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Abstract. We prove a parametrization theorem for maps of deformations of minimal, holomorphically

nondegenerate real-analytic CR manifolds. This is used to deduce results on biholomorphic equivalence; we
show that one can, for any germ of a minimal, holomorphically nondegenerate real-analytic CR manifold

(M,p) construct a function which completely characterizes the CR manifolds biholomorphically equiva-

lent to (M,p). As an application, we show that for any p ∈ M , the equivalence locus Ep = {q ∈
M : (M, q) biholomorphically equivalent to (M,p)} is a locally closed real-analytic submanifold of M , and

give a criterion for the global CR automorphism group to be a (finite-dimensional) Lie group.

1. Biholomorphic equivalence and equivalence loci

Let M and M ′ be connected, real-analytic CR manifolds, p ∈M , q ∈M ′. We will write (M,p) ∼ (M ′, q)
and say that the germs (M,p) and (M ′, q) are biholomorphically equivalent if there exists a neighbourhood
U of p in M and a real-analytic CR diffeomorphism h : U → M ′ h(p) = q. In this paper, we shall present
a number of results which give answers to the question of how to decide whether (M,p) ∼ (M ′, q) for real-
analytic CR manifolds which are holomorphically nondegenerate (in the sense of Stanton [16]) and minimal;
and we shall discuss some applications of these results.

In order to illustrate our later results, let us start with what is essentially an (important) application.
The equivalence locus Ep of a point p ∈M is defined by

(1) Ep = {q ∈M : (M,p) ∼ (M, q)}.

One can ask a number of questions about Ep; our main result for the local structure of this set is the
following:

Theorem 1. If M is a connected real-analytic CR manifold which is minimal and holomorphically nonde-
generate, then for every p ∈M , Ep is a locally closed real-analytic submanifold of M .

Let us recall that M is minimal if for every connected CR submanifold N ⊂M of the same CR dimension
as M we necessarily have N = M . The second condition which we assume in Theorem 1, holomorphic
nondegeneracy, can be phrased in a number of different ways. It is equivalent to the space of germs of
infinitesimal CR diffeomorphisms hol(M,p) to be totally real for some (or equivalently all) p ∈M ; it is also

equivalent to the fact that for no p ∈M , (M,p) ∼ (M̂ ×C, 0) for some real analytic CR manifold M̂ ; finally,
for a minimal real-analytic CR manifold M , it is equivalent to dim Aut(M,p) < ∞ for (one or all) p ∈ M
by [9].

Theorem 1 answers a question raised at the “Emerging applications of complexity for CR mappings”1

workshop at the American Institute of Mathematics in 2010 in the (important) setting of real-analytic,
minimal, holomorphically nondegenerate CR manifolds. It gives interesting insights into the structure of
CR manifolds: in a sense, it exhibits homogeneous CR manifolds as the building blocks of more general CR
manifolds. The notion of homogeneity employed here is that a CR manifold M is homogeneous if for any
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p, q ∈M there exists a neighbourhood U(p) and a CR-diffeomorphism h : U(p)→M with h(p) = q. We will
discuss one application of this fact later, when we discuss the group of global CR automorphisms.

More generally, we show that given a real-analytic deformation of a germ of a real-analytic CR manifold
(M,p), the locus of deformation parameters giving rise to a biholomorphically equivalent germ forms a
semianalytic set in the space of deformation parameters. A real-analytic deformation (Mε, p)ε∈X of such
a germ (Mε0 , p) by real-analytic parameters ε ∈ X (which we assume to be a real-analytic manifold for
simplicity, an assumption which the reader will see can be relaxed considerably), can be realized in the
following way: First, (M,p) can be thought of as a generic, real-analytic submanifold of (CN , p), where
N = n+ d, n the CR dimension of M , and 2n+ d the real dimension of M . The deformation is then given
by a germ of a real-analytic CR submanifold of CN ×X at {p} ×X having the same CR dimension as Mε0

with (π1π
−1
2 (ε0), p) = (Mε0 , p), where πj is the projection onto the first resp. second component; we write

π1π
−1
2 (ε) = Mε.

Theorem 2. Let (M,p) be a germ of a real-analytic CR manifold which is minimal and holomorphically
nondegenerate, and assume that (Mε, p)ε∈X is a real-analytic deformation of (M,p) as above. Then the space

EM = {ε ∈ X : (M,p) ∼ (Mε, p)}
is a semianalytic subset of X.

The stronger conclusion that EM is a submanifold fails in the setting of a general deformation, since X,
unlike Ep above, need not possess any homogeneity properties. For an example, we consider the deformation
Imw = |z|2 + f(ε)|z|8 of the Heisenberg hypersurface, where f is any germ of a real-analytic function at
ε0. Then (EM , ε0) = {ε : f(ε) = 0}, since the Chern-Moser normal form [7] implies that a hypersurface
Imw = |z|2 + c|z|8, where c ∈ R \ {0}, is not biholomorphically equivalent to Imw = |z|2. We will discuss
a number of examples later in section 7. Theorem 1 is an immediate consequence of Theorem 2 since in
Theorem 1, Ep is also homogeneous. Indeed, any semianalytic subset is a real-analytic submanifold in a
neighborhood of some of its points: since, by definition, Ep is acted upon transitively by local holomorphic
diffeomorphisms, it is a closed real-analytic submanifold around any of its point.

A natural question which occurs at this point is whether the nice structure of the equivalence loci described
here is a real-analytic phenomenon. We shall show in section 7 that there are counterexamples in class Ck,
k <∞; we do not know at the present time of any counterexample of class C∞.

On the other hand, it would be interesting to study the set EM (and equivalence locus Ep) in the presence
of additional structure, for instance if M and the deformation Mε are real-algebraic. We conjecture that,
in this situation, EM should be a semi-algebraic subset rather than just semi-analytic: the methods used
in the paper, however, are of an intrinsically analytic nature and do not allow at the moment to draw this
stronger conclusion.

The proof of Theorem 2 is based on a parametrization theorem for mappings of deformations of real-
analytic, minimal holomorphically nondegenerate CR manifolds. In order to state this theorem, it is helpful
to have another, more extrinsic, point of view for deformations of CR manifolds. Recall that every germ of
a real-analytic CR manifold (M,p) can be identified with a germ of a real-analytic generic submanifold of
some CN , where N = n + d, dimRM = 2n + d, and dimCRM = n. In this setting, a deformation is just a
germ ρ of a real-analytic map (CN ×X, {p} ×X)→ Rd with

(2) ρ(p, ε) = 0, ρZ1
∧ · · · ∧ ρZN (p, ε) 6= 0, ε ∈ X.

With this notation, (Mε, p) is given by the defining function Z 7→ ρ(Z, ε). We will write Gkp(CN ) for the space

of k-jets of germs of biholomorphisms of (CN , p). For any two germs of real-analytic CR manifolds (M,p),
(M ′, p′), we write Bihol((M,p), (M ′, p′)) for the space of germs of real-analytic CR diffeomorphisms between
(M,p) and (M ′, p′); if (M,p) and (M ′, p′) are generic, real-analytic submanifolds of CN , we have the natural
inclusion Bihol((M,p), (M ′, p′)) ⊂ Bihol((CN , p), (CN , p′)) into the space of germs of biholomorphisms of
CN at p which map p to p′.

Theorem 3. Let (M,p) be a germ of a generic real-analytic submanifold of CN , which is minimal and
holomorphically nondegenerate, and assume that and (Mε, p)ε∈X is a real-analytic deformation of (M,p) =
(Mε0 , p). Then there exists an integer k, a finite set L and for each J ∈ L, a germ of a real-analytic function
eJ : Gkp(CN ) × X → R, which is a real polynomial in its first variable, at Gkp(M) × {ε0} and a germ of a
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real-analytic map ΨJ : CN × Gkp(CN ) × X at {p} × {eJ 6= 0}, holomorphic in its first variable, with the
following properties:

i) For any H ∈ Bihol((M,p), (Mε, p)) there exists J ∈ L such that eJ(jkpH, ε) 6= 0;

ii) If H ∈ Bihol((M,p), (Mε, p)) and eJ(jkpH, ε) 6= 0, then ΨJ(Z, jkpH, ε) = H(Z) as germs at p;
iii) ΨJ can be written as

ΨJ(Z,Λ, ε) =
∑
α∈Nn

pα(Λ, ε)

eJ(Λ, ε)
dα

(Z − p)α,

for some pα(Λ, ε) which is a real polynomial in Λ and real-analytic in ε, and some integers dα.

As a sidenote on terminology, if we speak about a real polynomial in a complex variable s, we mean that it
is a polynomial of the underlying real coordinates of a complex variable, i.e. an element of C[s, s̄]; a complex
polynomial in s is an element of C[s] as usual.

The result from which Theorem 3 follows is more general: in it, we use the defining function of the
deformed manifold as a parameter. We recall that in general, the space of k-jets of holomorphic maps
(Cpx, 0)→ (Cq, 0), which we denote by Hol((Cpx, 0), (Cq, 0)), is defined by

Jk((Cpx, 0), (Cq, 0)) = mC{x}q�mk+1,

where m is the maximal ideal in C{x}. Also recall that

Jk((Cpx, 0), (Cq, 0)) = m̂C[[x]]q�m̂k+1,

where m̂ is the maximal ideal in C[[x]], and that the canonical projection, which we denote by

jk0 : m̂C[[x]]q → Jk((Cpx, 0), (Cq, 0)),

restricts to the canonical projection of mC{x}q onto Jk((Cpx, 0), (Cq, 0)); we shall consequently use the same
notation for both. The space Hol((Cpx, 0), (Cq, 0)) gets endowed with the natural inductive limit topology
of uniform convergence on a compact neighbourhood. Typically, we shall denote a variable in jet space by
Λ ∈ Jk((Cpx, 0), (Cq, 0)), and the reader can identify Λ with the collection

Λ = (Λα : α ∈ Np, 1 ≤ |α| ≤ k),

with each Λα a variable in Cq, such that

jk0H =

(
∂|α|H

∂xα
(0) : 1 ≤ |α| ≤ k

)
.

As a last point, the jet group mentioned above is realized as

Gk0(CN ) = jk0 (Bihol((CN , 0), (CN , 0))) ⊂ Jk((CN , 0), (CN , 0)).

When we say that we use the defining function of the deformed manifold as a parameter, we will use its
complex form: If (M, 0) ⊂ (CN , 0) is a germ of a generic real-analytic manifold of real codimension d, then
there exist coordinates (z, w) ∈ Cn × Cd and a germ of a holomorphic map Q(z, χ, τ) : Cn × Cn × Cd → Cd
such that M is defined by the equation w = Q(z, z̄, w̄) for (z, w) close to 0.

