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Abstract. Given a locally integrable structure V over a smooth manifold Ω and given p ∈ Ω we
define the Borel map of V at p as the map which assigns to the germ of a smooth solution of V
at p its formal Taylor power series at p. In this work we continue the study initiated in [6] and
[3] and present new results regarding the Borel map. We prove a general necessary condition for
the surjectivity of the Borel map to hold and also, after developing some new devices, we study
some classes of CR structures for which its surjectivity is valid. In the final sections we show how
the Borel map can be applied to the study of the algebra of germs solutions of V at p.

1. Introduction

The purpose of this paper is to discuss our recent results on the Borel map and the Borel property
for locally integrable structures. If one thinks about an integrable structure as a system of (linear,
first order) PDEs with the right number of basic solutions, it becomes an intriguing question to
study the relationship between formal solutions (i.e. formal power series in the solutions of the
structure) and solutions. The relationship between the two comes, of course, from associating to a
smooth solution its formal Taylor series at a distinguished point (e.g. the origin) in the structure.
The Taylor series of a solution can be written as a series in the elements of a set of basic first
integrals {Z1, . . . , Zm} defined near the origin; we refer to this map, defined by

b : S0 → CJZ1, . . . , ZmK, b(u) =
∑
α∈Nm

uαZ
α,

where the uα are appropriate derivatives evaluated at 0 of u, as the Borel map (at the origin).
We have started the study of this map, in particular the natural question of when it is surjective

(the Borel property), in a series of papers of the second author with Barostichi and Petronilho
[3] and of the first and the third author in the context of CR structures [6]. In our current
paper, we can give important insights into the nature of the geometric properties of the structure
determining whether the Borel property holds or not, and we find relationships with interesting
open questions in the analysis of locally integrable structures.

Before we begin with the discussion of our results, we refer the reader to section 2 for thorough
definitions of locally integrable structures, the Borel map (which associates to any smooth solution
its formal solution), and the Borel property (meaning that the Borel map is surjective). The Borel
property can be used to understand, and, in some circumstances, bridge the gap between the local
algebra of power series spaces and the “hard” analysis of solutions.

In section 3 we use functional analytic methods in order to characterize (abstractly) when the
Borel property holds in Proposition Proposition 3.3: roughly stated, the Borel property holds if
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and only if when one can control the action of a sequence of differential operators on the solutions
of the structure by the C`-norm on some compact set, then the operators in the sequence need
to be ouf bounded order. We use this fact to provide some conceptually simpler and, in view of
later results, cleaner proofs of the fact that the existence of peak functions of finite type (or in
the locally integrable case, the fact that property (B) holds) is sufficient for the Borel property
to hold, and for the fact that the existence of a flat solution is necessary for the Borel property
to hold.

However, the results in our current paper show that geometric properties of this form are far
too rough to understand the Borel map. We hope that this means that understanding the Borel
map is more feasible than understanding whether e.g. a peak function exists (which is a very
hard undertaking, see e.g. the survey by Noell [11]), as it turns out that the Borel map is a
very subtle instrument which feels a lot of the intrinsic geometry of the integrable structure. In
particular, the present results give hope (and lead to some actual conjectures) that one can reach
a satisfactory geometric characterization of the Borel property, and show that its application to
e.g. the structure of ideals of solutions gives important insights into the behaviour of solutions.

There are also structural aspects of the Borel map which make its study very appealing: We
encounter one such aspect when we study partial Borel maps in section 4. Partial Borel maps
are defined as restrictions of the Borel map to solutions which are flat in a number of the basic
solutions, giving rise to formal series only depending on the other basic solutions. It turns out
(Theorem 4.4) that the Borel map is surjective if and only if the partial Borel maps associated to
a choice of a set of basic solutions and to its complementary set are both surjective.

Our main new necessary condition (Theorem 6.10) for the surjectivity of the Borel map is that
the polynomial hull of Z(K), where Z = (Z1, . . . , Zm) is the embedding of the structure into
Cm by means of a set of basic solutions, does not contain any analytic discs. It is tempting to
conjecture (especially when considering the proof of that statement) that this condition is not
only necessary but also sufficient.

Hence one of the remaining objectives of the paper is a discussion of the possible gap between
the necessity of the condition and the stronger conditions known to be sufficient. A particular case
in question is an application of the result on partial Borel maps to structures whose characteristic
set is of maximal dimension; in that case, we see that the Borel map is surjective if none of the
solutions of the structure is open (Theorem 7.13).

This result highlights yet another interesting problem to which the Borel property has a curious
connection, namely the question whether there is a solution (with nontrivial differential in a
noncharacteristic direction) which is actually open; it also, therefore connects with the question
of whether a maximum principle is valid for solutions of the given structure. We shall, however,
in this paper not follow these lines of inquiry further.

Instead, we have decided to focus on the study of what we think is the main geometric question
left over in our approach here in a special model case of tube structures. We obtain a rather
complete picture in that case, which is discussed in section 8. We show in Theorem 8.14 out
that if neither the known condition for surjectivity (property (B)), nor the condition for failure
of surjectivity (open mapping property) hold, that we can reduce the problem to studying sets
which are in some sense “characteristic” for property B. and it is in many cases the geometry of
these sets which allows us to determine whether the Borel map is onto or not (Theorem 8.15 and
Theorem 8.16).

In the last two sections of the paper, section 9 and section 10, we study two particular algebraic
aspects of the ring of solutions: We first show that its maximal ideal is finitely generated by a set
of basic solutions if property (B) holds (Theorem 9.26). There are also other situations in which
we can guarantee this basic property, but we would definitely like to know whether the maximal



THE BOREL MAP IN LOCALLY INTEGRABLE STRUCTURES 3

ideal in the ring of solutions is always generated by a set of basic solutions (or not). In the other
extreme, we also show that principal manifold ideals automatically (without further assumptions
on the structure) satisfy the Nullstellensatz (Lemma 10.30).

We would like to note that the current paper leaves open a number of fascinating problems
concerning the behaviour of the Borel map and the relation between the algebra of formal solutions
and the algebra of solutions; we discuss a number of them in section 11.

2. The Borel property in locally integrable structures

A. Let Ω be a smooth (paracompact) manifold of dimension N over which we assume given a
locally integrable structure V of rank n. Thus V is a vector subbundle of CTΩ of rank n whose
orthogonal bundle V⊥ ⊂ CT∗Ω is locally spanned by the differentials of m = N − n smooth
functions.

If p ∈ Ω we set

Sp
.
= {f ∈ C∞p : Lf = 0, ∀ sections L of V near p},

where we are denoting by C∞p the ring of germs of smooth functions at p. It is clear that Sp is
also a ring.

For each k ≥ 0 let mk
p denote the ideal of C∞p formed by all f ∈ C∞p for which there is a

constant C > 0 such that |f(q)| ≤ Cd(q, p)k+1 for q in a neighborhood of p.1 It is also clear that
mk+1
p ⊂ mk

p for every k ≥ 0 and that mk
p ∩Sp is an ideal of Sp. We can then form the quotient

ring J (V)kp
.
= Sp/(m

k
p ∩ Sp), which is called the ring of k-jets of solutions at p. We have well

defined homomorphisms ιk : J (V)kp → J (V)k−1
p , k ≥ 1, induced by the inclusions mk

p ⊂ mk−1
p .

Furthermore ιk ◦ πk = πk−1, k ≥ 1, where πk stands for the quotient map Sp → J (V)kp. We can
form the projective limit

J (V)∞p
.
= lim
←
J (V)kp

which is then called the ring of formal solutions for V at p. Recall that J (V)∞p is the set of all

sequences (sk)k≥0 with sk ∈ J kp and sk−1 = ιk(sk) for every k ≥ 1. Finally we define

bV,p : Sp → J (V)∞p , bV,p(u) = (πk(u))k≥0

Definition 2.1. We shall refer to the ring homomorphism bV,p as the Borel map for V at p. We
shall also say that V satisfies the Borel property at p if bV,p is surjective.

B. Let V be a smooth, locally integrable structure defined on a smooth manifold Ω and let
p ∈ Ω. According to [4] we can assert the following: p is the center of a smooth coordinate
system (x1, . . . , xm, t1, . . . , tn), which can be assumed defined in a product U = B × Θ, where
B (respectively Θ) is an open ball centered at the origin in Rmx (respectively Rnt ), over which
there is defined a smooth, real vector-valued function Φ(x, t) = (Φ1(x, t), . . . ,Φm(x, t)) satisfying
Φ(0, 0) = 0, DxΦ(0, 0) = 0, such that the differential of the functions

Zk(x, t) = xk + iΦk(x, t), k = 1, . . . ,m,

1Here d is any distance function defined near p by using local coordinates. It is easily seen that the definition of
the ideals mkp is invariant.
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span V⊥ over U .

Moreover dZ1, . . . ,dZm,dt1, . . . ,dtn span CT∗Ω over U .

Over U we can define smooth vector fields

Mk =
m∑
k′=1

µkk′(x, t)
∂

∂xk′
, k = 1, . . . ,m

characterized by the rule

MkZk′ = δk,k′ , k, k′ = 1, . . . ,m.

It follows that the complex vector fields

Lj =
∂

∂tj
− i

m∑
k=1

∂Φk

∂tj
(x, t)Mk, j = 1, . . . , n,

span V|U . Moreover, L1, . . . ,Ln,M1, . . . ,Mm span CTΩ|U .

The following relations are easily checked, for every j, j′ = 1, . . . , n, k, k′ = 1, . . . ,m:

dZk(Lj) = 0, dZk(Mk′) = δkk′ , dtj(Lj′) = δjj′ , dtj(Mk) = 0,

from which we conclude that L1, . . . ,Ln,M1, . . . ,Mm are pairwise commuting.

Set, for W ⊂ U open,

S(W )
.
= {u ∈ C∞(W ) : Lju = 0, j = 1, . . . , n};

it follows, according to the previously established, that

S0 = lim
W→{0}

S(W ).

We are now ready to give a concrete representation of the Borel map for V at the origin using
this basic set of generators {Z1, . . . , Zm}. Firstly we observe that if u ∈ S0 then all derivatives
up to order k of the solution

vk
.
= u−

∑
|α|≤k

Mαu(0)

α!
Z(x, t)α

vanish at the origin; this can be easily seen for (MβLγvk)(0) = 0 if β ∈ Zm+ , γ ∈ Zn+, |β|+ |γ| ≤ k.

In particular vk ∈ mk
0 ∩S0 and hence the class of u in J (V)k0 equals that of u − vk, which gives

rise to an isomorphism

ηk : J k0 (V)0 −→ Ck[Z1, . . . , Zm]

where the latter denotes the vector space of all polynomials in Z1, . . . , Zm of order ≤ k. Further-
more, for each k ≥ 1 we have commutative diagrams

J k0 (V)0 Ck[Z1, . . . , Zm]

J k−1
0 (V)0 Ck−1[Z1, . . . , Zm]

ηk

ιk

ηk−1

where the vertical arrows at the right stand for the natural projections. If we recall that the ring
of formal power series CJZ1, . . . , ZmK equals the projective limit lim←Ck[Z1, . . . , Zm] we finally
obtain an isomorphism

η : J∞0 −→ CJZ1, . . . , ZmK.
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For the representation of the Borel map for V at the origin in terms of {Z1, . . . , Zm} we must just
observe that the map b : S0 −→ CJZ1, . . . , ZmK given by

b(u) =
∑
α∈Zm

(Mαu)(0)

α!
Z(x, t)α

makes the diagram

S0

J∞0 CJZ1, . . . , ZmK

b0,V b

η

commutative. In particular we conclude that the Borel property for V holds at the origin if and
only if b is surjective. Moreover the image of b0,V and b are isomorphic.

