen as formal meromorphic vector fields tangent to the image of H and are directly
related to how degenerate the map H is (see Proposition 4.4). In order to define such infinitesimal
deformations, we need to refine several notions of degeneracy used for mappings before in the lit-
erature. We should mention that similar objects, suited for the study of the smooth regularity of CR
maps, have recently been introduced in the very recent work by Berhanu-Xiao [BX15]; in the analytic
case, for suitably nondegenerate maps, such vector fields also appear in the work of the first author in
[L01]. However, in our setting, as we are considering arbitrary maps that can be very degenerate, we
furthermore need to cope with singularities that generate meromorphic vector fields only generically
linearly independent. These infinitesimal deformations can then be used to produce a certain type
of system of analytic equations satisfied by the mapping H , which contains some formal parame-
ters. This is where our second main new ingredient of the present paper comes into play, Proposition
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3.1, which is a very powerful technical convergence result for certain formal power series mappings
satisfying certain types of systems of equations.

The paper is organized as follows. We introduce the notation to be used throughout the paper
in §2, followed by the convergence result already alluded to in §3. We then discuss the notion of a
holomorphically degenerate formal CR map and its meromorphic infinitesimal deformations in §4.
§5 then establishes two convergence results for CR maps of independent interest, that are used in §6
to derive the proof of Theorem 1.1.

2. POWER SERIES RINGS AND NOTATION

Throughout the paper, for t = (t1, . . . , tk ) ∈ Ck ' R2k , we denote by C[[t , t̄ ]] (resp. C{t , t̄ }) the ring
of formal power series (resp. convergent power series) in t and t̄ with complex coefficients, where
k ≥ 1. The subring of holomorphic formal power series (resp. holomorphic convergent power series)
is denoted by C[[t ]] (resp. C{t }). The field of fractions of C[[t , t̄ ]] (resp. C[[t ]]) is denoted by C((t , t̄ ))
(resp. C((t ))). Note that by complexification C[[t , t̄ ]] (resp. C{t , t̄ }) may be identified with the ring of
formal holomorphic power series C[[t ,τ]] (resp. holomorphic convergent power series C{t ,τ}) in 2k
complex variables (t ,τ). For a (holomorphic) power series f (t , t̄ ) = ∑

α,β fα,βtα t̄β ∈ C[[t , t̄ ]], we shall

denote by f̄ (t , t̄ ) the formal holomorphic power series in C[[t , t̄ ]] given by f̄ (t ) =∑
α,β f̄α,βtα t̄β.

We now briefly recall some notions and facts concerning ideals and rings of formal power series
associated to generic submanifolds in complex space. For more details, we refer the reader to e.g.
[BMR02, DJL12].

Let M ⊂ CN
Z be a real-analytic generic submanifold through the origin of codimension d . Con-

sider a real-analytic vector-valued defining function ρ : (CN ,0) → Rd , ρ = (ρ1, . . . ,ρd ) ∈ (C{Z , Z̄ })d , for
M near 0 (meaning that ρ is real-valued, M = {ρ = 0} as germs at 0 and ∂ρ1 ∧ . . .∧∂ρd (0) 6= 0). De-
note by I (M) the ideal in C[[Z , Z̄ ]] of formal power series that vanish on M : I (M) = (ρ1, . . . ,ρd ) is
the ideal of formal power series S(Z , Z̄ ) such that for any real-analytic (or formal) parametrization
ψ : (R2N−d

x ,0) → (M ,0), it holds that S(ψ(x),ψ(x)) = 0. It is easy to check that I (M) is a prime ideal.
We define the ring of formal power series on M to be the quotient ring

C[[M ]] :=C[[Z , Z̄ ]]/I (M),

and note that C[[M ]] is an integral domain. For any formal power series A(Z , Z̄ ), we will denote by
A(Z , Z̄ )|M the image of A in C[[M ]] under the canonical projection. The field of fractions of C[[M ]]
will be denoted by C((M)).

It is also convenient to identify C[[M ]] with the ring of holomorphic power series on the complexi-
fication of M . Recall that the complexification of M , denoted by M , is (the germ at 0 of) the complex
submanifold of CN

Z ×CN
ζ

given by the zero-set of the components of the complexified power series
mapping ρ(Z ,ζ). If I (M ) denotes the ideal in C[[Z ,ζ]] of formal holomorphic power series vanish-
ing on M , then we set

C[[M ]] :=C[[Z ,ζ]]/I (M ),

and observe that C[[M ]] is an integral domain since I (M ) is prime. In analogy to the above, for any
formal power series A(Z ,ζ), we will denote by A(Z ,ζ)|M the image of A inC[[M ]] under the canonical
projection.
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We may naturally identify C[[M ]] with C[[M ]] and, note, in particular, the following elementary
fact to be used several times in the paper: for any formal power series A ∈C[[t ,τ]], G1,G2 ∈ (C[[Z ]])k ,
G1(0) =G2(0) = 0, with (t ,τ) as above, we have

A(G1(Z ),G2(Z ))
∣∣

M = 0 ⇔ A(G1(Z ),G2(ζ))
∣∣
M = 0.

Let M and M ′ be real-analytic generic submanifolds of CN and CN ′
, respectively, both passing

through the origin, and let H : (CN
Z ,0) → (CN ′

Z ′ ,0) be a formal holomorphic mapping. Recall that we
say that H sends M into M ′, and write H(M) ⊂ M ′, or H : M → M ′, if for every A(Z ′, Z̄ ′) ∈I (M ′), the
power series A(H(Z ), H(Z )) ∈ I (M). In case H is convergent, the reader can easily check that this
means that the germ of H at 0 sends the germ of M (at 0) into M ′ in the usual sense.

3. A CONVERGENCE RESULT FOR FORMAL SOLUTIONS OF CERTAIN SYSTEMS OF ANALYTIC EQUATIONS

Our main result in this section provides a very useful and general tool to deduce the convergence
of a formal holomorphic map satisfying a type of system of analytic equations when restricted to a
generic submanifold of finite type in CN . Recall that a generic submanifold M ⊂CN is of finite type at
a point p ∈ M if the Lie algebra generated by the CR vector fields and their complex conjugates spans
the complexified tangent space of M at p (see [BER99, BCH08]).