Theorem 4. Let (M ′, 0) be a germ of a generic minimal real-analytic submanifold of CN which is holomor-
phically nondegenerate and minimal at 0, of real codimension d, and write n = N − d. Then there exist an
integer `, a finite set L, for any J ∈ L a real polynomials eJ on J`((CN , 0), (CN , 0))×J`((C2n+d, 0), (Cd, 0)),
and a real-analytic map ΨJ defined on the open subset

UJ = {(Λ, Q(z, χ, τ)) : eJ(Λ, j`0Q) 6= 0} ⊂ J`((CN , 0), (CN , 0))× C{z, χ, τ}d,

where (z, χ, τ) ∈ Cn ×Cn ×Cd, with values in Bihol((CN , 0), (CN , 0)), which have the following properties:
i) if w = Q(z, z̄, w̄) defines a germ of a real-analytic submanifold MQ at 0 and H ∈ Bihol((MQ, 0), (M ′, 0)),

then there exists a J ∈ L such that eJ(j`0H, j
`
0Q) 6= 0;

ii) if H ∈ Bihol((MQ, 0), (M ′, 0)) and eJ(j`0H, j
`
0Q) 6= 0, then

H = ΨJ(j`0H,Q);
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iii) each ΨJ can be written in the following form:

ΨJ(Λ, Q)(Z) =
∑
α

pα(Λ, jcα0 Q)

eJ(Λ, j`0Q)2dα
Zα,

where pα are real polynomials, and cα, dα are integers.

Remark 1. In the statement of Theorem 3, we use the following notion of real analyticity: We say that a
real-analytic map A defined on an open subset U of a complex vector space E is defined as a holomorphic
map Ã on U × Ū ⊂ E × Ē which agrees with A along the diagonal, i.e. A(e) = Ã(e, ē); a holomorphic map
is a map which is Gateaux-holomorphic and continuous. In fact, our maps fulfill an even stronger version
of holomorphicity, i.e. the coefficients of the ΨJ fulfill “convergence estimates” of the form discussed in e.g.
[12].

The last theorem has a rather interesting consequence for the question of deciding whether two minimal,
holomorphically nondegenerate CR manifolds are biholomorphically equivalent. This question, which in
general goes under the biholomorphic equivalence problem, goes back to Poincaré [15]; Theorem 4 allows us
to find all CR manifolds which are biholomorphically equivalent to a fixed real-analytic CR manifold, which
is minimal and holomorphically nondegenerate; to be more precise, we have the following theorem.

Theorem 5. Let (M ′, 0) be a germ of a real-analytic generic submanifold of (CN , 0), of CR dimension n
and real codimension d. Then there exists an integer `, a finite set L, and for each J ∈ L a real polynomials
eJ defined on J`((CN , 0), (CN , 0)) × J`((C2n+d, 0), (Cd, 0)) and a real-analytic map ψJ defined on the open
subset

UJ = {(Λ, Q) : eJ(Λ, j`0Q) 6= 0} ⊂ J`((CN , 0), (CN , 0))× C{z, χ, τ}d,
where z, χ are variables in Cn and τ a variable in Cd with values in C{z, χ, τ}, which satisfy the following
properties:

i) If w = Q(z, z̄, w̄) defines the germ of a real-analytic generic submanifold (MQ, 0), then MQ is biholo-
morphically equivalent to (M ′, 0) if and only if there exists Λ0 ∈ G`0(CN ) and a J ∈ L such that
eJ(Λ0, j

`
0Q) 6= 0 and ψJ(Λ0, Q) = 0.

ii) Writing Y = (z, χ, τ), each ψJ is of the form

ψJ(Λ, Q)(Y ) =
∑
α

pJ,α(Λ, jcα0 Q)

eJ(Λ, j`0Q)dα
Y α,

where cα, dα are integers.
The eJ and pJ,α are real polyonmials which can each be computed in finitely many steps from finite order
data of (M ′, 0).

Let us explain how Theorem 4 implies Theorem 5. We choose a germ of a real analytic defining function
ρ(Z, Z̄) for (M ′, 0), and fix J . We write the function

ρ̃(Z, ζ,Λ, Q) = ρ
(

ΨJ(Λ, Q)(Z),ΨJ(Λ, Q)(ζ)
)

and note that there exists a biholomorphism H from (MQ, 0) to (M ′, 0) with eJ(j`0H,Q) 6= 0 if and only if
ρ̃(Z, ζ, j`0H,Q) = 0 on (MQ, 0). We therefore set ψj(Λ, Q)(z, χ, τ) = ρ̃(z,Q(z, χ, τ), χ, τ,Λ, Q) to obtain a
map ψj with the required properties. A short computation involving iii) of Theorem 4 shows that the ψj is
of the form required in ii).

Theorem 4 solves the biholomorphic equivalence problem in the following sense: In order to decide whether
Bihol((M,p), (M ′, p′)) is empty or not, we first choose normal coordinates for M ′ and assume that p′ = 0
and then normal coordinates (z, w) for (M,p) such that p = 0 and M is given by w = Q(z, χ, τ) near 0.
With the polynomials eJ and pJ,α from Theorem 5, we thus just need to decide whether the real-algebraic
sets

WJ =
{

Λ ∈ J`((CN , 0), (CN , 0)) : pJ,α(Λ, jcα0 Q) = 0 for all α
}
,

VJ =
{

Λ ∈ J`((CN , 0), (CN , 0)) : eJ(Λ, j`0Q) = 0
}
,

satisfy WJ ⊂ VJ for all J or not; in the first case, there does not exist a map, in the other case, for any
Λ ∈WJ \ VJ , ψJ(Λ, Q) ∈ Bihol((MQ, 0), (M ′, 0)).
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We will now return to the question of the equivalence locus. A particular point is that one would–of course–
like a way to actually compute Ep. Our next theorem shows that this is, in principle, a linear problem (if
we want to compute the connected component of Ep containing p, at least). Recall that hol(M,p) denotes
the space of germs of infinitesimal CR automorphisms, which if (M,p) is realized as a generic real-analytic
submanifold of CN is the space

hol(M,p) =

X =
∑
j

aj(Z)
∂

∂Zj
: aj ∈ Op, ReX tangent to M


of holomorphic vector fields whose real part is tangent to M near p (we note that in what follows, we shall
abuse notation slightly and write hol(M,p) for this space and the “intrinsic” space interchangeably; it will
be clear from the context which point of view to take).

Theorem 6. Assume that M is a real-analytic CR manifold which is minimal and holomorphically nonde-
generate. For any p ∈M , we have

TqEp = hol(M, q)(q)

for all q ∈ Ep. In particular, p 7→ dimREp is a lower semicontinuous function. More generally, there exists
a neighbourhood U ⊂ Ep of p in Ep, a neighbourhood V of p in M , and a map ψ(w, q) defined in V × U ,
such that w 7→ ψ(w, q) is a real-analytic CR diffeomorphism on V and ψ(p, q) = q.

Theorem 6 can be used to produce a general jet parametrization result which allows points to move in
the equivalence loci; this result is stated and proved in section 8 as Theorem 15.

Our last application concerns another question, namely the global automorphism group of a real-analytic
CR manifold M . This is the subgroup AutωCR(M) ⊂ Diffω(M) of real-analytic CR diffeomorphisms h : M →
M , where we consider Diffω(M) with the real-analytic compact-open topology. This group has been studied
quite extensively, see e.g. [3] and [13]. With the tools developed in this paper, we can prove

Theorem 7. Let M be a connected, real-analytic CR manifold which is minimal and holomorphically non-
degenerate. Assume that there exists a compact subset K ⊂ M with the property that for every p ∈ M , the
connected component Vp of Ep containing p intersects K nontrivially. Then AutωCR(M) is a finite dimen-
sional Lie group in the real-analytic compact-open topology. Furthermore, there exists a k ∈ N such that the
Ck compact-open topology on AutωCR(M) and the real-analytic compact-open topology on it agree.

In particular, the automorphism group of every compact, real-analytic CR manifold which is holomor-
phically nondegenerate and minimal is a finite-dimensional Lie group, a fact which in the case of manifolds
embedded in Stein spaces had been proved by [13].

The plan of the paper is as follows: In section 2 we discuss the mapping identities which we need to
use for our parametrization. In section 3, parametrizations “along the Segre varieties” are deduced in the
spirit of Theorem 4, i.e. leaving the defining function of the source manifold as a parameter. The proof of
Theorem 4 is given in section 4. Theorem 2 needs some preparations which are given in section 5; it is based
on some results from real-algebraic geometry and finite order equivalences. These also allow us to prove a
weaker statement of Theorem 6 in the setting of a general deformation, which actually implies Theorem 6
in the homogeneous setting. In section 8 we shall discuss how to deduce Theorem 7 from the earlier results,
using well-known arguments from the literature.

Acknowledgments. The authors would like to thank Joe Perez for helpful discussions and his invaluable
help in designing the software going into the computations presented in section 7.

2. Deformation-stable mapping identities

Our goal in this section is to derive the mapping identities which we will use in order to construct a
parametrization of automorphisms of deformations; none of the techniques or results in this section are new,
but we need to prepare the equations in a particular way suitable for our treatment. We consider germs
(M, 0) and (M ′, 0) of generic, real-analytic submanifolds of CN , of the same real codimension, which are
given in normal coordinates by w = Q(z, z̄, w̄) and w = Q′(z, z̄, w̄), respectively. Assume that H = (f, g) is
a germ of a biholomorphism near 0 ∈ CN . Then we have the basic identity

(3) g(z,Q(z, χ, τ)) = Q′(f(z,Q(z, χ, τ)), H̄(χ, τ)),
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which is valid in a neighbourhood of 0 ∈ C2N ; as usual, H̄ denotes the mapping obtained from H by taking
the complex conjugates of the power series coefficients. Differentiating with respect to z, one obtains

(4) gw(z,Q)Qz = Q′z(f(z,Q), H̄(χ, τ))(fz + fwQz),

where we have suppressed the independent variables in Q to make the equation more compact, and use
matrix notation, i.e.

gw =

g1,w1
. . . g1,wd

...
...

gd,w1
. . . gd,wd

 , Qz =

Q
1
z1 . . . Q1

zn
...

...
Qdz1 . . . Qnzn

 , Q′z =

Q
′1
z1 . . . Q′

1
zn

...
...

Q′
d
z1 . . . Q′

n
zn

 ,

fz =

f1,z1 . . . f1,zn
...

...
fn,z1 . . . fn,zn

 , fw =

f1,w1
. . . f1,wd

...
...

fn,w1
. . . fn,wd

 .

Since the n × n-matrix fz + fwQz when evaluated at 0 is just fz(0), which is invertible, the inverse (fz +
fwQz)

−1 is again defined in a neighbourhood of 0, and we can apply it to (4) to obtain

Q′z(f(z,Q), H̄(χ, τ)) = gw(z,Q)Qz(fz + fwQz)
−1.

By Cramer’s rule, the entries of the matrix on the right hand side are rational functions in fz, fw, Qz, gw,
with the denominator being given by det(fz + fwQz); i.e. for every j, there exists a polynomial Pej such
that

Q′zj (f(z,Q(z, χ, τ), H̄(χ, τ)) =
Pej (fz(z,Q), fw(z,Q), gw(z,Q), Qz(z, χ, τ))

det(fz(z,Q) + fw(z,Q)Qz)
.