3. General properties of the Borel map

A. It is our goal in this work to study not only conditions to ensure the surjectivity of b but also
to analyze its algebraic properties and apply them to the study the properties of the algebra S0.

We first recall a result proved in [3], Lemma 3.2: b is surjective if and only if there exists an
open neighborhood of the origin V ⊂ U such that

(1) bV : S(V ) −→ CJZ1, . . . , ZmK

is surjective. Here bV = b ◦ σV , where σV : S(V )→ S0 asssociates to u ∈ S(V ) its germ at the
origin.

Both S(V ) and CJZ1, . . . , ZmK can be endowed with natural Fréchet algebra structures. Indeed
the first is a closed subalgebra of C∞(V ) whereas for the second we consider its usual algebra
structure endowed with its Fréchet topology defined by the seminorms

∑
α aαZ

α 7→ |aβ|, β ∈
Zm+ . Furthermore bV is a homomorphism of Fréchet algebras, a consequence of the Leibniz rule,
and has dense image since it contains C[Z1, . . . , Zm].

Let S∞(V, 0) denote the ideal of S(V ) formed by all v ∈ S(V ) which vanish to infinite order
at the origin. Thus ker bV = S∞(V ; 0) and hence if bV is surjective we obtain an isomorphism of
Fréchet algebras

S(V )/S∞(V, 0) ' CJZ1, . . . , ZmK.

Since moreover CJZ1, . . . , ZmK is a local algebra it follows that the spectrum of the Fréchet algebra
S(V )/S∞(V, 0) is a unitary set. But this spectrum equals the set of all nonzero continuous
homomorphisms S(V ) → C that vanish on S∞(V ; 0) [7, pp. 81-82] and hence its only element
is the Dirac measure δ0 at the origin. Now if (x0, t0) ∈ V is such that Zj(x0, t0) 6= 0 for some
j ∈ {1, . . . ,m} then the Dirac measure at (x0, t0) defines continuous homomorphism of S(V )
which is different from δ0 which shows that when bV is surjective the ideal S∞(V ; 0) cannot be
trivial. This gives a different proof of Theorem 3.1 in [3].

B. Both S(V ) and CJZ1, . . . , ZmK are also Fréchet-Montel spaces. Indeed the former is a closed
subspace of the Montel space C∞(V ) and the latter is isomorphic to a countable product of copies
of the complex field, which is easily seen to be Montel (Tychonoff theorem). We will make use
the following result:
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Proposition 3.2. Let E, F be Fréchet-Montel spaces and let A : E → F be a continuous linear
map with A(E) dense in F . The following properties are equivalent:

(1) A(E) = F ;
(2) tA(F ′) is strongly closed;
(3) ∀B ⊂ F ′, tA(B) ⊂ E′ strongly bounded ⇒ B strongly bounded;
(4) ∀{y′j} ⊂ F ′, { tA(y′j)} strongly bounded ⇒ {y′j} is strongly bounded;

(5) tA(F ′) is strongly sequentially closed in E′.

Proof. The equivalence of (1) and (2) follows from [9], p .22. The equivalence of (1) and (5)
follows from [9], p. 18. Now, since tA is injective, (2) implies that ( tA)−1 : tA(F ′) → F ′ is
continuous with respect to the strong topologies and then it maps strongly bounded sets into
strongly bounded sets, which gives (3). It is clear that (3) implies (4). Assume now that (4)
holds and let { tA(y′j)} ⊂ tA(F ′), tA(y′j)→ x′ strongly in E′. By (4) {y′j} is strongly bounded

in E′. Since E′, endowed with the strong topology, is also a Montel space, it follows that {y′j} is

compact, which in particular implies that { tA(y′j)} = tA{y′j}. Then x′ ∈ tA(E′), which proves

(5). �

We apply Proposition 3.2 with A = bV , E = S(V ), F = CJZ1, . . . , ZmK. The dual of
CJZ1, . . . , ZmK is the space C[Z, . . . , Zm] under the duality

CJZ1, . . . , ZmK× C[Z1, . . . , Zm]→ C,

(∑
α

aαZ
α,
∑
finite

bαZ
α

)
7→
∑

aα bα.

Hence the transpose of bV is the map C[Z, . . . , Zm] 3 P 7→ λP ∈ S(V )′,

λP (f) = (P̃ (M)f)(0), f ∈ S(V ),

where P̃ is the polynomial obtained from P after dividing its coefficient bα by α!. Thus the Borel
map bV is surjective if and only if given any sequence of polynomials Pj ∈ C[Z1, . . . , Zm] with
λPj bounded in S(V )′ then Pj is bounded in C[Z1, . . . , Zm].

Now a sequence Pj is bounded in C[Z1, . . . , Zm] if and only if there is k such that degree(Pj) ≤ k
for every j and the sequences of the corrresponding coefficients are bounded in C. On the other
hand the sequence λPj is bounded in S(V )′ if and only if it is equicontinuous, that is

(3.1)
There are an open set 0 ∈W ⊂⊂ V , ` ∈ Z+ and C > 0 such that

|(P̃j(M)f)(0)| ≤ C‖f‖C`(W̄ ), f ∈ S(V ).

Notice that applying (3.1) to the monomials f = Zβ implies that the sequence of corresponding
coefficients of Pj is bounded in C. We summarize:

Proposition 3.3. bV is surjective if and only if the following holds: given any sequence of
polynomials Pj ∈ C[Z1, . . . , Zm] satisfying (3.1) then sup{degree(Pj)} <∞.

4. The partial Borel maps

A. We keep the notation established in the previous section and start with a digression regarding
the theory of tensor products in the category of Fréchet spaces.

Let 1 ≤ p < m and consider the natural inclusions

CJZ1, . . . , ZpK ↪→ CJZ1, . . . , ZmK, CJZp+1, . . . , ZmK ↪→ CJZ1, . . . , ZmK.
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Then CJZ1, . . . , ZpK⊗CJZp+1, . . . , ZmK can be identified to the (dense) subspace of CJZ1, . . . , ZmK
formed by all power series of the form

M∑
j=1

S1,j(Z1, . . . , Zp)S2,j(Zp+1, . . . , Zm).

Recall that CJZ1, . . . , ZpK⊗̂πCJZp+1, . . . , ZmK is the completion of this space endowed with the
strongest locally convex topology which makes the natural map

B : CJZ1, . . . , ZpK× CJZp+1, . . . , ZmK→ CJZ1, . . . , ZpK⊗ CJZp+1, . . . , ZmK

continuous. On the other hand since the space of formal power series is nuclear [13], p. 526,
Corollary 1, it follows from [13], p. 511, Theorem 50.1 that the canonical map of

CJZ1, . . . , ZpK⊗̂πCJZp+1, . . . , ZmK −→ CJZ1, . . . , ZpK⊗̂εCJZp+1, . . . , ZmK

is an isomorphism (cf. the definition of the ε topology in [13], page 434). In other words both π
and ε topologies coincide. If we apply the same reasoning as in the proof of [13], p.531, Theorem
51.6, it follows that CJZ1, . . . , ZpK⊗̂CJZp+1, . . . , ZmK ∼= CJZ1, . . . , ZmK.

By a property of the π-topology [14], Theorem 6.4, p. 63, it then follows that every element
S ∈ CJZ1, . . . , ZmK can be represented in the form

(4.2) S =
∞∑
j=1

S1,j(Z1, . . . , Zp)S2,j(Zp+1, . . . , Zm),

where
∞∑
j=1

qk(S1,j)qk(S2,j) < 1

and q1 < q2 < . . . is a sequence of continuous seminorms that define the Fréchet topology in
CJZ1, . . . , ZmK.

B. Denote by S
(1)
0 (resp. S

(2)
0 ) the space of all u ∈ S0 such that Mαu(0) = 0 if α 6⊂ {1, . . . , p}

(resp. α 6⊂ {p+ 1, . . . , n}). We then obtain homomorphisms induced by b:

b1 : S
(1)
0 → CJZ1, . . . , ZpK, b2 : S

(2)
0 → CJZp+1, . . . , ZmK.

We shall refer to the maps b` as the partial Borel maps for V at the origin with the respect to
the decomposition {1, . . . ,m} = {1, . . . , p} ∪ {p+ 1, . . . ,m}.

Theorem 4.4. The Borel map b is surjective if and only if each b` is surjective, ` = 1, 2.

Proof. If b is surjective and if S ∈ CJZ1, . . . , ZpK ⊂ CJZ1, . . . , ZmK then there is u ∈ S0 such that

b(u) = S. But a fortiori u ∈ S
(1)
0 by the definition of b and thus b1(u) = b(u) = S, which shows

that b1 is surjective. An analogous argument shows the surjectivity of b2.

We show the converse. Firstly we remark that if V is an open neighborhood of the origin and
if we denote by S(`)(V ), j = 1, 2, the space of all u ∈ S(V ) such that the germ of u at the origin

belongs the S
(`)
0 then each S(`)(V ) is a closed subspace of S(V ) and hence also a Fréchet space.

By a Baire category argument (cf. Lemma 3.2 in [3]) there is an open neighborhood V of the
origin such that both induced maps

b1,V : S(1)(V )→ CJZ1, . . . , ZpK, b2,V : S(2)(V )→ CJZp+1, . . . , ZmK
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are surjections between Fréchet spaces. From [14], Theorem 6.6, p. 65, it follows that

b1,V ⊗̂b2,V : S(1)(V )⊗π S(2)(V ) −→ CJZ1, . . . , ZpK⊗̂πCJZp+1, . . . , ZmK

is a surjection between Fréchet spaces.

Thus by [14], Theorem 6.5, p. 63, given S as in (4.2) there are uj ∈ S(1)(V ), vj ∈ S(2)(V )
such that

∑∞
j=1 uj(x, t)vj(y, t) converges in C∞(V × V ) and such that

S =

∞∑
j=1

b1(uj)b2(vj).

Now since each bj is defined as the restriction of b we can further write

S =
∞∑
j=1

b(uj)b(vj) =

∞∑
j=1

b(ujvj),

since b is an algebra homomorphism. But then if we set u(x, t)
.
=
∑∞

j=1 uj(x, t)vj(x, t) then

u ∈ S(V ) and b(u) = S, which completes the proof. �

Still keeping the notation previously established we consider the locally integrable structure V1

over U defined as V⊥1 = span{dZ1, . . . ,Zp}. Notice that a u is a solution for V1 if and only if

Lju = 0, Mku = 0, j = 1, . . . , n, k = p+ 1, . . . , n.

In particular Mαu = 0 in a full neighborhood of the origin if α 6⊂ {1, . . . , p} and consequently the
following statement is immediate:

Proposition 4.5. If the Borel map for V1 at the origin is surjective then the same is true for the
partial Borel map b1.

5. Partial Hypocomplexity

In this section we continue to write Z(x, t) = (Z1(x, t), . . . , Zm(x, t)) ∈ Cm and remark that
for a fixed structure V all concepts below are independent of a particular choice of such map.