Proposition 3.1. Let M ⊂ CN be a real-analytic generic submanifold through the origin and Θ =
(Θ1, . . . ,ΘN ′) be a convergent power series mapping with components in C{Z , Z̄ ,λ, Z ′} where Z ∈ CN ,
Z ′ ∈ CN ′

, λ ∈ Cr , N ′, N ,r ≥ 1. Let H : (CN ,0) → CN ′
, G : (CN ,0) → Cr be formal holomorphic power

series mappings, vanishing at 0, satisfying

(3.1) Θ(Z , Z̄ ,G(Z ), H(Z ))|M = 0, and det
∂Θ

∂Z ′
(

Z , Z̄ ,G(Z ), H(Z )
)∣∣∣

M
6≡ 0.

If M is of finite type at 0, then H is convergent.

Proposition 3.1 possesses two specific features setting it apart from known results in the literature
and making it impossible to deduce its conclusion from these existing classical convergence results
for systems of (singular) analytic equations such as e.g. [M00, Proposition 4.2]. Firstly, the system of
equations is valid when restricted to a certain finite type generic submanifold instead of being valid
in the ambient euclidean space. Furthermore, we allow in (3.1) the appearance of a formal power
series mapping G that is not related to the solution mapping H and that can be even divergent. The
conclusion is nevertheless that the formal mapping H has to converge.

As already pointed out, the result given by Proposition 3.1 is new by itself. Several of the known
results from the literature alluded to above can be seen as special cases of Proposition 3.1: when M is
a real hypersurface and N ′ = 1, the result reduces to [M02a, Proposition 2.2]; and when M is of higher
codimension, N ′ = 1 and Θ is polynomial in Z ′, it yields the conclusion drawn in [M02b, Theorem
5.1].

The proof of Proposition 3.1 will be split into two parts. Firstly, in §3.1 we prove a preliminary result
about partial convergence properties of formal power series mappings solutions of certain analytic
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equations containing formal parameters. Next, in §3.3, we combine the obtained result with the iter-
ated Segre mapping technique introduced by Baouendi-Ebenfelt-Rothschild [BER99], which we recall
in §3.2, to prove Proposition 3.1.

3.1. Partial convergence of formal power series solutions of some systems of formal equations. Let
f (u, x), g (u, x) be two formal power series in C[[u, x]], u ∈Cr1 , x ∈Cr2 , r1,r2 ≥ 1. Let E be the subspace
of Cr1+r2 given by {x = 0}. Given a nonnegative integer m, we say that f (u, x) and g (u, x) agree up to
order m along E if (∂β f (u, x)−∂βg (u, x))|E = 0 in C[[u]] for every multiindex β ∈ Nr1+r2 . We also say
that f is convergent along E if f (u,0) ∈C{u}.

We start with stating the following lemma going back to [J09, Proposition 3.1].

Lemma 3.2. Let P = (P1, . . . ,P`) be a formal power series mapping with components in C[[u, x,T ]],
where u ∈ Cr1 , x ∈ Cr2 , T ∈ C`, `,r1,r2 ≥ 1. Let f 0(u, x) be a C`-vector-valued formal power series in
C[[u, x]], vanishing at the origin, satisfying

µ(u, x) := det
∂P

∂T
(u, x, f 0(u, x)) 6≡ 0.

Fixα0 ∈Nr1 and β0 ∈Nr2 such that (∂α
0

u ∂
β0

x µ)(0,0) 6= 0. Then if m is any nonnegative integer and f (u, x)
is any C`-valued formal power series mapping satisfying

(i) f (u, x) agrees with f 0(u, x) at 0 up to order |α0|+ |β0|;
(ii) P (u, x, f 0(u, x)) and P (u, x, f (u, x)) agree up to order |β0|+m along the subspace {x = 0},

then f 0(u, x) and f (u, x) agree up to order m along the same subspace.

Lemma 3.2 is stated and proved in [J09] for a formal power series mapping P = P (u,T ) independent
of x but the proof given there applies to general power series mappings P = P (u, x,T ).

Our next result is the key lemma that will allow us to prove Proposition 3.1. Its proof contains some
arguments going back to [M00, MMZ03a].

Lemma 3.3. Let R = (R1, . . . ,R`) be a convergent power series with components in C{s, t , x,λ,Y } with
s ∈ Ck1 , t ∈ Ck2 , x ∈ Ck3 , λ ∈ Ck4 , Y ∈ C`, `,ki ≥ 1. Let ∆(s, x) and ψ(s, t , x) be respectively Ck4 -valued
and C`-valued formal power series mappings, vanishing at the origin, satisfying

(3.2) R
(
s, t , x,∆(s, x),ψ(s, t , x)

)= 0, η(s, t , x) := det
∂R

∂Y

(
s, t , x,∆(s, x),ψ(s, t , x)

) 6≡ 0.

Assume that all partial derivatives of ψ are convergent along the subspace F := {t = 0, x = 0}. Then for
every γ ∈Nk3 , ∂γxψ is convergent along the subspace E := {x = 0}.

Proof of Lemma 3.3. Choose α0 ∈Nk1+k2 and β0 ∈Nk3 such that
(
∂α

0

(s,t )∂
β0

x η
)

(0,0,0) 6= 0. We fix an inte-

ger m ≥ |α0| and shall prove that for every γ ∈Nk3 with |γ| ≤ m, ∂γxψ is convergent along E .
Write ∆(s, x) = ∑

δ∈Nk3 ∆δ(s)xδ and ψ(s, t , x) = ∑
δ∈Nk3 ψδ(s, t )xδ. From (3.2) and the chain rule, for

every β ∈Nk3 with |β| ≤ m +|β0|, there exists a C`-valued power series mapping Rβ, depending only
on R (and not on ∆ nor ψ) such that

(3.3) 0 = ∂|β|

∂xβ
(
R

(
s, t , x,∆(s, x),ψ(s, t , x)

))∣∣∣
x=0

= Rβ
(
s, t , (∆δ(s))|δ|≤m+|β0|, (ψδ(s, t ))|δ|≤m+|β0|

)
.
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We note that it follows from the chain rule that every component of the mapping Rβ belongs to the

ring C{s, t ,λ,Y }
[

(λδ)1≤|δ|≤m+|β0|, (Yδ)1≤|δ|≤m+|β0|
]

, where λδ ∈Ck4 and Yδ ∈C` for every δ ∈Nk3 .