Continuing this process, we obtain for every α a polynomial Pα with

(5) Q′zα
(
f(z,Q(z, χ, τ), H̄(χ, τ)

)
=
Pα

(
j
|α|
(z,Q(z,χ,τ))H,Qzβ (z, χ, τ) : |β| ≤ |α|

)
(det(fz(z,Q) + fw(z,Q)Qz))

2|α|−1
.

It is convenient to express these formulas in terms of the map

πkM : M→ Hk
d (CN ), πM(Z, ζ) = jkZSζ̄ ,

and the analogous map πM′ ; here M and M′ denote the complexifications of M and M ′, respectively,
Hk
d (CN ) denotes the bundle of k-jets of germs of complex submanifolds of CN of codimension d, and Sζ̄ =
{Z : (Z, ζ) ∈ M} is the Segre variety associated to ζ. In terms of our normal coordinates Z = (z, w), we
introduce conjugate variables ζ = (χ, τ), so that M is given by w = Q(z, ζ), and M′ by w′ = Q′(z′, ζ ′). We
can thus use coordinates (z, χ, τ) for M (and also M′). In terms of these coordinates,

(6) πkM′(z
′, ζ ′) = (Q′z′α(z′, ζ ′) : |α| ≤ k) .

We can now formulate

Lemma 1. For every k ∈ N there exists a polynomial Pk such that for any germs of real-analytic generic
submanifolds (M, 0), (M ′, 0) given in normal coordinates Z = (z, w) ∈ Cn×Cd = CN by w = Q(z, χ, τ) and
w′ = Q′(z′, χ′, τ ′), respectively, if H = (f, g) : (M, 0)→ (M ′, 0) is a germ of a biholomorphism, then

(7) πkM′(H(Z), H̄(ζ)) =
Pk

(
jkZH, (Qzα(z, ζ))|α|≤k

)
(det(fz(z,Q) + fw(z,Q)Qz))

2k−1
.

3. Inverting the reflection map

In this section, we will collect some definitions and facts from [9], reformulating some of them following
[11] and making them suitable for our purpose here. First of all, we will use the following notion of type of
a power series in variables (x, t) (where we think about x as “tangential” and t as “transversal” later):

(8) tpϕ(x, t) = tp
∑
α,β

ϕα,βx
αtβ = min

{
(|α|, |β|) ∈ N2 : ϕα,β 6= 0

}
.

6



The minimum here is taken with respect to the lexicographic ordering on N2 defined by

(m,n) ≤ (k, l) if and only if

{
n < l or

n = l and m ≤ k.

We also define the determinantal type dtp Φ(x, t) of a matrix-valued power series map Φ as the minimum of
the type of the determinants of its minors of maximal size, and the determinantal type of a map Ψ(x, t) as
the determinantal type of its Jacobian. We allow here one of the sizes of the matrix to be infinite (with the
understanding that the corresponding minimum is actually already realized by a submatrix of finite size).

In order to define the Segre maps associated to a generic real-analytic submanifold given in normal
coordinates Z = (z, w) by w = Q(z, χ, τ), we use the following notation for coordinates: (x[1;k]; t) ∈ Cnk×Cd,
where x[j;k] = (xj , . . . , xk). We then inductively define Sj : Cnj × Cd → CN :

S0(t) = (0, t); S1(x1; t) = (x1; t), Sj+1(x[1;j+1]; t) =
(
x1, Q

(
x1, S̄j(x[2;j+1]; t)

))
.

If we evaluate at t = 0, we will denote the corresponding maps by Sj0(x[1;j]) = Sj(x[1;j]; 0). An important
property of the Segre maps thus defined is that the map

Sq(x[1;q]; t) =
(
Sq−1

(
x[2,q]; t

)
, S̄q

(
x[1;q]; t

))
is valued in M. We can now recall the sequence of invariant pairs (nq1, n

q
2) introduced in [9] to measure the

vanishing of πM. We thus consider the differential dπkM as a matrix-valued power series map and define

(nq1, n
q
2) = min

k∈N
dtp (dπkM ◦ Sq);

the minimum is again taken with respect to the lexicographic ordering defined above, and is finite for every
q (i.e. not equal to (∞,∞)) if and only if M is holomorphically nondegenerate (see [9]). (nq1, n

q
2) measures

how dtpπM vanishes “along the Segre maps” and form a lexicographically decreasing sequence in q. We can
now summarize the results of §3 of [9] as follows:

Lemma 2. The numbers (nq1, n
q
2) are stable in the following sense: If (M, 0) and (M ′, 0) are generic real-

analytic submanifolds of CN and H : (M, 0) → (M ′, 0) is a germ of a biholomorphic map, then with the
biholomorphism H = (H(Z), H̄(ζ)) between M and M′ we have

dtp dπM′ ◦ (H ◦ Sq) = (nq1, n
q
2).

Finally, we recall the definition of the transversal jet space Jkt ((Cpx,C
q
t , 0),Cr), which is the set of equiv-

alence classes of germs of holomorphic maps h : (Cpx × C
q
t , 0) → Cr with respect to the equivalence relation

of agreeing up to order k in t, that is,

Jkt ((Cpx,C
q
t , 0),Cr) = mC{x, t}r�(t1, . . . , tq)

k,

and we have the natural map h 7→ jkt,0h ∈ Jkt ((Cpx,C
q
t , 0),Cr), which after choosing coordinates is given by

jkt,0h = (htα(x, 0) : 1 ≤ |α| ≤ k) .

Thus we can essentially identify Jkt ((Cpx,C
q
t , 0),Cr) with a space of germs of power series in x.

We now recall the following result, which is essentially a restatement of Theorem 7 and Theorem 8 of [9]:

Theorem 8. Let P : (Cr, 0) → (Cs, 0) be a holomorphic map of generically full rank s, and (n1, n2) ∈ N2.
We write k(`) = max(2n2 − 1, n2 + `). Then there exists an integer k0, a finite number of Zariski-open
subsets V 1, . . . , V d ⊂ Jk0((Cp+q, 0), (Cr, 0)) covering Jk0((Cp+q, 0), (Cr, 0)) and for every ` ∈ N holomorphic

mappings Φj` : V j × Jk(`)
t,0 ((Cp × Cq, 0),Cs)→ J`t ((Cp × Cq, 0),Cr), with the property that

(9) j`t,0h = Φj`

(
jk00 h, j

k(`)
t,0 (P ◦ h)

)
whenever dtpPy ◦ h = (n1, n2) and jk00 h ∈ Vj .

Moreover, Φ` can be chosen to be of the following form:

(10) Φj`(Λ, Λ̃(x))(x) =
∑
α∈Np

pα(Λ, Λ̃β : |β| ≤ a+ b|α|)
ej(Λ)dα,`

xα,
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where pα and ej are polynomials, V j = {ej = 0}c, and a, b, and dα,` are integers, and we write Λ̃(x) =∑
β Λ̃βx

β.

Before we can deduce our first parametrization result, we also need to recall the following lemma on
derivatives.

Lemma 3. For every q ∈ N, k ∈ N, there exists a real-analytic map Dq
k : Jk((Cqn+d, 0), (Cm, 0)) ×

C{z, χ, τ} → Hol((Cqn+d, 0), Jk((CN , 0), (Cm, 0))), which is a complex polynomial in its first argument,
such that for any power series map h(z, w), we have that

(11) jkZh

∣∣∣∣
Z=Sq(x[1;q];t)

= Dk
q

(
jk(x[1;q];t)(h ◦ S

q), Q
)
,

where Dk
q is of the form

Dk
q (Λ, Q)(x[1;q], t) =

∑
α,β

pα,β(Λ, j
|α|+|β|
0 Q)(x[1;q])αtβ

for some polynomials pα,β (which are complex polynomials in their first and real polynomials in their second
variable).

For the notion of analyticity used here, we refer the reader to Remark 1.

Proof. In the proof of this Lemma, we write Sj(x
[1;j]; t) = (x1, U j(x[1;j]; t)) according to the decomposition

CN = Cn × Cd and employ again the matrix notation (see section 2). We are going to use the facts that
Uqx1(0; 0) = 0n×d and Uqt (0; 0) = Id×d. We start by verifying the claim for k = 1: setting f = h ◦Sq, we have

(here the dimension of the matrices involved is left implicit and we write (x, t) for (x[1;q]; t))

fx1(x, t) = hz(S
q(x, t)) + hw(Sq(x, t)) · Uqx1(x, t),

ft(x, t) = hw(Sq(x, t)) · Uqt (x, t).

When (x, t) = (0, 0) the system reduces to fx1(0, 0) = hz(0, 0), ft(0, 0) = hw(0, 0), so that it can be solved
for hz and hw. By Cramer’s rule, the solution is a linear function of fx1(x, t), ft(x, t) with coefficients which
are rational functions of Uqx1(x, t), Uqt (x, t); the conclusion for k = 1 then follows from the definition of Uq.

Assume, now, that k > 1 and that the conclusion is valid for k− 1; we decide here to abuse notation in a
pretty straightforward manner, and leave it to the reader to make the computation formally correct:

hzk−1(Sq(x, t)) =
∑
α,β

qk−1,0
α,β (jk−1

(x,t)f, j
|α|+|β|
0 Q)xαtβ ,

hzk−2w(Sq(x, t)) =
∑
α,β

qk−2,1
α,β (jk−1

(x,t)f, j
|α|+|β|
0 Q)xαtβ ,

. . .

hwk−1(Sq(x, t)) =
∑
α,β

q0,k−1
α,β (jk−1

(x,t)f, j
|α|+|β|
0 Q)xαtβ ,

where each qi,jα,β(Λ, Q) is a complex polynomial in Λ and a real polynomial in (the appropriate jet of) Q.

Differentiating this system with respect to x1 and (only the last equation) with respect to t, we obtain

hzk(Sq(x, t)) + hzk−1w(Sq(x, t)) · Uqx1(x, t) =
∑
α,β

rk,0α,β(jk(x,t)f, j
|α|+|β|
0 Q)xαtβ ,

hzk−1w(Sq(x, t)) + hzk−2w2(Sq(x, t)) · Uqx1(x, t) =
∑
α,β

rk−1,1
α,β (jk(x,t)f, j

|α|+|β|
0 Q)xαtβ ,

. . .

hzwk−1(Sq(x, t)) + hwk(Sq(x, t)) · Uqx1(x, t) =
∑
α,β

r1,k−1
α,β (jk(x,t)f, j

|α|+|β|
0 Q)xαtβ ,

hwk(Sq(x, t)) · Uqt (x, t) =
∑
α,β

r0,k
α,β(jk(x,t)f, j

|α|+|β|
0 Q)xαtβ ,
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where each ri,jα,β(Λ, Q) is again a complex polynomial in Λ and a real polynomial in Q. Computing in

(x, t) = (0, 0), one sees that the system can be solved for hziwj as a linear function of the right hand sides,
with coefficients which are rational functions of Uqx1(x, t), Uqt (x, t); in the same way as before, this implies
the claim.