A. In the first paragraph of this section we recall the concept of hypocomplexity and some results
presented in [13]. Denote by O(m) the sheaf of germs of holomorphic functions at the origin in
Cm. We say that V is hypocomplex at the origin if every germ of (weak) solution u for V at the

origin can be written as u = H ◦ Z for some H ∈ O(m). In this case given any solution u for
V defined near the origin we have, for some constant C > 0, |Mαu(0)| ≤ C |α|+1α!, α ∈ Zm+ , and
consequently hypocomplexity at the origin implies the non surjectivity of the Borel map.

The following theorem gives a complete characterization of hypocomplexity in terms of the
compact neighborhoods of the origin in U . If we recall that for a compact set P ⊂ Cm its rational
hull can be characterized as the set all z ∈ Cm having the following property: every algebraic
hypersurface through z intersects P , we can state Theorem III.5.1 in [13] in the following form:

Theorem 5.6. The following properties are equivalent:

(1) V is hypocomplex at the origin;

(2) For every compact neighborhood K0 ⊂⊂ U of the origin in RN the rational hull of Z(K0)
is a neighborhood of the origin in Cm;

(3) For every compact neighborhood K0 ⊂⊂ U of the origin in RN the polynomial hull of
Z(K0) is a neighborhood of the origin in Cm.
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As a consequence we obtain:

Corollary 5.7. If V is hypocomplex at the origin then any non constant solution near the origin
is open at the origin.

For a proof see ([13], Corollary III.5.2).

Corollary 5.8. Assume m = 1. Then V is hypocomplex at the origin if and only if Z is open at
the origin.

Proof. The rational hull of any compact set in C is the compact itself. �

B. Recall that if V is a locally integrable structure over Ω its characteristic set is the subset of
T∗Ω defined by To = V⊥ ∩ T∗Ω.

Taking into account Corollary 5.7, and for further reference, we conclude this section introduc-
ing a weakened version of hypocomplexity:

Definition 5.9. We shall say that V is partially hypocomplex at the origin if there is a smooth
solution W for V near the origin, with dW |0 ∈ To

0 \ 0, such that W is open at the origin.

Remark 5.2. Write the coordinates in C2 as z = x+ iy, w = s+ it and consider the hypersurface
Σ defined by t = s|z|2. The CR structure V on Σ is such that its orthogonal is spanned by the
differentials of the functions Z1 = x + iy, Z2 = s + is|z|2. The characteristic set at the origin
is spanned by ds|0 and the function W = Z2 + iZ2

1 is a solution with dW (0) = ds|0. Moreover
introducing s′ = s− 2xy as a new variable we have

W (x, y, s′) = s′ + i(x2 − y2 + (s′ + 2xy)(x2 + y2))

and then (ImW )(x, y, 0) changes sign at the origin in R2. Hence W is open at the origin and
consequently this CR structure is partially hypocomplex (but not hypocomplex) at the origin. 2

6. A necessary condition for the surjectivity of the Borel map

In the preceding section we have seen that when Ẑ(K) is a neighborhood of the origin Cm
(K ⊂ U a compact neighborhood of the origin) the Borel map is not surjective. We now prove a
much stronger statement:

Theorem 6.10. Suppose that for every K ⊂ U compact neighborhood of the origin the polynomial

hull Ẑ(K) of Z(K) in Cm contains a non constant complex curve through the origin. Then the
Borel map for V at the origin is not surjective.

Proof. Let u be a solution for V defined near the origin. There are a compact neighborhood K
of the origin in RN and a sequence of polynomials Pν ∈ C[z1, . . . , zm] such that Pν ◦ Z converges
to u over K in the C∞ topology (the Baouendi-Treves approximation theorem). In particular
Pν converges uniformly over Z(K). Now by hypothesis there is a non constant complex curve

τ 7→ γ(τ) ∈ Ẑ(K), defined near the origin in the complex plane and such that γ(0) = 0. Hence
Pν(γ(τ)) converges uniformly to a holomorphic function α(τ) in a neighborhood of the origin in
C. In particular

(6.3)
dk

dτk
Pν(γ(τ))|τ=0 → α(k)(0)

for every k. On the other hand, the Faà di Bruno formula gives

dk

dτk
Pν(γ(τ))|τ=0 =

∑
1≤|α|≤k

Λα,k(∂
α
z Pν)(0),
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Λα,k
.
=

k∑
s=1

∑
ps(α,k)

k!
s∏
j=1

[γ(`j)(0)]αj

αj !`j !|αj |

where ps(α, k) is the set of all (α1, . . . , αs, `1, . . . , `s) ∈ (Zm+ )s × Zs+ satisfying |αj | > 0,
∑
αj = α

and
∑
|αj |`j = k.

By hypothesis there is r ≥ 1 such that

γ(τ) = τ rγ•(τ)/r!, ζ
.
= γ•(0) 6= 0.

Thus γ(j)(0) = 0 if j ≤ r − 1 and γ(r)(0) = ζ 6= 0.

We assume k = rq, where q = 1, 2, . . . and consider two cases:

• Case 1: |α| > q. If (α1, . . . , αs, `1, . . . , `s) ∈ ps(α, rq) we have
∑

j |αj |`j < |α|r. Hence
`j < r for some j and thus Λα,rq = 0. 2

• Case 2.: |α| = q. f (α1, . . . , αs, `1, . . . , `s) ∈ ps(α, rq) we have
∑

j |αj |`j = |α|r. Hence if
`j ≥ r for every j we necessarily must have `j = r for every j 2

Summing up when k = rq we conclude that Λα,rq = 0 if |α| > q and

Λα,rq = (rq)!

rq∑
s=1

∑
∑s
j=1 αj=α

αj 6=0

s∏
j=1

[γ(r)(0)]αj

αj !r!|αj |
.
= Aα,qζ

α if |α| = q,

where Aα,q is a positive constant. Thus

drq

dτ rq
Pν(γ(τ))|τ=0 =

∑
|α|=q

Aα,qζ
α(∂αz Pν)(0) +Qq(∂z)Pν(0)

where Qq(X) =
∑
|β|≤q−1Qq,βX

β/β! ∈ C[X1, . . . , Xm] has degree ≤ q − 1.

Now since

(∂αPν/∂z
α)(0) = Mα {Pν ◦ Z} |(x,t)=(0,0)

from (6.3) we obtain

α(rq)(0) =
∑
|α|=q

Aα,qζ
α(Mαu)(0) +Qrq(M)u(0)

and consequently for some constant C > 0 we have∣∣∣∣∣∣
∑
|α|=q

Aα,qζ
α(Mαu)(0) +Qq(M)u(0)

∣∣∣∣∣∣ ≤ Cq+1(rq)!.

In particular, if
∑

β aβZ(x, t)β/β! ∈ CJZ1, . . . , ZmK belongs to the image of the Borel map for V
at the origin then ∣∣∣∣∣∣

∑
|α|=q

Aα,qaαζ
α +

∑
|β|≤q−1

Qq,βaβ

∣∣∣∣∣∣ ≤ Cq+1(rq)!, k ≥ 0,

for some C > 0. Since it is easy to construct indutively a sequence (aβ) for which this property
is not satisfied for any C > 0 our proof is complete. �
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Remark 6.3. Our argument in the proof of Theorem 6.10 can be enlightened by the following
discussion. Given a formal curve γ(t) ∈ CJtKm, with γ(0) = 0, the map

γ∗ : CJz1, . . . , zmK −→ CJtK, u 7→ u ◦ γ,
is onto if γ′(0) 6= 0. More generally, if γ(t) = tdδ(t) with δ(0) 6= 0, and if we consider the
projection map

π : CJtK −→ CJtdK, π

∑
j

αjt
j

 =
∑
k

αdkt
dk,

then
π ◦ γ∗ : CJz1, . . . , zmK −→ CJtdK

is onto, since by the Faà di Bruno formula, for each k there exists a polynomial pk such that the
coefficient of tdk in (π ◦ γ∗)(

∑
α aαZ

α) can be written as∑
|α|=k

aαδ(0)α + pk(aβ, δj : |β| < k, j ≤ dk).

Theorem 6.10 shows that if γ happens to be an analytic curve contained in Ẑ(K), then by the
Baouendi-Treves approximation theorem,

(π ◦ γ∗) (b(S0)) ⊂ C{td}
and hence the Borel property must fail. �

Remark 6.4. For the CR structure defined in Remark 5.2 the Borel map at the origin is not
surjective since the complex curve w = 0 is contained Σ.

Remark 6.5. Write the coordinates in C3 as zj = xj + iyj , j = 1, 2, and w = s+ it and consider
the hypersurface Σ defined by

t =
∣∣z2

1 − z3
2

∣∣2 .
Let V be the CR structure on Σ induced by the complex structure in C3. Since Σ contains the
germ of the curve ζ 7→ (ζ3, ζ2, 0) it follows from Theorem 6.10 that the Borel map for V at the
origin is not surjective. We do conjecture that the polynomial hull of a compact neighbourhood
of 0 in M also does not contain any regular curve. For such a compact neighborhood of the origin
K ⊂ Σ in Σ it can be shown (see [5]) that the the analogous question for the holomorphic hull of
K has an affirmative answer, that is, the holomorphic hull of K does not contain any germ of a
regular curve curve through the origin.

7. Sufficient conditions for the surjectivity of the Borel map

In this section we recall two conditions which imply the surjectivity of the Borel map.

A. Here we assume that V defines on Ω a CR structure of the hypersurface type. Hence we
have V ∩ V = 0 and To is a real line subbundle of T∗Ω. Let p ∈ Ω, let V ⊂ Ω be an open
neighborhood of p and let ψ ∈ S(V ). We say that ψ is a peak function at p if ψ(p) = 0, ψ(q) 6= 0
for q 6= p and argψ 6= −π in V \ {p}. Furthermore, we say that a peak function if of finite type
if |ψ(q)| ≥ Cd(q, p)α for positive constants C and α.

The following theorem is the main result in [6] :

Theorem 7.11. If V is a CR structure of the hypersurface type in Ω which admits a peak function
of finite type at p ∈ Ω then the Borel map for V at p is surjective.
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We shall present a sketch of a proof of this result based on the characterization given in
Proposition 3.3. For this we shall show that given any sequence of polynomials Pj ∈ C[Z1, . . . , Zm]
such that degree(Pj)→∞, given 0 ∈W ⊂ U a neighborhood of the origin and ` ∈ Z+ there is a
sequence fj ∈ S(W ) such that

|(P̃j(M)fj)(0)| = 1, ‖fj‖C`(W̄ ) → 0.

We can assume that Ω is a hypersurface embedded in Cm and that Zj = zj |Ω, j = 1, . . . ,m,
where (z1, . . . , zm) are the holomorphic coordinates in Cm. We can also assume that the peak
function ψ is defined in in V .

For any j let bαjz
αj be a non-vanishing monomial of Pj of maximal degree, and define Cαj =

1/bαj . For any multiindex β ∈ Zm+ we put dβ = 2−|β|. We define a sequence fj ∈ S(V ) by
fj = CαjZ

αjϕαj , where ϕαj ∈ S(V ) is the function constructed in [6], Lemma 4.2. We have that
ϕαj (0) = 1 for all j ∈ N, and all its derivative vanish at 0 (see [6] Corollary 4.3).