In what follows we write λ0 := λ and Y0 := Y . Thanks to (3.3), we may view the formal mapping
λδ =∆δ(s), |δ| ≤ m +|β0|, as a formal solution of the system of formal equations

(3.4) Rβ
(
s, t , (λδ)|δ|≤m+|β0|, (ψδ(s, t ))|δ|≤m+|β0|

)
= 0, |β| ≤ m +|β0|.

As the solution mapping of (3.4) is independent of t , λδ =∆δ(s), |δ| ≤ m+|β0| also satisfies the equiv-
alent system of equations

(3.5)

(
∂|ν|

∂tν

{
Rβ

(
s, t , (λδ)|δ|≤m+|β0|, (ψδ(s, t ))|δ|≤m+|β0|

)})∣∣∣
t=0

= 0, |β| ≤ m +|β0|, ν ∈Nk2 .

As all partial derivatives of ψ are convergent along F , (3.5) becomes a system of complex-analytic
equations and, therefore, by Artin’s approximation theorem [A68], there exists a convergent mapping

(λδ)|δ|≤m+|β0| =
(
∆̃δ(s)

)
|δ|≤m+|β0| ,

which agrees with the original formal solution (∆δ(s))|δ|≤m+|β0| up to order |α0| and which satisfies

(3.5), and therefore, also (3.4). From the definition of the power series mapping Rβ, we see that this
implies
(3.6)

0 = Rβ
(
s, t , (∆̃δ(s))|δ|≤m+|β0|, (ψδ(s, t ))|δ|≤m+|β0|

)
= ∂|β|

∂xβ
(
R

(
s, t , x,∆̃(s, x),ψ(s, t , x)

))∣∣∣
x=0

, |β| ≤ m +|β0|,

where ∆̃(s, x) = ∑
|δ|≤m+|β0| ∆̃δ(s)xδ. Since for every |δ| ≤ m + |β0|, ∆δ(s) and ∆̃δ(s) agree up to order

|α0| for every δ with |δ| ≤ m + |β0|, we have (∂αs ∂
β
x∆)(0,0) = (∂αs ∂

β
x ∆̃)(0,0) for |α| ≤ |α0| and |β| ≤ |β0|.

Since
(
∂α

0

(s,t )∂
β0

x η
)

(0,0,0) 6= 0, we get

(3.7)
(
∂α

0

(s,t )∂
β0

x η̃
)

(0,0,0) 6= 0, where η̃(s, t , x) := det
∂R

∂Y

(
s, t , x,∆̃(s, x),ψ(s, t , x)

)
.

On the other hand, from (3.6), we see that Yδ = ψδ(s, t ) for |δ| ≤ m + |β0| is a formal solution of the
system of complex-analytic equations

(3.8) Rβ
(
s, t , (∆̃δ(s))|δ|≤m+|β0|, (Yδ)|δ|≤m+|β0|

)
= 0, |β| ≤ m +|β0|.

By applying Artin’s approximation theorem [A68], there exists a convergent solution mapping Yδ =
ψ̃δ(s, t ), |δ| ≤ m + |β0|, of (3.8) that agrees with the above mentioned formal solution up to order
|α0| + |β0|. Set ψ̃(s, t , x) = ∑

|δ|≤m+|β0| ψ̃δ(s, t )xδ. Then, from our construction, R(s, t ,∆̃(s, x),ψ(s, t , x))

and R(s, t ,∆̃(s, x),ψ̃(s, t , x)) agree up to order m +|β0| along the subspace {x = 0}. Furthermore since
m ≥ |α0|,ψ(s, t , x) and ψ̃(s, t , x) agree at 0 up to order |α0|+|β0|. Hence, in view of (3.7), we may apply
Lemma 3.2 to conclude that ψ(s, t , x) and ψ̃(s, t , x) agree up to order m along the subspace {x = 0}.
Hence for every γ ∈ Nk3 with |γ| ≤ m, (∂γxψ)|x=0 = γ!ψ̃γ is convergent. The proof of Lemma 3.3 is
complete. �
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Remark 3.4. From the above proof, it is clear that the conclusion of Lemma 3.3 still holds if all partial
derivatives of ψ are assumed to be convergent along a more general formal submanifold of the form
{t = A(s), x = 0} instead of the subspace F , where A is any formal power series in C[[s]] vanishing at
the origin.

3.2. Segre set mappings and basic properties. Let M ⊂CN be a connected generic real-analytic sub-
manifold through the origin of CR dimension n and codimension d , N = n +d . There exists normal
local holomorphic coordinates Z = (z, w) ∈ Cn ×Cd such that M is given near the origin by an equa-
tion of the form

(3.9) w =Q(z, z̄, w̄),

where Q is a Cd -valued holomorphic map near 0 ∈ Cn+N (see e.g. [BER99]). As a real-analytic sub-
manifold, we may complexify M to get to its so-called complexification M as already discussed in §2.
The germ of the complex submanifold M of C2N at 0 is given by

(3.10) {(Z ,ζ) ∈ (CN ×CN ,0) : w =Q(z,χ,τ)},

where we write ζ= (χ,τ) ∈Cn ×Cd . That we have chosen normal coordinates means that we have the
following two identities:

(3.11) Q(z,0,τ) =Q(0,χ,τ) = τ, Q(z,χ,Q̄(χ, z, w)) = w.

We now define the iterated Segre mappings attached to M near the origin (see e.g. [BER99]). For any
nonnegative integer j , we denote by t j a variable lying in Cn and also introduce the variable t [ j ] :=
(t 1, . . . , t j ) ∈Cn j . For x ∈Cd sufficiently close to 0 we set

(3.12) V0(x) := (0, x) ∈CN

and also define the map V j : (Cn j ×Cd ,0) →CN for j ≥ 1 inductively as follows:

(3.13) V j (t [ j ], x) := (t j ,U j (t [ j ], x)), where U j (t [ j ], x) :=Q(t j ,V j−1(t [ j−1], x)).