�

Remark 2. In the following, we will often have to substitute jk0ϕ into functions which depend on j`0ϕ for
` < k; in order to lighten the notation, we suppress the application of j`0 in that case; i.e. if ψ(Λ) is a function

which depends on a k–jet Λ, we define ψ(Λ̃) for an `-jet Λ̃ by ψ(Λ̃) = ψ(j`0Λ̃).

We can now state and prove the parametrization theorem for deformations, first along the Segre varieties.

Theorem 9. Let (M ′, 0) be a germ of a real-analytic generic submanifold of CN which is holomorphically
nondegenerate. Then for every (q, `) ∈ N2 there exist an integer s(q, `), a finite set L = L(q, `) and for each

J ∈ L a Zariski-open subset V J ⊂ J
s(q,`)
0 ((CN , 0), (CN , 0)) × Js(q,`)0 ((C2n+d, 0), (Cd, 0)), and a real-analytic

map ΨJ
q,` defined on V J × C{z, χ, τ} with values in J`t,0((Cnq+d, 0), (CN , 0)) such that

j`t,0 (H ◦ Sq) = ΨJ
q,`

(
j
s(q,`)
0 H, j

s(q,`)
0 Q,Q

)
,

if w = Q(z, z̄, w̄) defines a real-analytic generic submanifold MQ in normal coordinates (z, w), and H is a

biholomorphism taking the germ (MQ, 0) into (M ′, 0) satisfying (j
s(q,`)
0 H, j

s(q,`)
0 Q) ∈ V J ; for any such H

and Q, there exists at least one J with this property. Furthermore, ΨJ
q,` can be chosen such that

(12) ΨJ
q,`(Λ, Q)(x) =

∑
α

qα(Λ, jcα0 Q)

|eJ(Λ)|2dα
xα,

with real polynomials qα, complex polynomials eJ for which V J = {eJ 6= 0}, and integers cα, dα.

Proof. The proof is by induction on q. We start with q = 1 and choose k large enough such that dtp dπkM′ =
(n1

1, n
1
2), and use Lemma 1 to see that

(13)

πkM′ ◦ H ◦ S1 =
Pk

(
jk(0,t)H, (Qzβ (0, x1, t))|β|≤k

)
det(fz(0, t) + fw(0, t)Qz(0, x1, t))2k−1

=
∑
α,β

Pα,β

(
j

2k−1+|β|
0 H, j

k+|α|+|β|
0 Q

)
det fz(0)

2k−1+|α|+|β| (x1)αtβ

=: P1
k(H,Q)(x, t).

The last expression P1
k(H,Q) then defines an analytic map in our sense (as a composition map). For any

s ∈ N, we write

jst,0P1
k(H,Q) = Q1

k,s(j
k+s
0 H,Q).

By Lemma 2, dtp dπkM′ ◦ H ◦ S1 = (n1
1, n

1
2). We can now apply Theorem 8 with P = πkM′ and (n1, n2) =

(n1
1, n

1
2) and obtain an integer k1 and polynomials ej such that with ϕ = H ◦ S1 we have

j`t,0ϕ(x1, t) =
(

Φ̃j`

(
jk10 ϕ, j

k(`)
t,0 πM′ ◦ ϕ

)
, Φ̂j`

(
jk10 ϕ, j

k(`)
t,0 πM′ ◦ ϕ

))
,

whenever dtp dπM′ ◦ϕ = (n1
1, n

1
2) and ẽj(j

k1
0 ϕ) 6= 0, where we split Φ into components (Φ̃, Φ̂) corresponding

to the coordinates (Z, ζ) for M′, with the analogous notation for ϕ. We also note that by the definition of
πM′ and the construction of the ẽj and Φ we can actually write

j`t,0ϕ(x1, t) =
(

Φ̃j`

(
jk10 ϕ̂, j

k(`)
t,0 πM′ ◦ ϕ

)
, Φ̂j`

(
jk10 ϕ̂, j

k(`)
t,0 πM′ ◦ ϕ

))
,

whenever ẽj(j
k1
0 ϕ̂) 6= 0. In particular, if w = Q(z, χ, τ) defines the germ of a complexification of a real-

analytic generic submanifold in normal coordinates, H takes w = Q(z, z̄, w̄) into (M ′, 0)

(14) j`t,0
(
H ◦ S1

)
=
(

Φ̃j`

(
jk10

(
H̄ ◦ S̄1

)
, j
k(`)
t,0 πM′ ◦

(
H ◦ S1

))
, Φ̂j`

(
jk10

(
H̄ ◦ S̄1

)
, j
k(`)
t,0 πM′ ◦

(
H ◦ S1

)))
,
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the second component of which is just

j`t,0H̄ ◦ S̄1 = Φ̂j`

(
jk10

(
H̄ ◦ S̄1

)
, j
k(`)
t,0 πM′ ◦

(
H ◦ S1

))
.

We note that

jk10

(
H̄ ◦ S̄1

)
= R

(
jk10 H̄, jk10 Q̄

)
;

here R is some polynomial. Furthermore, one of the ẽj ◦ R is nonzero if H : (MQ, 0) → (M ′, 0) is a biholo-
morphism. We can now define L1 = {1, . . . , d} and ej(Λ) = (detλ0)ẽJ(R(Λ)), where λ0 is the part of Λ
corresponding to f̄z(0).

Now by (10), we have with Λ denoting the jet variable in Jk10 ((CN , 0), (CN , 0))× Jk10 ((C2n+d, 0), (Cd, 0))
that

Φ̂j`

(
Λ, Λ̃(x)

)
=
∑
α∈Np

pα(Λ, Λ̃β : |β| ≤ a+ b|α|)
ẽj(Λ)d̃α

xα,

so that if we choose cα large enough and define

q̃α(Λ, κ) = pα

R(Λ),

((
β!Pγ,β(Λ̄, κ̄)

(det λ̄)|α|+|β|

)
β≤k(`)

)
|γ|≤a+b|α|

 .

There exists a real polynomial qα and an integer dα such that

(15)
q̃α(Λ, κ)

ẽj(R(Λ))d̃α
=

qα(Λ, κ)

|eJ(Λ)|dα
,

and (13) and (14) together with the last computations then show that under the assumptions of the Theorem,
we have that

j`t,0H̄ ◦ S̄1 = ΨJ
1,k(js0H, j

s
0Q,Q) = Φ̂j`(R(jk10 H̄, jk10 Q̄),Q1

k,k(`)(j
k+k(`)
0 H,Q)),

for which we set s(1, `) := s = max(k1, k+ k(`)); clearly, the Ψ thus defined is of the form (12). This proves
the conclusion of the theorem for q = 1.

We now prove the induction step, and assume that the conclusion of the theorem holds for q−1. In order
to do so, we again choose k large enough and use Lemma 1 to see that

(16) πkM′ ◦ H ◦ Sq(x[1;q]; t) =
Pk

(
jk
Sq−1(x[2;q],t)

H, (Qzβ (x2, S̄q(x[1;q]; t))|β|≤k

)
det
(
fz(Sq−1(x[2;q], t)) + fw(Sq−1(x[2;q], t))Qz(x2, S̄q(x[1;q]; t))

)2k−1
;

in this equation, we substitute for jk
Sq−1(x[2;q],t)

H, using Lemma 3 and the induction hypothesis applied for

the map corresponding to J ∈ L with eJ(j
s(q−1,|β|+k)
0 H, j

k+|α|+|β|
0 Q) 6= 0, to see that

(17) πkM′ ◦ H ◦ Sq(x[1;q]; t) =
∑
α,β

P q−1
α,β (j

s(q−1,|β|+k)
0 H, j

k+|α|+|β|
0 Q)

det fz(0)2k−1+|α|+|β|(eJ(jk0H, j
k
0Q))gα

xαtβ = Pqk,J(H,Q)(x, t).

Here K and gα are some integers. Analogously to the case q = 1, we will write

jst,0P
q
k,J(H,Q) = Qqk,s,J(j

k+s(q−1,s+k)
0 H,Q)

We again apply Theorem 8, this time with (n1, n2) = (nq1, n
q
2), and with P = πkM′ ; we thus obtain similarly

as before in the case q = 1 an integer kq, finitely many complex polynomials ej , j = 1, . . . , sq, and for every

such j a map Φ̂q,j` such that

j`t,0H̄ ◦ S̄q = Φ̂q,j`

(
j
kq
0

(
H̄ ◦ S̄q

)
, j
k(`)
t,0 πM′ ◦

(
H ◦ Sq−1

))
.

We are thus lead to define Lq = {1, . . . , s} × Lq−1, and ej,J = ejeJ , and see that if we put s(q, `) =

max(kq, k(`) + s(q − 1, k + k(`))), then if ej,J(j
s(q,`)
0 H, j

s(q,`)
0 Q) 6= 0, we have that

j`t,0H̄ ◦ S̄q = Ψ
(j,J)
q,`

(
j
s(q,`)
0 H, j

s(q,`)
0 Q,Q

)
= Φ̂q,j`

(
Rq
(
j
kq
0 H̄, j

kq
0 Q

)
,Qqk,k(`)(j

s(q,k)
0 H,Q)

)
,
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where we have written j
kq
0 H̄ ◦ S̄q = Rq(j

kq
0 H̄, j

kq
0 Q). We conclude that if we define

Ψ
(j,J)
q,` (Λ, Q) = Φ̂j`

(
Rq (Λ) ,Qqk,k(`),J(Λ, Q)

)
,

the requirements of the theorem are fulfilled; a computation along the lines of the first part of the proof
shows that again Ψ is of the form (12) as desired. �

4. Inverting the Segre map

In the last section, we have obtained a general perturbation version of a parametrization of biholomor-
phisms along the Segre varieties. If we furthermore assume that (M ′, 0) is minimal, we shall now obtain the
proof of Theorem 4.

First, we need to recall a theorem from [9] which we are going to use; in order to formulate it, we need
some definitions. For a formal map A(z) : (Cm, 0) → (Cn, 0) we denote by ν(A) the minimum order of
vanishing of minors of the Jacobian of A. We denote by D = {(δ1, . . . , δn) ∈ {1, . . . ,m}n : δ1 < · · · < δn},
and for δ ∈ D and a map A ∈ Hol, we define

(18) δ(A) =

∣∣∣∣∣∣∣∣
∂A1

∂zδ1
. . . ∂A1

∂zδn
...

...
∂An
∂zδ1

. . . ∂An
∂zδn

∣∣∣∣∣∣∣∣ .
We can thus define

(19) ν(A) = min
δ∈D

ord δ(A).

We will simplify notation and write Hol(m,n) (Ĥol(m,n)) for the space of (formal) holomorphic maps

(Cm, 0)→ (Cn, 0). If the dimensions are clear, we simply write Hol or Ĥol. We can thus consider ν : Ĥol→ N;
note that the maps of generic full rank are exactly the ones for which ν <∞.