By [6] Lemma 5.1 and more in particular from equation (5.4) in [6], we have the following:

for fixed β ∈ Zm+ there exists j0(β) ∈ Z+ such that |Mβfj(q)| ≤ A|αj ||J |dαj for all q ∈ V and
j ≥ j0(β) (here we are using the fact that |αj | → ∞ as j → ∞), where the constant A depends
on |β| but not on αj . Using these inequalities for all β ∈ Zm+ with |β| ≤ `, it follows that there

exist j1(`) ∈ Z+ and A1 = A1(`) > 0 such that ‖fj‖C`(V ) ≤ A1|αj |`dαj . Thus ‖fj‖C`(W̄ ) → 0 as
j →∞ for any neighborhood W ⊂⊂ V of the origin.

On the other hand, let us consider (P̃j(M)fj)(0). Since (Mkϕαj )(0) = 0 for all k, it follows

that (P̃j(M)fj)(0) = Cαj (P̃j(M)Zαj )(0)ϕαj (0) = Cαj (P̃j(M)Zαj )(0). Using that MkZk′ = δkk it

is clear that MβZαj (0) = 0 for all β 6= αj , hence Cαj (P̃j(M)Zαj )(0) = Cαjbαj (M
αjZαj )(0)/αj ! =

Cαjbαj = 1, which completes the proof. �

B. Next we introduce a very similar condition stated in [3] which now applies to an arbitrary
locally integrable structure V. We say that V satisfies condition (B) at p ∈ Ω if there is a smooth
solution W for V near p such that the following conditions holds:

(1) W (p) = 0, dW (p) ∈ To
p \ 0 and argW 6= −π/2 near p;

(2) There are smooth solutions W1, . . . ,Wm−1 defined in a neighborhood of p, Wj(p) = 0,
such that dW1, . . . ,Wm−1, dW are linearly independent and positive constants µ and C
such that (|W1|+ · · ·+ |Wm−1|)µ ≤ C|W | near p.

The main result in [3] is the following:

Theorem 7.12. Property (B) at p implies the surjectivity of the Borel map for V at p.

It is an easy corollary of Theorem 7.12 the fact that when V has rank N−1, that is when V⊥ is
locally spanned by the differential of a single function, the surjectivity of the Borel map at p ∈ Ω
is equivalent to the fact that V is not hypocomplex at p ([3], Corollary 6.2).

The conjunction of Theorem 4.4 and this result allows us to obtain the following statement:

Theorem 7.13. Assume that the characteristic set for the locally integrable V over Ω at p ∈ Ω
has maximum dimension (= m). If V is not partially hypocomplex at p then the Borel map for V
at p is surjective.

Proof. Since dim To
p = m by ([4] Theorem I.10.1) we can find smooth solutions Z1, . . . , Zm for

V near p with dZ1, . . . ,dZm linearly independent and dZj(p) ∈ To
p for all j = 1, . . . ,m. By

hypothesis none of the functions Zj is open at p and hence by Corollary 4.1 and the result just
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stated we conclude that the Borel maps for the structures Vj = span {dZj}⊥ are surjective at p.
Hence Proposition 4.5 in conjunction with Theorem 4.4 gives the sought conclusion. �

8. A class of tubular structures

A. We recall (cf. [12], p.308) that a locally integrable structure V over Ω of rank n is tubular if
given any point p ∈ Ω there are an open neighborhood U of p and an abelian finite dimensional
subalgebra g of C∞(U ; TΩ) such that [g,V|U ] ⊂ V|U , dim gq = dim g and CTΩq = Vq + gq for all
q ∈ U . Here

gq = {Xq : X ∈ g} ⊂ TqΩ, q ∈ U.

It is proved in ([13], p.308) that V is tubular if and only if given any point p ∈ Ω there are, as in
section 1(B), a coordinate system (x1, . . . , xm, t1, . . . , tn) centered at p (N = m+N) and defined
in an open neighborhood U = B ×Θ of the origin in RN and a smooth map Φ = (Φ1, . . . ,Φm) :
Θ→ Rm satisfying Φ(0) = 0 such that V⊥ is spanned over U by the differential of the functions

Zj(x, t) = xj + Φj(t), j = 1, . . . ,m.

Observe that a set of n linearly independent vector fields which span V|U is given by

Lj =
∂

∂tj
− i

m∑
k=1

∂Φk

∂tj
(t)

∂

∂xk
, j = 1, . . . , n.

Moreover since that in this particular case the vector fields Mk equal ∂/∂xk the Borel map at
the origin for V is given by

S0 3 u 7→ b(u) =
∑
α∈Zm

(∂αxu)(0, 0)

α!
Z(x, t)α.

From now on we shall assume that

Ω and V are real-analytic.

In particular Φ is a real-analytic map. The main reason for assuming such a hypothesis is
that in this case hypocomplexity for V at the origin is perfecty determined: by a result due to
Baouendi and Treves [2] this structure V is hypocomplex at the origin if and only if for every
ξ ∈ Rm \ {0} the map t 7→ Φ(t) · ξ is open at the origin.

B. Assume that m = n+ 1 and suppose that Φ has the special form

Φ(t) = (t, φ(t))

where φ : Rn → R is real analytic, φ(0) = 0, dφ(0) = 0. Such structure V• is CR of the
hypersurface type: indeed in this case it is the CR structure induced by the complex structure on
Cn+1, where the complex coordinates are written as (z1, . . . , zn+1), on the hypersurface defined
by Im zm+1 = φ(Im z1, . . . , Im zn). Notice that for this structure the CR vector fields read

Lj =
∂

∂tj
− i ∂

∂xj
− i ∂φ

∂tj
(t)

∂

∂xm
, j = 1, . . . ,m.

Notice also that in this case

ξ · Φ(t) =

m−1∑
j=1

ξjtj + ξmφ(t)
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which is open at the origin if ξj 6= 0 for some j = 1, . . . ,m− 1. Hence V• is hypocomplex at the
origin if and only if φ(t) is open at the origin.

We first study the case n = 1, which is very simple. If V is not hypocomplex at the origin then
either φ has a zero of even order at the origin or else φ vanishes identically. In the latter case
we are in the Levi flat case in which case the Borel map at the origin is not surjective whereas
that in the former case the argument in the proof of Theorem 8.14 below shows the existence
of a peak function for V• at the origin and hence the surjectivity of the Borel map at the origin
follows from Theorem 7.11.

In what follows we then assume that n ≥ 2 and that φ does not vanish identically.

Our discussion of the surjectivity of the Borel map for this particular CR structure will be
given in terms of the (germ of the) variety V

.
= φ−1{0}. We start with the following result:

Theorem 8.14. Let V•, φ and V be as before.

(1) If φ is open at the origin then the Borel map for V• is not surjective;
(2) If V = {0} then the Borel map for V• is surjective.

Proof. We have already seen that if φ is open then V• is hypocomplex at the origin and hence (1)
follows.

For (2) we can assume without loss of generality that φ > 0 outside the origin. Hence from the
analiticity of φ we conclude that φ(t) ≥ c|t|2q if |t| ≤ r, where c > 0, r > 0 are small constants
and q ∈ N . We set

ψ(x, t) = −i(xm + iφ(t)) + (xm + iφ(t))2 + κ

m−1∑
j=1

(xj + itj)
2q,

where κ is positive small constant. It is clear that ψ ∈ S(U). Furthermore if r > 0 is chosen such
that φ(t) ≤ 1/2 if |t| ≤ r then

ReΨ(x, t) ≥ x2
m + φ(t)/2 + κ

m−1∑
j=1

Re {(xj + itj)
2q} ≥ x2

m + c|t|2q/2 + κ

m−1∑
j=1

Re {(xj + itj)
2q}

If we now use the elementary fact that for every 0 < ε < 1 there is Cε > 0 (depending on q) such
that

Re (z2q) ≥ (1− ε)(Re z)2q − Cε(Im z)2q, z ∈ C,
choosing ε = 1/2 and κ small enough gives

ReΨ(x, t) ≥ x2
m + c|t|2q/4 + κ(x2q

1 + . . .+ x2q
m−1)/2, |t| ≤ r.

Hence ψ is a peak function of finite type for V• at the origin and then (2) follows from Theo-
rem 7.11. �

We have now to face the situation when V 6= {0} and say φ ≥ 0. The former is equivalent to
the existence of a (germ of a) non trivial real analytic curve γ(s) through the origin in t-space
over which φ vanishes identically. Notice that φ = 0 implies dφ = 0 (because φ ≥ 0) and hence
also dφ vanishes on γ.

Theorem 8.15. Let V•, φ and V be as before. Assume that V contains the (germ of) a non
trivial real analytic curve γ(s) through the origin such that each of its components has a zero of
odd order at the origin. Then the Borel map for V• at the origin is not surjective.
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Proof. Write γ(s) = (γ1(s), . . . , γn(s)) and consider the tube structure V] on the (x, s)-space
defined by the first integrals

Z]j(x, t) = xj + iγj(s), j = 1, . . . , n.

This structure is defined by a single vector field, namely:

L] =
∂

∂s
−

n∑
j=1

γ′j(s)
∂

∂xj
.

The point for considering this new tube structure is the following key observation: if u(x, t) is
a smooth solution for V• near the origin then v(x, s)

.
= u(x1, . . . , xn, 0, γ(s)) is a smooth solution

for V] near the origin, that is, L]v = 0. This follows from a simple computation.

Now if each γj has an odd order zero at the origin then the map

s 7→
n∑
j=1

γj(s)ξj

is open at the origin in R for any ξ ∈ Rn \ 0, and consequently by the Baouendi-Treves [2] result
alluded to above, it follows that V] is hypocomplex. Hence if u is any smooth solution for V• near
the origin and if v is defined as above then we obtain the bounds

|∂αxu(0, 0)| = |∂αx v(0, 0)| ≤ C |α|+1α!, α ∈ Zm+ ,

which imply that the Borel map for V• at the origin is not surjective. �

C. In the rest of this section we shall focus on the case when n = 2 and φ(t) = (tp1− t
q
2)2, p, q ∈ N.

Write p/q = α/β, with α and β without common factors. By Theorem 8.15 the Borel map for V•
at the origin is not surjective if both α and β are odd since φ vanishes on the curve γ(s) = (sβ, sα).

We shall now study some of the cases when α 6= β and either α or β is even. We are able to
settle the following situations:

Theorem 8.16. Let φ be as before:

• if q = 2 and p is odd then the Borel map is surjective;
• if q = 2 and p is even then the Borel map is not surjective.

Remark 8.6. In each one of the cases where the Borel map is not surjective, the necessary con-
dition established in Theorem 6.10 is not satisfied (indeed, we prove the non-surjectivity precisely
by applying Theorem 6.10).

We will first concentrate on the second statement.

C1. Given k ∈ N, consider the following hypersurface of C3, which is equivalent to the ones
introduced in subsection B. up to a complex linear change of coordinates:

Σ = {x3 = (x2
1 − x2k

2 )2}.