Each iterated Segre mapping V j clearly defines a holomorphic map in a neighbhorhood of 0 inCn j+d .
Note that if x ∈Rd , the map V j (·, x) parametrizes the "usual" Segre set of order j attached to the point
(0, x) ∈ M (see e.g. [BER99]). From (3.11), we have the following useful identities

(3.14) V j (0, x) = (0, x), V j+2(t [ j+2], x)
∣∣

t j+2=t j =V j (t [ j ], x), j ≥ 0,

and for every j ≥ 0, the germ at 0 of the holomorphic map (V j+1,V j ) takes its values in the complexi-
fication M .

We will need the following fact about the iterated Segre mappings whose proof uses the chain rule

and the fact that the matrix ∂U j

∂x (0) has rank d , where U j is given by (3.13) (for the proof see e.g. [J09,
Corollary 6.7]).

Lemma 3.5. Let h ∈ C[[Z ]] and j ≥ 1. If for some integer m, all power series ∂γx(h ◦V j ) are convergent

along {x = 0} for γ ∈Nd with |γ| ≤ m, then for all α ∈NN and β ∈Nd with |α|+ |β| ≤ m, ∂βx ((∂αZ h)◦V j )
is convergent along {x = 0}.
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We will also need the following characterization of the finite type condition in terms of the iterated
Segre mappings due to Baouendi-Ebenfelt-Rothschild (see e.g. [BER99]):

Theorem 3.6. With the above notation, the generic submanifold M ⊂ CN is of finite type at 0 if and
only if there exists a positive integer `0, 2 ≤ `0 ≤ 2(d +1), such that in any neighborhood U of 0 in Cn`0

there exists t [`0]
0 ∈U such that

(3.15) rk
∂V`0

∂t [`0]
(t [`0]

0 ,0) = N , V`0 (t [`0]
0 ,0) = 0.

3.3. Proof of Proposition 3.1. We choose normal coordinates Z = (z, w) ∈ Cn ×Cd for M near 0 as
given in §3.2. Complexifying (3.1), we get

(3.16) Θ(Z ,ζ,G(ζ), H(Z ))|M = 0, and det
∂Θ

∂Z ′
(

Z ,ζ,G(ζ), H(Z )
)∣∣∣

M
6≡ 0.

For every integer j ≥ 1, the germ at 0 ∈Cn( j+1) ×Cd of the holomorphic map (V j+1,V j ) is submersive
onto M at 0. Hence, for j ≥ 1, (3.16) implies

(3.17) Θ(V j+1,V j ,G ◦V j , H ◦V j+1) = 0, and det
∂Θ

∂Z ′
(
V j+1,V j ,G ◦V j , H ◦V j+1

)
6≡ 0,

where the previous identities hold in the ring C[[t [ j+1], x]]. We now prove the following convergence
propagation property :

CLAIM : Let j ≥ 1. If, for every α ∈NN , (∂αZ H)◦V j−1 is convergent along the subspace {x = 0}, then
for every α ∈NN , (∂αZ H)◦V j+1 is convergent along {x = 0}.

We now prove the claim. Fix j ≥ 1. Set R(t [ j+1], x,λ, Z ′) :=Θ(V j+1,V j ,λ, Z ′) whose components are

convergent power series, and∆ :=G ◦V j andψ := H ◦V j+1. From the assumption in the claim and the
second identity in (3.14), we see that all partial derivatives of ψ are convergent along the subspace
{t j+1 = t j−1, x = 0}. Hence (3.17) together with Lemma 3.3 and Remark 3.4 yield that for every γ ∈Nd ,
∂
γ
xψ = ∂

γ
x(H ◦V j+1) is convergent along {x = 0}. By Lemma 3.5, this implies that for every α ∈ NN ,

(∂αZ H)◦V j+1 is convergent along {x = 0}, which proves the claim.
We may now finish the proof of Proposition 3.1. We first notice that, in view of (3.12), for every

α ∈ NN , (∂αZ H) ◦V0 is convergent along {x = 0}. Hence using the claim we get that for every even
integer j and for everyα ∈NN , (∂αZ H)◦V j is convergent along {x = 0}. By Theorem 3.6, we may choose
an integer `0, that may be assumed to be even, satisfying the conclusion of that theorem. Set v`0 :=
V`0 (·,0). As H◦v`0 is convergent in some open neighborhood U of 0 inCn`0 , we may pick t [`0]

0 ∈U and,

thanks to (3.15), find a germ of a holomorphic map A : (CN ,0) → (Cn`0 , t [`0]
0 ) such that v`0 ◦ A = IdCN

near the origin. Hence H = (H ◦ v`0 )◦ A is convergent. This completes the proof of Proposition 3.1.

4. DEGENERACY OF FORMAL CR MAPS AND THEIR FORMAL MEROMORPHIC INFINITESIMAL

DEFORMATIONS

In this section, we introduce the notion of holomorphically degenerate and nondegenerate for-
mal maps between real-analytic generic submanifolds in complex space, generalizing the notion of
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constantly degenerate maps introduced by the first author in [L01]. For holomorphically degener-
ate maps, we shall prove, in Proposition 4.4, an important property relating the so-called “generic
degeneracy” of the map with the dimension of the space of their formal meromorphic infinitesimal
deformations. In what follows, we give the precise definitions of the notions we’ll need for the rest of
this paper.

Let M ⊂ CN and M ′ ⊂ CN ′
be real-analytic generic submanifolds through the origin of CR dimen-

sion n,n′ and codimension d ,d ′ respectively, N , N ′ ≥ 2, n ≥ 1 Consider H : (CN
Z ,0) → (CN ′

Z ′ ,0) a formal

holomorphic map sending M into M ′ and let ρ′ = (ρ′
1, . . . ,ρ′

d ′) be a real-analytic Rd ′
-valued defining

function for M ′ near 0 such that ∂ρ′
1 ∧ . . .∧ ∂ρ′

d ′(0) 6= 0. Let L̄1, . . . , L̄n be a basis of real-analytic CR
vector fields for M near 0. For every integer k, we define the following C((M))-vector subspace of
C((M))N ′

(4.1) Ek (H) := SpanC((M)){Eα
j :α ∈Nn , |α| ≤ k, 1 ≤ j ≤ d ′},

where

(4.2) Eα
j := (Eα

j ,`)1≤`≤N ′ =
(
L̄αρ′

j ,Z ′
1
(H , H)

∣∣
M , . . . , L̄αρ′

j ,Z ′
N

(H , H)
∣∣

M

)
∈C[[M ]]N ′

.