Theorem 10. For every s ≥ 0 there exists a finite family of polynomials ψ1, . . . , ψ`(s) on Js+1
0 ((Cm, 0), (Cn, 0))

and corresponding holomorphic functions

(20) Φk(A, f) : Ûk × C[[z]]→ C[[w]], 1 ≤ k ≤ `(s),

where Uk =
{
A ∈ Hol : ψk(js+1

0 A) 6= 0
}

, Ûk =
{
A ∈ Ĥol : ψk(js+1

0 A) 6= 0
}

, and Φk is linear in its second

variable, such that with A∗g = g ◦A we have that

(21) Φk(A,A∗g) = g, for every g and for A ∈ Ûk with ν(A) = s,

and ⋃
k

Ûk ⊃ {A ∈ Ĥol : ν(A) = s},
⋃
k

Uk ⊃ {A ∈ Hol : ν(A) = s}

Furthermore, if A ∈ Uk, the operator Φk(A, ·) restricts to a linear operator C{w} → C{z}, and the map
Φk : Uk × C{z} → C{w} is holomorphic, where Hol, C{w}, and C{z} are all equipped with their natural
inductive limit topologies.

Moreover, Φk(A, f) can be written as

(22) Φk(A, f)(w) =
∑
α

Pα,k(j
`(α)
0 A, j

`(α)
0 f)

ψk(js+1
0 A)2|α|−1

wα.

The crucial observation is that one has the necessary invariance property of the Segre maps to apply this
theorem to the Segre maps of a biholomorphic perturbation of any fixed CR manifold.

Lemma 4. Let Sq(x[1;q]; t) : Cqn+d → Cn+d be the Segre map of order q associated to (M, 0) given in normal
coordinates (z, w) by w = Q(z, z, w), and let ν(Sq0) < +∞ be defined as above. Assume that M ′ = {w′ =
Q′(z′, z′, w′)} is biholomorphic to M , and denote by S′q0 the Segre maps based on Q′. Then ν(S′q0 ) = ν(Sq0).
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Proof. Let q ∈ N, and let Y : Cqn+d → Cqn+d, Y = (y1, . . . , yq, u), yj ∈ Cn, u ∈ Cd, be defined as

y2j+1 = F (Sq−2j(x[2j+1;q]; t)), y2j = F (Sq−2j+1(x[2j;q]; t)),

u = G(xq; t) (q odd), u = G(xq; t) (q even),

where H = (F,G) is a germ of a biholomorphism taking (M, 0) to (M ′, 0). We first claim that Y is a germ
of a biholomorphism at 0. To compute its differential, we use the notation

dxjy
m =

(
∂ymr

∂xjs

)
r,s=1,...,n

,

and similar ones for dxju, dty
m and dtu. Since Y is defined in an upper triangular way, we have (where we

set X = (x1, . . . , xq, t))

dY (X) =


dx1y1(X) dx2y1(X) · · · dxqy

1(X) dty
1(X)

0 dx2y2(X) · · · dxqy
2(X) dty

2(X)
...

...
. . .

...
...

0 0 · · · dxqy
q(X) dty

q(X)
0 0 · · · dxqu(X) dtu(X)

 .

By definition, dxqu(0) = dxqG(0, 0) = 0 and |dtu(0)| = |dtG(0, 0)| 6= 0, thus in order to check that dY (0) is
invertible it is sufficient to verify that the determinants |dxkyk(0)|, k = 1, . . . , q, don’t vanish. Assume that
k = 2j + 1 (the other case is analogous); then

y2j+1(X) = F (Sq−2j(x[2j+1;q]; t)) = F (x2j+1, Q(x2j+1, S
q−2j−1

(x[2j+2,q];t)))

from which follows (here (z, w) ∈ Cn × Cd are the normal coordinates)

dx2j+1y2j+1(0) = dzF (0) + dwF (0) · dzQ(0).

Since dzQ(0) = 0 (in fact d(z,χ)Q(0) = 0) and |dzF (0, 0)| 6= 0, the claim is verified.
The Lemma is now a direct consequence of Lemma 3 in [9] and of the claim after restricting to t = 0

(since G(xq, 0) = 0). �

Proof of Theorem 4. By the Baouendi-Ebenfelt-Rothschild minimality criterion [1], there exists a q for which
S′
q
0 is of generically full rank, i.e. ν(S′q0 ) < ∞. By Theorem 9 there exist an integer s(q, 0) and a finite

family of complex polynomials eJ , J ∈ Lq defined on Js(q,0)((CN , 0), (CN , 0)) × Js(q,0)((C2n+d, 0), (Cd, 0)),
and corresponding maps ΨJ

q,0 such that if H and Q are as in the Theorem, then

H ◦ Sq0 = ΨJ
q,0(j

s(q,0)
0 H, j

s(q,0)
0 Q,Q).

We now apply Theorem 10 with s = ν(S′
q
0) and obtain a finite set of polynomials ψk and maps Φk, k =

1, . . . , `(s) such that if ψk(js+1
0 Sq0) = ψ̃k(js+1

0 Sq0) 6= 0 and ν(Sq0) = s, then

Φk(Sq0 , H ◦ S
q
0) = H.

We set ` = max(s+ 1, s(q, 0)) and consider the finite set of polynomials given by eJ,j = |eJ |2ψ̃j , i.e. we set
L = Lq × {1, . . . , `(s)}. If the assumptions of the theorem are satisfied for H and Q, then for one pair (J, j)
we have that eJ,j(j

`
0H, j

`
0Q) is nonzero by Lemma 4 and Theorem 9. For any pair (J, j) ∈ L we proceed to

define

Ψ(J,j)(Λ, Q) = Φj

(
Sq0 ,Ψ

J
q,0(Λ, j

s(q,0)
0 Q,Q)

)
.

Then, if H ∈ Bihol((MQ, 0), (M ′, 0)) with e(J,j)(j
`
0H, j

`
0Q) 6= 0, we have that

Ψ(J,j)(j
`
0H,Q) = Φj

(
ΨJ
q,0(Sq0 , j

`
0H, j

s(q,0)
0 Q,Q)

)
= Φj (Sq0 , H ◦ S

q
0) = H.

The proof of the theorem is concluded by an easy computation utilizing (12) and (22) in order to show
iii). �
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5. Finite order equivalence and semi-algebraicity

5.1. Finite order equivalences. Let (M,p) and (M ′, p′) be two germs of real submanifolds of CN of real
codimension d, locally given by defining functions ρ, ρ′ respectively, and let k ∈ N, i.e. ρ : (CN , p)→ (Rd, 0)
is a germ of a real-analytic function with dρ(p) of rank d. We note that alternatively, we can parametrize
(M,p) by a germ of a real-analytic function ψ(t) with t ∈ (R2n+d, 0) with dψ(0) of rank 2n + d. Then
(M,p) and (M ′, p′) are said to be equivalent of order k or k-equivalent if there exists a local biholomorphism
H ∈ B((CN , p), (CN , p′)) and a (d× d)-matrix-valued map A, such that A(p, p̄) is non-singular and

ρ′(H(Z), H(Z)) = A(Z,Z)ρ(Z,Z) + o(|Z|k),

or equivalently, if

(23) ρ′
(
H(ψ(t)), H(ψ(t))

)
= o(|t|k).

Of course, only the k-jet jkpH ∈ Jk((CN , p), (CN , p′)) is involved in the definition, and the property only
depends on the k-jets of (M,p) and (M ′, p′) in the following sense:

Lemma 5. Let (M, 0) be a real-analytic submanifold of CN of codimension d. Then there exists a sequence
of real polynomials (ϕ`)`, only depending on (M,p),

ϕ` : J`0((CN , 0), (Rd, 0))× J`0((CN , 0), (CN , 0))→ Rn` ,

with the following property: If ρ′ is a defining function of a real-analytic submanifold (M ′, 0), also of codi-
mension d, then H defines an `-equivalence of (M, 0) and (M ′, 0) if and only if

ϕ`(j
`
0ρ
′, j`0H) = 0.

For the proof, let ψ : (R2n+d, 0)→ (CN , 0) be a real-analytic parametrization of (M, 0), and define

ϕ`
(
j`0ρ
′, j`0H

)
=

(
∂|α|

∂tα

∣∣∣∣
t=0

ρ′
(
H(ψ(t)), H(ψ(t))

))
|α|≤`

,

which is of the form claimed above by the chain rule and satisfies the properties of the Lemma by the
definition given above in (23).

In what follows, we will apply this system to a deformation ρ(Z,Z, ε) (where ε ∈ X and X is a germ of
real-analytic manifold, see section 1) of the germ ρ. For convenience, we will use the notation

(24) rk(ε) = jk0ρ(·, ε);

rk : X → Jk((CN , 0), (Rd, 0)) is thus a real-analytic mapping. In the case when the deformation is given
by the collection of germs (M, q) for q in a neighborhood of p in M , we will consider rk as a germ of a
real-analytic mapping defined near p.

From now on we assume that the real-analytic CR manifold M is minimal and holomorphically nonde-
generate, as in the previous section. We will recall some known results regarding the relationship among
finite order, formal and biholomorphic equivalence that we are going to employ later. First of all, from [18,
Theorem 5.1] we have the following fact: for every κ > 1 there exists k > 1 such that for every k-equivalence

H : (M, 0) → (M, 0) there exists a formal equivalence H̃ which coincides with H up to order κ. (Zaitsev’s
result applies to equivalences of formal real-analytic sets, without minimality or nondegeneracy assumptions,
given that they are equivalent to any finite order, which is trivially fulfilled in our setting). Combining this

statement with [2], we have that H̃ is actually a local biholomorphism. Moreover, [18, Theorem 2.1] and [2]
show that if (M, 0) and (M ′, 0) are k-equivalent for all k ∈ N then they are also biholomorphically equivalent.
We also refer the reader to [4], where the result was proved in the finitely nondegenerate case.

Remark 3. If (M ′, 0) is biholomorphic to (M, 0), then for all κ > 1 and for the same k(κ) as above we
also have that for every k-equivalence H : (M, 0) → (M ′, 0) there exists a formal (hence, in our setting,

convergent) equivalence H̃ which coincides with H up to order κ. In fact, let φ : M → M ′ be a biholomor-

phism, and H ′ : M → M ′ a k-equivalence; then H = φ−1 ◦ H ′ is a k-equivalence M → M . Let H̃ be an

automorphism of M which coincides with H up to order κ; then H̃ ′ = φ ◦ H̃ agrees with φ ◦H = H ′ up to
order κ.
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As observed above, the k-equivalence condition gives rise to a real algebraic subset {ϕk = 0} defined in
Lemma 5; what we are really interested in, however, is the projection of this set on its first component. For
this purpose, we shall now recall some well-known notions and facts about real algebraic geometry.