We also put Σ0 = Σ ∩ {z3 = 0}. Then Σ0 can be seen as the union of the two hypersurfaces
S+ = {x1 = xk2} and S− = {x1 = −xk2}, biholomorphic to each other. We want to show that the

polynomial hull Σ̂0 of Σ0 in C2 (and thus the polynomial hull Σ̂ of Σ in C3) contains a complex
line passing through 0.
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To this aim, we define Σ′0 = Σ0 ∩ {x2 ≥ 0}, Σ′′0 = Σ0 ∩ {x2 ≤ 0}: then we can write Σ′0 =

{x2 = k
√
|x1|} and Σ′′0 = {x2 = − k

√
|x1|}. We claim that Σ̂′0 contains (a neighborhood of 0 in)

{(0, z2) ∈ C2 : x2 ≥ 0}, and similarly Σ̂′′0 contains (a neighborhood of 0 in) {(0, z2) ∈ C2 : x2 ≤ 0}.
Choose then c ∈ C, c = a + ib with 0 < a < (2k − 1)/(2k)

2k
2k−1 and define f : C → C2 as

f(ζ) = (ζ, c + ζ2); furthermore define ρ : C2 → R as ρ(z1, z2) = x2 − k
√
|x1|. Writing ζ = u + iv

we can express the composition ρ ◦ f : C→ R as ρ ◦ f(ζ) = a− v2 + u2 − k
√
|u|.

Let now ϕ : R+ → R be defined as ϕ(t) = k
√
t − t2. A simple computation shows that ϕ is

strictly increasing on the interval [0, 1/(2k)
k

2k−1 ] and ϕ(1/(2k)
k

2k−1 ) = (2k− 1)/(2k)
2k

2k−1 . We can

thus set d′ = ϕ−1(a) and, choosing d′ < d < 1/(2k)
k

2k−1 , define the rectangle R = {u+ iv : |u| <
d, |v| <

√
a+ 1}.

With this choice of R we have that ρ ◦ f |∂R < 0. Indeed, whenever |v| =
√
a+ 1 we can write

ρ◦f(ζ) ≤ a−v2 = −1, while for |u| = d one has ρ◦f(ζ) ≤ a−ϕ(|u|) ≤ a−ϕ(d) < 0 by the choice of
d. On the other hand ρ◦f(0) = a > 0. It follows that the open set U ′ = R∩{ρ◦f > 0} is non-empty

and relatively compact in R. The open set C \U ′ has a unique unbounded connected component
V . Putting U = C \ V , it follows that U is simply connected, 0 ∈ U and ∂U ⊂ {ρ ◦ f = 0}.

We can thus consider f : U → C2 as an analytic disc attached to Σ′0 because f(∂U) ⊂ Σ′0.

Since f(0) = (0, c), it follows that (0, c) ∈ Σ̂′0, which verifies the claim. By Theorem 6.10 we
conclude that the Borel map is not surjective, which proves the second statement in Theorem
8.16.

C2. We are now going to treat the first claim in Theorem 8.16.
In order to do so we are going to study the properties of some particular domains of C2. Fix a

small enough τ > 0 (to be specified later) and k0 ∈ N. We define Ω ⊂ C2(z1, z3) to be the set

Ω = {(z1, z3) ∈ C2 : x3 ≥ 0, |z3| < τ, |z1| < 1 + k0
√
x3}

and put Ω0 = Ω∩{z3 = 0}(i.e. the unit disc in C(z1)). We denote by A∞(Ω), A∞(Ω0) the subspace
of C∞(Ω), C∞(Ω0) given by the functions which are holomorphic in the interior of Ω,Ω0.

Proposition 8.17. The restriction map A∞(Ω)→ A∞(Ω0) is surjective. More precisely, for all

f ∈ A∞(Ω0) there is f̃ ∈ A∞(Ω) such that f̃ |Ω0 = f and ∂k f̃
∂zk3
|Ω0 = 0 for all k ≥ 1.

To achieve the proof of the Proposition, we modify the construction in [6], and sometimes refer
to lemmas in there without further mention. First, we need to prove an estimate which will be
useful later:

Lemma 8.18. Fixed r > 0, we have

1

2
log(j2) ≤ 1

sin(1/jr+2)
(1− (jr sin(1/jr+2))

1
jr+2 ) ≤ 2 log(2j2)

for all large enough j ∈ N.

Proof. Put xj = 1− (jr sin(1/jr+2))
1

jr+2 ; then xj > 0 and

(1− xj)j
r+2

= jr sin(1/jr+2).

Moreover, since (jr sin(1/jr+2))
1

jr+2 ≥ (1/2j2)
1

jr+2 → 1 as j → ∞, we have xj → 0 as j → ∞.
From the expression above we get

log(1− xj) =
1

jr+2
log(jr sin(1/jr+2));
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since for j large enough we have −2xj ≤ log(1 − xj) ≤ −xj and 1
2jr+2 ≤ sin(1/jr+2) ≤ 1

jr+2 , we

can write

−xj ≥
log(1/2j2)

jr+2
⇒ xj ≤

log(2j2)

jr+2
, −xj ≤

log(1/j2)

2jr+2
⇒ xj ≥

log(j2)

2jr+2

for large j. The conclusion follows from these inequalities and again from the fact that 1
2jr+2 ≤

sin(1/jr+2) ≤ 1
jr+2 for large enough j. �

Fix an increasing sequence {m`} of positive integers such that m` ≥ e`. Define sequences of
functions {ψj}, {ξj}, {ϕj} by putting

ψj(z1, z3) = −λ(1/jk0`+2)

z`/j
k0`+2 +B(1/jk0`+2), ξj = eψj , ϕj = e−ξj .

for all m` ≤ j < m`+1, where B(y) = 1/ sin(y) and λ(y) = B(y)1−y. Note that ψj is well-defined
on Ω\Ω0, and Reψj(z1, z3)→ −∞ as z3 → 0. Furthermore the function ϕj extends continuously

to Ω and ϕj ≡ 1 on Ω0. Put Dj = {(z1, z3) ∈ Ω : |z3| ≤ 1/jk0)}, and fix p ∈ Ω \Dj . With the
same computations as in Lemma 4.1 (choosing Aβ = j2) we have |Imψj(p)| ≤ 1

cos(`/j2`+2)
=: dj

for m` ≤ j < m`+1 and

Reψj(p) ≥ B
(

1/jk0`+2
)(

1−
(

(jk0)`

B (1/jk0`+2)

) 1

jk0`+2

)
=

=
1

sin(1/jk0`+2)
(1− (jk0` sin(1/jk0`+2))

1

jk0`+2 ) ≥ log(j2)/2 = log(j)

by Lemma 8.18. Choose 1 < d < π/2 such that d ≥ dj for all j ∈ N large enough (indeed dj → 1
as j →∞). From the expression above follows that

Re ξj(p) ≥ |ξj(p)| cos(dj) = eReψj(p) cos(dj) ≥ j cos(dj) ≥ j cos(d)

and thus

|ϕj(p)| = e−Re ξj(p) ≤ e−j cos(d).

On the other hand we have |ϕj(p)| ≤ e for all p ∈ Dj (same proof as in Lemma 4.2).

Lemma 8.19. For all p = (z1, z3) ∈ Ω we have |ϕj(p)| ≤ e2

(1+ k0
√
|z3|)j

.

Proof. Suppose first that p ∈ Dj , i.e. |z3| ≤ 1/jk0 . Then e2

(1+ k0
√
|z3|)j

≥ e2

(1+1/j)j
≥ e ≥ |ϕj(p)|.

If instead p ∈ Ω \Dj we can write e2

(1+ k0
√
|z3|)j

≥ 1
(1+ k0

√
τ)j

= 1
(ecos(d))j

≥ |ϕj(p)| if τ > 0 is small

enough. �

The next statement is an immediate consequence of the chain rule.

Lemma 8.20. Fix k ∈ N. There is a polynomial Pk(X1, X2, . . . , Xk) such that

∂kϕj

∂zk3
= ϕjPk

(
∂ξj
∂z3

,
∂2ξj
∂z2

3

, . . . ,
∂kξj

∂zk3

)
for all j ∈ N. Furthermore, Pk is weighted homogeneous of degree k (where the variable Xj has
weight j).
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Thus, to obtain an estimate for
∂kϕj
∂zk3

we need to give one for
∂hξj
∂zh3

, h ≤ k. In the next lemma

we show that |∂
hξj
∂zh3

(p)| grows as a polynomial in j if p ∈ Ω ∩Dj , while if p ∈ Ω \Dj its growth is

compensated by the exponential decay of |ϕj(p)|, resulting in the following statement:

Lemma 8.21. Let k ∈ N, k ≥ 1. There exist Nk > 0, τ ′ > 0 such that∣∣∣∣∂kϕj∂zk3
(p)

∣∣∣∣ ≤ Nkj
3k0k 1

(1 + k0
√
|z3|)j

for all p = (z1, z3) ∈ Ω with |z3| ≤ τ ′ and all j ∈ N.

Proof. In the following we always consider `, j ∈ N such that m` ≤ j < m`+1, and fix h ∈ N.

Moreover we put yj = 1/jk0`+2. The following expression for
∂hξj
∂zh3

can be checked inductively:

∂hξj

∂zh3
= ξj

h∑
a=1

βa,j
`a

z
a`yj+h
3

where βa,j is bounded in j for all 1 ≤ a ≤ h. Thus we have∣∣∣∣∂hξj∂zh3

∣∣∣∣ ≤ |ξj | h∑
a=1

|βa,j |
`a

|z3|a`yj+h
≤ Ch`h|ξj |

1

|z3|h`yj+h

for some constant Ch > 0 (independent of j). Taking in account the definition of ξj , we can write

∣∣∣∣∂hξj∂zh3

∣∣∣∣ ≤ Ch`h 1

|z3|h`yj+h
e
−Re

λ(yj)

z
`yj
3 eB(yj) ≤

≤ Ch`h
1

|z3|h`yj+h
e
−
λ(yj) cos(π`yj)

|z3|
`yj eB(yj).

Define the function κ : R+ → R+ as

κ(r) =
1

rh`yj+h
e
−
λ(yj) cos(π`yj)

r
`yj ;

clearly κ(r)→ 0 as r → 0+ and as r → +∞. Computing the first derivative

κ′(r) =

(
− h`yj + h

rh`yj+h+1
+
`yjλ(yj) cos(π`yj)

r(h+1)`yj+h+1

)
e
−
λ(yj) cos(π`yj)

r
`yj

we see that it vanishes only at

r̃ =

(
`yjλ(yj) cos(π`yj)

h`yj + h

)1/`yj

hence κ is increasing for 0 ≤ r < r̃ and decreasing for r > r̃. Furthermore

(yjλ(yj))
1/`yj =

(
yj sin(yj)

yj

sin(yj)

)1/`yj

=

(
yj

sin(yj)

)1/`yj

sin(yj)
1/` =

=

(
1

(1− y2
j /6 +O(y4

j ))
1/yj

sin(yj)

)1/`

and
cos(π`yj)

1/`yj = (1− (π`yj)
2/2 +O((π`yj)

4))1/`yj
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are bounded (above and below) independently of j, so that for some K > 0 we can write

r̃ ≥ K
(

`

h`yj + h

)1/`yj

= K

(
`

h

)jk0`+2/`( 1

1 + `/jk0`+2

)jk0`+2/`

≥ K

e

(
`

h

)jk0`+2/`

.

If h ≤ ` we obtain r̃ ≥ K
e . In fact, if h < ` we have r̃ → ∞ as j → ∞, so we can assume r̃ ≥ τ .