SetµH
k := dimC((M)) Ek (H). The reader can check that the subspace Ek (H) is independent of the choice

of the basis of real-analytic CR vector fields and of the choice of the vector-valued defining function
ρ′ for M ′. It is also clear that the sequence (µH

k ) strictly increases then stabilizes at some index k0 i.e.
µH

k =µH
k0

for k ≥ k0 and µH
k0−1 <µH

k0
. In what follows we write µH :=µH

k0
.

Definition 4.1. Let H , M , M ′ be as above.
(a) We define the generic degeneracy of H as κH := N ′−µH .
(b) We say that H is a holomorphically nondegenerate formal holomorphic map if κH = 0.

Remark 4.2. We remark the following three facts.
(i) From the fact that M ′ is a generic submanifold ofCN ′

, one can easily check that the generic de-
generacy of a formal holomorphic map always satisfies κH ≤ n′, where n′ is the CR dimension
of M ′.

(ii) Definition 4.1 contains and generalizes the well-known notion of holomorphically nondegen-
erate generic submanifold. Indeed, if one takes M = M ′ and H to be the identity mapping,
then M is holomorphically nondegenerate in the sense of Stanton [S96] if and only if the iden-
tity mapping is holomorphically nondegenerate in the sense of Definition 4.1. The reader is
referred to [BER99, Chapter XI] for the details of the proof of such a statement.

(iii) A formal map H : M → M ′ is said to be of constant degeneracy (as in [L01]) if

dimSpanC{Eα
j

∣∣
0 :α ∈Nn , 1 ≤ j ≤ d ′} =µH .

As pointed out above, we will show thatκH can be interpreted as the dimension of a space of (mero-
morphic) vector fields defined along the image of M under H ; formally, we define:
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Definition 4.3. Let H , M , M ′ be as above and V = (V1, . . . ,VN ′) ∈ C((Z ))N ′
. We say that V is a formal

meromorphic infinitesimal deformation of H if V is tangent to M ′ along H(M) i.e. if

∀ j ∈ {1, . . . ,d ′},
N ′∑

r=1
(Vr ρ

′
j ,Z ′

r
(H , H))

∣∣
M = 0 in C((M)).

The next proposition is our main result of this section. We should point out that, in the case of con-
stant degeneracy maps (i.e with "no singularities"), this dates back to [L01], and it has also recently
appeared in the context of smooth CR mappings of constant degeneracy in the work of Berhanu-Xiao
[BX15].

Proposition 4.4. Let M ⊂ CN and M ′ ⊂ CN ′
be real-analytic generic submanifolds through the origin

and H : (CN
Z ,0) → (CN ′

Z ′ ,0) be a formal holomorphic map sending M into M ′. Assume that H is a holo-
morphically degenerate map of generic degeneracyκ := κH > 0. Then, interchanging the Z ′-coordinates
if necessary, and using the above notation, we may split Z ′ = (Z̃ ′, Ẑ ′) ∈CN ′−κ×Cκ so that the following
holds:

(i) SpanC((M))

{
Ẽα

j :α ∈Nn , 1 ≤ j ≤ d ′
}
=C((M))N ′−κ where we write Eα

j = (Ẽα
j , Êα

j );

(ii) For ν = N ′−κ+ 1, . . . , N ′, there exists a formal meromorphic infinitesimal deformation of H,
X ν = (X ν

1 , . . . , X ν
N ′) ∈C((Z ))N ′

, satisfying X ν
i = δiν for N ′−κ+1 ≤ i ≤ N ′.

Proposition 4.4 shows that every holomorphically degenerate formal mapping H , sending M into
M ′, of generic degeneracy κ, generates κ linearly independent (over C((Z ))) formal meromorphic
infinitesimal deformations of H (or, after clearing denominators, formal holomorphic infinitesimal
deformations). In the case where M = M ′ and H is the identity mapping, Proposition 4.4 essentially
boils down to Stanton’s criterion for holomorphically degenerate generic submanifolds (see e.g. [S96,
BER99]).

Though the proof given in [L01] can be adapted to the present setting, as also the proof of the result
analogous to Proposition 4.4 given in the smooth case in [BX15], we shall rather give here a simpler
proof of Proposition 4.4 that is based on the following elementary linear algebra lemma.

Lemma 4.5. Let A(s, t ) := (A1(s, t ), . . . , Ar (s, t )) be a m × r matrix with coefficients in C((s, t )) where

s ∈Ck1 , t ∈Ck2 , m,r,k1,k2 ≥ 1. Write A j = (A j
1, . . . , A j

m)T as a column vector for 1 ≤ j ≤ r . Assume that :

(i) The rank over C((s, t )) of the matrix A equals `0 < m, and that its first `0 rows of are linearly
independent over C((s, t )).

(ii) The rank over C((s, t )) of the m × r (k1 +1) matrix (A,∂s A) is also `0.

Then there exists a (m −`0)×`0 matrix B = (Bi`) with coefficients in C((t )) such that

(4.3) A j
i =

`0∑
`=1

Bi`A j
`

, 1+`0 ≤ i ≤ m, 1 ≤ j ≤ r.

Proof of Lemma 4.5. From (i), there exists a matrix B = (Bi`), `0+1 ≤ i ≤ m, 1 ≤ `≤ `0 with coefficients
in C((s, t )) such that (4.3) holds. In order to prove the lemma, we need to check that ∂sBi` = 0 for i ,`
as above. A simple row manipulation shows that the rank of the matrix (A,∂s A) is the same as of that
of the following matrix:
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Υ=



A1
1 . . . Ar

1
... . . .

...
A1
`0

. . . Ar
`0

∂s A1
1 . . . ∂s Ar

1
... . . .

...
∂s A1

`0
. . . ∂s Ar

`0

0 C


where C is a (m −`0)× r k1 matrix whose row vectors C`0+1, . . .Cm are given by

(4.4) Ci =
(
∂s A1

i −
∑

1≤`≤`0

Bi`∂s A1
`, . . . ,∂s Ar

i −
∑

1≤`≤`0

Bi`∂s Ar
`

)
, 1+`0 ≤ i ≤ m.

By (ii), the rank of the matrix Υ is the same as that of A. In view of (i), this implies that C = 0, i.e. for
every 1+`0 ≤ i ≤ m, 1 ≤ j ≤ r

(4.5) ∂s A j
i =

∑
`≤`0

Bi`∂s A j
`

.