5.2. Basics from real-algebraic geometry. A set A ⊂ Rn is said to be semi-algebraic if it is a finite
union of intersections of sets defined by real polynomial equations and inequalities:

A =

k⋃
i=1

h(i)⋂
j=1

Aij

where Aij is either of the form {Pij = 0} or {Pij > 0} for a real polynomial Pij ∈ R[x1, . . . , xn]. The
importance of semi-algebraic sets is highlighted by the following fundamental result:

Theorem 11. (Tarski-Seidenberg) Let A ⊂ Rn be a semi-algebraic set, and let π be the projection
π : Rn → Rn−1. Then π(A) is semi-algebraic.

More generally, if R is any ring of real functions over a set E, a subset A ⊂ E is called definable if it can
be expressed as before, with Aij being either of the form {fij = 0} or {fij > 0} for some fij ∈ R. We will
need the following consequence of  Lojasiewicz’s generalization of the Tarski-Seidenberg result (see e.g. [6]):

Theorem 12. ( Lojasiewicz) Let X be an analytic manifold, let A ⊂ X × Rk be definable over the ring
Cω(X)[x1, . . . , xk] and let π : X ×Rk → X be the projection on the first factor. Then π(A) is semi-analytic,
i.e., definable over Cω(X).

We have now gathered all the tools we need in order to prove Theorem 2.

Proof of Theorem 2. Let (Mε, 0)ε∈X be a deformation of (M, 0). Given a subset E ⊂ X, we will denote by
Cω(E) the set of real-analytic functions defined in a neighborhood of E in X; moreover, given a point ε0 ∈ X
we denote by Cωε0 the set of germs of real-analytic functions at ε0. In what follows, for every k we regard

the map rk defined in section 5 as a real-analytic map X → Jk((C2n+d, 0), (Cd, 0)); i.e., we take a choice of
real-analytic functions Q(z, χ, τ, ε) such that for ε ∈ M , Q(z, z̄, w̄, ε) defines (Mε, 0) in normal coordinates
(z, w), and write

rk(ε) = jk0Q(·, ·, ·, ε);
we also write r(ε) = Q(·, ·, ·, ε) ∈ C{z, χ, τ}. Let ej and pj,α be defined as in Theorem 5, and fix any j0;

moreover, fix any relatively compact, open semianalytic set B ⊂ X. Since Cω(B) is Noetherian (see [8], and
also [10, 14]), the same is true for Cω(B)[Λ]: it follows that there exists K ∈ N such that

{pj0,α(Λ, rcα(ε)) = 0} = {pj0,α(Λ, rcα(ε)) = 0}|α|≤K
for (Λ, ε) ∈ J`((CN , 0), (CN , 0))×B.

Consequently, if we define for every j the set Aj ⊂ J`((CN , 0), (CN , 0))×B as

Aj = {(Λ, ε) ∈ J`((CN , 0), (CN , 0))×B : ej(Λ, r`(ε)) 6= 0, ψj(Λ, r(ε)) = 0}
and set A = A1∪. . .∪Ak, then A is definable over the real polynomials in J`((CN , 0), (CN , 0)) with coefficients
in Cω(B). Theorem 5 then implies that (where we denote by π the projection J`((CN , 0), (CN , 0))×X → X)
π(A) corresponds to the the points ε ∈ B such that (Mε, 0) is locally biholomorphic to (M, 0), i.e. π(A) =
EM ∩B. Thus  Lojasiewicz’s theorem implies that π(A), and thus EM , is a semianalytic subset of B. �

6. Lifting

In order to proceed with the proof of the lifting statements, we still need to collect two facts. We first
recall that, if A1 ⊂ Rn and A2 ⊂ Rm are semi-algebraic set, a map f : A1 → A2 is said to be a semi-algebraic
map if the graph of f is a semi-algebraic subset of Rn+m.

A (semi algebraic) cell decomposition of a semi-algebraic set A is a finite collection of subsets {Cqj } such

that each Cqj is semi-algebraically homeomorphic to Bq = {x ∈ Rq : |x| < 1} (Cqj is then called a cell of

dimension q) and satisfying the following properties:

(1) A =
⋃
j,q C

q
j ;
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(2) the closure C
q

j of a q-cell is the union of Cqj and cells of strictly smaller dimension.

In other words, the sets Cqj form what is called a stratification. An important result in the theory of

semi-algebraic sets is that a cell decomposition always exists (see [5]).

Remark 4. Let X ⊂ Rn, Y ⊂ Rm be semi-algebraic sets and let f : X → Y be a semi-algebraic homeomor-
phism. Moreover, let K ⊂ X be any subset. Then there exists p ∈ K, a neighborhood U of p in Rn and a
real analytic submanifold N ⊂ U such that K ∩ U ⊂ N and f |N is a real-analytic map. To verify this fact,
let Γ(f) ⊂ Rn+m be the graph of f , and let π1, π2 be the projections of Γ(f) onto X and Y respectively. We
note that Γ(f) admits a stratification by real analytic cells (see [5, Theorem 2.6.12]: the decomposition can
be in fact chosen to be a triangulation); let C be a cell of maximal dimension intersecting K ′ = π−1

1 (K), and
choose p′ ∈ C ∩K ′, p = π1(p′). Then there exists a neighborhood U ′ of p′ such that U ′ ∩K ′ ⊂ C: if not, we
can choose a sequence of points p′k converging to p′ such that p′k ∈ D ∩K ′ for some cell D 6= C, which by
the choice of C is of necessarily lower dimension; hence p ∈ D̄ ∩ C = ∅ since the cells form a stratification
(for a similar argument, see also the proof of Lemma 6 below). Take N = π1(C ∩ U ′) (N is a real analytic
submanifold since π1|C is a diffeomorphism); then K is locally contained in N and f = π2 ◦ π−1

1 is real
analytic.

We will also need the following local triviality result, due to Hardt (see e.g. [5]), concerning semi-algebraic
continuous maps.

Theorem 13. (Hardt) Let f : X → Y be a continuous, semi-algebraic map. Then there exist a finite semi-
algebraic stratification {Y1, . . . , Yk} of Y , a collection {F1, . . . , Fk} of semi-algebraic sets, and semi-algebraic
homeomorphisms gj : f−1(Yj)→ Yj × Fj such that

f |f−1(Yj) = p ◦ gj
where p is the projection p : Yj × Fj → Yj.

Let (Mε, 0)ε∈X be a real-analytic deformation of the germ (M, 0), as defined in section 1, and EM be
the locus {ε ∈ X : (Mε, 0) ∼ (M, 0)}. By definition, for all ε ∈ EM there exists a local biholomorphism
(M, 0)→ (Mε, 0); however it is not clear, in principle, that these biholomorphisms can be chosen to depend
nicely on ε. The next lemma shows that this can in fact be done at least boundedly in the neighborhood of
each point of a dense subset of EM .

Lemma 6. Let p ∈ EM , and fix a neighborhood U of p. Then there exists q0 ∈ EM ∩ U such that for
every biholomorphism Hq0 : (M, 0) → (Mq0 , 0), any κ ∈ N, and for every neighbourhood W of jκ0H

q0 there
exists a neighbourhood V of q0 with the following property: for all q ∈ V ∩ EM there is a biholomorphism
Hq : (M, 0)→ (Mq, 0) such that the jκ0φq ∈W .

Proof. Choose k > 0 (associated to κ) as in Remark 3, and let ϕk be the set of polynomials defined in Lemma
5. Then Ak = {ϕk = 0} is a real algebraic subset of Jk0 ((CN , p′), (Rd, 0))×Jk0 ((CN , 0), (CN , 0)); let π be the
projection to Jk0 ((CN , p′), (Rd, 0)). Let rk(q) be the map defined in (24); then (Mq, 0) is k-equivalent to (M, 0)
if and only if rk(q) belongs to π(Ak); in particular the points of EM satisfy this property. Let C1, . . . , Cm
be a partition of π(Ak) into semi-algebraic sets in such a way that π|π−1(Cj) is trivial for 1 ≤ j ≤ m (see

Hardt’s Theorem above and [5]), and let Cij be a cell decomposition respecting {C1, . . . , Cm} and forming a

stratification in the sense specified above, i.e. C
i

j is the union of Cij and cells of strictly smaller dimension

(cfr. [5]). Let d = max{d′ : ∃q ∈ EM ∩ U s.t. rk(q) ∈ Cij and dimCij = d′}, and choose q0 ∈ EM ∩ U
realizing the maximum, rk(q0) ∈ Ci0j0 . We claim that, for q′ ∈ EM lying in a small enough neighborhood of

q0, we still have rk(q′) ∈ Ci0j0 . Otherwise, there would exist a sequence q′n → q0 (hence also rk(q′n)→ rk(q0))

such that rk(q′n) ∈ Ci1j1 for some fixed indexes i1, j1, with dimCi1j1 ≤ d. It would follow that Ci0j0 ∩ C
i1
j1 6= ∅,

which contradicts the fact that the sets Cij form a stratification. So rk(q′) ∈ Ci0j0 for all the q′ ∈ V ′ ∩ EM
for some small enough neighborhood V ′ of q0; in particular rk(q′) ∈ Cj0 . By the triviality over π−1(Cj0) we
have that, fixed a biholomorphism Hq0 : (M, 0)→ (Mq0 , 0), there exists a neighbourhood V of q0 such that

for all q′ ∈ V there exists a k-equivalence H̃q′ : (M, 0)→ (Mq′ , 0) whose k-jet belongs to jk0 (jκ0 )−1W where
W is the given neighbourhood of jκ0H

q0 . By [18, Theorem 5.1] and [2] it now follows that there also exists

a biholomorphism Hq′ : (M, 0)→ (Mq′ , 0) whose κ-jet belongs to W . �
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If the deformation (Mq, 0) is given by moving the basepoint q of a fixed germ (M,p), then the conclusion
of Lemma 6 can be strenghtened:

Corollary 7. Let p ∈ M . Then for every κ ∈ N and for every neighbourhood V of jκp id there exists a
neighborhood U of p such that for all q ∈ Ep ∩ U there is a biholomorphism φq : (M,p) → (M, q) with
jκpφq ∈ V .

Proof. Let q0 be as in Lemma 6, and fix any biholomorphism φq0 : (M,p) → (M, q0). Then the claim is
proved by composing the family φq of Lemma 6 with the inverse of φq0 . �

We now want to show that, if EM contains a real-analytic submanifold, the lifting property of Lemma 6
gives real-analytic sections:

Lemma 8. Assume that EM contains a (real analytic) submanifold R of X; let p ∈ R and fix an open
neighborhood U of p. Then for every κ ∈ N there exist q1 ∈ R ∩ U , a neighbourhood V of q1, and a real
analytic map Lκ : V ∩R→ Gκ0 (CN ) and (for all q ∈ V ∩R) a biholomorphism φq : (M, 0)→ (Mq, 0) whose
κ-jet is Lκ(q).