Thus the function κ is increasing on the interval [0, τ ].
Let p ∈ Ω ∩Dj , p = (z1, z3). Since |z3| ≤ 1/jk0 we have∣∣∣∣∂hξj∂zh3

(p)

∣∣∣∣ ≤ Ch`hκ(|z3|)eB(1/jk0`+2) ≤ Ch`hκ(1/jk0)eB(1/jk0`+2) ≤

≤ Ch`hjk0h(1+`/jk0`+2) exp
(
−jk0`/jk0`+2

λ(1/jk0`+2) cos(π`/jk0`+2) +B(1/jk0`+2)
)

=

= Ch`
hjk0h(1+`/jk0`+2) exp(αj).

We can rewrite the argument of the exponential as follows:

αj =
1

sin(1/jk0`+2)
(1− cos(π`/jk0`+2)(jk0` sin(1/jk0`+2))

1

jk0`+2 ) =

=
1

sin(1/jk0`+2)
(1− (jk0` sin(1/jk0`+2))

1

jk0`+2 ) +
1− cos(π`/jk0`+2)

sin(1/jk0`+2)
(jk0` sin(1/jk0`+2))

1

jk0`+2 .

The second summand in the expression above is bounded (in fact it is O(`2/jk0`+2)), while the
first one is estimated by 2 log(2j2) by Lemma 8.18. We deduce that∣∣∣∣∂hξj∂zh3

(p)

∣∣∣∣ ≤ Ch`hjk0h(1+`/jk0`+2) exp(log(j4) +O(1)) ≤ C ′hj3k0h

for a large enough C ′h > 0 (here we are using the fact that ` ≤ log(j) by the choice of m`).
The estimate above, together with Lemma 8.20, show that there exists N ′k > 0 such that

(8.4)

∣∣∣∣∂kϕj∂zk3
(p)

∣∣∣∣ ≤ N ′kj3k0k

for all p ∈ Ω ∩Dj .

Consider now p ∈ Ω \Dj , p = (z1, z3). Since |z3| ≥ 1/jk0 we have∣∣∣∣∂hξj∂zh3
(p)

∣∣∣∣ ≤ Ch`h 1

|z3|h`/j
k0`+2+h

|ξj(p)| ≤ Ch`hjk0h(1+`/jk0`+2)|ξj(p)| ≤

≤ Ch(log(j))hjk0h(1+`/jk0`+2)|Re ξj | cos(dj) ≤ C ′′hj2k0h(− log(|ϕj(p)|)).
As before, using Lemma 8.20 we get that there exists N ′′k > 0 such that∣∣∣∣∂kϕj∂zk3

(p)

∣∣∣∣ ≤ N ′′k j2k0k|ϕj(p)|(− log(|ϕj(p)|))k

for all p ∈ Ω \Dj . Since |ϕj(p)| ≤ e−j cos(d) → 0 as j →∞ we have that

(− log(|ϕj(p)|))k ≤ 1/
√
|ϕj(p)|

for all p ∈ Ω \Dj and all large enough j, and thus

(8.5)

∣∣∣∣∂kϕj∂zk3
(p)

∣∣∣∣ ≤ N ′′k j2k0k
√
|ϕj(p)| ≤ N ′′k j2k0ke−j cos(d)/2.
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Using that 1/(1 + k0
√
|z3|)j ≥ 1/e if |z3| ≤ 1/jk0 and 1/(1 + k0

√
|z3|)j ≥ e−j cos(d)/2 if |z3| ≤ τ ′

small enough, we can put together (8.4) and (8.5) as in Lemma 8.19 to conclude that there exists
Nk > 0 such that ∣∣∣∣∂kϕj∂zk3

(p)

∣∣∣∣ ≤ Nkj
3k0k 1

(1 + k0
√
|z3|)j

for all p ∈ Ω, j ∈ N. �

Proof of Proposition 8.17.
For t > 0, define the dilation ψt : C2 → C2 as ψt(z1, z3) = (z1, tz3), and let Ωt = ψ−1

t (Ω). We
have

Ωt = {(z1, z3) ∈ C2 : x3 ≥ 0, |z3| < τ/t, |z1| < 1 +
k0
√
t k0
√
x3}

so that Ωt ∩ {z3 = 0} = Ω0 and Ωt ∩ {|z3| < τ} ⊂ Ω if t < 1. For a given f ∈ A∞(Ω0), we

will construct f̃ , holomorphic in the interior of Ω, such that ∂h+k f̃
∂zh1 ∂z

k
3

extends continuously to Ω0

for all h, k ≥ 0. Then it is clear that f̃ |Ωt ∈ A∞(Ωt), and thus f̃ ◦ ψ−1
t ∈ A∞(Ω); furthermore

f̃ ◦ ψ−1
t |Ω0 = f since ψt is the identity on Ω0.

Let f ∈ A∞(Ω0), f(z1) =
∑∞

j=0 ajz
j
1. Since f is smooth up to bΩ0 the sequence aj goes to 0

faster than any polynomial, that is for all k ∈ N there is Ak > 0 such that |aj | ≤ Ak/j
k for all

j ≥ 1.

We define now f̃(z1, z3) =
∑

j ajz
j
1ϕj(z3). By Lemma 8.19 follows that the series

∑
j ajz

j
1ϕj

converges uniformly on compact sets of the interior of Ω, hence f̃ is a well-defined holomorphic

function in the interior of Ω. We will show now that, for all k ≥ 1, supΩc |
∂k f̃
∂zk3
| → 0 as c → 0,

where Ωc = Ω∩{z3 = c}. This will imply that f̃ (as well as ∂k f̃
∂zk3

) extends continuously to Ω0, and

f̃ |Ω0 = f . The same argument, applied to ∂hf̃
∂zh1

, proves that ∂h+k f̃
∂zh1 ∂z

k
3

extends continuously to Ω0.

Fix then k ∈ N, and let A3k0k+2 > 0 such that |aj | ≤ A3k0k+2/j
3k0k+2 for all j ∈ N. Given

ε > 0, let j0 ∈ N such that NkA3k0k+2
∑

j>j0
1
j2
< ε. For any p = (z1, z3) ∈ Ω we get∣∣∣∣∣∂kf̃∂zk3

(p)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j≤j0

ajz
j
1

∂kϕj

∂zk3
(z3) +

∑
j>j0

ajz
j
1

∂kϕj

∂zk3
(z3)

∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣
∑
j≤j0

ajz
j
1

∂kϕj

∂zk3
(z3)

∣∣∣∣∣∣+
∑
j>j0

|aj ||z1|j
∣∣∣∣∂kϕj∂zk3

(z3)

∣∣∣∣ ≤
≤

∣∣∣∣∣∣
∑
j≤j0

ajz
j
1

∂kϕj

∂zk3
(z3)

∣∣∣∣∣∣+
∑
j>j0

A3k0k+2

j3k0k+2
Nkj

3k0k

(
|z1|

1 + k0
√
|z3|

)j
≤

∣∣∣∣∣∣
∑
j≤j0

ajz
j
1

∂kϕj

∂zk3
(z3)

∣∣∣∣∣∣+ ε

where we used Lemma 8.21 and the fact that |z1| ≤ (1+ k0
√
x3) ≤ (1+ k0

√
|z3|). Since

∑
j≤j0 ajz

j
1
∂kϕj
∂zk3

(z3)

is a finite sum and ϕj is flat at 0 for all j, we conclude that
∣∣∣∂k f̃
∂zk3

(p)
∣∣∣ < 2ε for |z3| small enough. �

Corollary 8.22. Define Γ ⊂ C3(z1, z2, z3) as the set

Γ = {(z1, z2, z3) ∈ C3 : x3 ≥ 0, |z3| < τ, |z1|2 + |z2|2 < 1 + k0
√
x3}
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and let Γ0 = Γ ∩ {z3 = 0} be the unit ball in C2. Then the restriction map A∞(Γ) → A∞(Γ0)

is surjective. More precisely, for all f ∈ A∞(Γ0) there is f̃ ∈ A∞(Γ) such that f̃ |Γ0 = f and
∂k f̃
∂zk3
|Γ0 = 0 for all k ≥ 1.

Proof. Given f ∈ A∞(Γ0), we can apply the construction of Proposition 8.17 on the slices Γ ∩
{αz1 = βz2} to define an extension f̃ of f to Γ, holomorphic on each slice. Since the sequence of

“cut off” functions ϕj is independent of α, β, f̃ is in fact globally holomorphic in (z1, z2, z3). �

Corollary 8.23. Define Σ′′ ⊂ C3(z1, z2, z3) as the set

Σ′′ = {(z1, z2, z3) ∈ C3 : x3 ≥ 0, x1 ≥ x2
2 − k0

√
x3}

and let (S, 0) be a germ of smooth real hypersurface of C3 such that 0 ∈ S and S ⊂ Σ′′. Further-

more let S0 = S ∩ {z3 = 0}. Then for any formal series σ =
∑

j1,j2
aj1j2z

j1
1 z

j2
2 there is a (germ of

a) function g ∈ CR∞(S) whose Taylor series at 0 is given by σ and ∂kg
∂zk3
|S0 = 0 for all k ≥ 1.

Proof. Define the Cayley transformation Φ : C3 \ {z1 = 1} → C3 as

Φ(z1, z2, z3) =

(
1 + z1

1− z1
,

z2

1− z1
, z3

)
;

we have that Φ maps Γ′ to Σ′′, where

Γ′ = {(z1, z2, z3) ∈ C3 : x3 ≥ 0, |z3| < τ, |z1|2 + |z2|2 < 1 + |1− z1|2 k0
√
x3}

on the other hand, since |1− z1|2 is bounded we have (locally) Γ′ ⊂ Γ′′ with

Γ′′ = {(z1, z2, z3) ∈ C3 : x3 ≥ 0, |z3| < τ, |z1|2 + |z2|2 < 1 + C k0
√
x3}

for some large enough C > 0. However Γ′′ is biholomorphic to the set Γ of Corollary 8.22
via a rescaling of the z3 coordinate, so the conclusion of Corollary 8.22 holds for Γ′′. Since
Φ(−1, 0, 0) = (0, 0, 0) we can consider σ′ = σ ◦ Φ as a formal power series centered at the point
p0 = (−1, 0, 0) ∈ Γ′′0. Since ψ = −i(z1 + 1) is a (global) peak function of finite order for Γ′′0 at
p0, there exists a smooth CR function f ∈ CR∞(Γ′′0) whose Taylor expansion at p0 is σ′. By

Corollary 8.22 there exists f̃ ∈ A∞(Γ′′) such that f̃ |Γ′′0 = f and ∂k f̃
∂zk3
|Γ′′0 = 0 for all k ≥ 1. Putting

g = f̃ ◦ Φ−1, we have that g is defined on a neighborhood of 0 in Σ′′ and smooth up to the
boundary. By construction g|S satisfies the requirements of the Corollary. �

Consider now for ` ≥ 0 the hypersurface

Σ = {x3 = (x2`+1
1 − x2

2)2} ⊂ C3

and put Σ0 = Σ ∩ {z3 = 0}.
Using the notation of section 3 with m = 3, p = 2, we consider the partial Borel maps

b1 : S
(1)
0 → CJz1, z2K, b2 : S

(2)
0 → CJz3K.

We have that b2 is surjective because z3|Σ = (x2`+1
1 − x2

2)2 + iy3 is a peak function at 0, which
implies that the corank 1 structure induced on Σ by the function z3 satisfies the Borel property.