But (4.3) together with (4.5) imply that for all i , j as above

(4.6)
∑
`≤`0

∂sBi` A j
`
= 0.

By (ii), the `0 first rows of the matrix A are linearly independent over C((s, t )) and hence, from (4.6),
we get that ∂sBi` = 0, for 1+`0 ≤ i ≤ m, 1 ≤ `≤ `0, which completes the proof of the lemma. �

We now show that Proposition 4.4 is a direct application of Lemma 4.5.

Proof of Proposition 4.4. Let M , M ′, H be as in the proposition and we follow the notation previously
defined. We choose normal coordinates Z = (z, w) ∈ Cn ×Cd for M as defined in §3.2. We write Q =
(Q(1), . . . ,Q(d)) and w = (w1, . . . , wd ). Consider the following basis of CR vector fields of M near 0

(4.7) L̄ j := ∂

∂z̄ j
−

d∑
k=1

Q̄(k)
z̄ j

(z̄, z, w)
∂

∂w̄k
, j = 1, . . . ,n.

Let M be the complexification of M as given in (3.10). The CR vector fields given by (4.7) may be
complexified to give rise to the following holomorphic vector fields tangent to M

(4.8) L j := ∂

∂χ j
−

d∑
k=1

Q̄(k)
χ j

(χ, z, w)
∂

∂τk
, j = 1, . . . ,n.

Here ζ = (χ,τ) ∈ Cn ×Cd , τ = (τ1, . . . ,τd ) and (Z ,χ) can be seen as local holomorphic coordinates for
M . For α ∈Nn , |α| ≤ k and 1 ≤ j ≤ d ′, the power series maps Eα

j defined in (4.2), which generate the

subspace Ek (H) ⊂C((M))N ′
introduced in (4.1) over C((M)), can be complexified to give power series
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mappings in C[[M ]] that we will denote by Eαj . With our choice of vector fields given by (4.7) and

(4.8), we have for α ∈Nn , 1 ≤ j ≤ d ′ and 1 ≤ `≤ N ′

(4.9)

Eαj ,` = Eαj ,`(Z ,χ) =L αρ′
j ,Z ′

`
(H(Z ), H̄(ζ))

∣∣∣
τ=Q̄(χ,Z )

= ∂α

∂χα

(
ρ′

j ,Z ′
`

(
H(Z ), H̄(χ,Q̄(χ, Z )

))
= ∂αχ E0

j ,`.

As H is of generic degeneracy κ, it is obvious that, interchanging the components of Z ′ if necessary,
we may split Z ′ = (Z̃ ′, Ẑ ′) ∈CN ′−κ×Cκ so that (i) holds. In view of (4.9), this means that there exists an
integer k0 such that the matrix A formed by the column vectors ∂αχE

0
j in C[[Z ,χ]]N ′

forα ∈Nn , |α| ≤ k0

and 1 ≤ j ≤ d ′ is of rank N ′−κ < N ′ (over C((Z ,χ))) and that the rank of the matrix (A,∂χA) is also
of rank N ′−κ. We may apply Lemma 4.5 to conclude that any ν-th row vector of the matrix A, with
N ′−κ+1 ≤ ν≤ N ′ can be written as a linear combination of the N ′−κ first rows of A with coefficients
in C((Z )). This implies, in particular, that for 1 ≤ j ≤ d ′ and N ′−κ+1 ≤ ν≤ N ′, we have the following
identity in C((Z ,χ))

E0
j ,ν =

N ′−κ∑
`=1

X ν
` E

0
j ,`,

where each X ν
`
∈C((Z )) for 1 ≤ `≤ N ′−κ and N ′−κ+1 ≤ ν≤ N ′. Equivalently, we have in C((Z ,χ))

ρ′
j ,Z ′

ν
(H(Z ), H̄(χ,Q̄(χ, Z ))) =

N ′−κ∑
`=1

X ν
` (Z )ρ′

j ,Z ′
`
(H(Z ), H̄(χ,Q̄(χ, Z ))),

which proves (ii). The proof of the proposition is now complete. �

5. TWO CONVERGENCE RESULTS FOR FORMAL CR MAPS

In this section, we prove two convergence results for formal CR maps. The first one establishes
in full generality the convergence of holomorphically nondegenerate formal maps as previously de-
fined. The second convergence result tackles the case of holomorphically degenerate maps.

Theorem 5.1. Let M , M ′ be real-analytic generic submanifolds respectively in CN and CN ′
through the

origin and H : (CN ,0) → (CN ′
,0) be a formal holomorphic map. Assume that M is of finite type and that

H is a holomorphically nondegenerate map. Then H is convergent.

This result by itself is completely new. It implies a number of existing non-trivial convergence re-
sults in the literature such as the convergence of formal maps of generic full rank between holomor-
phically nondegenerate generic submanifolds of finite type of the same dimension [BMR02, S09] as
well as the convergence of so-called essentially finite mappings between generic submanifolds in
complex space of different dimension [M02b, Theorem 7.1].

Proof of Theorem 5.1. We use the notation previously introduced in §3.2 and in §4. As H is a holomor-
phically nondegenerate formal map, we may find N ′ multi-indices α1, . . . ,αN ′ ∈ Nn and N ′ integers
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j1, . . . , jN ′ ∈ {1, . . . ,d ′} such that the N ′ vectors Eαr

jr
, 1 ≤ r ≤ N ′, given in (4.2), have rank N ′ over C((M)).

Note that for every 1 ≤ r ≤ N ′, we may write

L̄α
r
ρ′

jr
(H(Z ), H(Z )) =:Θr (Z , Z̄ ,G(Z ), H(Z )),

for some formal holomorphic power series mapping G and some convergent power series Θr of its
four arguments. As H sends M into M ′, writingΘ= (Θ1, . . . ,ΘN ′), we have

(5.1) Θ(Z , Z̄ ,G(Z ), H(Z ))
∣∣

M = 0.

Furthermore the rank assumption on the above vectors Eαr

jr
, 1 ≤ r ≤ N ′, means that

(5.2) det
∂Θ

∂Z ′ (Z , Z̄ ,G(Z ), H(Z ))
∣∣

M 6≡ 0.