Proof. Along the same lines as Lemma 6, we work with the k which is obtained from κ as in Remark 3. The
conclusion will follow from the following claim: there exist x0 ∈ Ak (with π(x0) ∈ rk(R ∩ U)), q1 ∈ R ∩ U
with rk(q1) = π(x0), a neighborhood V ′ of rk(q1), a neighbourhood V of q1, and a submanifold L of a
neighborhood of x0 in Ak such that the map π : L→ V ′ ∩ π(Ak) is 1− 1 and the map π−1 ◦ rk : V ∩R→ L

is real analytic. Let Ci0j0 be the d-cell chosen in the proof of Lemma 6; since π is trivial over Cj0 , there

exists a semi-algebraic homeomorphism fj0 : Ak ∩ π−1(Cj0) → Cj0 × Fj0 (for a certain semi-algebraic set
Fj0) such that π|π−1(Cj0 ) = p ◦ fj0 (where p is the projection Cj0 × Fj0 → Cj0). We apply Remark 4 to

X = Ak ∩ π−1(Cj0), Y = Fj0 × Cj0 and K = π−1(rk(R) ∩ Cj0) ∩ Ak: we can then choose x0 ∈ Ak in
such a way that π(x0) ∈ rk(R) and fj0 is real-analytic on a submanifold N of a neighborhood of x0 in
Ak, locally containing π−1(rk(R)) ∩ Ak. The claim is then obtained by taking L to be the intersection of

f−1
j0

(Ci0j0 × {fj0(x0)}) with a small neighborhood of x0 in N . �

Again, if (Mq, 0) is given by the germs (M, q) induced at q ∈M by a fixed germ (M,p), the analogous of
Corollary 7 holds with the same proof to give us real-analytic sections:

Corollary 9. Let p ∈ M . Then for every κ ∈ N and for every neighbourhood V of jκp id there exists a
neighborhood U of p, a real-analytic map L : U → V ⊂ Jκp ((M,p),M), and biholomorphisms φq : (M,p) →
(M, q) defined for q ∈ Ep ∩ U such that for all q ∈ Ep ∩ U we have L(q) = jκpφq.

Theorem 14. Let (Mε, 0)ε∈X be a deformation of (M, 0), which we assume to be holomorphically nonde-
generate and minimal. Then there exists a dense subset D ⊂ EM with the following properties:

i) Each component of D is real-analytic submanifold of X;
ii) For every q ∈ D there exists a neighbourhood U of q in D and a real-analytic map ϕ(p, q) defined in a

neighbourhood of {0} ×U in M ×D such that for each q ∈ U the map p 7→ ϕ(p, q) : (M, 0)→ (Mq, 0) is
a CR equivalence.

Proof. We first note that since EM is a semianalytic subset of X by Theorem 2, we can find a dense open
subset D′ of EM each of whose components are real-analytic submanifolds of X. By Lemma 8, we can find
a dense subset D ⊂ D′ each of whose points fulfills the property of Lemma 8 with κ being the number `
required in Theorem 3. From this Theorem, we conclude that φq = Ψ(·, (L(q))−1, q)−1, where the inverse is
taken as a map in the first component, which is of the form claimed in ii). �

Proof of Theorem 6. The second part of the Theorem is now either an immediate consequence of Theorem 14
and the homogeneity of Ep, or one could repeat the proof of that theorem with Lemma 8 replaced by
Corollary 9 and using the fact that Ep is a real-analytic submanifold. The first part of the Theorem is
implied by the second part, since we obtain an infinitesimal CR automorphism of M at p by taking any
curve γ(t) in Ep with γ(0) = p and setting

X =
d

dt

∣∣∣∣
t=0

ψ(·, γ(t));

since ψ(p, q) = q, X(p) = γ′(0). �
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7. Examples

7.1. Real-analytic examples. By Theorem 1, if M is a holomorphically nondegenerate, minimal real-
analytic manifold, and p ∈ M , the structure of the locus Ep is – at least on a neighborhood of p – very
simple. We present here several examples to illustrate how, from a global point of view, the situation can be
more complicated. Also of interest are questions regarding the relationship between Ep and the loci nearby,
as well as the possibility to extend the automorphisms of Ep to automorphisms of a neighborhood of Ep in
M .

In some cases, where no simple invariant (for example involving degeneracy or type) is available, the actual
computation of the locus can be a complicated task. In such a situation, one can employ the characterization
in Theorem 6 , which, while only allowing to find the connected component of Ep through p, in principle
reduces the calculation to a linear problem.

Example 5. For a generic (M,p) the locus is trivial, i.e. Ep = {p}. On the opposite side of the spectrum,
we have the homogeneous manifolds where Ep = M . Many of the results we have proved in this paper for the
equivalence locus (and actually, some more) are already known in the setting of homogeneous CR manifolds
from work of Zaitsev [17].

An interesting aspect of our results here is that they exhibit homogeneous CR manifolds as “building
blocks” of holomorphically nondegenerate, minimal, real-analytic CR manifolds since they are the disjoint
union of the equivalence orbits, which are (by Theorem 1) homogeneous CR manifolds.

A very simple example of a homogeneous CR manifold in C2(z, w) is given by the Lewy hypersurface
{Imw = |z|2}, which is biholomorphic to the standard sphere S3 ⊂ C2.

Example 6. Let S = {Imw = |z|4}; then S has type 4 along {z = 0, Imw = 0} and is strongly pseudoconvex
elsewhere. It follows that E0 = {z = 0, Imw = 0} is a real line. On the other hand, S \E0 is homogeneous:
a way to verify this fact is to consider the map φ : C2 → C2, φ(z, w) = (z2, w). The pull-back of S through
φ is the Lewy hypersurface; since φ is non-singular for z 6= 0, then, the claim follows.

Alternatively, one can consider the group generated by {rθ}θ∈[0,2π) and {dt}t∈R\{0}, where rθ(z, w) =

(eiθz, w) and dt(z, w) = (tz, t4w), which (alongside with the translation in the Rew-direction) acts transi-
tively on S \ E0.

This example already shows that Ep needs not be, globally, a closed submanifold of M , since this is not
the case for S \ E0. We can also see that the function p→ dimEp is (only) lower semicontinuous.

Example 7. By modifying the previous example, we can get rid of some of its symmetries and “break” the
homogeneity of the strongly pseudoconvex part. Let S1 = {Imw = |z|4 + |z|6}; then the rotations rθ are still
automorphisms of S1. A heavy, computer-assisted calculation of dimREq at q = (i, 2) (as it turns out, the
equation defining hol(S1, q) needs to be checked up to its 8-th jet) showed that the locus at q has dimension
2, as expected.
Let, now, S2 = {Imw = |z|4 + Re(zz3)}. In this case, the only rotation preserved corresponds to θ = π,
while S2 is invariant under the dilations dt. Similarly as before, an explicit computation (this time involving
the 7-th order jet of the equation defining hol(S1, q)) at q = (i, 0) allows to verify that dimREq = 2. We
remark that in this example Eq is (globally) disconnected, since it contains (at least) the two connected
components {(is1, s2)}s1>0,s2∈R and {(is1, s2)}s1<0,s2∈R.

Example 8. Let S = {Imw = |z|6 + Re(zz5)}. In this example, the automorphisms of S include the
dilations dt(z, w) = (tz, t6w) for t ∈ R and the rotations rθ for θ = π,±π/2. As in the previous example, we
could explicitly check that the real dimension of Eq at the point q = (i, 2) is 2. Also in this case, the locus
Eq is not connected; moreover, we can see that Eq (while it is in itself a locally closed submanifold of S) is
no longer an open subset of a regular submanifold of S. The closure of the locus corresponds in fact to the
2-dimensional real analytic set {(s1, s2) ∪ (is1, s2)}(s1,s2)∈R2 , which is singular at 0.

Example 9. Let S = {Imw = |z1|4 + |z1z2|2} ⊂ C3(z1, z2, w): this hypersurface is obtained by modifying
the homogeneous submanifold S′ = {Imw′ = |z′1|2 + |z′2|2} via the map φ(z1, z2, w) = (z2

1 , z1z2, w). Since φ is
non-singular for {z1 6= 0}, then, it follows that the open subset E5 = S∩{z1 6= 0} is homogeneous. Moreover,
S∩{z1 = 0} is the 3-dimensional plane {Imw = 0, z1 = 0} and so it is, by itself, an homogeneous submanifold
of C3. Nonetheless, the equivalence locus of the point (0, 0, 0) does not coincide with S ∩ {z1 = 0}, but it
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reduces to the line E1 = (0, 0, s)s∈R (these are the only points in which S has type 4). The remaining set
E3 = S∩{z1 = 0, z2 6= 0} also constitutes a locus: looking at the automorphisms (z1, z2, w)→ (cz1, cz2, |c|4w)
for c ∈ C \ {0} shows that Ep ⊃ E3 for all p ∈ E3, while considering the Levi form of S (which has exactly
one vanishing eigenvalue only along E3) shows that Ep ⊂ E3 for all p ∈ E3. To sum it up, S is the disjoint
union of three loci E1, E3, E5, forming an analytic (in fact algebraic) stratification.

Example 10. Let S = {Imw = (Rew)2e−Re z1 + |z2|2} ⊂ C3. Here the automorphisms of S include the
translations along the Im z1-direction as well as the transformations (z1, z2, w) → (z1 + t, et/2z2, e

tw) for
t ∈ R. The group they generate is transitive on E = {z2 = 0, w = 0} ⊂ S; once again, looking at the
eigenvalues of the Levi form shows that E coincides with the equivalence locus of 0 in S. It follows that,
even if S is nondegenerate, the locus Ep of some point p ∈ S can be a complex submanifold.

From this example, as well as from the previous one, we see that S needs not be “factorized over Ep”, in
the sense of the existence (for some “transversal” manifold T ) of a CR map from Ep × T to a neighborhood
of p in S; in other words, the loci nearby may not contain submanifolds which are CR-isomorphic to Ep.

We also see that the group of automorphisms of Ep, considered in itself as a homogeneous manifold, can
be much bigger than the group of automorphisms of S which preserve Ep.

7.2. Counterexamples of class Ck. The following construction provides examples of hypersurfaces of C2

for which the equivalence locus of certain points is not locally a manifold, or, more precisely, is not even
locally closed. For all finite k, we could find an example of class Ck; we were not able, up to now, to find an
example of class C∞.