In view of Theorem 4.4, the first claim of Theorem 8.16 is proved if b1 is also surjective. This
is the content of the following statement:

Proposition 8.24. Let
∑

j1,j2
aj1j2z

j1
1 z

j2
2 be any formal series in (z1, z2). Then there is a neigh-

borhood U of 0 in Σ and a function g ∈ CR∞(U) such that

• the Taylor expansion of g at 0 is given by
∑

j1,j2
aj1j2z

j1
1 z

j2
2 ;
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• ∂kg
∂zk3
|Σ0 = 0 for all k ≥ 1.

Proof. Define the domains

Σ′ = {(z1, z2, z3) ∈ C3 : x3 ≥ 0, x1 ≥ 2`+1

√
x2

2 −
√
x3},

Σ′′ = {(z1, z2, z3) ∈ C3 : x3 ≥ 0, x1 ≥ x2
2 − 2 4`+2

√
x3}.

It is clear that Σ ⊂ Σ′; we claim that, if ε > 0 is small enough, Σ′ ∩ Bε(0) ⊂ Σ′′ ∩ Bε(0) (where
Bε(0) ⊂ C3 is the ball of radius ε centered at 0). Indeed, for (small) fixed x3 ≥ 0 consider the
function γ : R+ → R

γ(t) = 2`+1

√√
x3 − t− (2 4`+2

√
x3 − t).

Looking at the interval [0, 2 4`+2
√
x3] we note that γ(0) = − 4`+2

√
x3 ≤ 0 and moreover γ(2 4`+2

√
x3) =

2`+1
√√

x3 − 2 4`+2
√
x3 ≤ 2`+1

√√
x3 − 2

√
x3 = − 4`+2

√
x3 ≤ 0. On the other hand we have

γ′(t) = − 1

2`+ 1
· 1

(
√
x3 − t)2`/(2`+1)

+ 1

hence γ′ vanishes exactly at t =
√
x3± 1

2
√̀

(2`+1)2`+1
. If x3 is small enough, neither of these values

lies in the interval [0, 2 4`+2
√
x3], showing that γ is monotone on that interval. Since γ(0) ≤ 0 and

γ(2 4`+2
√
x3) ≤ 0 we must have γ ≤ 0 on [0, 2 4`+2

√
x3], i.e.

2`+1

√
x2

2 −
√
x3 ≥ x2

2 − 2 4`+2
√
x3 for 0 ≤ x2

2 ≤ 2 4`+2
√
x3.

If instead
√
x3 ≤ x2

2 ≤ 1 we have 0 ≤ x2
2 −
√
x3 ≤ 1, so we can write (for small x3)

2`+1

√
x2

2 −
√
x3 ≥ x2

2 −
√
x3 ≥ x2

2 − 2 4`+2
√
x3 for

√
x3 ≤ x2

2 ≤ 1.

Since
√
x3 ≤ 4`+2

√
x3 we conclude that 2`+1

√
x2

2 −
√
x3 ≥ x2

2 − 2 4`+2
√
x3 for x3 small enough and

−1 ≤ x2 ≤ 1, which proves the claimed inclusion Σ′ ∩Bε(0) ⊂ Σ′′ ∩Bε(0).
Using a suitable change of coordinates we can map Σ′′ biholomorphically to the domain {x1 ≥

|z2|2 − 4`+2
√
x3}, so that Σ′′0 is a one-sided neighborhood of the Lewy hypersurface {x1 = |z2|2}.

We denote again by σ =
∑

j1,j2
aj1j2z

j1
1 z

j2
2 the formal series obtained by transforming the one in

the statement through this coordinate change. The conclusion of the Proposition follows then by
applying Corollary 8.23 with S = Σ and k0 = 4`+ 2. �

By using the methods above, we can deduce directly the following (apparently more general)
consequence:

Theorem 8.25. With the notation of Theorem 8.14, suppose that n = 2 and φ(t) = (f(t1, t2))2

where the differential of f does not vanish at 0 and the domain {f(t1, t2) > 0} is strictly convex
(or concave) around 0. Then the Borel map is surjective.

Proof. Let us consider the tube manifold Σ = {x3 = (f(x1, x2))2}. Up to a linear change of
coordinates, we can suppose that the tangent line of {f = 0} at 0 is ∂

∂x1
and {f > 0} is (locally)

strictly convex. Then it is easy to show that there exists C > 0 such that f(x1, x2) ≥ x1 − Cx2
2

for all x1, x2 around 0. This implies that Σ is locally contained in the domain

{(z1, z2, z3) ∈ C3 : x3 ≥ 0, x1 ≥ Cx2
2 −
√
x3}.

From Corollary 8.23 follows that the partial Borel map b1 is surjective, which implies the Borel
property just as in the proof of the first claim in Theorem 8.16.

�
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9. The structure of the maximal ideal of Sp

A. In most of this section we shall assume that the locally integrable structure V over Ω satisfies
condition (B) at p ∈ Ω (cf. Section 6B).

According to ([3], proof of Theorem 6.1) we can assert the following: p is the center of a smooth
coordinate system (x1, . . . , xm, t1, . . . , tn), which can be assumed defined in a product U = B×Θ,
where B (respectively Θ) is an open ball centered at the origin in Rmx (respectively Rnt ), over which
there is defined a smooth, real vector-valued function Φ(x, t) = (Φ1(x, t), . . . ,Φm(x, t)) satisfying
Φ(0, 0) = 0, DxΦ(0, 0) = 0, in such a way that the differential of the functions

Zk(x, t) = xk + iΦk(x, t), k = 1, . . . ,m,

span V⊥ over U . Contracting U even more around the origin we may achieve:

(1) dZm(0, 0) ∈ T 0
(0,0) and argZm 6= −π in U ;

(2) There are constants C,M > 0 so that (|Z1|+ . . .+ |Zm−1|)M ≤ C|Zm| in U .

As before we can consider the corresponding vector fields Lj , Mk satisfying the standard or-
thogonality conditions.

B. S0 is a commutative local ring with maximal ideal

m = {u ∈ S0 : u(0) = 0}.

Our goal now is to give sufficient conditions in order to insure that m is a finitely generated
S0-module. This is of course true when V is hypocomplex at the origin. On the other hand we
also have the following result:

Theorem 9.26. Assume that V satisfies condition (B) at the origin. If either V is minimal
at the origin or if V is a real-analytic locally integrable structure then the following holds: if
W1, . . .Wm ∈ m are such that dW1(0), . . . , dWm(0) are linearly independent then

m = 〈W1, . . .Wm〉

as a S0-module

We start by proving:

Lemma 9.27. If V satisfies condition (B) given u ∈ m there are vj ∈ S0 such that

u−
m∑
j=1

vjZj ∈ ker b.

Proof. Since u(0) = 0 we can write b(u) =
∑N

j=1 gjZj , where gj ∈ CJZ1, . . . , ZmK. By the surjec-

tivity of b we can find vj ∈ S0 such that b(vj) = gj , j = 1, . . . , N . Then b
(
u−

∑N
j=1 vjZj

)
=

b(u)−
∑N

j=1 gjZj = 0. �

We also have:

Lemma 9.28. Assume that condition (B) holds and also that V is minimal at 0. Then

ker b =

∞⋂
k=1

〈Zkm〉.
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Before we embark in the proof of Lemma 9.28 we show how it leads to the proof of Theorem
9.26. Indeed let W1, . . . ,Wm be as in its statement. By lemmas 9.27 and 9.28 we can write

Wk =
m∑
r=1

γkrZr, γkr ∈ S0.

Since Zk(0) = 0 for every k we have

dWk(0) =
m∑
r=1

γkr(0)dZr(0)

and hence the matrix (γkr(0))1≤k,r≤m is invertible. By continuity it follows that the matrix of

germs (γkr)1≤k,r≤m is invertible and that its inverse (γkr)1≤k,r≤m is such that γkr belongs to S0,
since the latter is a ring. Furthermore we have

Zk =
m∑
r=1

γkrWr

and this concludes the proof of Theorem 9.26.

Proof of Lemma 9.28. Let V ⊂ U be an open neighborhood of the origin and let u ∈ S(V )
vanish to infinite order at 0. Assume first that V is minimal at the origin. By [10] there are an
open set U in Cm, a compact neighborhood of the origin K ⊂ V (both indeed independent of u)
and h ∈ O(U) such that the following is true:

• Z(K) ⊂ Ū , for every α ∈ Zm+ the holomorphic function ∂αh extends continuously up to
U ∪ Z(K) and

(9.6) (∂αh) ◦ Z = Mαu on K.

Notice in particular that if we consider the continuous functions on U × U

Uα(z, w) = |∂αh(z)−
∑

|β|≤k−|α|

∂α+βh(w)(z − w)β/β!|/|z − w||α−k|,

defined as zero when z = w, they all extend continuously to Z(K) × Z(K). Consequently the
family {uα,β}(α,β)∈Zm+×Zm+ , defined as

uα,β(z, z̄) =

{
(∂αh)|Z(K) if β = 0,

0 if β 6= 0

is a Whitney family on Z(K).

By the Whitney extension theorem ([8], Theorem 2.3.6) for every p there is Hp ∈ Cp(Cm) such
that

(∂αz ∂
β
z̄Hp)|Z(K) =

{
(∂αz h)|K if β = 0,

0 if β 6= 0

and |α| + |β| ≤ p. By (9.6) all the derivatives of Hp of order ≤ p − 1 vanish at the origin and
hence we must have |Hp(z)| = O(|z|p), for z near the origin in Cm. In particular

|u(x, t)| = |h(Z(x, t))| = |Hp(Z(x, t))| = O(|Z(x, t)|p).

Hence, by (B), we obtain

(9.7) |u(x, t)| = O(|Zm(x, t)|p), p ≥ 0.
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Repeating the argument with Mαu replacing u we further obtain

(9.8) |(Mαu)(x, t)| = O(|Zm(x, t)|p), p ≥ 0.

Define vk(x, t) = u(x, t)/Zkm(x, t), if Zm(x, t) 6= 0, vk(x, t) = 0 when Zm(x, t) = 0. Then
(9.7) implies that vk(x, t) is continuous and is smooth when xm 6= 0. By a standard result in
distribution theory ([8], Theorem 3.1.3) we have Ljvk = 0 and

(9.9) M`vk = (M`u)/Zkm − ku/Zk+1
m

in the distribution sense, j = 1, . . . , n, ` = 1, . . . ,m. By (9.8) it follows that the right hand side
of (9.9) is continuous (if defined as zero when Zm = 0) and then by ([8], Theorem 3.1.7) it follows
that vk ∈ C1 and that Ljvk = 0 in the classical sense, j = 1, . . . , n. If we iterate the argument
it follows that vk is smooth for every k ∈ Z+ and also that Ljvk = 0 for all j = 1, . . . , n and all
k ∈ Z+.