Applying Proposition 3.1, we get that H is convergent, which completes the proof of the theorem. �

The next theorem provides a sufficient condition for the convergence of a holomorphically degen-
erate formal map in terms of the Levi-form of the target manifold.

Theorem 5.2. Let M , M ′ be real-analytic generic submanifolds respectively in CN and CN ′
through

the origin and H : (CN
Z ,0) → (CN ′

Z ′ ,0) be a formal holomorphic map. Assume that M is of finite type,
that H is a holomorphically degenerate map of generic degeneracy κ > 0 and let ρ′ = (ρ′

1, . . . ,ρ′
d ′) and

d ′ be given as in §4. Assume that for every κ-tuple (V 1, . . . ,V κ) of C((Z ))-linearly independent formal

meromorphic infinitesimal deformations of H, V j = (V j
1 , . . . ,V j

N ′) ∈ (C((Z )))N ′
, the κ× (κd ′) C((M))-

valued matrix C = [
C 1 C 2 . . . C d ′ ]

given by C ` = (C `
νγ), 1 ≤ ν,γ≤ κ, where

(5.3) C `
νγ =

∑
1≤i , j≤N ′

{
V ν

i (Z )V γ

j (Z )
∂2ρ′

`

∂Z ′
i Z̄ ′

j

(H(Z ), H(Z ))

}∣∣∣
M

,

is of rank κ over C((M)). Then H is convergent.

Proof of Theorem 5.2. As H is a holomorphically degenerate map of generic degeneracy κ > 0, we
may find find N ′−κ multi-indices α1, . . . ,αN ′−κ ∈Nn and N ′−κ integers j1, . . . , jN ′−κ ∈ {1, . . . ,d ′} such
that the N ′−κ vectors Eαr

jr
, 1 ≤ r ≤ N ′−κ, given in (4.2), have rank N ′−κ over C((M)). Furthermore,

interchanging the Z ′-coordinates if necessary, we may split Z ′ = (Z̃ ′, Ẑ ′) ∈CN ′−κ×Cκ so (i) and (ii) in
Proposition 4.4 hold. We therefore have the following identities:

(5.4)


L̄α

r
ρ′

jr
(H(Z ), H(Z ))

∣∣
M = 0, r = 1, . . . , N ′−κ,

N ′∑
q=1

(
X ν

q (Z )ρ′
j ,Z ′

q
(H(Z ), H(Z ))

)∣∣∣
M
= 0, N ′−κ+1 ≤ ν≤ N ′,1 ≤ j ≤ d ′,

where

(5.5) X ν
i = δiν, N ′−κ+1 ≤ i ,ν≤ N ′.
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Taking complex conjugates of the second identity in (5.4) and using that each component of ρ′ is
real-valued, we obtain the following system:

(5.6)


L̄α

r
ρ′

jr
(H , H)

∣∣
M = 0, r = 1, . . . , N ′−κ,

ρ′
j ,Z̄ ′

ν
(H , H)

∣∣
M +

N ′−κ∑
q=1

X ν
q ρ

′
j ,Z̄ ′

q
(H , H)

∣∣∣
M
= 0, N ′−κ+1 ≤ ν≤ N ′,1 ≤ j ≤ d ′.

Multiplying the second set of equations of (5.6) by a suitable nonzero power series of the form D(Z ),
we see that H satisfies a system of complex-analytic equations of the form S (Z , Z̄ ,G(Z ), H(Z ))|M = 0
for some formal holomorphic power series mapping G and someCN ′−κ+d ′κ-valued convergent power
series mapping S of its arguments. We shall now prove that we can extract N ′ components S # of the
mapping S so that

det
∂S #

∂Z ′ (Z , Z̄ ,G(Z ), H(Z ))
∣∣

M 6≡ 0,

which will allow us to apply Proposition 3.1 to conclude that H is convergent.
To this aim, we shall determine the Jacobian matrix J (with respect to Z ′) of the system (5.6) and

show that its rank (over C((M))) is equal to N ′. Such a matrix has its coefficients in C((M)). For conve-
nience of notation we set α0 = 0 ∈Nn and

(5.7) T r
`, j := L̄α

r
ρ′

j ,Z ′
`
(H , H)

∣∣
M , 0 ≤ r ≤ N ′−κ,1 ≤ j ≤ d ′,1 ≤ `≤ N ′.

We have

J T =



T 1
1, j1

. . . T N ′−κ
1, jN ′−κ

... . . .
...

T 1
N ′−κ, j1

. . . T N ′−κ
N ′−κ, jN ′−κ

(
C 1
β,γ

)
1≤β≤N ′−κ,

N ′−κ+1≤γ≤N ′
. . .

(
C d ′
β,γ

)
1≤β≤N ′−κ,

N ′−κ+1≤γ≤N ′

T 1
N ′−κ+1, j1

. . . T N ′−κ
N ′−κ+1, jN ′−κ

... . . .
...

T 1
N ′, j1

. . . T N ′−κ
N ′, jN ′−κ

(
C 1
β,γ

)
N ′−κ+1≤β≤N ′,
N ′−κ+1≤γ≤N ′

. . .
(
C d ′
β,γ

)
N ′−κ+1≤β≤N ′,
N ′−κ+1≤γ≤N ′


where for 1 ≤ k ≤ d ′, 1 ≤β≤ N ′ and N ′−κ+1 ≤ γ≤ N ′,

C k
β,γ =

N ′∑
q=1

X γ
qρ

′
k,Z ′

β
Z̄ ′

q
(H , H)

∣∣
M .

Note that if we apply each differential operator L̄α
r
, r = 0, . . . , N ′−κ, to the second identity in (5.4), we

get, using (5.5),

(5.8) T r
ν, j +

N ′−κ∑
q=1

X ν
q T r

q, j = 0, N ′−κ+1 ≤ ν≤ N ′, 1 ≤ j ≤ d ′,
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as a power series identity in C((M)). Denote by Lν the ν-th row of the matrix J T . Replacing Lν by
Lν+∑N ′−κ

q=1 X ν
q Lq in the matrix J T for N ′−κ+1 ≤ ν ≤ N ′, and using (5.8), we obtain the following

matrix

J T
1 =



T 1
1, j1

. . . T N ′−κ
1, jN ′−κ

... . . .
...