Let us consider the function g : (−1, 1)→ R defined as

g(x) = e− tan2(πx/2);

observe that g is real analytic on (−1, 1); moreover, the extension of g to the whole R by 0 is of class C∞.
We are going to define a function f : [0, 1]→ R, vanishing exactly on the standard Cantor set C ⊂ [0, 1], by
a suitable sequence of dilations and translations of the function g. More precisely, for m ∈ N define

an,m =
n

3m
, bn,m =

n+ 1

3m
, m ∈ N, 0 ≤ n ≤ 3m − 1

and let

Im = {i ∈ {0, 1, . . . , 3m − 1} : ∀0 ≤ j < m, 1 ≤ r ≤ 3m−j−1, i 6∈ {(3r − 2)3j , . . . , (3r − 1)3j − 1}},

Jm = {0, 1, . . . , 3m − 1} \ Im.
We will consider the following family of linear (affine) transformations of R:

ψn,m : [0, 1]→ [an,m, bn,m], ψn,m(x) =
x+ n

3m
;

note that ψn,m restricts to an automorphism of the Cantor set C as long as n ∈ Im. For a choice of h > 0,
we define

f(x) =

{
h−mg(2 · 3mx− 2n− 1), if x ∈ (an,m, bn,m) with n ∈ Jm,
0 otherwise (i.e. x ∈ C).

Then f satisfies the following relation:

f(ψn,m(x)) = h−mf(x) for all m ∈ N, n ∈ Im.

In fact, if x ∈ C then also ψn,m(x) ∈ C and f(x) = f(ψn,m(x)) = 0. Otherwise, we have that x ∈ (ap,q, bp,q)
for some q ∈ N, p ∈ Jq. Then ψn,m(x) ∈ (ap+n3q,m+q, bp+n3q,m+q) and since p+ n3q ∈ Jm+q, we have

f(ψn,m(x)) = h−(m+q)g(2 · 3m+q

(
x+ n

3m

)
− 2(p+ n3q)− 1) =

= h−m
(
h−qg(2 · 3qx− 2p− 1)

)
= h−mf(x).

In other words, the graph {u = f(x)} of the function f in R2(u, x) is invariant under the affine transformation
(x, u)→ (ψn,m(x), h−mu) for all m ∈ N and n ∈ Im.
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Now, for k ∈ N, assume that h > 3k; we will show that f is of class Ck. For every l ∈ N, define a function
fl by “truncating the construction of f at the step l”:

fl(x) =

{
h−mg(2 · 3mx− 2n− 1), if x ∈ (an,m, bn,m) with m ≤ l, n ∈ Jm,
0 otherwise;

observe that fl is smooth for any fixed l ∈ N, in particular it belongs to Ck([0, 1]). Let M = ‖g‖Ck([−1,1]) =

max0≤i≤k(supx∈[−1,1] |g(i)(x)|). Then, for every 0 ≤ j ≤ k and x ∈ (an,m, bn,m) (n ∈ Jm),∣∣∣∣ djdxj f(x)

∣∣∣∣ = |h−m(2 · 3m)jg(j)(2 · 3mx− 2n− 1)| ≤
(

3k

h

)m
2kM.

If l1, l2 ∈ N, l2 > l1, then for j ≥ 0 the j-th derivative of fl2−fl1 is only non vanishing on
⋃
l1≤m≤l2,n∈Jm(an,m, bn,m),

hence for 0 ≤ j ≤ k ∣∣∣∣ djdxj (fl2 − fl1)(x)

∣∣∣∣ ≤ sup
x∈

⋃
m≥l1

(an,m,bn,m)

∣∣∣∣ djdxj f(x)

∣∣∣∣ ≤ (3k

h

)l1
2kM.

Therefore {fl}l∈N is a Cauchy sequence in Ck([0, 1]); since by construction fl → f , it follows that f is in
turn of class Ck.

Now, consider in C2 complex coordinates (z = x + iy, w = u + iv), and let S be the real, tubular
hypersurface defined by

S = {(z, w) ∈ C2 : u = f(x)}.
Note that, for m ∈ N and n ∈ Im, the (affine) complex linear transformation (z, w)→ (ψn,m(z), h−mw) is an
automorphism of S, where ψn,m(z) = (z+n)/3m. Moreover, for t, s ∈ R the translation (z, w)→ (z+it, w+is)
and (since g was chosen to be an even function) the reflection (z, w)→ ((−z+1/2), w) are also automorphisms
of S. Combining these, it is easy to see that

Fp = {(an,m + iy, iv) and (bn,m + iy, iv) : y, v ∈ R,m ∈ N, n ∈ Jm}
is contained in the equivalence locus Ep of any p = (an0,m0 , 0) for m0 ∈ N and n0 ∈ Jm. We claim that
actually Fp = Ep.

In fact, consider the set
A = {(z, w) ∈ S : Rez ∈ [0, 1] \ C};

then S is real analytic in a neighborhood of a point q ∈ S if and only if q ∈ A. In particular, φ(A) ⊂ A for
any local automorphism φ of S, which implies that (with p as above) Ep ⊂ C × iR2 = {(x+ iy, iv) : x ∈ C}.
Choose, then,

x1 ∈ C \
⋃

m∈N,n∈Jm

{an,m, bn,m}

and let p1 = (x1, 0). Then p1 doesn’t belong to the boundary of any connected component of A. Since, on
the other hand, p does belong to the boundary of {(x+ iy, f(x) + iv) : x ∈ (an0,m0

, bn0,m0
), y, v ∈ R} (which

is a connected component of A), it follows that p1 6∈ Ep; hence we obtain Ep = Fp.
Finally, we observe that Ep is dense in C × iR2; since the latter is a perfect set, it follows that Ep is

nowhere locally closed.

8. Global automorphisms

Our first step in studying the global automorphism group is once again a local result. We shall show
that, given a point p ∈ M , the germs of biholomorphisms of M at p can be analytically parameterized in
the following way:

Theorem 15. Let M be a real-analytic CR manifold which is holomorphically nondegenerate and minimal.
Then for every p ∈ M there exists a neighbourhood U of p in M , an integer `, a neighbourhood V of j`p id,
and a real-analytic map Ψ: Ω → M , defined on U × V such that for any germ at q of a real-analytic CR
automorphism f with j`qf ∈ V for some q ∈ U ∩ Ep, we have

f(z) = Ψ(z, j`qf)

for z near q.
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Let us first see how Theorem 15 implies Theorem 7. We will follow the line of reasoning due to Baouendi,
Rothschild, Winkelmann, and Zaitsev [3], and thus restrict ourselves to a sketch: In order to show that
there exists a neighbourhood of id ∈ AutωCR(M) which is locally compact, we show that for a judiciously
chosen neighbourhood U of id ∈ AutωCR(M), any sequence of CR automorphisms (fn)n∈N ⊂ U contains a
subsequence which converges everywhere on M to an automorphism. Let K be the compact set given in
Theorem 7. For any p ∈ K, we can find a neighbourhood U(p), an integer `p, and maps Ψp, from Theorem 3
applied to the deformation of moving the basepoint and considering the inverse, as in the proof of Theorem 2,
such that

f(z) = Ψp(z, jpf),

for any f with j
`p
p f in a neighbourhood Vp of j

`p
p id. By possibly shrinking Up and Vp, we can assume that

j1
qΨp(·,Λ) is invertible for every Λ ∈ Vp and q ∈ Up.

We can cover K with finitely many such Upj =: Uj and by requiring that U consists only of maps f for

which jkpjf is sufficiently close to jkpj id where k = maxj `pj , we have that

f(z) = Ψpj (z, j
k
pjf), f ∈ U .

Let now (fn) be a sequence in U . We first claim that there exists a subsequence of (fn) such that fn
converges on U = ∪jUj ⊃ K to a map with invertible Jacobian at every point. For this, we choose a
subsequence fns such that for every j, jkpjfns converges to a jet Λ0

j ∈ Vj ; then of course the fn converge on U

(uniformly on compact subsets, in particular, on K), and the limit map has an invertible Jacobian at every
point of U by our choice of Uj and Vj .

We now consider the set O of points p ∈M which have a neighbourhood on which fn converges to a map
whose Jacobian is invertible. We will show that that O = M ; one can then follow the arguments of [3] in

order to finish the proof. For every p ∈ M , denote by Ẽp the connected component of Ep containing p. By

assumption, Ẽp ∩K is not empty, and thus, O ∩ Ẽp is also not empty. Obviously the latter set is open in

Ẽp; we shall show that it is also closed in Ẽp and thus O ∩ Ẽp = Ẽp. This implies that O = M .

Now the assertion that O ∩ Ẽp is closed in Ẽp follows from Theorem 15 with exactly the same proof as
[3, Lemma 3.3] follows from [3, Proposition 2.2.]. We thus only need to give a proof of Theorem 15.

Proof of Theorem 15. We first claim that we can find a real-analytic map ψ(x, y, z) defined on Ũ × (Ũ ∩
Ep)× (Ũ ∩ Ep), where Ũ is some neighbourhood of p, with the following properties:

x 7→ ψ(x, y, z) is CR on U for any (y, z) ∈ Ũ × Ũ ; ψ(y, y, z) = z, x = ψ(x, p, p).

Indeed, by Theorem 6, there exists a map ϕ defined on V ×W for some neighbourhood V of p in M and
W ⊂ Ep of p in Ep which is a CR automorphism on V for every q ∈W and ϕ(p, q) = q. We now define

ψ(x, y, z) = ϕ(ϕ−1(x, y), z),

where the inverse is understood with respect to the x variable. By shrinking V and W , respectively, we can
assume that the formula on the right hand side makes sense on a set of the form Ũ × (Ũ ∩ Ep)× (Ũ ∩ Ep).

From [9], we know that there exists an integer ` such that for a neighbourhood V of p and a neighbourhood
W of j`p id ∈ Gkp(M) there is a real-analytic map Ψ0, CR in its first variable, such that for any f ∈ Aut(M,p)

with j`pf ∈ W , we have Ψ0(x, j`pf) = f(x) for every CR automorphism of M fixing p. By restricting to a

probably smaller neighbourhood W , we can assume that all such automorphisms with j`pf ∈W are actually

defined in the neighbourhood Ũ of p (again, after possibly shrinking Ũ).
From ϕ and Ψ0, we can manufacture a parametrization of Aut(M, q) for q ∈ Up by pushing Ψ0; i.e., let

us for simplicity define for Λ ∈ G`q(M) the jet associated to it via ϕ at p by TpΛ = j`pϕ(·, q)Λj`qϕ−1(·, q) ∈
G`p(M). We can also, if we write π for the map associating to any jet its basepoint, understand TpΛ =

j`pϕ(·, π(Λ))Λj`qϕ
−1(·, π(Λ)) as a map defined on an open neighbourhood of j`p id ∈ G`(M). We then set

Ψ1(x,Λ) = ϕ−1 (Ψ0 (ϕ(x, q), TpΛ) , q) ,

which is defined on Ũ ×W , where W is an open subset of G`(M) with π(W ) = Ũ which contains j`p id such

that for every q ∈ Ũ ∩ Ep, and every F ∈ Aut(M, q) with j`qF ∈ W we have F = Ψ1(·, j`qF ) on Ũ . Let us
20



now write for a jet Λ ∈ G`(M) Λ0 = Λ(π(Λ)) for the image of its basepoint. We now define

Ψ(x,Λ) = Ψ0(ψ(x, π(Λ),Λ0), (j`π(Λ)ψ(·, π(Λ),Λ0))−1Λ),

which has the claimed properties. �
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