Next we assume that Z1, . . . , Zm are real-analytic functions and let V be an open neighborhood
of the origin in U . By the Baouendi-Treves approximation theorem the following can be said:
there is an open ball W ⊂⊂ V centered the origin such that every element in S(V ) is constant
on the set

F0 = {(x, t) ∈W : Z(x, t) = 0}.
Let u ∈ S(V ) vanish to infinite order at the origin. Then Mαu ∈ S(V ) (α ∈ Zm+ ) vanish at the

origin and consequently vanish on F0. Consequently all derivatives of u vanish on F0 and hence
Taylor’s formula gives, for every q ∈ Z+,

|u(x, t)| ≤ Aq|(x, t)− (x′, t′)|q, (x, t) ∈W, (x′, t′) ∈ F0,

where Aq only depends on bounds for the derivatives of u on W̄ of order q. Taking the infimum
over (x′, t′) ∈ F0 we obtain

|u(x, t)| ≤ Aqdist((x, t), F0)q, (x, t) ∈W.
Let K ⊂W be a compact neighborhood of the origin. Since F0 is the zero set of the real-analytic
function f

.
= |Z1|2 + . . . + |Zm|2 by Lojasiewicz inequality (cf. [M], Theorem 4.1) there are

constants C > 0 and γ > 0 such that

dist((x, t), F0)γ ≤ C|Z(x, t)|2, (x, t) ∈ K.
Hence

|u(x, t)| ≤ C1/γAq|Z(x, t)|2q/γ , (x, t) ∈ K,
for every q ∈ Z+. Again by (B) we derive the validity of (9.7) in this case and the preceding
argument applies without modifications. The proof of Lemma 9.28 is complete. 2

Corollary 9.29. Assume that V is a real analytic locally integrable structure of rank N − 1 (that
is, V⊥ is a complex fiber subbundle of CT∗Ω). Then the conclusion of Theorem 8.1 holds at every
point in Ω.

Indeed when the rank of V is N − 1 and p ∈ Ω then V is not hypocomplex at p if and only if
property (B) holds at p ([3], Corollary 6.2).

C. Besides the hypocomplex case, the conclusion of Theorem 9.26 holds in some cases when it
is not known whether condition (B) is valid or not. As in section 6(A) we assume that V is
the locally integrable structure associated to a smooth, minimal, (weakly) convex hypersurface
Ω ⊂ Cm. Assume 0 ∈ Ω. We claim that

m = 〈z1|Ω, . . . , zm|Ω〉.
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Indeed let V be an open neighborhood of the origin in Ω and let f ∈ S(V ) satisfy f(0) = 0.
Then there is a weakly convex smooth domain U in Cm such that ∂U ∩ Ω

.
= W ⊂ V is an open

neighborhood of the origin in Ω and there is F ∈ O(U) ∩ C∞(U) such that F = f in W . Since
F (0) = 0 we can write, for z ∈ U ,

F (z) = F (z1, . . . , zn) =

∫ 1

0

∂

∂t
(F (tz1, . . . , tzn))dt

where the integral is well-defined because, by convexity, (tz1, . . . , tzn) ∈ U for 0 ≤ t ≤ 1. By the
chain rule we get

F (z) =

m∑
j=1

∫ 1

0
zj
∂F

∂zj
(tz1, . . . , tzm)dt =

m∑
j=1

zjFj(z),

where

Fj(z)
.
=

∫ 1

0

∂F

∂zj
(tz1, . . . , tzn)dt

is holomorphic on U and smooth up to the boundary for all 1 ≤ j ≤ m, so that

f =
∑
j

(Fj |W )(zj |W ).

Such argument applies for instance to the hypersurface

Ω] = {(z, w) ∈ C2 : Imw = e−1/|z|}
which is convex, minimal but not of finite type. Note that we do not currently know whether the
Borel property holds for the CR structure induced on Ω].

10. Principal manifold ideals

We continue to work under the notation established in the last section. Let f1, . . . , f` ∈ m and
consider the ideal I = 〈f1, . . . , f`〉 ⊂ m. We say that I is a manifold ideal if

(10.10)
(
df1 ∧ . . . ∧ df` ∧ df1 ∧ . . . ∧ df`

)
(0) 6= 0.

We denote by V (I) the germ {f1 = . . . = f` = 0}, and call it the variety of I.

Lemma 10.30. If I is a manifold ideal then V (I) is the germ of a regular submanifold of real
codimension 2` of RN around 0. Moreover, we can find a coordinate system (x1, . . . , xm, t1, . . . , tn)
centered at the origin in RN and solutions Z1, . . . , Zm satisfying the properties listed in Section
1B such that I = 〈Z1, . . . , Z`〉.

Proof. The first claim is an immediate consequence of (10.10) whereas the second follows from
the arguments in ([4], Theorem I.10.1) as done in ([3], Section 4). �

We shall now restrict our attention principal maximal ideals, that is the ones generated by a
single element f ∈ S0 such that (df ∧ df)(0) 6= 0. For any submanifold germ V of RN around 0,
we denote by I(V ) the ideal of V , i.e. the ideal of S0 consisting of those germs vanishing on V .
It is clear that I ⊂ I(V (I)). Our aim is to show that the opposite inclusion also holds:

Theorem 10.31. Let I ⊂ S0 be a principal manifold ideal. Then I(V (I)) = I.

We remark that in the previous statement no assumption is made about the minimality of V
nor on the validity of property (B). In order to prove Theorem 10.31 we first prove a simple
lemma.

Lemma 10.32. Let k ≥ 2. Then the function C 3 z → φk(z) = zk/z ∈ C is of class Ck−2.
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Proof. Clearly φk extends continuously to 0 since the function z/z is bounded. Choose j, ` ∈ N
such that j + ` ≤ k − 2. Then

∂j+`

∂zj∂z`
φk(z) = (−1)j

j!k!

`!

zk−`

zj+1
= (−1)j

j!k!

`!

(
z

z

)j+1

zk−(j+`+1)

is again continuous around 0 by the boundedness of z/z, since k − (j + `+ 1) ≥ 1. �

Proof of Theorem 10.31. We can assume that we are in the situation described in Section 1B
in such a way I = 〈Z1〉 (cf. Lemma 10.30). Moreover since I is a principal maximal ideal we can
even assume that φ1(x, t) = t1.

Let g ∈ S0 vanish on V (I) = {Z1 = 0} = {x1 = t1 = 0}. Our goal is to show that g = g•Z1

for some g• ∈ S0.

We start by setting

(10.11) hk =
k∑
j=1

(−1)j

j!
Zj1 Mj

1g, k ≥ 1.

Notice that hk ∈ S0. We claim that

(10.12) Mα(g + hk)|V (I) = 0, α ∈ Zm+ , |α| ≤ k.
In order to prove (10.12) we first note that if j ≥ 2 then 0 = MjZ1 = Mjx1 and hence Mj

only involves ∂/∂x2, . . . , ∂/∂xm. Thus if v ∈ C∞0 vanishes on V (I) the same is true for Mαv if
α = (0, α2, . . . , αm) ∈ Zm+ . Thus (10.12) follows if we show that M`

1(g + hk) = 0 on V (I) if ` ≤ k.
By Leibniz rule we have

M`
1(g + hk) = M`

1g + M`
1


k∑
j=1

(−1)j

j!
Zj1Mj

1g


= M`

1g +
k∑
j=1

min{j,`}∑
r=0

(−1)j

j!

(
`

r

)
j!

(j − r)!
Zj−r1 Mj+`−r

1 g

If we restrict this last sum to V (I) and recall that ` ≤ k we obtain∑̀
j=1

(−1)j
(
`

j

)
(M`g)|Z1=0 = −(M`g)|Z1=0 ,

which completes the proof of (10.12).

Let g′ = g/Z1. Then g′ is defined – and is a solution of V – on the complement of {Z1 = 0}.
It is enough to prove that for any k ≥ 2 the germ g′ extends across {Z1 = 0} as a function of
class Ck−2. If hk−1 is as in (10.11) then hk−1/Z1 ∈ S0 and hence we are left to showing that
(g + hk−1)/Z1 extends accross Z1 = 0 as a function of class Ck−2.

We take advantage of (10.12). By Taylor’s formula we can write

g + hk−1 = Ak Z1 +BkZ1
k
,

where Ak, Bk ∈ C∞0 . Consequently by Lemma 10.32 we can write

(g + hk−1)/Z1 = Ak +Bk φk(Z1)

is of class Ck−2, which completes the proof. 2
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Example 1. If the assumption that I is a manifold ideal is not satisfied, the conclusion of
Theorem 10.31 can fail to hold. For instance, let V be the locally integrable structure on R3,
with coordinates written as (x, y, s), whose orthogonal V⊥ is spanned by the differential of the
functions

Z = x+ iy, W = s+ i(x2 + y2)

(this is the standard Hans Lewy structucture on C2), and define I = 〈W 〉. Then I is not a
manifold ideal, and we have that V (I) = {0} and I(V (I)) = 〈Z,W 〉 = m ) I. Also note that m
does not coincide with the radical of the ideal I, since there is no k ∈ Z+ such that Zk/W is of
class C∞ around 0. It follows that the Nullstellensatz does not hold for a (general) ideal of S0.

Example 2. On the other hand, consider the structure V on R5, with coordinates written as
(x1, x2, y1, y2, s) whose orthogonal V⊥ is spanned by the differential of the functions

Z1 = x1 + iy1, Z2 = x2 + iy2, W = s+ i(x2
1 + y2

1 − x2
2 − y2

2).

Once again we have that I = 〈W 〉 is not a manifold ideal, but in this case we have I(V (I)) = I.
Indeed it is well known that V is hypocomplex at the origin [1]. On the other hand, writting

the complex coordinates in C3 as (z1, z2, w) we see that that if H ∈ O(3) vanishes on V (I) then

H(z1, z2, 0) vanishes on |z1|2 = |z2|2, and consequently H = wH1, with H1 ∈ O(3). This proves
our claim.

11. Some open questions

A certain number of questions arise, in our opinion, naturally from the results presented in the
previous sections. Despite the quite elementary nature of some of them (the topic of the algebraic
properties of the ring Sp appears to be to some extent unexplored) their treatment seems to lead
to delicate analytic issues. The following is an (incomplete) list of the problems which are for us
most natural and interesting:

Question: is the necessary condition found in Theorem 6.10 also sufficient for the surjectivity of
the Borel map?

We conjecture that this should be the case, at least when the structure V is real-analytic.

Question: does the conclusion of Theorem 10.31 hold for a non principal manifold ideal?

The method used in the proof of Theorem 10.31 does not extend easily to ideals generated by
more than one solution.

Question: is there an example in which the maximal ideal m is not generated by the basic
solutions Z1, . . . , Zm?

The results in section 9 show that this property in various situations, far apart from each other.
The knowledge of the behavior of the Borel map seems to be important in most of the proofs,
with the exception of the argument in section 9(C).

Question: for what values of p and q does the structure in Theorem 8.16 satisfy the Borel
property?

We expect that the Borel property should hold precisely when p and q have different parity.
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Question: is the image of b isomorphic to a ring of the form (C{Z1, . . . , Zp})JZp+1, . . . , ZmK?

In other words, in the cases settled so far the image of b consists of formal series in a subset
of variables whose coefficients are holomorphic functions in the other variables (more precisely,
these coefficients must have a common radius of convergence).

Question: Suppose that two integrable structures V1,V2 are not hypocomplex (e.g. correspond to
pseudoconvex hypersurfaces M1,M2 ⊂ Cn), and the solutions rings S1

0, S2
0 are isomorphic. Does

it follow that V1,V2 are locally equivalent (i.e. that M1 and M2 are locally CR diffeomorphic)?

It is clear that the answer to the previous question is negative if V1,V2 are hypocomplex,
since both rings of solutions will always be isomorphic to the ring of convergent power series in
n variables: if, however, there are enough solutions, one might hope that the ring S0 contains
enough information.
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