T 1
N ′−κ, j1

. . . T N ′−κ
N ′−κ, jN ′−κ

(
C 1
β,γ

)
1≤β≤N ′−κ,

N ′−κ+1≤γ≤N ′
. . .

(
C d ′
β,γ

)
1≤β≤N ′−κ,

N ′−κ+1≤γ≤N ′

0
(
Ĉ 1
β,γ

)
N ′−κ+1≤β≤N ′,
N ′−κ+1≤γ≤N ′

. . .
(
Ĉ d ′
β,γ

)
N ′−κ+1≤β≤N ′,
N ′−κ+1≤γ≤N ′


with the same rank as that of J T . Here for 1 ≤ k ≤ d ′, N ′−κ+1 ≤ β≤ N ′ and N ′−κ+1 ≤ γ≤ N ′, we
have, using (5.5)

(5.9) Ĉ k
β,γ =C k

β,γ+
N ′−κ∑
q=1

X β
q C k

q,γ =
N ′∑

q=1
X β

q C k
q,γ =

∑
1≤q,s≤N ′

X β
q X γ

s ρ
′
k,Z ′

q Z̄ ′
s
(H , H)

∣∣
M .

As the (N ′−κ)×(N ′−κ) matrix on the top left of J T
1 is invertible (because of the conclusion of Propo-

sition (i) that is known to hold), the rank of the matrix J T is equal to N ′ if and only if the matrix (
Ĉ 1
β,γ

)
N ′−κ+1≤β≤N ′,
N ′−κ+1≤γ≤N ′

. . .
(
Ĉ d ′
β,γ

)
N ′−κ+1≤β≤N ′,
N ′−κ+1≤γ≤N ′


is of rank κ. Since the κ vectors (X N ′−κ+1, . . . , X N ′

) are C((Z ))-linearly independent vectors ofC((Z ))N ′

and are tangent to M ′ along H(M) in view of (5.5) and (5.4), the conclusion of Theorem 5.2 follows
from (5.9). The proof is complete. �

6. PROOF OF THEOREM 1.1

For the proof of Theorem 1.1, we will need the following result for strongly pseudoconvex generic
submanifolds. Recall that a generic submanifold M ′ ⊂CN ′

is strongly pseudoconvex at a point p0 ∈ M
if M ′, near p0, is contained in some strongly pseudoconvex real hypersurface of CN ′

.

Lemma 6.1. Let M , M ′ be real-analytic generic submanifolds respectively in CN and CN ′
through the

origin and H : (CN
Z ,0) → (CN ′

Z ′ ,0) be a formal holomorphic map. Assume that M ′ is strongly pseudo-

convex near 0 and let ρ′ = (ρ′
1, . . . ,ρd ′) be a real-analytic Rd ′

-valued defining function for M ′ near
0 where d ′ = codim M ′. Then, for every κ ∈ {1, . . . , N ′} and for every κ-uple (V 1, . . . ,V κ) of C((Z ))-
linearly independent formal meromorphic infinitesimal deformations of H, the associated matrix C =[

C 1 C 2 . . . C d ′ ]
given by (5.3) is of rank κ over C((M)).



16 BERNHARD LAMEL AND NORDINE MIR

Proof. As M ′ is strongly pseudoconvex, there exists (µ1, . . . ,µd ′) ∈ Rd ′
\ {0} such that the complex hes-

sian of ρ# := ∑d ′
i=1µiρ

′
i at 0 is positive definite on T c

0 M ′, the complex tangent space of M ′ at 0 (see
e.g. [F91]). Let κ ∈ {1, . . . , N ′} and (V 1, . . . ,V κ) be C((Z ))-linearly independent formal meromorphic in-
finitesimal deformations of H . We shall prove that the C((M))-valued matrix G = (Gνγ)1≤ν,γ≤κ given
by

Gνγ =
∑

1≤i , j≤N ′
V ν

i (Z )V γ

j (Z )
∂2ρ#

∂Z ′
i Z̄ ′

j

(H(Z ), H(Z ))
∣∣∣

M
,

is invertible in C((M)), which, as the reader can check, clearly implies the desired conclusion. Since
there exists a non-zero formal power series S(Z ) ∈ C[[Z ]] such that every component of the vector
SV ν, ν = 1, . . . ,κ, belongs to C[[Z ]], we may assume that each vector V ν ∈ (C[[Z ]])N ′

. Assume, by
contradiction, that G is not invertible inC((M)). Then there exists a non-zero vector U = (U1, . . . ,Uκ) ∈
(C[[M ]])κ such that

(6.1) G ·U T = 0.

Setting W =∑κ
ν=1UνV ν

∣∣
M ∈ (C[[M ]])N ′

, we get from (6.1) and the fact that the vectors V j are tangent
to M ′ along H(M) that

(6.2)
N ′∑

q=1
Wq ρ

′
j ,Z ′

q
(H , H)

∣∣
M = 0, 1 ≤ j ≤ d ′,

∑
1≤i , j≤N ′

Wi W j
∂2ρ#

∂Z ′
i Z̄ ′

j

(H , H)
∣∣∣

M
= 0.

If W were not identically zero (in C[[M ]]), one could find a real-analytic curve Γ : (Rt ,0) → (M ,0)
such that (W ◦Γ)(t ) 6≡ 0 in C[[t ]]N ′

. Hence we could write (W ◦Γ)(t ) = t mω+O(t m+1) for some non
zero vector ω ∈ CN ′

and some integer m ≥ 1. From (6.2) we must have that ω ∈ T c
0 M

′
and lies in the

kernel of ∂∂̄ρ#, which is impossible as ∂∂̄ρ#
∣∣
T c

0 M ′ is positive definite. Hence W must be identically

zero, which means that the vectors (V 1, . . . ,V κ) are C((M))-linearly dependent. Since (V 1, . . . ,V κ) are
vectors inC[[Z ]]N ′

, it is not difficult to see that these vectors must therefore beC((Z ))-linearly depen-
dent, reaching a contradiction. Hence G is invertible in C((M)). The proof of the lemma is complete.

�

Proof of Theorem 1.1. Without loss of generality we may assume that p = p ′ = 0. If H is a holomor-
phically nondegenerate map, then H is convergent by Theorem 5.1. If H is a holomorphically degen-
erate map of generic degeneracy κ > 0, then the convergence of H follows by applying Theorem 5.2
together with Lemma 6.1. The proof is complete. �
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